INSTRUCTION MANUAL
MODEL 1273
FiSK KEYER/DEMODULATOR

$$
\begin{array}{lll}
\text { SR 41049 } & 765 \mathrm{~Hz} & \begin{array}{l}
\text { mark } 807.5 \\
\text { Spat } 722.5
\end{array} \\
\text { SRH1048 } & 2125 \mathrm{~Hz} & \begin{array}{c}
\text { mark } 21675 \\
\text { space } 2082.5
\end{array}
\end{array}
$$

January 1980
©1979, Frederick Electronics Corporation, U.S.A. Hayward Road, Post Office Box 502 Frederick, Maryland 21701

Reproduction by any means of any part of the material contained herein, or of any of the proprietary software described herein, is prohibited except by express written consent of Frederick Electronics Corporation.

Printed In U.S.A.

First Printing: May 1974
Second Printing: June 1975
Third Printing: October 1976
Fourth Printing: October 1977
Fifth Printing: April 1978
Sixth Printing: March 1979

Frederick Electronics Corporation (FEC) warrants to the original buyer that all new equipment manufactured by FEC shall be free from defects in material, workmanship and title. THE FOREGOING WARRANTY IS EXCLUSIVE OF ALL OTHER WARRANTIES WHETHER WRITTEN, ORAL, OR IMPLIED, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE.

FEC will repair or replace, at its option, all or any part thereof found to be defective, at no charge to the purchaser, for a period of one year from the date of shipment. The Purchaser must, upon approval of and in accordance with FEC instructions, send the defective equipment, with shipping cost prepaid, to FEC. FEC will return said equipment, shipping prepaid to the Purchaser. The Purchaser is responsible for additional taxes or duties which may be applicable.

Material returned under this warranty, which is found not to be faulty or which is found to be out of warranty, will be returned at purchaser's expense, and purchaser will be invoiced in accordance with normal out-of-warranty repair procedure.

This warranty shall not, however, apply to any FEC products subjected to improper use, tampering, negligence, or accident; and Frederick Electronics Corporation does not authorize any person to assume for it any liability in connection with its products other than herein expressed.

PROPRIETARY INFORMATION

This document contains Frederick Electronics Corporation proprietary data, and is not to be copied, reproduced, used or divulged to unauthorized persons, in whole or in part, without proper authorization in writing from Frederick Electronics. This information is the property of Frederick Electronics Corporation which reserves all rights to it.

NOTE

Operating frequencies quoted in the text and tables of this manual are TYPICAL, used for purposes of explanation and functional description only.

The actual operating frequencies with which individual units are equipped are shown in Appendix A at the rear of this manual.

I INTRODUCTION

1.1	Purpose Of Equipment	$1-1$
1.2	Physical Description	$1-1$
1.3	Specifications	$1-2$

II INSTALLATION
2.1 Unpacking And Inspection 2-1
2.2 Power Requirements 2-1
2.3 Mounting 2-1
2.4 Input/Output Connections 2-1

III OPERATION

3.1	General	$3-1$
3.2	Controls And Indicators	$3-1$
3.3 Operating Aids	$3-3$	
	3.3 .1 Receiver	$3-3$
	3.3 .2 Demodulator	

IV THEORY OF OPERATION
4.1 Functional Description 4-1
4.1.1 Demodulator 4-1
4.1.2 Tone Keyer 4-3
4.2 Detailed Circuit Description 4-4
4.2.1 Demodulator 4-4
4.2.2 Tone Keyer 4-12
4.2.3 Power Supp1ies 4-16

V MAINTENANCE
PART I. GENERAL MAINTENANCE AND PERFORMANCE CHECKS
5.1 General

5-1
5.2 Preventive Maintenance 5-1
5.3 Corrective Maintenance 5-1
5.3.1 Required Test Equipment 5-2
5.3.2 Troubleshooting 5-2
5.4 Performance Checks 5-3
5.4.1 Mark/Space Bandpass Filter Bandwidth Check
5.4.2 Tone Keyer Output Frequency Check

5-3
5-4
$\begin{array}{lll}\text { 5.5 Alignment And Adjustment Procedures } & 5-5 \\ & 5.5\end{array}$
5.5.1 Power Supply Adjustment 5-5
5.5.2 Meter Amplifier Adjustment 5-5
5.5.3 FSK Keyer Output Level Adjustment 5-5
5.5.4 Mark Channel Gain Adjustment 5-5

CONTENTS (cont.)

SECTION

PAGE

V MAINTENANCE (cont.)

| 5.5.5 | Mark And Space Rectifier Offset | $5-6$ |
| :--- | :--- | :--- | :--- |
| 5.5.6 | Mark And Space DTC Offset | $5-6$ |
| 5.5.7 | Mark And Space Bandpass Filter | |
| | Alignment | |

PART II. TROUBLESHOOTING PROCEDURES

5.6	General	5-9
5.7	Determining The Nature Of A Failure	5-9
5.8	Isolating The Area Of A Malfunction	5-10
5.9	Input Circuit	5-11
5.10	Mark And Space Bandpass Filters	5-12
5.11	Mark Detector, Space Detector Meter Circuits	5-13
5.12	Dual Low Pass Filters	5-14
5.13	Decision Threshold Computer Circuits	5-15
5.14	Squaring Amplifier Circuits	5-16
5.15	Keyer Outputs	5-17
5.16	Auto Mark-Hold Circuits	5-18
5.17	Power Inputs And Regulator Circuit	5-19
5.18	Power Supply Board	5-19
5.19	Input Circuit	5-20
5.20	Mark/Space Gating Circuit	5-21
5.21	Divider Circuits	5-22
5.22	Digital To Sine Wave Converter Circuit	5-23
5.23	Output Circuit	5-24
SCHEMATIC DIAGRAMS		6-1
PART	REPLACEMENT DRAWINGS	7-1
APPENDICES		

TABLES
TABLE
1-1 Specifications, Mode1 1273
page

3-1 Controls And Indicators 3-1
5-1 Required Test Equipment 5-2
5-2 Input/Output Connections For Bandpass Filter Alignment

ILLUSTRATIONS

FIGURE

1-1	Mode1 1273 FSK Keyer/Demodulator
2-1	Model 1273 Input/Output Connections
2-2	Internal Loop Connections
2-3	External Loop Connections, Internal Power Supply, Neutral Keying
2-4	External Loop Connections, External Power Supply, Neutral Keying
2-5	External Loop Connections, Internal Power Supply, Polar Keying
2-6	External Loop Connections, External Power Supply, Polar Keying
3-1	BFO Frequency Higher Than Signal Frequency, Response Drawing
3-2	BFO Frequency Lower Than Signal Frequency, Response Drawing
4-1	Model 1273 Block Diagram
4-2	DTC Waveforms
4-3	Digital To Sine Wave Converter Waveform Drawing
5-1	Test Setup, Mark/Space Bandpass Filter Operational Check
5-2	Test Setup, Mark/Space DTC Offset Adjustment
6-1	Demodulator Schematic Diagram (Sheets 1 \& 2)
6-2	High Impedance Input Schematic Diagram
6-3	Mark-Space Bandpass Filter Schematic Diagram
6-4	Dual Low-Pass Filter Schematic Diagram
6-5	Power Supply Schematic Diagram
6-6	Tone Keyer Schematic Diagram
6-7	Optional Loop Power Supply Schematic Diagram
6-8	Model 1273 Wiring Diagram
6-9	Front Panel Switch Schematic Diagram
6-10	Optically Isolated High Level Neutral Keyer Schematic Diagram
7-1	Model 1273 Assembly
7-2	Demodulator Board Subassembly
7-3	High Impedance Input Board Subassembly
7-4	Mark-Space Bandpass Filter Board Subassembly
7-5	Dual Low-Pass Filter Board Subassembly
7-6	Tone Keyer Board Subassembly
7-7	Power Supply Board Subassembly
7-8	Optional Loop Power Supply Board Subassembly
7-9	Front Panel Switch Board Subassembly
7-10	Input Active Bandpass Filter Assembly
7-11	Input Active Bandpass Filter Selection Guide
7-12	Optically Isolated High Level Neutral Keyer
	Assembly Drawing

Figure 1-1. Mode1 1273 FSK Keyer/Demodulator

INTRODUCTION

1.1 PURPOSE OF EQUIPMENT

The Model 1273 FSK Keyer/Demodulator is a dual function equipment designed to provide demodulation of frequency shift keying (FSK) signals and conversion of high level neutral/polar teletype or EIA input data to FSK output signals. A front view of the Model 1273 is shown in Figure 1-1.

The FSK Demodulator circuits of the Model 1273 accept FSK tones within the range of 400 and 3500 Hz and with keying rates between 30 to 1200 bauds. The audio tone input supplied by a communications receiver is demodulated and used to drive one or more of the following output circuits: a high level neutral or polar loop keyer, a logic level keyer capable of producing polar EIA RS-232-C logic level signals, or MIL-STD-188C logic level signals.

The FSK Keyer circuits convert conventional telegraph input data to an audio frequency shift output. Different AFSK tones can be selected by replacement of the mark-space oscillator crystals.

An active input bandpass filter and limiter circuit render the 1273 unit virtually impervious to 60 Hz hum, noise, and other out-of-band signals, allowing the unit to operate (in the limiter mode) with FSK signals below -60 dbm . The effects of frequency selective fast-fade conditions are reduced through the use of a Decision Threshold Computer (DTC) circuit. In the auto-markhold function, the unit can operate with input signals as low as -50 dbm before being placed into a mark-hold condition.

1.2 PHYSICAL DESCRIPTION

The Model 1273 contains the following circuit cards:

1. Tone Keyer NO1343 (FEC Assembly D3095)
2. Demodulator NO1483 (FEC Assembly D3739)
3. Bandpass Filter NO1158 (FEC Assembly D2818) - 2 required
4. Low Pass Filter NO1159 (FEC Assembly D2813)
5. Power Supply NO1318 (FEC Assembly D2962)
6. High Level Keyer NO1452 (FEC Assembly C3240) (Optional) two required for polar keying applications, one required for neutral keying.
7. Bandpass Filter NO1991 (FEC Assembly C3916) (Optiona1) Replacement for Bandpass Filter D2818. Refer to Appendix A.

The circuits are packaged in an aluminum chassis designed for mounting in a standard 19 -inch equipment rack. The required vertical rack space is $1-3 / 4$ inches.

All operator controls required for normal operation of the unit are mounted on the front panel. All input/output connections are made via rear apron terminal strips and a multipin MOLEX connector.

The mark channel and space channel Bandpass Filters and the Low Pass Filter are plug mounted on the Demodulator. The filter circuits determine the frequency shift and baud rate for the FSK Demodulator. These cards are selected at the factory to match customer requirements. Filters are available from Frederick Electronics for any frequency shift and baud rate within the range of the equipment.

1.3 SPECIFICATIONS

Specifications for the Model 1273 FSK Keyer/Demodulator are outlined in Table 1-1.

Table 1-1. Specifications, Model 1273

DEMODULATOR
Input Impedance. Balanced 600Ω or $10 \mathrm{~K} \Omega$ (selectable on the PC card).

Input AFSK Tone. Center frequency between 400 and 3500 Hz .

Input Sensitivity In
Limiter Mode Below -60 dbm.
Operating Rate Between 30 and 1200 baud.
Frequency Shift. Up to 1000 Hz .
Mark-Space Channel
Bandwidth. Between 85 and 500 Hz .
Mark Center Frequency . . . Between 400 and 3500 Hz .
Space Center Frequency . . . Between 400 and 3500 Hz .
Outputs. $\frac{\text { EIA RS-232-C }}{\text { signals. }}$ polar logic level
$\frac{\text { MIL-STD-188C }}{\text { signals. }}$ polar lagic level

Table 1-1. Specifications, Model 1273 (cont.)

DEMODULATOR (cont.)
Outputs (cont.) High Level Loop (optional) -plug-in neutral keyer board provides dry contacts for keying teleprinter circuits. Two keyer boards are installed to provide polar loop keying.

Auto-Mark-Hold Threshold . . Approximately -10 dbm in linear operation; approximately -50 dbm in limiter operation.

KEYER

Input Options. High Level Loop Circuit - Detects telegraph loops.

Polar Logic Level Circuit - Detects EIA Standard RS-232-C or MIL-STD-188C logic level signals.

NOTE
When operating with neutral loop inputs proper polarity must be observed. With neutral or polar inputs loop current must be adjusted to the specified value by an external resistance.

Output Mark Pulse: 900X selected crystal. Space Pulse: 900X selected crystal. Optional: 180X selected crystal.

Output Level Adjustable up to +4 dbm .
Output Impedance Balanced, 600 ohms or 10 K ohms.
GENERAL
Power Requirements Switch selectable 115 or 230 VAC $\pm 10 \% 50-400 \mathrm{~Hz}$.

Power Consumption. 10 watts.
Temperature Range. 0 to $50^{\circ} \mathrm{C}$.

Table 1-1. Specifications, Model 1273 (cont.)

```
GENERAL (cont.)
Outer Dimensions . . . . . . . Height: 1-3/4 inches ( 4.4 cm )
    Width: 19 inches ( 48.3 cm )
    Depth: 17 inches ( 43.2 cm )
Weight . . . . . . . . . . . . Approximately 7-1/2 pounds
    \((3.4 \mathrm{~kg})\)
```


SECTION II

INSTALLATION

2.1 UNPACKING AND INSPECTION

Open the shipping container being careful not to puncture the container with sharp objects which may damage the contents. Remove the packing and the unit(s) from the container. Inspect the unit(s) for damage. If any damage is observed as the result of shipping, file a written claim with the shipping agency and forward a copy of this claim to:

Frederick Electronics Corporation
Hayward Road, Post Office Box 502
Frederick, Maryland 21701
If repacking for storage or reshipment is anticipated, replace the packing material and retain the container for later use.

2.2 POWER REQUIREMENTS

The Model 1273 FSK Keyer/Demodulator is shipped from the factory ready to operate directly from a nominal $115 \mathrm{vac}, 50 / 60 \mathrm{~Hz}$ power source. Power is connected by plugging the power cord into a standard 3-prong ac outlet. The input is fused prior to application to the power supply transformer.

2.3 MOUNT ING

The Model 1273 is designed for mounting in a standard 19-inch equipment rack. The unit is $1-3 / 4$ inches high and extends approximately 17 inches back into the equipment rack. The unit is secured to the equipment rack by screws inserted through the front panel mounting holes. Optional slide mounting can be incorporated on customer request.

2.4 INPUT/OUTPUT CONNECTIONS

The function of the individual pins of each connector is identified in Figure 2-1. Those connections that do not apply to a particular operating requirement should be ignored. Figures 2-2 through 2-6 show typical input/output connections for loop operation.

Figure 2-1. Model 1273 Input/Output Connections

Figure 2-2. Internal Loop Connections B2115A

Figure 2-3. External Loop Connections, Internal Power Supply, Neutral Keying C3120

Figure 2-4. External Loop Connections, External Power Supply, Neutral Keying C3122

Figure 2-5. External Loop Connections, Internal Power Supply, Polar Keying C3124

Figure 2-6. External Loop Connections, External Power Supply, Polar Keying C3123.

3.1 GENERAL

To obtain optimum performance from the Model 1273, it is essential the operator thoroughly understand the functions of the front panel controls and indicators and how to tune the associated receiver to an FSK signal.

The following paragraphs describe the operation of each control and its optimum position for various receiving conditions. In addition, a section on receiver operation is provided.

3.2 CONTROLS AND INDICATORS

Table 3-1 lists the functions of the controls and indicators. Control and switch positions associated with the Frequency Shift Keyer operations are identified with an asterisk (*).

Table 3-1. Controls and Indicators

CONTROL/INDICATOR	REF	FUNCTION
MODE SWITCHES	S1	SPACE MARK Disables mark channel output when switch is depressed.
LIMIT	Sisables space channe1 output when	
switch is depressed.		

Table 3-1. Controls and Indicators (cont.)

CONTROL/INDICATOR	REF	FUNCTION
SENSE SWITCHES		
DEMOD	S6	Reverses mark-space polarity at Demodulator output to select correct mark-space relationship.
KEYER	S7	Selects correct mark-space polarity for signal processing by Tone Keyer.
DEMOD SWITCHES		
++	S8	Used to tune Receiver to an FSK signal. Receiver is properly tuned when meter shows maximum deflection and minimum oscillations.
+-	S9	Indicates input signals by deflecting to the right for mark and left for space.
LEVEL	S10	Monitors level of Demodulator input signal. Normal level is 0 DBM.
LOOP	S11	Monitors current in Demodulator high level output loop.
KEYER SWITCHES		
LEVEL	S12	Monitors output signal level from Tone Keyer. Meter is calibrated at 0 DBM.
LOOP	S13	Monitors current in Tone Keyer high level input loop.
PWR (power)	S14	Controls power to Model 1273.
MARK Indicator	CR1	Illuminates when Demodulator detects a mark signal higher than Mark-Hold level.
SPACE Indicator	CR2	IIluminates when Demodulator detects a space signal higher than Mark-Hold 1evel.

Table 3-1. Controls and Indicators (cont.)

CONTROL/INDICATOR	REF	FUNCTION
Power Indicator KEYER TONE LEVEL (Rear Apron) CR3	Illuminates when unit is ON.	

3.3 OPERATING AIDS

3.3.1 RECEIVER

The performance of the FSK Demodulator depends to a large extent upon the type of receiver used, and upon careful tuning. For best results, use a single-sideband receiver with good frequency stability, variable IF bandwidth selectivity, a product detector, slow AVC, and passband tuning. The operator should read the instruction manual for the receiver, and thoroughly familiarize himself with its operation.
3.3.1.1 FREQUENCY STABILITY, Receiver frequency stability is important in the reception of FSK signals. Frequency stability becomes extremely important with the narrower shifts. Any slow frequency drift, even with 850 Hz shift, can quickly interrupt copy from the strongest of signals.
3.3.1.2 SELECTIVITY. The normal AM broadcast receiver passes a band of frequencies five kHz or more in width. If such bandwidths were used in receiving FSK signals, background noise and adjacent-channel interference could ruin reception. Narrow IF bandwidths are thus desirable, since they can reduce and even eliminate much of this interference. Good single-sideband receivers will normally have two or more switch-selectable IF bandwidths. The proper IF bandwidth to use in a particular application depends upon the frequency shift of the received signal. In practice, always use the next widest receiver bandwidth than the bandwidth of the shift frequency. For example, with 850 Hz shift, the bandwidth should be greater than 850 Hz .
3.3.1.3 PRODUCT DETECTOR. A product detector in the receiver will improve the performance of the FSK Demodulator. This type of detector greatly reduces both intermodulation and harmonic distortion, thereby providing a cleaner signal from the receiver. Since automatic volume control can be used with the product detector, a more constant output will be obtained even during fading signal conditions.
3.3.1.4 AUTOMATIC VOLUME CONTROL. Some receivers provide slow and fast automatic volume control (AVC). Slow AVC should be used in receiving FSK signals, since a fast attack and a slow release are necessary. Slow AVC introduces the proper amount of delay in release to suppress noise during momentary absences of either signal frequency. With fast AVC, the receiver sensitivity recovers too quickly, thereby permitting excessive noise to appear.
3.3.1.5 BEAT FREQUENCY OSCILLATOR. Positioning of the mark and space frequencies in the IF passband of the receiver is critical for good performance. The two frequencies must be positioned so that they straddle the center point with equal amplitude. Failure to do this, especially with a very narrow bandpass, can result in a loss of the mark or space frequency. If the receiver Beat Frequency Oscillator (BFO) is varied to produce the mark and space frequencies, the operator must also know whether the BFO is tuned higher or lower than the received signals. This is illustrated in Figure $3-1$. If the BFO is set higher in frequency than the received signals, the mark will be the lower frequency and the space will be the higher. This is the correct position for the mark and space signals. If the BFO is set too high, the space signal will be shifted outside the receiver passband, and the mark signal will approach the original position of the space signal.

Figure 3-2 shows the resultant signal relationship when the BFO is set to a frequency below that of the received signals. The mark and space signals have now changed places. Space is the low frequency and mark is the high frequency. If the BFO is set too low, the mark signal will be shifted outside the receiver passband, and the space signal will approach the original position of the mark signal.

All is not lost if the operator tunes the BFO to the wrong side of the signal frequency, provided that the mark and space signals still straddle the center point as shown in Figures 3-1 and 3-2. A wrong choice can be corrected by means of the SENSE switch on the FSK Demodulator. This switch reverses the mark and space signals at the output of the detector, thereby permitting the printer to function with the normal mark-space relationship.

To adjust a variable BFO, the receiver is tuned to noise only (i.e., a no-signal frequency), the +-switch on the Demodulator is selected, and the BFO control is set for a zero reading (center scale) on the meter. This operation balances the noise in the mark and space channels, thereby insuring equal amplitude signals when the receiver is properly tuned to keying.
3.3.1.6 PASSBAND TUNING. Passband tuning in a receiver permits the IF to be shifted a few kHz above and below its normal frequency. The shift is effected without altering the shape of the

Figure 3-1. BFO Frequency Higher Than Signal Frequency

Figure 3-2. BFO Frequency Lower Than Signal Frequency
passband. This is particularly useful with interfering signals, since the passband can often be tuned to eliminate the unwanted signal. If the receiver has a passband tuning control, this control is substituted for the BFO control. The tuning procedure is the same.

3.3.2. DEMODULATOR

3.3.2.1 MODE SWITCHES. The MARK or SPACE switches select the channel transferred to the external TTY equipment. These operating modes are used only under special conditions. Normal operation transfers both channels and is usually selected. The Auto Mark-Hold (AMH1) mode of operation holds the outputs of the Demodulator in a steady mark condition during the absence of incoming signals to deactivate the external TTY equipment.
3.3.2.1.1 Limiter Mode. The limit function permits the operator to insert an additional 30 db (minimum) of gain (LIMIT depressed). Use of this mode is dependent upon the characteristics of the receiver. Normally the unit should be operated in the linear mode (LIMIT switch in out position). If reception is unsatisfactory, depress the LIMIT pushbutton switch to obtain the additional gain.
3.3.2.2 DEMOD/KEYER METER SWITCHES. There are six meter switches, four are associated with the Demodulator circuits of the Model 1273.

The ++ switch is used in tuning the receiver to an FSK signal. If only a carrier is present (no keying) the receiver is tuned for maximum needle deflection with the MARK indicator on. If keying is present, the receiver is tuned for maximum deflection and minimum oscillation of the meter needle. Both the MARK and SPACE indicators will flicker during keying.

The +- switch is used to obtain equal amplitude response (noise balance) from the mark and space channels. This response is obtained by first tuning the receiver to noise only and then by adjusting either the BFO or passband control until the needle rests at 0 (center scale). When the receiver is tuned to an FSK signal, deflection of the needle to the right indicates reception on the mark channel, and deflection to the left indicates reception on the space channel.

The LEVEL switch is used to adjust and monitor the amplitude of the audio input to the Demodulator. The input level is properly set when adjustment of the receiver audio gain control positions the meter needle at 0 DBM.

The LOOP switch is used to adjust and monitor output loop current from the Demodulator high level keyers.
3.3.2.3 STBY SWITCH. This switch controls the output circuit. When the STBY switch is pressed, the Demodulator output is held in steady mark. This is used during tuning.
3.3.2.4 DEMOD SENSE SWITCH. This switch is used to reverse the mark and space signals at the output of the detector, thereby permitting the output to function with the proper mark-space relationship. There is no set position for the DEMOD SENSE switch since mark-space polarities may change with receiver tuning and other conditions external to the Demodulator.

THEORY OF OPERATION

4.1 FUNCTIONAL DESCRIPTION

A functional block diagram of the Mode1 1273 Keyer/Demodulator is illustrated in Figure 4-1. An external communications receiver supplies FSK tone inputs to the Demodulator circuits. The Demodulator converts the FSK signals to Mark/Space teleprinter signals and provides a neutral/polar loop output, MIL-STD-188C, or EIA RS-232-C output signaling.

The keyer circuits of the Model 1273 accept neutral/polar $100 p$ or EIA mark/space input data bits. Different frequency shifts can be selected by changing the keyer mark/space oscillator crystals.

4.1.1 DEMODULATOR

The FSK input tone is applied across an input isolation transformer to the input circuits.

The input circuit is comprised of a buffer amplifier, bandpass filter, and limiter. Limiter operation is controlled by the LIMIT MODE pushbutton switch. The circuit provides at least 30 db of additional gain in limiter operation over linear operation.

The Mark and Space Bandpass Filters are comprised of two identical 5-pole active networks which separate the audio tone input into its mark and space tones. Each channel filter has a narrow bandpass designed for aiding the detectors in achieving optimum signal detection. The filter outputs are detected individually, amplified, and applied to a postdetection Dual Active Low Pass Filter. After low pass filtering the mark-space channels are applied to the DTC (Decision Threshold Computer) circuits.

If mark and space diversity inputs are used they are inserted in their respective channels prior to the postdetection filters. These inputs are utilized in a diversity reception system and are normally supplied by a slave Demodulator unit.

The DTC circuits increase the reception capabilities of the unit during fading conditions in either the mark or space channel. Each channel DTC circuit sets a decision threshold which varies with the input signal amplitude. When sufficient signal strength is available, the mark and space signals are detected and undesired noise levels are rejected since they exist below the threshold level. In the presence of fading in either channel, the DTC circuits select the optimum channel to carry the received information.

Figure 4-1. Model 1273 Block Diagram D3359A

The Auto Mark-Hold circuit samples the mark and space channels and automatically returns the output of the Demodulator to the mark state in the absence of signaling or when the received signal drops below a preset signal level. The Auto Mark-Hold circuit is controlled by the front panel AMH1 MODE switch. In the AMHI mode, the absence of signals in either the mark or space channel, or both channels will activate the Mark-Hold circuit.

The Mark Only and Space Only switch gates are controlled by the front panel MARK and SPACE MODE switches and permit selection of the optimum channel or both channels.

The selected output of the DTC circuit is applied to a squaring circuit prior to application to a Mode Logic Network. The Mode Logic transfers the mark-space data and is controlled by the STBY MODE and DEMOD SENSE controls or the Auto Mark-Hold circuit. When in STBY or when Mark-Hold is initiated, the control gating circuit locks the Demodulator output in the mark condition. The DEMOD SENSE control reverses the polarity of the detected markspace signals to provide the proper mark-space relationship at the Demodulator's output.

The Demodulator output circuits provide high level neutral or polar loop, EIA RS-232-C, or MIL-STD-188C outputs through the respective Keyer/Driver circuits.

A meter circuit permits four Demodulator functions to be monitored and adjusted. These four functions are associated with the LEVEL, LOOP, ++ , +- of the front panel switches. In the LOOP position, the meter monitors the current in the high level teleprinter circuit. In the LEVEL position, the meter reads the audio input level from the receiver. The ++ position is used when tuning the associated receiver to a FSK signal. In the +position the meter is used to obtain an equal amplitude response (noise balance) from the mark and space channels.

4.1.2 TONE KEYER

The Tone Keyer is designed to accept isolated Neutral/Polar, 20/60 ma, high level mark-space data or EIA RS-232-C logic level data. Jumpers on the Tone Keyer board select the type of signaling. After high level isolation, and conversion to logic levels, inputs are applied to the Mark-Space Gating circuit.

The Mark-Space Gating Circuit transfers either the mark or space oscillator outputs to the divider input. A KEYER SENSE switch controls which oscillator output is selected for a given mark/ space input signal polarity. Both the mark and space oscillators are controlled by plug-in crystals and operate at 900 times the output mark and space tone frequencies. An optional wire jumper selects a smaller portion of the Divider circuits to give operation at 180 times crystal oscillator output.

The Divider circuits supply a divide-by-50 clock and a divide-by900 data pulse train to the Digital to Sine Wave Converter circuit. The converter is basically an eight-stage serial to parallel register with each parallel output being developed across a precision voltage divider network. Each of the outputs are summed developing a composite voltage level which varies in amplitude with the number of register stages which are loaded. Since the register clock and data inputs vary directly with the mark and space oscillator frequencies, a near sine wave AFSK signal is generated at the output of the circuit. This circuit configuration prevents instantaneous changes or jitter in the AFSK signal at the converter output as the data input signal shifts between the mark-space, space-mark states.

The converter output is amplified and applied to an Active Low Pass Filter circuit. The filter removes undesired high frequency components from the tone output. The output isolation transformer provides a 600 ohm output impedance from the Tone Keyer.

4.2 DETAILED CIRCUIT DESCRIPTION

4.2.1 DEMODULATOR

The Demodulator detailed circuit description is divided into the following major functions:

```
    1. Input Circuit
    2. Mark/Space Bandpass Filter Circuits
    3. Detector Circuits
    4. Dual Low Pass Filter Circuits
    5. DTC Circuits
    6. Mark-Hold Circuits
    7. Squaring Amplifier Circuits
    8. Keyer Circuits, EIA, and MIL-STD-188C Output Circuits
    9. High Leve1 Keyer Circuit
    10. Meter Circuits
    11. DC Regulator Circuits
```

 4.2.1.1 INPUT CIRCUIT. The input circuit (Figure 6-1 Sheet 1)
 consists of isolation transformer \(T 1\), buffer amplifier \(Z 2\), active
 bandpass filter sections Z4, Z5, and Z6, and limiter circuit Q2,
 Q1 and 27 .
 The AFSK tone input from the associated receiver is applied to pins 1 and 3 of the Demodulator board from the DEMOD input on the rear panel barrier strip. Transformer Tl sets the input impedance at 10 K ohms or 600 ohms when the eyelet designated " 1 " is jumpered (shunting the primary winding). The transformer also provides overload protection.

In addition, the tone-input is sampled by meter amplifier 216 when one of the front panel meter pushbutton switches is depressed (refer to Paragraph 4.2.1.10).

Active bandpass filter $Z 4, Z 5$, and $Z 6$ passes the signals within the operating frequency band, attenuating all other frequencies. Resistors Z3-A, -B, -D, -G, -H , and Z1-A, -D, -E, -H are factory selected for appropriate bandwidth per operating frequency desired by the customer. Operation of the limiter circuit Q2, Q1, and $Z 7$ is controlled by a voltage level input to J12-18 from the front panel LIMIT MODE switch.

The input from the LIMIT MODE switch is jumpered to J13-5 and applied to control the operation of the limiter circuit on diversity board NO1490 (1200A unit only). With LIMIT MODE switch depressed, an LLO applied to J12-18 turns Q2 and Q1 OFF. Limiter $Z 7$ is ON providing at least 30 db of gain. With LIMIT MODE switch in the OUT position, Q2 and Q1 are ON effectively bypassing $Z 7$; with $Z 7$ OFF operation is 1 inear.
4.2.1.1.1 Optional High Impedance Input. (Refer to Figure 6-2.) The Optional High Impedance Input consists of operational amplifier 21 on additional board N0964 (FEC assembly C2362). The new board provides a high impedance input and still provides an appropriate audio level to the standard input low pass filter. The new circuit is connected in series between rear panel connector TB1 and input connector J13 on Demodulator board assembly D3739.

The board is installed by plugging the mating connector from J13 into an identical set of male pins on C2362. A mating plug identical to J13 is wired to the output connections on C2362. This plug is inserted in place of J13 on D3739.
4.2.1.2 MARK-SPACE BANDPASS FILTER CIRCUITS. The Mark and Space Bandpass Filters consist of two printed circuit card assemblies D2818. Each bandpass filter is a 5-pole Butterworth network comprised of operational amplifiers $Z 1$ through $Z 6$ and other discrete circuit compenents (refer to Figure 6-3, Sheet 1). Components will vary with frequency shift and spacing.

Input signals from the input circuit are applied to the input port of the filter. Active filter amplifiers $Z 2$ and $Z 3$ form the first two poles of the filter. Amplifier Zl provides negative feedback flattening the overall peak response. The eyelet jumper marked "l" removes the positive feedback signal when adjusting the filter tuning potentiometers.

Cascaded active filter amplifiers Z4, Z5, and $Z 6$ provide improved overall response. Stages $Z 2$ and $Z 3$ usually have more gain than stages $Z 4-26$ to improve dynamic range. Negative feedback is provided through resistor R34. The jumper across eyelet "2" is also removed during filter adjustment. The mark and space filter outputs are applied to the Demodulator detector circuits.
4.2.1.3 DETECTOR CIRCUITS. The detector circuits (Figure 6-1, Sheet 1) are comprised of operational amplifiers Z12, Z13, Z14, and $\mathrm{Z15}$, and other discrete circuit elements. Since the mark
channel (Z12 and Z13) and the space channel (Z4 and Z5) are identical with the exception of diode and signal polarity reversal, only the mark channel detector is discussed in the following paragraphs.

The mark tone output from the mark bandpass filter is applied to the inverting input of operational amplifier 212, through C10, R18, and R29 (mark signal level control). The Mark Detector output is also available through MOLEX connector J12 pin 7 for optional diversity connections. This signal is also suitable for connection to an external tuning and display monitor.

Detector $Z 12$ has two half-wave rectified outputs, one the positive excursions of the output signal, and the other the negative excursions. Diode CR8 is forward biased during the negative voltage swing and diode CR9 is forward biased during the positive output voltage swing. Circuit gain is set to unity by feedback resistors R31 and R32. The stage is compensated by capacitor C11.

The half-wave rectified outputs of 212 are summed in 213 . Z13 inverts the positive output of $\mathrm{Z12}$, but not the negative output, thus providing a full-wave rectified output. Negative mark outputs forward bias diode CR10, transferring the mark envelope to the low pass filter circuit on board assembly D2913. Potentiometer R36 is an offset adjustment to compensate for dc voltage offset in $Z 13$ for low level signals.

Diode CRIO in conjunction with a similar diode in a diversity unit form an OR circuit which selects the stronger signal for diversity reception.
4.2.1.4 DUAL LOW PASS FILTER CIRCUIT. The Dual Low Pass Filter circuit (Figure 6-4) is comprised of active filter stages Zl and Z2 and other discrete circuit elements. The Dual Low Pass Filter circuits are contained on circuit board assembly D2813 which is plugged into the Demodulator board.

Resistive and capacitive component values vary with the operating baud rate. Filters are available on special order for any given baud rate within the operating range of the Model 1273.

The postdetection Dual Low Pass Filter is a three-pole device which provides rejection of the high-frequency components present in the mark and space channels. The mark channel is filtered through the negative section comprised of active filter Z2. The space channel is filtered through the positive section of the filter comprised of $Z 1$.
4.2.1.5 DECISION THRESHOLD COMPUTER CIRCUITS. The Decision Threshold Computer (DTC) circuits (Figure 6-1, Sheet 2) consist of mark and space peak detectors Zll and Z10, mark and space summing amplifiers $Z 19$ and $Z 18$, continuous-level input detectors
(JFET transistors) Q4 and Q3, and other discrete circuit components. The DTC circuits prevent loss of mark or space bit recognition during fading conditions, and false recognition of bits during fast-fade conditions with the input at steady mark or steady space.

Detected and filtered mark signals appear as a negative-going signal at the negative output of the low pass filter. Mark signals are applied to $Z 11$ and Z19. Space signals appear as a positive-going signal at the positive output of the low pass filter and are applied to $Z 10$ and $Z 18$. Since the mark and space DTC circuits are functionally identical, only the mark DTC circuit will be described.

The mark DTC circuit is basically a dc amplifier made to act as an ac coupled amplifier. It varies the threshold level at which the output is gated. This offsets the signal so that it swings an equal distance on either side of ground at the Schmitt trigger input. Offset levels are established separately for the mark and space signals. The basic scheme used is to peak detect the incoming signal, divide the result by a negative one-half, then add this to the original signal. After the signals are offset separately, the mark and space signals are added together. This scheme reduces distortion caused by fading and thus increases the dynamic range. The gain of 211 is set at $\frac{1}{2}$ by the ratio of resistors R21 and R22. The negative mark input signal is inverted through $Z 11$ charging C9 to a positive potential equal to $\frac{1}{2}$ the peak mark signal amplitude.

The negative polarity mark signal (through R84) and the positive charge on C9 are summed by Z19. Since these signals are opposite in polarity, the negative mark input signal will be shifted so that its average value is zero. The gain of inverting amplifier $Z 19$ is set at three by the ratio of feedback resistor R69 to R67 or R84. The output of $Z 19$ will be a positive mark signal.

Figure 4-2 shows typical DTC waveforms. Waveform A, Figure 4-2 illustrates the varying threshold level with respect to an input mark signal of varying characteristics. The small amplitude mark pulses would normally go undetected as mark bits. However, the varying threshold level assures sampling of bits at approximate midamplitude. The dropout of the steady mark (A, Figure 4-2) is a result of a fast-fade condition. This would normally result in false recognition of a space bit. However, the threshold level prevents circuit response to the dropout condition. An example of DTC circuit operation is given in the following paragraphs.
4.2.1.5.1 Operation During Signal Conditions. Assume that the mark input signal begins to fade, decreasing the DTC threshold charge on C9. C9 has a time constant of approximately 300 ms
allowing it to follow typical fading rates (B, Figure 4-2). Note that the positive DTC capacitor charge will be such that the signal will be detected at one-half of the excursion of the negative mark input signal level, permitting accurate detection of the input signal. The threshold level is maintained at 6 db below peak amplitude. The DTC circuits improve the noise rejection capabilities of the Demodulator since the signal is shifted to midpoint for sampling.
4.2.1.5.2 Operation During Steady Mark Condition. Capacitor Cl6 has a relatively slow charge to rapid discharge ratio. During normal signal conditions, C16 barely charges (C, Figure 4-2). However, when a steady mark condition is present on the input, C16 charges through R68 to a positive potential determined by the series divider network consisting of R68, R52, and Q4; capacitor C9 discharges. This produces a potential at Z19-6 equal to 2 times the peak-to-peak signal amplitude. (D, Figure 4-2). Zener diode CR6 prevents C16 from discharging. When normal signal is again present, C16 discharges rapidly through CR21.

In mark only operation, Q4 is turned OFF, opening the R68-R52Q4 path, preventing C16 from charging. With Q4 OFF, operation of the mark DTC circuit is as described in Paragraph 4.2.1.5.1; the threshold level is fixed at approximately $\frac{1}{2}$ the peak signal level.
4.2.1.6 AUTO MARK-HOLD CIRCUITS. The auto mark-hold circuits (Figure 6-1, Sheet 2) consist of mark threshold detector Z29; space threshold detector Z30; switch transistors Q11 through Q14; NOR gates Z17-A, Z22-B, and Z27-D; NAND gates Z22-C and Z27-C; and inverter $\mathrm{Z} 26-\mathrm{F}$.

The auto mark-hold circuits operate under control of front panel mode pushbutton switch AMH1. With the AMH1 pushbutton depressed, a LLO is applied to pin 19 enabling one input of gates 227-C and Z22-C. The other input is enabled when either the mark or space output of the DTC circuit goes to the below threshold condition, switching 229 or $Z 30$ to the mark-hold output condition and gating Z27-D to the LLO output state. If both the mark and space outputs of the DTC circuit go to the below threshold condition, both mark-hold threshold detectors $Z 29$ and $Z 30$ and their associated switching transistors are activated enabling the two remaining inputs to gate $Z 22-C$. Gate $Z 22-B$ is enabled by the auto mark-hold condition, setting the Demodulator output to the mark condition. The mark-hold threshold detectors operate as described below.

The non-inverting input to mark threshold detector 229 is referenced slightly above ground by voltage divider resistors R90 and R91. The inverting input of space threshold detector $Z 30$ is referenced slightly below ground by resistors R94 and R95. During a no-signal condition in the mark channel, characterized by
A. 211-2

B. CHARGE ON C9

c. CHARGE ON C16

D. $241-6$.

Figure 4-2. DTC Waveforms
C3402
a zero voltage at the output of the DTC circuit, threshold detector $Z 29$ switches to the positive output state. This reversebiases CR28, allowing C24 to discharge through R112. After a short delay period, Q12 is biased on. The conduction of Q12 switches transistor Q4 on, providing a positive enable input to gates Z22-C and Z27-D to initiate a mark-hold condition at the Demodulator output.

The operation of the space mark-hold circuit is identical with the exception that $Z 30$ is connected to detect a negative signal condition at the output of the space DTC circuit.
4.2.1.7 SQUARING AMPLIFIER CIRCUITS. The Squaring Amplifier circuits (Figure 6-1, Sheet 2) consist of isolation amplifier Z24; operational amplifier Z23; JFET switch transistors Q8 and Q6; switch transistors Q7 and Q5; and gates Z17-C, Z17-D, Z22-A and 227-A.

JFET switch transistors Q8 (mark channel) and Q6 (space channel) are controlled by the SPACE MODE switch input at pin J12-21 and the MARK MODE switch input at pin J12-20, respectively. The MARK input is associated with the MARK pushbutton switch on the front panel. When the MARK pushbutton switch is depressed, a LL0 is applied to the base of switch Q5, turning JFET Q6 and Q4 off. This prevents application of space signals to the operational amplifier and inhibits operation of the continuous-level input detection portion of the mark DTC circuit as described in Paragraph 4.2.1.5.2. Likewise, depressing the space pushbutton turns off JFET Q8 and Q3 interrupting the mark signal and affecting space DTC operation.

The amplifiers accept the combined analog mark-space signals from the DTC circuits and output a digital signal suitable for driving gates $217-\mathrm{C}$ and $\mathrm{Z27-A}$. The output of 223 can go above LLI. Resistor R75 is used to limit the current into the gates. These gates are also controlled by the DEMOD SENSE pushbutton switch on the front panel through pin J12-16. In one position, the supply voltage through R72 enables Z17-C when $Z 23$ outputs a LLI level. In the other position, a LLO is applied through pin J12-16, enabling Z27-A only when 223 outputs a LLO level. The DEMOD SENSE pushbutton switch permits selection of the proper mark-space relationship at the Demodulator output. When the mark-space polarities are normal the output of $Z 23$ will be in the LLi state. For mark, gate $222-A$ is enabled by the LLO output of $\mathrm{Z17-C}$ in normal operation, and the LLO output of $\mathrm{Z17-D}$ when the DEMOD SENSE pushbutton switch is depressed. Gate Z27-B is gated by mark polarity signals from $222-\mathrm{A}$, or by the STBY or AMH1 pushbutton switch producing a LLl state at Z22-B.
4.2.1.8 \pm KEYER, EIA RS-232-C, AND MIL-STD-188C DRIVER CIRCUITS. The output driver circuits (Figure 6-1, Sheet 2) consist of inverter Z26-A; mark and space delay circuits comprised of $226-B$,

Z26-C, Z26-D, Z26-E, Z21-A, Z21-B, Z21-C, and Z21-D; MIL-STD188 C driver Z 20 ; and EIA driver 225.

The LL0 mark output from 227-B is applied to MIL-STD-188C driver z20. Zener diodes CR24 and CR25 limit the output to a +6.2 V mark, and a -6.2 V space output.

Mark outputs from Z27-B are inverted in Z26-A to LLl mark signals to drive EIA driver Z25. The EIA driver supplies a positive space and a negative mark EIA RS-232-C output.

In the space output condition of $227-B$, a LLI level is applied to the space delay circuit comprised of Z26-B, Z26-C, Z21-A and Z21-B, and a LL0 level is applied to the mark delay circuit comprised of Z26-D, Z26-E, Z21-C and Z21-D. The mark delay circuit prevents activation of the mark keyer for $80 \mu \mathrm{sec}$ to allow the space keyer to deactivate. Likewise, the space delay circuit delays activation of the space keyer. The delay circuits are required in the polar keying application to prevent simultaneous turn-on of the mark and space keyers. The remainder of the high level keyer circuit is contained on the Power supply board and is described in the following section.
4.2.1.9 HIGH LEVEL KEYER CIRCUIT. The high level keyer circuit is comprised of switch transistors Q1 and Q2 (Figure 6-5), two identical \pm high level keyer circuits contained on board assemblies C3240 and additional discrete circuit elements. The LL1 level from the mark delay circuit just described provides a positive turn-on voltage to the base of Q2, turning on the mark keyer. In a similar manner, the LLl level from the space delay circuit is applied to the base of Q1, turning on the space keyer.

Only one of the high level keyer modules is required for neutral loop signaling. The keyer module is installed in the MARK KEYER position for neutral loops. The second keyer is installed in the SPACE KEYER position for polar loops. The mounting holes and mating pins are patterned to prevent incorrect mounting of the keyers. Zener diode CR5 on the Power Supply board prevents the breakdown of Q1 and Q2.
4.2.1.10 METER CIRCUITS. The Demodulator meter circuits (Figure 6-1, Sheet 1) consist of operational amplifiers Z8, Z9, and 216 and pushbutton switches S8 through S11.

The meter circuits provide four switch selectable functions labeled: LOOP, LEVEL, ++, and +-. When the LOOP pushbutton switch is depressed, the meter is connected across the output loop circuit through resistors R 2 and R 3 . This permits monitoring of the Tone Keyer output loop current.

When the LEVEL pushbutton switch is depressed, the negative terminal of the meter is grounded and the positive terminal is connected to the output of meter amplifier 216 . The audio input
tone is rectified by 216 , CR14 and CR15. Meter deflection is dependent on the amplitude of the input tone and the setting of potentiometer R 47 . The potentiometer is provided to calibrate the meter for a 0 dbm level.

When the ++ pushbutton switch is depressed, the negative terminal of the meter is grounded and the positive terminal is connected to meter amplifier $Z 8$ which inverts the output of the mark detector $Z 12$ and sums it with the output of space detector Z14. The amplifier output provides a dc voltage which varies in amplitude with input signal strength. Depressing this switch gives a relative signal strength indication on the meter to aid in receiver tuning. Meter deflection is to the right of the center scale position.

When the +- pushbutton switch is depressed, the negative terminal of the meter is grounded and the positive terminal is connected to the output of meter amplifier 29 which sums the primary channel mark and space detectors $Z 12$ and $Z 14$, respectively. This provides a center scale meter reading to show proper noise balance in the mark and space channels. The meter deflects on either side of the center scale position for mark and space inputs.
4.2.1.11 PSEUDO GROUND REGULATOR CIRCUIT. The Regulator circuit (Figure 6-1, Sheet 1) consists of transistors Q9 and Q10, and operational amplifier $Z 28$.

The $+24 V$ output of the Power Supply board connects to J12 pin 10. A voltage, equal to one-half the input voltage is present at the junction to the non-inverting input of 228.228 and transistors Q9 and Q10 are connected as a voltage follower with the transistors increasing the current output capability. This establishes a floating ground level for the demodulator circuits at J14 pin 10, which is half of the regulated power supply voltage.

4.2.2 TONE KEYER

The Tone Keyer circuits are divided into the following circuit groups: Refer to Figure 6-6.

1. Input Circuits
2. Mark/Space Oscillator Gating Circuits
3. Divider Circuits
4. Digital To Sine Wave Converter Circuits
5. Output Circuits
4.2.2.1 INPUT CIRCUITS. The input isolation circuits consist of transistor switch Q1, photo-isolator Z1, and threshold detector Z 2 .

The input isolation circuit accepts standard $20 / 60 \mathrm{ma}$, 130 vdc neutral or polar loop connections through board pins J20-2 and J20-3. In neutral keying operations, a jumper inserts resistor R1 or R2 in the base circuit of Q1 to provide selection of either 10 ma or 30 ma switching threshold for neutral loop inputs. In polar or EIA operation, the jumpers are removed from the input circuit. R3 is a series resistor used in monitoring the keyer loop current through R4.

Input mark current switches Q1 on applying a forward bias across the isolator diode Z1. This generates a positive level at the photo-isolator output which will switch threshold detector $Z 2$ to a LLO mark output condition. During space inputs, the photoisolator output is negative, switching $Z 2$ to a LLl output condition.

In EIA operation, the high level input circuits may be used (Q1-Z1) or data may be applied to board pin J23-1. Negative polarity EIA mark inputs switch $Z 2$ to a LLI mark output condition.

The two jumpers marked MIL JUMPER and HALF DUPLEX JUMPER are included for half duplex operation. Feedback can occur if the Tone Keyer input and the Demodulator output devices share the same loop. The Tone Keyer must remain in mark while the Demodulator is receiving data or the received data will be retransmitted.

This is caused by the Demodulator loop also keying the Tone Keyer loop input. The HALF DUPLEX jumper must be installed when operating in this mode. This forces the Keyer loop to be locked in a mark state as the Demodulator loop changes state.

The MIL jumper is included to control the sense of the data input so that mark is a logic level zero at $Z 4-A$ pin 1. Thus, this jumper is used when a detected loop current corresponds to the mark state.
4.2.2.2 MARK-SPACE OSCILLATOR/GATING CIRCUITS. The Mark-Space Oscillator/Gating circuits consist of two identical oscillator circuits comprised of Y1-Q2-Q3, Y2-Q4-Q5; EXCLUSIVE OR gates Z3-A, Z3-C, Z3-D; NAND gates Z4-B, Z4-C; and other associated components.

Assume the mark oscillator will operate at a frequency of 1.9125 MHz which will develop a 2125 Hz mark tone frequency at the keyer output.

The Space oscillator comprised of crystal Y2, and transistors Q4-Q5 will operate at a frequency of 2.6775 MHz which will develop a 2975 Hz space tone at the keyer output..

KEYER SENSE switch 57 on the front panel provides either a LLO or LL1 level to control EXCLUSIVE OR gate $23-D$. Depending on the position of S7, $\mathrm{Z3}$-D will provide either inversion or a straight transfer of the threshold detector (Z2) output. Mark inputs gate $Z 3-D$ to a LLO output state gating $Z 3-A$ high and enabling mark NAND gate $\mathrm{Z4}-\mathrm{C}$. This permits transfer of the mark oscillator signal through EXCLUSIVE OR gate Z3-C. Space inputs gate $Z 3-C$ to the LL1 output condition gating the space oscillator frequency through space NAND gate $Z 4-B$ and $Z 3-C$.
4.2.2.3 DIVIDER CIRCUITS. The Divider circuit is comprised of flip-flops Z7-A, Z8-A, Z8-B, Z16; counters Z9, Z10; and gates Z15-A, Z15-C.

F1ip-flops, Z7-A, Z8-A and Z8-B divide the gated mark or space oscillator frequency by a factor of five. Counter 29 is driven by the divide-by-five output to provide a divide-by-50 clock to register $Z 13$ and the divide-by-18 circuit comprised of 210 and flip-flop Z16. This provides a final divide-by-900 data input to register 213. The data input pulse rate for the example is 2125 Hz for mark ($1.9125 \mathrm{MHz} \div 900=2125 \mathrm{~Hz}$) and 2975 Hz for space $(2.6775 \mathrm{MHz} \div 900=2975 \mathrm{~Hz})$.

A special jumper is utilized to lower the division factor during operations above 3500 Hz . This jumper designated B lowers the division factor from $\div 900$ to $\div 180$ as shown below.

$$
\div 900
$$

A

Crystal frequency should be Division Factor X Tone Frequency.
4.2.2.4 DIGITAL TO. SINE WAVE CONVERTER CIRCUITS. The converter is comprised of serial-to-parallel register Z13, control gates Z12 and 214 , and precision voltage divider resistors R42 through R50.

The timing diagram illustrated in Figure 4-3 shows the conversion of the digital input to a near sinusoidal output waveform. It should be noted that each voltage step is not equal as shown in the illustration but varies depending on the point where it occurs in the sine wave. For example, the voltage change at the positive and negative transition points must change at a more rapid rate than changes in voltage at the positive and negative peaks of the waveform. Voltage divider resistors 843 through R50 are selected and form the output sine wave as described in the following paragraph.

Figure 4-3. Digital To Sine Wave Converter Waveform Drawing

Each positive transition of the register clock loads the serial input of the register depending on the logical state of the input. In the timing diagram shown in Figure 4-3, at time Tl all of the register stages are empty and the control gates at the parallel outputs of the register are open. This time is represented by the negative peak of the output waveform taken at the junction of R42 and R48. The next nine positive transitions of the clock input will load the LLl level at the data input, loading the register. At this time (T2) the control gates at the register outputs are gated on placing output resistors R43 through R50 in parallel. In this condition, the majority of the supply voltage is developed across R42 and the positive peak of the output sine wave is generated. On the tenth positive clock transition the low portion of the divide-by-900 divider output will begin to empty the register forming the second half of the output cycle.
4.2.2.5 OUTPUT CIRCUIT. The output circuit is comprised of amplifier Z11, keyer gain potentiometer R1 on the rear apron, active output 3 -pole low pass filter 25 , and isolation transformer T1.

Outputs from the digital to sine wave converter are applied to the inverting input of Z11. Amplifier gain is variable as set by Keyer Gain potentiometer R1 on the rear apron. The potentiometer varies the feedback loop resistance and is in parallel with C12.

Active low pass filter $Z 5$ provides rejection of the remaining high frequency components existing above the mark and space tone frequencies. The network comprised of resistors R19 through R24 capacitors C1, C2, C3; and the jumper eyelet positions designated 1,2 , and 3 set filter characteristics.

The tone output of the low pass filter is applied to the primary of T 1 and amplifier $Z 6$ for the front panel meter. The secondary of Tl provides a balanced 600Ω output. These outputs connect to the keyer output at TB1 pins 9 and 10.

4.2.3 POWER SUPPLIES

4.2.3.1 AC POWER SUPPLY. The AC power supply circuits consist of power transformer Tl, full-wave rectifier CR1 through CR4, preregulator $Q 3$, series regulators $Q 5$ and $Q 6$, precision voltage regulator 21 , and voltage follower Z2, Q4. These circuits are contained on PC board assembly D2962 and are schematically illustrated in Figure 6-5. The circuitry in Figure 6-5 pertaining to the high level keyer is explained in Paragraph 4.2.1.9.

The power supply will operate from either a 115 vac or 230 vac power source. AC input switch S1, located on the power supply
board must be placed in the appropriate position. Si also controls the ac input voltage to the loop power supply thru connector J3.

The ac output of transformer $T 1$ is rectified by CRI thru CR4 and filtered thru RC filter R10, C1, and C2. The supply voltage to Z1 is preregulated to approximately 36 vdc by zener diode CR6 and transistor Q3. Precision voltage regulator $Z 1$ is a temperature compensated device and is controlled by feedback from potentiometer R1. A regulated $+24 \mathrm{vdc} \pm 1 \mathrm{vdc}$ is provided at board J5 pin 1 thru series regulators Q5 and Q6, and current limiting resistor R11. The voltage at J5 pin 1 can be adjusted by potentiometer RI. A regulated $+14.5 \mathrm{vdc}(+.5,-1 \mathrm{vdc})$ set by voltage divider R6 and R7, is provided thru voltage follower $Z 2$ and $Q 4$ to board pin J5-2.

The +24 vdc and +14.5 vdc are referenced to $-V$. Using this method the potentials +24 and $-V$ float an equal amount from ground (i.e., +24 V is +12 V from ground and -V is -12 V from ground). Since +14.5 V (VDD) is also referenced to -V , it will rest at approximately +2.5 volts from ground. The voltages $\pm 12 \mathrm{~V}$ from ground are used for all operational amplifier IC's and the voltages -12 and +2.5 V from ground supply a total of 14.5 vdc to the CMOS digital logic.
4.2.3.2 OPTIONAL LOOP POWER SUPPLY. Additional space is provided for an optional loop power supply board. The polar loop supply can be ordered in any one of the following configurations:

Currents are maximum values and must be limited by an external resistor.

The loop supply is schematically illustrated in Figure 6-7. Physical location is shown on the Model 1273 assembly drawing, Figure 7-1.

The polar loop power supply consists of T1, full-wave bridge rectifier CR1 thru CR4, negative voltage filter section Cl-RI, and positive voltage filter section C2-R2. Each section furnishes the nominal voltages and current listed. Tl will operate from either a 115 or 230 vac power source, controlled by AC input switch Sl , located on power supply board assembly D2962.

SECTION V

MAINTENANCE

PART I. GENERAL MAINTENANCE AND PERFORMANCE CHECKS

5.1 GENERAL

The Model 1273 FSK Keyer Demodulator is a solid-state device designed to operate over extended periods of time with little or no routine maintenance. Should trouble occur, the information contained in this section will be helpful to a qualified maintenance technician. The technician should be thoroughly familiar with analog and digital integrated circuits and have a good understanding of the circuit theory and operating procedures before attempting any troubleshooting.
A discussion of the circuit theory is contained in Section IV. Schematic diagrams are contained in Section VI, and part location drawings in Section VII.

WARNING

The AC input circuit of this unit contains voltages which are hazardous to life. Exercise caution when working in the unit with protective covers removed.

5.2 PREVENTIVE MAINTENANCE

Since the Model 1273 is a solid-state low-power device, preventive maintenance is not recommended except during corrective maintenance. However, in locations with extreme environmental conditions, such as sand, dust, and/or large variations in humidity the unit may require periodic cleaning. Use a soft cloth or a medium bristle brush to clean the interior of the unit.

Do not use harsh cleaning solvents on painted surfaces.

5.3 CORRECTIVE MAINTENANCE

It is recommended that a complete visual inspection of the unit be made for indications of mechanical or electrical defects if
the unit is inoperative. Components showing signs of deterioration should be checked, and a thorough investigation of associated circuitry should be made to verify correct operation. Damage to parts due to heat is often the result of less obvious troubles in the circuit. It is essential that the cause of overheating be determined before replacing the damaged component. Mechanical parts such as switches and plug-in connectors should be checked for excessive wear, looseness, misalignment, corrosion, and other signs of deterioration.

If the technician thoroughly understands the operation of the Mode1 1273, malfunctions in its operation should be readily apparent by monitoring the input versus output signals and by observing the meter indications. For specific troubleshooting procedures reference Part II of this section.
5.3.1 REQUIRED TEST EQUIPMENT

The test equipment or its equivalent required to test and troubleshoot the Model 1273 is 1isted in Table 5-1.

Table 5-1. Required Test Equipment

EQUIPMENT	MANUFACTURER
Oscilloscope	
Audio Generator	Tektronix Model 422
Pulse Pattern Generator	Hewlett-Packard Model 204C
Decade Attenuator	Frederick Electronics Model 201
AC Vacuum Tube Voltmeter	Hewlett-Packard Model 350D
VOM	Hewlett-Packard Model 400E
Electronic Counter	Triplett Model 630
FSK Signal Generator	Hewlett-Packard Model 5302A
Digital Distortion Analyzer	FEC Model 1215A Tone Keyer
Message Generator	Digitech Model 2683-01 Model 1306A
	Frederick Electronics Moder

5.3.2 TROUBLESHOOTING

Troubleshooting procedures outlined in this paragraph may be utilized by a qualified technician to isolate a trouble to a specific circuit. When a trouble has been isolated to a specific circuit, a defective integrated circuit or component can normally be located using the detailed circuit description in Section IV.

After the top cover has been removed and a visual inspection has been made, measure the power supply voltages with reference to

NO1318, J5 pin 5. With a nominal input voltage of 115 vac or 230 vac, the dc voltages should be as follows:

POINT
$\begin{array}{lc}\text { No1318, J5 pin } 1 & +24 \mathrm{~V} \pm 1 \mathrm{~V} \\ \text { N01318, J5 pin } 2 & +14.5 \mathrm{~V}+.5 \mathrm{~V},-1 \mathrm{~V}\end{array}$

VOLTAGE

CAUTION

Do not connect pins of J5 to the chassis or any other ground.

If the power supply is functioning properly and the visual inspection reveals no obvious trouble, then the logic or control circuits of the unit should be suspected.

After a trouble has been isolated to a defective component, circuits associated with that component should be checked to ensure that they did not cause the problem, or have not been damaged by the malfunction.

5.4 PERFORMANCE CHECKS

The following performance checks and adjustments may be required when the Model 1273 is initially installed. No subsequent adjustments should be required unless deemed necessary during troubleshooting procedures.

5.4.1 MARK/SPACE BANDPASS FILTER BANDWIDTH CHECK

The operating baud rate, center frequency, and bandwidth of the bandpass filters are determined by the dash number designated NO1158-() stencilled on the filter printed circuit card. Refer to the chart accompanying the schematic diagram.

Proceed as follows:

1. Set up the equipment as shown in Figure 5-1, with the signal generator connected to pins 12 and 13 of TB1 and the VTVM connected as shown by the dotted line.
2. Tune the signal generator to the mark tone center frequency at a 0 dbm output level.
3. Reconnect the VTVM between pins 2 and 10 of connector J17 and note the reading.

Figure 5-1. Test Setup, Mark/Space Bandpass Filter Operational Check
4. Increase the signal generator frequency to obtain a 3 db drop in the VTVM reading noted in Step 3. Check the frequency reading on the counter.
5. Decrease the signal generator frequency below the tone center frequency to obtain a 3 db drop in the reading noted in Step 3. Check the frequency reading on the counter.

NOTE

The filters bandwidth is correct when the two 3 db points are symmetrical with respect to the center frequency, within $\pm 10 \%$ of the bandwidth. If the filter does not meet the above requirements, perform the alignment steps outlined in Paragraph 5.5.7.
6. Repeat Steps 1 thru 5 for the space bandpass filter, reconnecting the VTVM to pins 5 and 10 of J17.
5.4.2 TONE KEYER OUTPUT FREQUENCY CHECK

Proceed as follows:

1. Connect the frequency counter to TB1 pins 9 and 10.
2. Note the reading on the frequency counter. The reading should be the desired mark or space tone frequency.
3. Reverse the KEYER SENSE switch position.
4. Note the reading on the frequency counter. The reading should be the opposite tone frequency.

5.5 ALIGNMENT AND ADJUSTMENT PROCEDURES

5.5.1 POWER SUPPLY ADJUSTMENT

Proceed as follows:

1. Connect the positive voltmeter probe to J5 pin 1 on NO1318. Connect the negative probe to J5 pin 5.
2. Adjust potentiometer R1 on the power supply for a +24 vdc ± 1 vdc reading on the voltmeter.
3. Connect the positive voltmeter probe to J5 pin 2. Check that this voltage is $+14.5 \mathrm{vdc}+.5,-1 \mathrm{vdc}$.

5.5.2 METER AMPLIFIER ADJUSTMENT

Proceed as follows:

1. Set up the equipment as shown in Figure 5-1, with the signal generator connected to pins 12 and 13 of TB1 and the VTVM connected as shown by the dotted line.
2. Depress DEMOD LEVEL pushbutton switch.
3. Tune the signal generator for the in-use mark tone center frequency at a 0 db output level. Check that the eyelet position designated " 1 " on the Demodulator board has a jumper installed to set the input impedance to 600 ohms.
4. Adjust potentiometer R 47 on the Demodulator board for a 0 dbm reading on the front panel meter.

5.5.3 FSK KEYER OUTPUT LEVEL ADJUSTMENT

1. Connect the AC VTVM to TBI pins 9 and 10. Actuate the Keyer LEVEL front panel switch.
2. Adjust KEYER TONE LEVEL potentiometer R1 on the rear apron for a 0 dbm reading on the AC VTVM. Adjust R14 on the Tone Keyer board until the front panel meter indicates 0 dbm.

5.5.4 MARK CHANNEL GAIN ADJUSTMENT

Check that filters are properly tuned before proceeding further.
Proceed as follows:

1. Set up the equipment as shown in Figure 5-1, with the signal generator connected to pins 12 and 13 of TB1 and the VTVM connected as shown by the dotted line (the LIMIT MODE pushbutton should be in the out position).
2. Apply a space tone at a level of -10 dbm .
3. Reconnect the VTVM between pins 4 and 10 of J17; measure and note the space filter output level.
4. Reconnect the VTVM as indicated by the dotted line in Figure 5-1 and set the signal generator to produce a mark tone at a level of -10 dbm .
5. Reconnect the VTVM between pins 1 and 10 of J17 and measure the mark filter output level.
6. If necessary, adjust the Level potentiometer R29 on the Demodulator board for the same level as noted in Step 3.
5.5.5 MARK AND SPACE RECTIFIER OFFSET

Proceed as follows:

1. Disconnect connector J13 from the Demodulator board.
2. Connect oscilloscope probe to pin 1 of J17 (select its most sensitive input) and oscilloscope ground to pin 10 of J17.
3. Adjust mark RECT OFFSET potentiometer R36 for zero-volt dc.
4. Reconnect oscilloscope probe to pin 4 of J17.
5. Adjust space RECT OFFSET potentiometer R45 for zero-volt dc.
6. Reconnect J13.

5.5.6 MARK AND SPACE DTC OFFSET

Proceed as follows:

1. Connect the output of the message generator to the data input of the tone keyer.
2. Connect the FSK output of the tone keyer as illustrated in Figure 5-2, with the FSK signal connected to pins 12 and 13 of TB1.
3. Make certain that the message generator and tone keyer are set at the proper baud rate and mark and space frequencies.
4. Connect distortion analyzer between pin 7 and pin 10 (ground) of J17.
5. Set message generator for steady mark output.
6. Set the attenuator to zero and ensure that the input to the 1273 is 0 dbm ; adjust the output level of the tone keyer, if necessary, to obtain 0 dbm .
7. Set the message generator to produce a reversals output.
8. Adjust attenuator to obtain a -30 dbm input to the 1273 unit.
9. Set distortion analyzer for polar input, bias distortion, filter control -- OUT, and for operation at appropriate baud rate (all equipment should be operating at the same baud rate).
10. Depress the front panel SPACE MODE pushbutton.
11. Adjust SPACE DTC OFFSET potentiometer R83 for the lowest distortion indication on the distortion analyzer.
12. Release SPACE MODE pushbutton and depress MARK MODE pushbutton.
13. Adjust MARK DTC OFFSET potentiometer R86 for the lowest distortion indication on the distortion analyzer.

Figure 5-2. Test Setup, Mark/Space DTC Offset Adjustment

5.5.7 MARK AND SPACE BANDPASS FILTER ALIGNMENT

The mark and space bandpass filters are tuned at the factory for optimum operation. Prior to following alignment steps, insure that the filters are defective or misaligned by performing the checks outlined in Paragraph 5.4.1.

The alignment steps listed below apply to the Mark and Space bandpass filters located on the Demodulator board. Refer to Table 5-2 for the applicable test equipment input/output connections.

Table 5-2. Input/Output Connections For Bandpass Filter Alignment

FILTER UNDER TEST	SIGNAL GENERATOR CONNECTION	$\begin{gathered} \text { VTVM } \\ \text { CONNECTION } \end{gathered}$
Mark BP Filter	$\text { Pins } 12 \stackrel{T B 1}{\xi} 13$	$\begin{array}{r} \mathrm{J} 17 \\ \text { Pin } 2 \end{array}$
Space BP Filter	$\text { Pins } 12 \stackrel{\text { TBl }}{\xi} 13$	$\begin{array}{r} \mathrm{J} 17 \\ \text { Pin } 5 \end{array}$

Proceed as follows:

1. Set up the equipment as shown in Figure 5-1.
2. Locate the eyelets marked "1" and "2" on the bandpass filter board. If jumpers are installed, unsolder one end of each eyelet jumper and remove from eyelet hole.
3. Tune the signal generator to the in-use mark or space tone center frequency at a -20 dbm output level.
4. Adjust potentiometers R4, R10, R19, R25, and R31 for a maximum indication on the VTVM.
5. Resolder jumper wires across eyelets "1" and " 2 ", if originally installed.
6. Repeat the bandpass filter performance checks as outlined in Paragraph 5.4.1.
NOTE

If any filter fails the performance checks after alignment has been performed, return the defective filter to FEC.

PART II. TROUBLESHOOTING PROCEDURES

5.6 GENERAL

This section contains instructions for fault isolation to the active component in an inoperational Model 1273 FSK Keyer/ Demodulator.

Paragraph 5.7 determines initial tests to determine the nature of a malfunction. Paragraph 5.8 lists steps in isolating the functional circuit in which the failure has occurred. Troubleshooting procedures are provided in Paragraphs 5.9 through 5.17 for the demodulator board, Paragraph 5.18 for the power supply and Paragraphs 5.19 through 5.23 for the tone keyer. Also included with these procedures are portions of the schematic diagrams contained in Section VI.

To gain access to the Model 1273, circuit boards, remove the screws securing the top panel.

5.7 DETERMINING NATURE OF MALFUNCTION

The Model 1273 consists of 3 main circuit boards. In Paragraph 5.8 , step 1 refers to the power supply board, step 2 to the tone keyer and step 3 to the demodulator board. If the nature of the malfunction is not known proceed to the next paragraph.

With the unit plugged in, power on, and no input signal, monitor the tone output with an oscilloscope and depress the keyer sense switch. A tone frequency signal should be viewed which changes frequency as the sense switch is changed. If not refer to Paragraph 5.8 , step 1 to be sure the keyer has power. Then proceed to Paragraph 5.8, step 2 to check the tone keyer.

Connect the tone output to the demodulator input on the rear panel. Monitor the demodulator output. Change the sense switch on the front panel. If the demodulator output does not change, refer to Paragraph 5.8, step 3 for demodulator repair. If the output changes but the unit is not functional refer to Section 5.5 for adjustment and alignment.

5.8 ISOLATING THE AREA OF A MALFUNCTION

1. Power Supp1y

Measure the DC voltage across pins $1(+)$ and $5(-)$ of J5. If approximately 24 V is not obtained refer to Paragraph 5.18. If the voltage is present and correct, proceed to steps 2 and 3 .
2. Tone Keyer

If there is no output from the tone keyer, first check the power supply.
If power is properly supplied to the board, monitor pin 10
of Z3. (Connect the oscilloscope between pin 10 and
ground.) Oscillations should appear at one of the crystal frequencies. Changing the sense switch should change frequency. If this does not occur refer to Paragraph 5.9.

Monitor pin 1 of $Z 16$ with the oscilloscope. If logic level changes are not present refer to Paragraph 5.10.

Monitor TP2. If a single similar to Figure 4-3 is not present refer to Paragraphs 5.11 and 5.12.

Monitor TP1. If a sine wave is not present refer to Paragraph 5.12. If no malfunction can be detected refer to step 3.
3. Demodulator
a. Connect a tone keyed signal to the demodulator input on the rear panel. This may come from the tone output if it has been checked or an FEC Model 1215A or equivalent tone keyer. Monitor pin 6 of 27 . If tone signals are not present refer to Paragraph 5.17 to be sure power is available, then continue with Paragraph 5.9.
b. Monitor J14 pins 1 and 4. A signal should be present at pin 1 when there is a mark input and at pin 4 for a space input. If not refer to Paragraph 5.10 and 5.11.
c. Monitor TP2 and TP1. If mark signal is not detected at TP2 and space at TP1 when they are input refer to Paragraphs 5.12 and 5.13.
d. Monitor TP3; if mark and space inputs are not distinct DC levels refer to Paragraph 5.14.
e. If all checks to this point pass but there is no output refer to Paragraph 5.15.

5.9 INPUT CIRCUIT (DEMODULATOR)

1. Ensure that jumper 1 is installed or removed for correct input impedance.
2. Connect a tone keyer output to the DEMOD input on the rear panel. The tone keyer output from the Model 1273 can be used. Check that tone frequency input appears across points 1 and 3 of T1. Monitor point 5 of T1. (Connect the oscilloscope between point 5 and ground.) If no signal appears replace T1.
3. Monitor pin 6 of $Z 2$. If an amplified signal does not appear replace $Z 2$.
4. Monitor pin 6 of $Z 6$ and change the input from mark to space tone frequencies. If either one but not the other frequency is transmitted to pin 6, check capacitors C1 to C6 and the values of resistor networks Z 1 and $\mathrm{Z3}$. The proper resistor values are given in Figures 7-10 and 7-11. If no signal appears at pin 6 of 26 ensure that Z1 and Z3 are properly inserted and check or replace $Z 4, Z 5$, and $Z 6$.
5. Monitor pin 6 of 27 . If no signal appears with the limit switch on the front panel in the off position, check or replace Q1 and Q2. If the signal is not amplified when the limit switch is depressed, replace Z7.
5.10 MARK AND SPACE BANDPASS FILTERS

6. Monitor either side of C10. Set the input to mark tone frequency. Change the input to space and monitor either side of C12. If no signals or greatly attenuated signals appear, proceed to the mark/space filter bandwidth check in Paragraph 5.4.1.
5.11 MARK DETECTOR, SPACE DETECTOR, METER CIRCUITS

7. Monitor pin 6 of 213 . If no signal appears when the input is in mark, proceed to Paragraph 5.5.5 to check mark rectifier offset before checking or replacing 212 and Z13. Monitor pin 6 of 215 and repeat the same procedure with a space input, checking Z14 and $Z 15$.
8. If the panel meter does not function check meter. If it is functional replace $\mathrm{Z16}$.

5.12 DUAL LOW PASS FILTERS

1. Refer to Figure 6-4, Dual Low Pass Filter Schematic Diagram. Monitor either side of R20. If no signal appears when there is a mark input, replace Z 1 on the Dual Low Pass filterboard.
2. Monitor either side of R17. If no signal appears when there is a space input replace $Z 2$ of the Dual Low Pass filterboard.

5.13 DECISION THRESHOLD COMPUTER CIRCUITS

1. If mark and space signaling are not detected at TP2 or TP1 respectively, check or replace $\mathrm{Z11}, \mathrm{Z19}$, and Q4 for mark failure and $\mathrm{Z10}, \mathrm{Z18}$, and Q3 for space failure.

Refer to Paragraph 5.5.6 to correctly adjust Mark and Space DTC offset.

5.14 SQUARING AMPLIFIER CIRCUITS

1. Monitor TP3. If mark and space inputs are not distinct DC levels, check or replace $Z 24, Q 8$, and $Q 7$.
2. Monitor pin 1 of 227 . If mark and space inputs are not represented by distinct TTL levels replace $Z 23$.
3. Monitor pin 6 of 227 . Changes in state should occur as the input to the unit changes states and also as the DEMOD switch is pressed or released. If not, check or replace $Z 17, Z 27$, and $Z 22$.

5.15 KEYER OUTPUTS

1. Ensure that pin 5 of 227 has a LLO. If not, refer to Paragraph 5.16. Monitor pin 3 or 5 of 226 . If there is no change as the input is changed from mark to space, or when the DEMOD switch is changed, replace 227.
2. Monitor pins 6 and 10 of 226 . If they do not change state as the input changes from mark to space check or replace Z 21 and Z 26 .
3. Monitor pin 6 of $Z 20$ for MIL 188 output or pin 6 of $Z 25$ for EIA output. If either does not change as the input changes from mark to space, replace $Z 20$ or $Z 25$ respectively.

5.16 AUTO MARK-HOLD CIRCUITS

1. Disconnect the tone input to the unit. Monitor pin 12 of 227 . If it is not 10 , check or replace $Z 29$ and the quad operational amplifier.

Note: $\mathrm{hi}=$ board ground, $10=-12 \mathrm{~V}$.
2. If Auto Mark-Hold (AMH1) does not function, check or replace Z27, Z17, or Z22.
3. Monitor pin 6 of Z22. Depress STBY switch, if pin 6 does not go hi replace Z 22 .

5.17 POWER INPUTS AND REGULATOR CIRCUIT

TP4 is at a floating ground potential for the board. There should be +12 V between the + side of C 21 and TP4 and a1so -12 V between the -side of C 22 and TP 4 . If not, check or replace $\mathrm{Z} 28, \mathrm{Q} 9$, and Q 10.

5.18 POWER SUPPLY BOARD

1. Refer to the schematic in Figure 6-5. Ensure that S1 is set properly to either 115 or 230 V . The voltage across the two green leads from T1 should be 38 vac RMS. If not, check T1 for opens and replace if defective.
2. Measure the DC voltage across C1. Approximately 45V should be present. If not, check or replace diodes CR1 to CR4.
3. Check for 24 V across C3. If no voltage is present, check or replace Q6. If the voltage is less or varies with the load, check or replace $\mathrm{Z} 1, \mathrm{Q} 3$, and Q 5 .
4. Check $V_{D D}$ voltage. If 14.5 V is not present check or replace Q 4 and Z 2 .

5. If logic level keying is being used proceed to step 2. If high level keying is used check that the unit is properly strapped for 20 mA or 60 mA operation. Connect the oscilloscope leads across pins 1 and 2 of 21 and apply input keying to the + - loop inputs on the back panel. If the level changes are not apparent on the oscilloscope check Q1, CR2, CR3, and Z1. If level changes occur, reconnect the oscilloscope between pin 4 of Z 1 and ground. If no level changes occur replace Z1.
6. Connect a logic level keyer or any changing logic level output to the logic + - screws on the back panel. Connect the oscilloscope between pin 6 of $Z 2$ and ground. If no change occurs replace 212.

7. Monitor TP3. (Connect an oscilloscope between TP3 and ground.) Oscillations should be seen at the Y1 crystal frequency. If not, check or replace Q3 and Q2. Move the oscilloscope lead to TP4; note oscillations at the Y2 frequency. If there is no signal, check or replace Q5 and Q4.
8. If there is no input to the back panel, monitor pin 11 of Z3. Reverse the sense switch. If no change occurs at pin 11 replace $Z 3$. Monitor pin 3 of $Z 3$ and again reverse the sense switch. If no change occurs at pin 3 , replace Z 3 .
9. Monitor pin 10 of 74 . Reverse the sense switch. Oscillations should be seen in only one position of the sense switch, repeat this procedure for pin 4 of 24 . If either fails replace $Z 4$.
10. Monitor pin 10 of 23 . Reversing the sense switch should change the output from Y1 to Y2 frequency oscillations. If not, replace 23 .

5.21 DIVIDER CIRCUITS

1. Monitor pin 3 of 28 . If there is no high frequency change return to Paragraph 5.20.
2. Monitor pin 1 of $Z 8$. If high frequency logic leve1 changes occur proceed to step 3, if not monitor pin 5 of 28 . If changes occur at pin 5 but not pin 1 replace 28 . If no changes occur at pin 5 , monitor pin 2. If there are changes at pin 2 replace 77 , if not replace $Z 8$.
3. Unless an external oscillator is used, be sure the jumper is in the A position. Monitor pin 14 of $Z 10$. If there is no changing signal replace 29 . Monitor pin 3 of $\mathrm{z16}$. If there is no changing signal, check and replace 210 or $Z 15$.
4. Monitor pin 1 of $\mathrm{Z16}$. If there is no output replace $\mathrm{Z16}$.

5.22 DIGITAL TO SINE WAVE CONVERTER CIRCUIT

1. Ensure that changing inputs occur at pins 1 and 7 of $\mathrm{Z13}$. If not, return to Paragraph 5.21.
2. With the oscilloscope set at approximately $.1 \mathrm{~ms} / \mathrm{cm}$ monitor pins $2,3,4,5,10,11,12$, and 13 of $Z 13$, one at a time. If each does not show a changing output replace 213.
3. A similar output should appear at pins $2,3,9$, and 10 of 212 and pins 2, 3, 9 , and 10 of 214 . If not, replace Z12 or Z14.

5.23 OUTPUT CIRCUIT

1. Monitor pin 6 of 211 . A signal approximating the one shown in Figure 4-3 should appear. If not, adjust R12 by rotating the amplitude screw on the back panel with a small screwdriver. If there is no response replace 211.
2. Monitor TP1. A sine wave should be present. If not, replace Z5. If there is a signal present but no output at the rear panel check T 1 and cabling. If replacing Z11 or $Z 5$ does not correct the problem, check associated resistors and capacitors for opens or shorts.

SECTION VI

SCHEMATIC DIAGRAMS

Figure 6-1. Primary Channel Demodulator Schematic Diagram D3738A, Sheet 1

Figure 6-1. Primary Channel Demodulator Schematic Diagram

Figure 6-2. High Impedance Input Schematic Diagram C2361

Figure 6-3. Mark-Space Bandpass Filter Schematic Diagram D2817A

notes
1 PCB BOARD REF NOIIS9
2 PC BOARD ASSY REF D2BB
3 ALL RESISTORS ARE
4 WHEN 21522 is A 741 I.C. C9 8 ClO
is not required

Figure 6-4. Dual Low-Pass Filter Schematic Diagram D2814F

Figure 6-5. Power Supply Schematic Diagram
D2961C

Figure 6-6. Tone Keyer Schematic Diagram

NOTES:

1. REF.ASSY. C2324
2. ON-3ASSY.RI,R2ARE $10 K$, 2 W \& CI, C2 ARE 300 MFD .100 VOLT
3. PG. BOARD NO829

Figure 6-7. Optional Loop Power Supply Schematic Diagram

CV8)

Figure 6-8. Model 1273 Wiring Diagram D3150D

Figure 6-9. Front Panel Switch Schematic Diagram

NOTES:

1. RC BOAED REF NOIG5Z

2 PC GOARC AS54 CJZAO

Figure 6-10 Optically Isolated High Level Neutral Keyer Schematic Diagram C3308

SECTION VII
PART REPLACEMENT DRAWINGS

Figure 7-1. Model 1273 Assembly D3162L

Figure 7-1. Parts List

Figure 7-2. Demodulator Board Subassembly

1. SCHEMATIC REFERENCE D3738

2 unless otherwise specified all resistors ARE $1 / 4 \mathrm{M} 1 \%$
3. WIRE MOLEX RECEPTACLE PIN FOR PIN MITH

PC BOARD USING 1380TL. PINS. PIN 15 WILL BE 1381 TL AND FEMAIN UNUSED.
4. UNLESS OTHERWISE SPECIFIED DRILL ALL hDLES

NO. 55 (.052) DR \& INSTALL 46410 GRIFLETS
b NO. 68 (.031) DR. FOR I.C.'s
f NO. 55 (.052) DR. -18 PLACES \& INSTALL eyelets.
(no. 55 (.052) OR. 22 Places \& install mint- inserts

3 NO. 52 (. 063) DR.- 10 PLACES \& INSTALL ITEM 58
n NO. 43 (.089) DR.- 3 Places \& install

$$
\text { ITEM } 59 .
$$

t No. $30(128)$ DR. - 17 Places \& INSTALL
-
NO. 11 (.191) OR. - 5 PLACES \& INSTAL
ITEM 56.
1 NO. 49 (.O73) DR. - 8 PLACES \& INSTALL
S. resistor values required for dwe no. are programmed \& will depend on customer requirements.
A. Items $69: 71$ used in accordance with customer REQUIREMENTS AND/OR SPECIFICATIONS.

(0) DRILL* 52 MALE STAKE PIN RG2-3

O DRILL II STANDOFF $1246-12$
SCH. REF. C2361
\triangle UPON CUSTOMER REQUIREMENT

Figure 7-3. High Impedance Input Board Subassembly

1. Schematyc reference dzait
2. INSTALL STANDOFFS ON COMPOKENT SIDE OF
sgzoiah ano lutacin afe interchangeabi
3. drill \& bhearing mpormatron calle

OUT ON 3RD. SHEET OF NO1158.
ALL STANDOFES MUST EE SOLDEREO SHUT

Figure 7-4. Mark-Space Bandpass FiIter Board Subassembly D2818B

Figure 7-4. Parts List

Figure 7-5. Dual Low-Pass Filter Board Subassembly

Figure 7-6. Tone Keyer Board Subassembly D3095D

Figure 7-6. Parts List

Figure 7-7. Power Supply Board Subassembly
notes:

1. SChematic ref. drg61
2. UNLESS OTHERMYE NOTED DRILL ALL HOLES

- No. 30 (.128) on, $-\underset{8}{2}$ Plates for fice for iten 36

A) Install tien 37 gefore assemaly

A. items io, 11 and 56 to be ratised $1 /$ a above boaro pator to solderimg.

Figure 7-7. Parts List

-1 A $55 Y \pm 65 \mathrm{~V}$
-3 ASSY $\pm 80 \mathrm{~V}$

Figure 7-8. Optional Loop Power Supply Board Subassembly C2324D

Figure 7-9. Front Panel Switch Board Subassembly

ATor resistor posithoning see coumen maked $21 \& 23$
2. for spegifications see infut bandpass filter selection

GuIDE A0521
schenátic refefence cz73e,

						-	--5		-4.-5										
								-											
	1													路	$\frac{\text { RESISTOR } 14 \mathrm{~K}}{4}$				
															- ${ }_{\text {¢ }}^{\text {549 }}$		${ }_{\text {ckits }}^{62465}$	$\frac{\mathrm{E}}{\mathrm{H}}$	
															- 4.42 K		${ }_{624821}$		
	!														- ${ }^{1 .} 0.87 \mathrm{~K}$		${ }_{\text {che }}^{6242939}$		$\frac{\square}{0}$
															- ${ }_{364} \frac{188 \mathrm{~K}}{}$		${ }^{\frac{1}{624560}} 6$		$\frac{5}{4}$
												${ }^{36}$		Rak5504202F					
														Sts5isenale	Stion $2.0061 / 44 \pi^{1 \%}$		${ }_{624491}$	$\stackrel{\square}{0}$	
		$\stackrel{+}{+}$										${ }^{34}$		Rens 5 2499]			628991	\wedge	
		1															${ }_{6}^{624585}$		\square
		:												Rus503011]			${ }^{6242635}$		
												${ }^{30}$				coarnac	${ }_{6}^{6282025}$	+	
												${ }^{28}$				$\underline{1}$	624590	\bigcirc	${ }^{6} 6$
														Rns5076860			${ }_{\text {cki }}^{624642}$	$4{ }^{\text {a }}$	${ }^{\circ}$
														P14551651F.	$1.65 \times 1 / 4 h^{18}$		${ }^{624330}$	\bigcirc	4.6
						${ }_{3}^{3}$						${ }_{23}^{23}$					${ }_{\text {chers }}^{628595}$		
																	${ }_{6}^{628641}$	\bigcirc	${ }^{8.85}$
							${ }^{3}$							Ras5ans31-5	$4.53 \mathrm{x} \times 1 / 4.48$		${ }_{6}^{624355}$	${ }^{4.8} \mathrm{H}$	
																	${ }^{\frac{8}{624375}}$		B A H
							$\stackrel{1}{ }$	1				${ }_{18}^{18}$						$\stackrel{-}{\underline{E}}$	
														R85552323]	2.32x $1 / 4 \sin 2 x$		${ }^{624550}$		
								3_{1}				${ }^{16}$		Rexs 5 999]:			688922		
								3.				${ }^{14}$						\bigcirc	${ }_{5}$
																	${ }_{\text {\% }}^{625004}$		
									3.									${ }^{\circ}$	
																	$\frac{625270}{62520}$		
																		\bigcirc	
										${ }^{3}$		${ }^{6}$					${ }^{625043}$	\%	
														RH5566591F	6.6				${ }_{5}^{5}$
														${ }^{\text {Rit5506551F }}$	$6.65 \times 1 / 4 \times 1$ +		625095	E	${ }_{-6 \mathrm{H}}^{4}$
											${ }^{3}$	${ }_{3}^{2}$					${ }_{625298}^{6258}$		${ }^{185}$
					2	2	2^{2}	2.2	2 2	2				800.032	126 PIN HELDER				
						-7	- 1.5	. 5.4	- ${ }^{-3}$	1.2	-			-	ousmmom		city	$\underline{1}$	33

Figure 7-10. Input Active Bandpass Filter Assembly

NOTE:

1. ASSY DWG. D4029.
2. SCH. DWG. D3738.

Figure 7-11. Input Active Bandpass Filter Selection Guide A0521D
notes

1. SCH. REF. C3308
2. UNLESS OTHERWISE SPECIFIED DRILL

ALL HOLES NO55 (.O52) DR. \& INSTALL 46410 GRIPLETS.

⿴囗 0 N $60(.040)$ DR. 6 PLACES \& INSTALL
TRANSISTORS:
NO. 68 (.031) DR.- 6 PLACES \& INSTALL I.C.
©NO $68(.031)$ DR. 6 PLACES $\&$ INSTALL I.C.
ANO. $30(.128)$ OR. 4 PLACES \& INSTALL STANDOFFS
3. INSTALL STANOOFFS ON COMPONENT SIDE \& solder on track side
4. Jog I.C. Leads.
5. after production testing, spray entire p.c. board WITH HUMISEAL TYPE 1B-15. DO NOT SPRAY BANANA plugs.

Figure 7-12. Optically Isolated High Level Neutral Keyer Assembly Drawing C3240D

Figure 7-12. Parts List

APPENDICES

APPENDIX A

FILTER OPERATING FREQUENCIES

