INSTRUCTION MANUAL

MODEL 703

CODE CONVERTER

November 1972

FREDERICK ELECTRONICS CORPORATION Hayward Road, Post Office Box 502 Frederick, Maryland 21701

Abstract

FREDERICK ELECTRONICS CORPORATION HAYWARD ROAD • POST OFFICE BOX 502 • FREDERICK, MARYLAND 21701

ERRATA SHEET
MODEL 703

REFERENCE	CORRECTION

Page 4-13,
Paragraph'4.3.4.4
Figure reference should be "Figure 6-1, Sheet 3" not "Figure 1, sheet 3 ".

ECN 2502
1-4-77
PTM

```
FREDERICKELECTRONICS CORPORATION
HAYWARD ROAD - POST OFFICE BOX 502 - FREDERICK, MARYLAND 21701
```

ERRATA SHEET
Mode 1703

REFERENCE	CORRECTION
Figures 6-3 and 7-2.	Track has been cut between 228-9 and 231-13 to reduce the $O S R$ stop bit length from 2 units to 1 unit.
	ECN 1261 12/6/72
Figure 6-3, Sheet 3	Z36-A output incorrectly labeled pin 2, should be labeled pin 6.
	ECN 1269 1/5/73

Figure 7-2, Parts List
Change manufacturers name of item 58 from Intel to National Semiconductor.

ECN 1275

PRODUCT INARRANTY

Frederick Electronics Corporation warrants all new products of its manufacture to be free from defects in material and workmanship and will, without charge, within one year from date of shipment, repair or replace, f.o.b., Frederick, Maryland, all or any part thereof found to be defective. This warranty shall not, however, apply to any FEC products subjected to improper use, tampering, negligence, or accident; and Frederick Electronics Corporation does not authorize any person to assume for it any liability in connection with its products other than herein expressed.

PROPRIETARY INFORMATION

This document contains Frederick Electronics Corporation proprietary data, and is not to be copied, reproduced, used or divulged to unauthorized persons, in whole or in part, without proper authorization in writing from Frederick Electronics. This information is the property of Frederick Electronics Corporation which reserves all rights to it.
SECTION PAGE
I INTRODUCTION
1.1 Purpose of Equipment 1-1
1.2 Physical Description 1-1
1.3 Specifications 1-2 1-2
II INSTALLATION
2.1 General 2-1
2.2 Unpacking And Inspection 2-1
2.3 Power Requirements 2-1
2.4 Mounting 2-2
2.5 Signal Connections 2-3
2.6 Operational Programming 2-3
III OPERATION
3.1 General 3-1
IV THEORY OF OPERATION
4.1 General 4-1
4.2 Functional Description 4-1
4.3 Detailed Description 4-3 4-3
V MAINTENANCE
5.1 General 5-1
5.2 Preventive Maintenance 5-1
5.3 Corrective Maintenance 5-2
5.4 Repair 5-3
VI SCHEMATIC DIAGRAMS 6-1
VII PART LOCATION DRAWINGS 7-1

FIGURE
1-1 Model 703 Code Converter
2-1 Power Supply Jumper Connections
2-2 Connector Pin Assembly
2-3 Connector Assembly
2-4 Installation Connections
4-1 Functional Block Diagram
4-2 ROM Truth Table
5-1 Test Equipment Connections
6-1 Input Shift Register Schematic Diagram
6-2 Code Converter And Power Supply Schematic Diagram
6-3 Output Shift Register Schematic Diagram
7-1 Model 703 Assembly
7-2 Code Converter P.C. Board Assembly

TABLES
1-1 Specifications, Mode1 703
2-1 Frequency Counter Jumpers For Common Baud Rates
5-1 Required Test Equipment
5-2 General Inspection Procedures
5-3 Trouble Isolation Chart

Figure 1-1. Model 703 Code Converter

SECTION

INTRODUCTION

1.1 PURPOSE OF EQUIPMENT

The Model 703 is designed to operate as an on-line converter for translating 5-level start-stop code to an equivalent 8-level start-stop code.

The primary application for the 703 is as a computer code interface where 5-level baudot information must be converted to 8level ASCII code. The 703 is also useful for interfacing a 5-level international or domestic communications channel to 8-1evel R.O. Office Equipment, in interoffice communications networks.

Character conversions are a 1 for 1 format requiring the output character time to always be equal to or less than the input character time.

Input signals to the Model 703 are isolated and gated to an input register via an input isolator and under the control of an input time base.

When a complete character is detected, the register applies the parallel 5-level character bits to a ROM (Read Only Memory), where it is decoded to activate the ROM storage positions. The ROM performs the actual format conversion, generating eight bits which are stored in a l-character buffer. The conversion process is a 1 in/l out character operation. Converted characters are presented to an output shift register buffer. The rate at which the output shift register releases data to the output driver is controlled by an output time base. There are two types of output signals available: a polar logic level EIA RS-232-C driver and high level neutral dry loop contacts.

Utilizing a master crystal oscillator and programmable input and output time base dividers, the 703 can operate at rates between 37.5 and 2400 baud.

1.2 PHYSICAL DESCRIPTION

The Code Converter is a completely solid-state device, packaged on a single printed circuit board. Access to the board is provided thru a removable top cover. The board tray is designed
to be mounted in the kneewell of a teleprinter or in a standard 19 -inch equipment rack depending on the requirements of the customer.
The tray dimensions including the rear panel connectors are 16 inches wide (19 inches for rack mounting), 1-3/4 inches high, and 10 inches deep.

NOTE
Special mounting ears are attached for mounting in a 19-inch equipment rack.

All front and rear panel lettering is silk screened and the chassis is clear anodized.

1.3 SPECIFICATIONS

A list of specifications for the Model 703 is shown in Table 1-1.
Table 1-1. Specifications, Model 703
Input Signal Accepts 5-level start-stop telegraph code with a stop pulse length of one unit or longer.

Input Circuit. Accepts 20 to 60 ma neutral, or 5 to 60 ma polar telegraph loops. Input impedance less than 100 ohms.

Input Rate Selectable from 37.5 to 2400 baud.
Output Rate. Character time must be equal to or shorter than input character time.

Output Distortion. Less than 3% over complete range.
Output Signal. 8-1evel start-stop telegraph code with a stop pulse length of two units.

Output Rate. Selectable from 37.5 to 2400 baud.
Output Circuits. Low Level: EIA RS-232-C polar logic level. High Level: Dry contacts of a neutral high level keyer suitable for keying 10 to 100 ma loops:
Table 1-1. (cont.)

Temperature Range. $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$

```
Humidity Range . . . . . . . . 5% to 95%
```

Power Requirements $115 / 230$ vac ($\pm 10 \%$) $47 / 420 \mathrm{~Hz}$ universal ac power; approximately 18 watts.

Weight Approximately 6 pounds (2.7 kg.)
Dimensions Height: $1-3 / 4$ inches (4.4 cm) Width: 16 inches (40.6 cm .) Depth: 10 inches (25.4 cm .)

SECTION II

INSTALLATION

2.1 GENERAL

This section contains instructions for unpacking, mounting, programming of selectable characteristics, and connection of all necessary signal lines. Each 703 is programmed to match the users specifications and tested for correct operation prior to shipment from the factory. In the event that the unit does not operate properly, refer to the troubleshooting procedures discussed in Section V.

2.2 UNPACKING AND INSPECTION

Open the shipping container being careful not to puncture the container with sharp/metallic objects which may damage the contents. Remove the packing and the unit(s) from the container. Inspect the unit(s) for damage. If any damage is observed as the result of shipping, file a written claim with the shipping agency and forward a copy of this claim to:

Frederick Electronics Corporation
Hayward Road, Post Office Box 502
Frederick, Maryland 21701
If repacking for storage or reshipment is anticipated, replace the packing material and store the containers for later use.
2.3 POWER REQUIREMENTS

WARNING

VOLTAGES AS HIGH AS 230 VAC ARE HAZARDOUS TO LIFE. Exercise extreme caution when working in the power areas.

The Model 703 is shipped from the factory ready to operate directly from a nominal 115 vac, 47 to 420 Hz , 18 watt (maximum) power source unless the user has specified 230 vac at time of purchase (unit will have 230 vac label attached to chassis). Power is connected by plugging the power cord into a standard
three-prong ac outlet. The input is fused by Fl prior to application to the power supply.

CAUTION

Power transformer Tl must be correctly jumpered before unit can operate from a 230 vac source.

To wire the unit for 230 vac (or 115 vac), remove the screws securing the top cover to the chassis, and rewire $T l$ as shown in Figure 2-1.

Remove screw and protective cover to gain access to jumpers.

Figure 2-1. Power Supply Jumper Connections

2.4 MOUNTING

The Model 703 is designed to be mounted in either the kneewell of a conventional teleprinter terminal or in a standard 19inch equipment rack. The unit is normally shipped with special L-shaped rack mounting brackets which are attached to each side of the chassis with three screws to adapt the 703 for mounting in either a standard 19 -inch rack or a kneewell location.

When the 703 is installed in the kneewell of a teleprinter, the special mounting ears are rotated to permit vertical attachment to the teleprinter chassis. When arranged for rack mounting the ears are mounted to secure the unit horizontally in the 19-inch rack.

For rack mounting the front of the 703 protrudes 3 -inches to the front of the rack.

2.5 SIGNAL CONNECTIONS

A11 input/output signal connections are provided at a 12 -pin Molex connector located on the rear panel of the 703. Molex connector assembling information is provided in Figures 2-2 and 2-3. The connector and list of pin connections are shown in Figure 2-4.

To prevent keyer damage, ascertain that neutral loop circuit conforms to following requirements.

The loop keyer output connections are not polarity sensitive, but external current limiting must be used to limit current to a level below 100 milliamperes (maximum). When driving an inductive load (e.g., loops containing selector magnets, etc.), appropriate resistor-capacitor arc suppression must be connected across the output to limit voltage spikes across the keyer transistor switch.

2.6 OPERATIONAL PROGRAMMING

The Model 703 is programmed at the factory to match the users specifications. If the specifications are incomplete or if the programming requires changing at a later time, the eyelet positions shown on Figure $7-2$ may require rewiring as indicated.

To install a wire jumper, cut and bend a short piece of \#22 wire (approx. $\frac{1}{2}$ inch) to a U-shape and insert between the designated eyelet pair. Solder each jumper and clip excess lead lengths.

The more complex input and output baud rate selection jumpering is discussed in 2.6.1.

Step 1. Strip about 1/8-inch of insulation from end of lead wire. Wire gauge range: \#20 through \#24 stranded conductor.

Step 2. Select appropriate pin type and lay lead wire in connector pin valley so that end of insulation is centered at notch between tabs.
Step 3. Using long nose or chain nose pliers, fold down one tab over exposed conductor wires.

Step 4. Fold down opposite tab over conductor wires.

Step 5. Solder crimped conductor to pin. Do not let solder flow towards pin tip. Avoid melting wire insulation.

Step 6. After pin has cooled, fold down a clamp tab over wire insulation.

Step 7. Fold down the remaining tab over wire insulation to complete pin assembly.

Figure 2-2. Connector Pin Assembly

As shown above, the complete cable plug is formed by inserting the lead wire and pin assemblies into the proper holes in the rear of the nylon connector body. A small screwdriver blade or similar tool may be used to assure full pin seating by placing the tool along the wire and pressing end-wise on the shoulder formed by tabs wrapped around the wire insulation. Proper seating obtains when the barbs on the pin sides have expanded beyond the hole diameter as viewed from the mating side of the connector plug.

Removal of pins from the connector body for replacement or wiring alterations may be facilitated by the tool listed below. The tool works by collapsing the retaining barbs on a pin so that it may be pulled out.

A hand operated crimping tool is available and may be desirable whenever large numbers of connections are required.

The following items are manufactured by:
Molex Products Company
5224 Katrine Ave.
Downers Grove, Ill. 60515

Removal tool
Hand crimping tool

Part Numbers: HT-1010-2B
HT-1031-C

Figure 2-3. Connector Assembly

Figure 2-4. Installation Connections

2.6.1 INPUT/OUTPUT RATE SELECTION

The Model 703 is capable of handing data at speeds up to 2400 baud. Baud rates are programmed by installing jumpers on board N01082 as shown in Figure 7-2. Each unit is shipped from the factory with the input and output time bases wired for customer specified baud rates.

Each time base circuit essentially contains an input clock selector circuit (384 kHz or 38.4 kHz), a 9 -stage binary counter, and a $\div 2$ output clock flip-flop. Jumper positions on the board connect a binary 1 from selected counter stage outputs to permit integer divisions of the master clock. The time base counter output is programmable from 1 thru 511.

An additional jumper designated "X10" is also provided on the N01082 board for each time base to multiply the programmed baud rate by a factor of 10 . These jumper points should be used when the operating rate exceeds approximately 600 baud.

The division factor (binary number) related to a specific baud rate is found from the formula:

$$
\text { Division Factor }=\frac{38,400 \mathrm{~Hz}}{\text { Required Baud Rate }} \times \frac{1}{2}
$$

$$
\text { Division Factor }(\mathrm{X} 10)=\frac{\text { or }}{\text { Required Baud Rate }} \times \frac{1}{2}
$$

Once the division factor is calculated, the hole-pairs can be jumpered. An example of this is shown for a required baud rate of 110.

1. Determine the division factor:

$$
\text { Division Factor }=\frac{38,400 \mathrm{~Hz}}{110} \times 1 / 2=\frac{19,200}{110}=174 \frac{1}{4}
$$

Since the time base circuitry division factors are integers, a fractional quotient must be increased or decreased to produce a valid division factor. In this case it is decreased to 174.
2. Since the quotient in Step 1 is the sum of two or more binary division factors, determine the hole-pairs to jumper as follows:
a. Select the largest labeled binary division factor less than 174; the factor is 128 and the subtracted result is 46.
b. Repeat step a. for the number 46; the factor is 32 and the result is 14.
c. Repeat step a. for the number 14; the factor is 8 and the result is 6 .
d. Repeat step a. for the number 6; the factor is 4 and the result is 2 , also a factor.

Thus, the desired division factors are $128,32,8,4$, and 2.
3. Cut and bend five short pieces of $\# 22$ wire (approx. $\frac{1}{2}$ inch) to a U-shape and insert a jumper between each selected hole-pair in the universal speed chip. Solder jumpers and clip excess lead lengths.
4. Apply power to 703 and ascertain that characters are being read thru correctly.

Table 2-1 identifies the hole pairs to be jumpered for some commonly used baud rates.

Table 2-1. Frequency Counter Jumpers For Common Baud Rates

Baud Rate
37.5
45.45

50
74.2

75
110
150
1200 (X10)

Speed Chip Jumpers
All positions
$2,4,32,128, 母 256$
128 \& 256
1, 2, ${ }^{2} 256$
1 \& 256
$2,4,8,32, \& 128$
128
128 \& 32

SECTION III

OPERATION

3.1 GENERAL

The 703 contains two indicators lamps:

1. A POWER on indicator.
2. A DATA indicator to monitor the passage of DATA at the output.

No other indicators/controls are provided because the Model 703 code conversion operation is fully automatic. Before placing the 703 in operation ascertain that it is correctly installed as discussed in Section II.

SECTION IV

THEORY OF OPERATION

4.1 GENERAL

This section explains the functional operation of the Model 703 in sufficient detail to permit a trained electronics technician to understand the theory of each circuit.

4.2 FUNCTIONAL DESCRIPTION

A functional block diagram of the Model 703 is shown in Figure 4-1. The Input Level Interface converts serial 5-level start-stop character inputs from a loop circuit to 0 to +5 vdc signals for application to an Input Shift Register. The leading edge of the Start bit of each character initiates each Register operation by starting an Input Time Base.

The Time Base, in turn, loads the Register at mid bit and then shifts forward each character bit one-half bit later. The Time Base receives both a 384 kHz and a 38.4 kHz clock input from a Master Crystal Oscillator. A programmable counter in the Time Base reduces the selected clock to the desired operating baud rate.

When the complete character is positioned in the Register, control gates generate a Strobe pulse which enables a Letters/Figures decoder in the Code Converter and a Transfer pulse which reads the converted 8 -level character bits into an Output Shift Register. Special "L" and "F" jumpers from the Code Converter decoders normally inhibit generation of the Transfer pulse whenever the incoming 5-level character is a Letters or Figures character. If the "L" and "F" jumpers are not installed the equivalent control characters will be read from the 703.

As the character is transferred into the Output Shift Register, it will also start an Output Time Base if the Register is empty. If the Register is not empty, the Time Base will complete its current cycle and restart immediately. The Output Time Base is identical to the Input Time Base and also receives clock inputs from the Master Crystal Oscillator.

Functionally, the conversion operation is initiated when a complete character is detected in the Input Register. The Code Converter, consisting of a ROM (Read Only Memory) storage
module, performs the actual translation to eight character bits which are simultaneously read into the Output Register l-character buffer. Thus, the conversion process is a $1 \mathrm{in} / 1$ out character translation, requiring that the time of a complete output character (including start and stop bits) be shorter than the time of an input character.

When the complete 8 -level character is shifted serially out of the Register, an empty detector not only stops the Output Time Base, it also clamps the Register signal output to mark.

The 8-level serial characters generated by the Output Register drive an Output EIA Driver, and Output Neutral Loop Keyer, and a DATA lamp. The DATA lamp is turned on when the output is mark.

4.3 DETAILED DESCRIPTION

4.3.1 MASTER OSCILLATOR

The master oscillator provides accurate timing signals to both the Input and Output Register Time Base circuits. The oscillator, shown in Figure $6-1$ consists of crystal oscillator stages $\mathrm{Z4}-\mathrm{A} /$ $Z 4-B$ and $\div 10$ counter 22 located on board N01082.

The frequency of the two-stage oscillator is controlled by a 384 kHz series-resonant crystal Y1. The combination of digital inverters $Z 4-A / Z 4-B$ and Y results in an output which approximates a square wave signal. The output is isolated by Z4-C and Z3-A before application to $\div 10$ counter $Z 2$ producing both 384 kHz and 38.4 kHz signals for use by the Input/Output Register Time Base circuits.

4.3.2 INPUT SHIFT REGISTER

The input shift register converts incoming serial 5-level characters from the data circuit to parallel information bits. Each 5-level character is simultaneously converted to paralle1 8-level information bits by the Code Converter and transferred to the Output Shift Register. The input register includes the following basic circuits:

1. Input Level Interface
2. Input Time Base
3. Shift Register And Control

All of the circuits are contained on board N01082 and are illustrated in Figure 6-1.

Figure 4-1. Functional Block Diagram
C2725
4.3.2.1 INPUT LEVEL INTERFACE. The input level interface converts neutral or polar, 20 to 60 ma loop circuit signals to $0-5$ volt logic level signals for application to the Input Time Base and the Input Shift Register.

The high level input isolator consists of level gate Q4, photo isolator module $Z 5$, and threshold detector Q5/Z11-C. External loop connections are attached to Jl pin $1(-)$ and pin $2(+)$ as shown in Figure 6-1.

The isolator will accept standard 20-60 ma/lj0 vdc neutral or polar loop connections. A wire jumper must be installed in the appropriate eyelet position (" 20 " or " 60 ") to establish the switching threshold for neutral input loops. Neither eyelet pair is jumpered for polar loop inputs.

NOTE

External current limiting must be provided to prevent the current from exceeding 100 ma . Reverse voltage connections will not damage the isolator because of CR6.

Input mark current gates on $Q 4$ which applies a positive level to photo isolator 25 . This positive level turns on 25 , generating a positive voltage at pin 4. The positive output turns on threshold detector Q^{5} producing a 0 -volt mark output. During a space input, $Q 4$ turns off and the photo isolator removes the positive level at pin 4 which switches the output of $Q 5$ to a +5 volt space output.

Inverter Z11-C provides hysteresis feedback to the input of $Q 5$ to provide positive switching and to reduce the effects of noise on the input loop.

The 0 -volt mark output from $Q 5$ drives the A_{I} input of the Shift Register while the inverted output from 211-C (0-volt space) is used to drive the input of the Time Base.
4.3.2.2 INPUT TIME BASE. The time base circuit produces a series of clock pulses at the input signal baud rate to shift each character into the shift register.

The time base, shown in Figure 6-1 consists of the following circuits:

1. Start-stop flip-flop Z6-B
2. Input clock selection gates $23-B(384 \mathrm{kHz})$ and $23-\mathrm{D}$ $(38.4 \mathrm{kHz})$
3. 9-stage frequency counter 21,27 , and $26-A$
4. Division selector jumper positions and gate $Z 8-B$
5. Counter reset flip-flop $29-C / Z 9-D$ and reset gate $Z 9-A$
6. $\div 2$ output clock flip-flop $213-B$
7. Load flip-flop Z13-A
8. Stop gate Zll-A
9. False start reset counter $Z 12$

The $\div 10$ divider and the two clock control gates permit selection of either a $384 \mathrm{kHz}(Z 3-B)$ or a $38.4 \mathrm{kHz}(Z 3-D)$ input to the frequency counters thus permitting the upper baud rate limit to be expanded by a factor of 10 . The counter is normally operated with Z3-D enabled below 600 baud and $23-B$ enabled above 600 baud. Gate $Z 3-D$ is enabled by leaving jumpers out of the eyelets designated "X10" on N01082.

During the time between incoming characters, the time base is held in the reset state by start-stop flip-flop 26-B. With the start-stop flip-flop reset, the LLO Q output of $26-B$ holds output flip-flop $\mathrm{Z} 13-\mathrm{B}$ and the frequency counter stages reset (via gate $29-A)$, and holds the Input Shift Register modules in the clear state. The LLI \bar{Q} output from $26-B$ also holds false start counter $Z 12$ reset.

Time Base operation is initiated at the beginning of each character because the leading edge of the character start pulse from Zll-C clocks start-stop flip-flop Z6-B to a LLI Q output. This releases the reset level from output clock flip-flop Z13-B and the frequency counter stages and removes the clear level from the Input Shift Register.

With the reset level removed from gate $\mathrm{Z9}-\mathrm{A}$, the frequency counter begins dividing the 38.4 kHz or 384 kHz clock from gate Z3-B or Z3-D. As the divider counts the clock input, selected binary outputs are ANDed by jumpers on board N01082 producing a high node input level to $\mathrm{Z8}-\mathrm{B}$ when the desired division factor (binary number) is reached. (Refer to Section II for speed wiring information.) The divider modules are connected in series to produce a 9-stage divider that permits selection of division factors up to 2^{9} (factors of 1 to 511). The binary number selected is determined by the jumper arrangement on the board and directly selects the division factor of the counter. For example, if a factor of 174 (i.e., 110 baud) is desired, a binary 174 (10101110) is programmed into the board eyelets.

NOTE

A jumper is installed for each binary 1.

The LL0 output from $28-B$ sets flip-flop Z9-C/Z9-D which, in turn, enables reset gate $29-A$. The resultant LLl from $\mathrm{Z9}-\mathrm{A}$ returns the counter to reset and clocks $Z 13-B$ to the opposite state. After a short duration, the opposite phase (LLl) of the clock drive (i.e., 384 kHz or 38.4 kHz) signal resets flip-flop Z9-C/Z9-D via Z11-D. Thus, the frequency counter begins a new countdown sequence coincident with the next LLO input clock transition.

The counter reset pulse output, after inversion by $29-B$, clocks 213-B to a LLO \bar{Q} state coincident with mid bit of the character start pulse producing a half of a clock cycle. This LLO level does not advance the register, but it does clock load flip-flop Z13-A to a LLl Q state which enables the preset (P_{E}) input to Shift Register module $Z 10$, loading the character start bit into stage A_{I} (none of the remaining preset inputs are used). The preset pulse is removed 2.9 or 29 microseconds later when the 384 kHz or 38.4 kHz clock resets $\mathrm{Z9}-\mathrm{C} / \mathrm{Z9}-\mathrm{D}$ as discussed above.

One-half clock time later as the divider again resets, the reset pulse switches clock flip-flop Z13-B to a LLI \bar{Q} state producing the first shift level to the Shift Register. Clock generation continues until the five character information bits are loaded into the register, causing the register to reset the start-stop flip-flop by enabling stop gate Zll-A.

Since the dividers are connected in series, a total division factor of 2^{9} can be programmed by jumpering the counter. Detailed wiring information is provided in Section II.

In addition to advancing the shift register, the output clock signal from $213-B$ also advances false start reset counter $Z 12$. Inverter Zll-B monitors the D_{o} output of $Z 12$ to detect a binary count of 8. In the event that the Time Base is not reset by the register or is inadvertently started by a noise pulse on the input line, $Z 11-B$ will reset the start-stop flip-flop after 8 clock transitions.
4.3.2.3 INPUT SHIFT REGISTER AND CONTROL. The shift register, shown in Figure 6-1, converts the 5-1evel serial characters to parallel form for translation to $8-1$ evel characters and generates conversion/transfer timing for the Code Converter Output Shift Register. The register circuitry includes 7-bit shift register Z10, $214-A$, and $Z 14-B$; transfer gate $Z 15-B$; strobe gate Z16-A; and a delay flip-flop Z37-A.

Register operation is initiated by the Time Base start-stop flip-flop at the beginning of each incoming serial character. Each character bit, beginning with the start bit, is loaded into the A_{I} stage of Zlo at mid bit by the preset pulse from the Time Base. One-half bit time later each bit is advanced to the next stage by the LLl clock output from the Time Base.

When the character start bit (space) advances to stage Z14-A (5th clock pulse), the Q output of $214-A$ switches to LLl enabling one input to both the transfer gate $215-B$ and the strobe gate Z16-A. At this time because the register stages were initially cleared to the mark state, the \mathbb{V} output of $\mathrm{Zl} 4-\mathrm{B}$ is LLI enabling an additional input to $215-\mathrm{B}$.

A timing input, utilized as an enabling pulse for both gates, is generated when the trailing edge of the register preset pulse sets delay flip-flop $237-A$ to a LLI Q state. Several microseconds (2.9 or 29) later the selected Time Base clock signal (i.e., 384 kHz or 38.4 kHz) resets $\mathrm{Z37-A}$, removing the enabling pulse. A delay in enabling the gates allows time for the ROM module in the Code Converter circuits to convert the input bits to an equivalent 8 -level output. This delay also times the strobe gate output to enable decoders in the Code Converter in order to detect the presence of a Letters or a Figures input character. Detection of the Letters/Figures character can be used to inhibit generation of a transfer pulse from the Input Shift Register. The transfer gate, Z15-B, is inhibited during Letters/Figures characters by the " L " and " F " eyelet positions as long as jumper wires are installed because there are no 8-1evel character equivalents required for the Letters/Figures characters. If neither character is detected by the Code Converter or if the jumpers are not installed, transfer gate $\mathrm{Zl} 15-\mathrm{B}$ is also enabled by the delay pulse from Z37-A. The generated transfer pulse reads the converted $8-1$ evel character from the Code Converter into a buffer register in the Output Shift Register.

In addition to producing a level to control the transfer gate, a decoded Letters or Figures character also sets a flip-flop in the Code Converter causing the Converter to begin producing the correct 8 -level output characters from the upper or lower case 5-level input characters.

The next shift register clock pulse (6th) shifts the start pulse to stage $214-B$ disabling the transfer gate (so next preset pulse cannot enable it) and enabling one input to Time Base stop gate Z11-A. One-half clock time later, the preset pulse enables Z11-A generating a short duration Llo pulse which resets the Time Base start-stop flip-flop (26-B) to the clear state (LL1 $\bar{Q} / L L O Q)$.

This action causes the shift register and Time Base circuits to be returned to a reset or clear state until the beginning of the next character.

4.3.3 CODE CONVERTER

The code converter accesses the contents of a programmed Read Only Memory (ROM) module with the binary number produced by the 5 -level character bits to generate the eight character bits of the equivalent 8 -level characters. Since 5-level code utilizes a Letters or Figures character to generate alpha and numeric characters and the 8 -level code requires no such control characters, correct interpretation of the 5 -level code is provided by generating a sixth input bit to the ROM controlled by recognition of a Letters or Figures character. This sixth bit, referred to here as a LTRS/FIGS case bit, is stored in the selected binary state until the opposite control character is detected in order to permit the incoming 5 -bit characters to access the correct memory positions in the ROM module.

The code converter, shown in Figure 6-2, consists of a 63position ROM module Z17, letters decoder gate Z36-B, figures decoder gate Z23-A, letters/ figure storage flip-flop Z16-C/Z16-D, and several signal inverters. The character bits 1 thru 5 from the Input Shift Register are applied to binary address inputs designated A5 thru A1, respectively; these A5 thru A1 designations match bits 1 thru 5 as shown in ROM Truth Table, Figure 4-2.

NOTE

The actual binary input/output levels levels are inverted from normal so that a 1 or mark bit is a LLO level.

Referring to the truth table, notice that output bits 5, 6, and 7 are $1,0,0$ when the $5-1 e v e l$ character is Figures and the outputs are 1, 1,1 when the character is Letters. To detect a Figures control character the Figures decoder gate Z23-A samples the inverted bit 5 output of 217 because it is LLl and the direct bit 6 and 7 outputs because they are LLO from the ROM. Conversly because all three bits are LLO, the Letters decoder gate $236-B$ looks for the complement of Figures by sampling only the inverted bit 6 and 7 outputs of 217 . Neither gate is enabled until all of the character bits are read into the correct stages of the Input Shift Register because of the LLI Strobe input generated by gate $216-\mathrm{A}$ as discussed previously.

If either decoder gate is activated by the ROM output, the resultant LLO pulse sets flip-flop $216-C / Z 16-D$ to the respective state (i.e., Figures $=$ LLl from $216-D$ and Letters $=$ Lll from 216-C) and inhibits the output of transfer gate Zl5-B (if the "L" and "F" jumpers are installed) in the Input Shift Register as discussed previously.

The letters/figures storage flip-flop output is inverted and used to control the A_{6} (CASE) input to ROM module 217 thus, accessing that portion of the ROM storage containing the programmed Letters or Figures equivalent 8 -level characters. At the same time output bits produced by 217 during a Letters or Figures character are never read from the 703 if the "L" and "F" jumpers are installed because they are not transferred to the Output Shift Register.

Two jumper options are provided in the code converter circuit. The first is a set of jumper eyelets designated "FIGS". When jumpered, this option locks the letters/figures flip-flop and, consequently, the ROM in the "Figures only" state by clamping input bit A_{6} to 1 . Thus, all incoming characters produce equivalent upper case 8 -level outputs.

The second option permits the eighth 8 -level bit generated by the 703 to be strapped for continuous mark or to be controlled by the parity output stored in the ROM for each character. Three eyelets are provided; a single jumper is installed between the pair designated " M " for continuous mark or the pair designated "P" to select the ROM parity output.

The 8 output bits are transferred to a 1 -character buffer register in the Output Shift Register coincident with the Transfer pulse generated by the Input Shift Register.

4.3.4 OUTPUT SHIFT REGISTER

The output shift register circuits produce serial start-stop characters from the 8 -level parallel bits generated by the ROM storage. The Output Shift Register consists of the following basic circuits:

```
1. Buffer Register
2. Output Time Base
3. Output Shift Register And Control
4. Output Interface Circuits
```

All of the circuits are contained on board $N 01082$ and are illustrated in Figure 6-3.
4.3.4.1 BUFFER REGISTER. The buffer register stores the 8-bit outputs from the ROM and signals to the Time Base that a new character is waiting. The buffer consists of 4-bit latches Z24/Z25 and character ready flip-flop Z22-A shown in Figure 6-3.

In operation, the Transfer pulse generated by the Input Shift Register simultaneously loads the character bits into the buffer stages and clocks the character ready flip-flop to a \bar{Q} LLI or Character Ready state. However, the character ready flip-flop will be set only if the previous character has been loaded from the buffer to the Output Register (this operation will be discussed with the Time Base).
4.3.4.2 OUTPUT TIME BASE. The output Time Base, shown on Figure 6-3, consists of load control gate 227-D; load flip-flop Z18-A; start-stop flip-flop Z18-B; clock selection gates Z30-A (384 kHz) and $230-\mathrm{B}(38.4 \mathrm{kHz}$); 9-stage frequency counter 220 , 229, and 228-A; division selection jumper positions and associated gate $219-A$ counter reset flip-flop $Z 21-A / Z 21-B$; reset gate Z21-C; and output clock flip-flop Z22-B.

The Time Base produces a series of clock pulses for the Output Register at the selected outgoing baud rate (normally 110 baud) each time a new character is read into the Register from the Buffer. The Output Time Base operates functionally the same as the Input Time Base; therefore, only the load and start-stop control operations will be discussed.

With the start-stop flip-flop $\mathrm{Z} 18-\mathrm{B}$ initially in the reset state, the Q output holds the output clock flip-flop Z22-B reset, enables gate $221-C$ which holds the frequency counter stages reset, and resets counter reset flip-flop $221-A / Z 21-B$. The Q output of 218-B also holds the Output Shift Register in the clear state.

At the same time, the \bar{Q} output of $218-B$ enables one input to load gate 227-D. Thus, when a character is transferred from the ROM to the Buffer, the resultant \bar{Q} LL1 output from character ready flip-flop Z22-A produces a LL0 output from gate Z27-D. This output, in turn, enables NOR gate $227-C$ which removes a reset input from load flip-flop 218-A. The next LLO clock input to the Time Base (i.e., 384 kHz or 38.4 kHz) sets flip-flop Z18-A to a Q LLl (load) state, which transfers the waiting character from the Buffer to the Output Shift Register stages. Simultaneously, the \bar{Q} LLO output clocks start-stop $218-B$ to the start state, resets the character ready flip-flop, and enables gate Z27-C preventing immediate reset of load flip-flop Z18-A as the character ready flip-flop is reset. Thus, the next LLO. clock cycle (i.e., 384 kHz or 38.4 kHz clock) resets $\mathrm{Zl} 18-\mathrm{A}$ assuring generation of a reliable load pulse to the Register stages.

Once the start-stop flip-flop is set to start, the Time Base begins generating clock pulses which, in turn, begin shifting the character bits out of the Register. In addition, the \bar{Q} LLO output holds the load flip-flop reset via gate Z27-D until the Time Base is reset. When the Register is empty, gate Z31-B resets the time base start-stop flip-flop.

The Time Base remains in this state until the next character is transferred from the Code Converter. Although the 703 requires that the output character time be shorter than the input character time, the two signals are asynchronous, thus the Buffer may have a character waiting when the Register reads empty. In these instances, the character ready signal will restart the Time Base immediately.
4.3.4.3 SHIFT REGISTER AND CONTROL. The output shift register and control adds Start and Stop bits to the parallel 8 information bits and shifts them serially from the 703 to form 8level start-stop characters at the baud rate selected by the Time Base.

The register and control, shown on Figure 6-3, consists of 10stage shift register $233-234$, register empty detector gates Z32, output data gate Z31-A, and stop bit flip-flop Z28-B and associated stop gate Z31-B.

The preset (P_{E}) input loads a character from the Buffer Register each time the Time Base load flip-flop Z18-A is set. At the same time, the A input to 234 inserts a mark (stop) bit at the end of the character bits and the E input to $Z 33$ inserts a space (start) bit at the beginning of the character. Prior to this time the register has been in the clear state, causing the output of empty gate 232 to hold the data gate Z31-A in mark. When loaded, this level is removed permitting the E output of 233 to control Z31-A.

The first clock pulse is generated one bit time after loading and begins shifting the character out of the register. As the bits are shifted out (LLO = mark), the S_{I} input to 234 loads the register to an all space or clear state. Thus, when the mark stop bit reaches stage E of $\mathrm{Z33}$, not only is the output of $231-\mathrm{A}$ driven to mark, the empty gate is also enabled. The empty gate, in turn, holds $231-A$ in mark, releases a reset clamp from stop flip-flop Z28-B, and enables one input to stop gate Z31-B. However, until the mark stop bit reads out of the register, the E output holds Z3l-B disabled. One clock time later, the E output switches to space (LL1) enabling the input to Z31-B and the J input to $228-B$. Thus, the next clock pulse (2 bit
times after the beginning of stop pulse), switches 228-B to a Q LLl state which activates $231-B$ resetting the Time Base startstop flip-flop. Thus, data gate $Z 31-A$ produces a mark output until a new parallel-to-serial character conversion is initiated by the Time Base.
4.3.4.4 OUTPUT INTERFACE CIRCUITS. The output interface circuits, shown on Figure 6-3, consist of polar logic level driver Z26, isolated neutral loop keyer circuit $Q 1$ thru $Q 3$ and a front panel DATA lamp. All three circuits are driven directly from data gate Z3l-A with the input to the isolated keyer inverted by 227-A.

The polar logic level driver $Z 26$ is a single operational amplifier with a preset switching threshold designed to convert 0 (space) to +5 vdc (mark) inputs to $\pm 10 \mathrm{vdc}$ signals conforming to EIA Standard RS-232-C specifications (-mark). The +5vdc mark input to 226 also turns on DATA lamp CR42, a Light Emitting Diode (LED).

The isolated neutral keyer is comprised of voltage-keyed oscillator Q2-Q3, isolation capacitors C10-C11, full-wave bridge rectifier CRIl thru CR14, filter C9-R12 and loop switching transistor $Q 1$ and associated voltage bridge circuit CR7 thru CR10.

The Q2-Q3 oscillator is a complementary RC multivbrator controlled by elements C12 and C13. The oscillator is keyed on when $227-A$ switches $a+5$ vdc across the oscillator by grounding the common side of the oscillator. The oscillator free-runs at approximately 750 kHz until the input is removed. The oscillator output is coupled by Cl0 and Cll to the CR11 thru CRI4 bridge rectifier. Elements C 9 and Rl 2 filter the rectifier output, which turns on transistor switch Q1. Current flows thru the CR7 thru CRIO bridge circuit into the transmission loop, so the keyer module is not polarity sensitive.

External limiting is required to inhibit loop current from exceeding 100 ma , and external filtering across the loop is required for inductive loops.

4.3.5 POWER SUPPLY

The power supply consists of a $\pm 10.7 \mathrm{vdc}$ zener regulated section and $a+5$ vdc series-regulated section located on board N01082 as shown in Figure 6-2. The input windings to primary transformer Tl can be selected for 115 vac or 230 vac by jumpering "ll5/230" eyelet positions on board N01082 to the desired position. No primary power switch is provided on the 703.

NOTE

Unless otherwise specified, the Model 703 is wired for 115 vac.

The $\pm 10.7 \mathrm{vdc}$ section consists of full-wave rectifier CR1 thru CR4; +10.7 vdc filter C1-C26-R36, zener CR38 and diode CR39; and -10.7 vdc filter C2-C27-R37, zener CR40 and diode CR41. The zener regulated $\pm 12 \mathrm{vdc}$ outputs are supplied only to the ROM circuits in the Code Converter. Unregulated ± 12 vdc is used by the output logic level driver.

The +5 vdc section consists of full-wave rectifier module CR5, series regulator $Q 6-Q 7$, and reference voltage operational amplifier Z35. The operational amplifier is internally referenced to +5 vdc at one input (pin 3) and monitors the +5 vdc output at the othe input (pin 6) in order to control the conduction of series regulator Q6. Thus, as the +5 vdc output attempts to increase, 235 reduces the conduction of $Q 7$ which, in turn, reduces the conduction of Q6 increasing the series impedance. The opposite action occurs if the +5 vdc drops below the reference voltage.

5.1 GENERAL

The maintenance information in this section will help assigned technicians troubleshoot the 703. Service technicians should possess a thorough understanding of solid-state integrated circuits and a background in TTY techniques before attempting to repair a defective unit. In addition, the technician will need an understanding of the circuit theory, and the related programming which might change the operating characteristics.

A discussion of the circuit theory is contained in Section IV and programming is discussed in Section II. Schematic and part location drawings are contained in Sections VI and VII, respectively.

WARNING

THE POWER SUPPLY AREAS MAY CONTAIN VOLTAGES AS HIGH AS 230 VAC. These voltages are always hazardous to life. Exercise extreme caution when working in these areas.

5.2 PREVENTIVE MAINTENANCE

Since the 703 is a solid-state low-power device, preventive maintenance is not recommended. Internal component inspection and cleaning is not recommended except during corrective maintenance. However, in locations with extreme environmental conditions, such as sand, dust, and/or large variations in humidity the unit may require frequent cleaning. Use a soft non-abrasive cloth or a medium bristle paint brush to clean the dirt.

5.3 CORRECTIVE MAINTENANCE

If the technican thoroughly understands the operation of the 703, malfunctions in its operation should be readily apparent by monitoring the input versus output traffic. Corrective maintenance involves observation of these malfunctions to localize a trouble to a specific malfunction.

5.3.1 REQUIRED TEST EQUIPMENT

The test equipment or its equivalent required to repair the 703 is listed in Table 5-1.

No special tools other than those normally contained in an electronic toolbox are required.

Table 5-1. Required Test Equipment

EQUIPMENT
Oscilloscope
5-Level Teleprinter
8-Level Teleprinter
5-Level Message Generator

MANUFACTURER
Tektronix 453
Teletype Corp. 32
Teletype Corp. 33
Frederick Electronics 1306A

5.3.2 TROUBLESHOOTING

Tables provided in this Section along with other suggested procedures, should help the service technician isolate a trouble to a specific circuit. Figure 7-2 shows the location of the components on the circuit board.

Begin troubleshooting by placing the test equipment in a convenient location for easy access to the 703. Remove the top cover to permit access to printed circuit board N01082.

Inspect the board components for obvious defects such as cracked or burned resistors, swollen capacitors, etc. as indicated in Table 5-2.

Follow visual inspection by measuring the Power Supply voltages at C1, C2 and C3 with an oscilloscope. With a nominal 115 vac or 230 vac input, the dc voltages should be as follows:

POINT		VOLTAGE
+ Side C2		Ground
+ Side C3	+5	$v d c \pm 1 \%$
+ Side Cl	+12	$\mathrm{vdc} \pm 10 \%$
- Side C2	-12	$\mathrm{vdc} \pm 10 \%$

If the visual and voltage checks do not reveal the trouble, connect the test equipment as shown in Figure 5-1 and then proceed by checking the test points in Table 5-3. After a trouble is isolated to a general area, use the schematic diagrams in Section VI and an oscilloscope to locate the exact trouble.

Figure 5-1. Test Equipment Connections

5.4 REPAIR

The Model 703 is designed for ease of subassembly removal and installation and will pose no problems for an experienced technician. Replacement of component parts is also routine. However, exercise caution not to damage or bend the pins of ROM module $Z 17$ if removal is required; do not remove $Z 17$ unless absolutely necessary.

Table 5-2. General Inspection Procedures

COMPONENT	CONDITION	CAUSE	CORRECTION
Resistors	Discolored, swollen, or cracked Cracked or broken	Overheated due to overload Improper handling	Locate and correct overload condition. Replace resistor.
Capacitors	Leakage, bulging, split case, or broken end seals	Physical damage or dielectric breakdown due to high voltage or improper handling	Check for high voltage condition and repair. Replace capacitor.
Transformers	Discolored insulation or windings, leakage	Overheated due to current overload	Locate and correct overload. Replace transformer if destroyed.
Connectors and jacks	Bent pins, charred insulation, marred threads, moisture, dirt, or grease	Improper handling	Straighten pins, clean or replace part.
Switches and controls	Broken, worn, bent, or dirty	Rough handling or normal wear	Clean, straighten, or replace.
Indicator lamps	Broken Burnt out	Rough handling, excessive current, or normal wear	Replace lamp.
Wiring and cables	Cut or frayed insulation, broken wires or connections	Improper handing	Repair or replace.
Solder connections	Loose or corroded connections, cold solder joints	Improper soldering	Clean and resolder.

Table 5-3. Trouble Isolation Chart

SYMPTOM	PROBABLE CAUSE	REMEDY
1. Incoming traffic not reading thru 703 to output. a. No signal at TP2.	a. Input Level Interface	a. Check loop circuit connections to 703. Check for $20 / 60$ ma jumper with neutral loops. Repair Interface circuit.
b. No clock at TP1. $4^{\text {d. }}$	b. Master Oscillator or clock selector gates	b. Check 384 kHz output of oscillator. If present and "X10" jumper is removed, check for 38.4 kHz output at pin 12 of. $\mathrm{Z2} /$ pin 11 of $23-D$.
c. No register load pulse at TP5 but clock at TP4.	c. Load flip-flop Z13-A	c. Repair Z13-A.
d. No baud rate clock at TP4. NOTE	d. Input Time Base	d. Check for reset pulse at pin 3 of Z9-A. If present repair Z13-B. If not present check operation of counter and reset flip-flop.
If clock is present at TP4 but frequency is incorrect, check counter programming in Section II.	.	\cdots

SYMPTOM	PROBABLE CAUSE	REMEDY
e. No transfer pulse at TP6.	e. Input Shift Register Transfer fiip-flop Delay flip-flop	e. Check pin 5 of 214-A to see if start bit is being read into register (i.e., switches to LLl after 5 clock pulses). Check pin 5 of 237-A to see if delay flip-flop is operating on trailing edge of Load pulse (TP5). Check transfer gate, especially "L" and "F" inputs from Code Converter.
f. TP8 not switching to Llo when transfer pulse occurs at TP6.	f. Character Ready flip-flop	f. If TP9 is LLO, repair $222-\mathrm{A}$.
g. No character bits present at buffer input pins 2 thru 7 of $224 / 225$.	g. Code Converter	g. Check bit inputs to pins 1 , $2,3,20$, and 21 of ROM Z17 from Input Shift Register. If present check output pins 4 thru 11 of 217 for data bits.
h. Normal signals at TP8, TP9, and time base start-stop flip-flop is switching to LLI at TP10, but no output at TP11. NOTE If clock is present at TPII but frequency is incorrect, check counter programming in Section II.	h. Output Time Base counter or output flip-flop	h. Check for counter reset pulse at pin 8 of Z21-C. If present repair $222-B$. If not present check counter and reset flipflop.

Table 5-3. (cont.)

SYMPTOM	PROBABLE CAUSE	REMEDY
i. Clock present at TP11 but no data at TP12.	i. Output Shift Register or Data Gate	i. If pin 10 of 233 from register shows data transitions, repair gate $231-A$. If pin 10 is resting LLO, repair shift register.
2. Certain characters are being printed incorrectly on monitor.	a. ROM (Read Only Memory)	a. Apply repetitive incorrect character input to 703 and check for correct bit outputs from Input Shift Register using Table 4-2 (or appropriate coding chart). Sync oscilloscope externally to transfer pulse (TP6) to sample bit levels at correct time.
	b. Input Shift Register	b. If input bits are correct, check output bits from ROM by referring to Table 4-2. Sync oscilloscope externally to TP6 to sample bit levels.
	c. Output Shift Register	c. If ROM bits are correct, check input bits to Output Shift Register from Buffer Register. using Table 4-2. Sync oscilloscope externally to Character Ready pulse (TP8) to check transfer of bits into Buffer and to load pulse (TP9) to check transfer of bits to Shift Register.
3. Data nof present at Logic Level output but DATA lamp shows data.	a. Logic Level driver	a. Repair driver.

Table 5-3. (cont.)

| SYMPTOM | PROBABLE CAUSE |
| :---: | :---: | | REMEDY |
| :---: |
| 4.Data not present at
 neutral loop output
 but DATA lamp
 shows data. |

SECTION VI

SCHEMATIC DIAGRAMS

Figure 6-1. Input Shift Register Schematic Diagram

Figure 6-2. Code Converter And Power Supply Schematic Diagram D2578A, Sheet 2

Figure 6-3. Output Shift Register Schematic Diagram D2578A, Sheet 3
\qquad

nates

1. BOARO MASTER IS E1853

CHASSIS SILK SCREENS ARE TOOT4 * TOO75
ITEMS 23. 24. A 25 ARE SUPPLIED AS LOOSE
EOUIPMENT AND WILL BE SHIPPED AS SUCH

Figure 7-1. Model 703 Assembly D2581

Figure 7-1. Parts List

Nores

1. SChematic ref 02578
2. Unless ofhermise specifieo drill all mounting holes NO 55 (.052) AND INSTALL 45410 GRIPLETS
ALL R.C.'S ARE NO. 70 (.028) OR.

+ NO. 38 (.101) OR - 10 PLACES
- NO. $30(1.128)$ OR - 2 PLACE

M NO. 11 (.191) DR - 4 PLACES
N NO. 55 (. 032) OR . P PLACES (NO GRYPLETS)
NO. 65 (.052) on - as requiteo for item 78
NO. 82 (063) OR. 15 Places

- No. 43 (.089) OR - 1 Place

156) DR - 9 Places

4 install item 32 mith gold plating domn and ITEM 33 hith GOLO PLATING FACING ITEM 2.

Figure 7-2. Parts List

