DATE 7/30/54 SH. 1 OF 2		TMC	SPECIFICATION NO.	S-218
COMPILED BY	TITLE:	ANTENNA COUP	LER. MODEL RAC DESCRIPTION	JOB
APPROVED OM	S			

The TMC Antenna Coupler Model RAC has been designed to couple an unbalanced 70Ω line to a balanced rhombic antenna of either 700 or 200 ohms, nominal impedance.

The coupler consists essentially of a broad-band auto-transformer of the following configuration.

The resistor R across the 70Ω input has a value of 10K ±20% and since 10K >> 70 its shunting effect on the 70Ω winding is negligible. The purpose of this resistor is to allow a leakage path to ground for static charges which may accumulate on the antenna.

The capacitor C connecting the halves of the transformer is a .05 uf ±10% condenser. Its reactance over the frequency range is also negligible, acting as a short circuit to radio frequencies. Its purpose is to isolate the windings for DC current to permit resistance measurements of antenna termination.

A simplified diagram is shown above showing capacitor function in DC measurements.

If a DC ohm meter (M & B) is connected to the 70 ohm terminals, the current will be limited by RL (since R>> RL) therefore the ohmmeter will record essentially the termination resistance RL, 700Ω , or 200Ω as the case may be.

DC ohm meter measurements on the RAC with both input and output terminations open-circuited should give the following results:

70 - G	lok	±20%
700-700	11	H
200-200	#	Ħ

A short circuit across either the 700 Ω or 200 Ω terminations should produce a short circuit at the 70 Ω input.