TECHNICAL MANUAL
for
COMPARATORCONVERTER GROUP AN/URA-17D

DEPARTMENT OF THE NAVY NAVAL ELECTRONIC SYSTEMS COMMAND

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT

ORION ELECTRONIC CORP. 3547 WEBSTER AVE. BRONX N. Y. 10467
Contract: N00039-69-C-1530

Errors found in this publication (other than obvious typographical errors) should be reported. Such report should include the complete title of the publication and the publication number. Identify the page and line or figure and location of the error, and forward report to the Commander, Naval Electronic Systems Command, Washington, D.C. 20360

VALIDATION PERFORMANCE

Title of Publication AN/URA 17D NAVELEX 0967-438-4010

Contractor:
Sub-Contractor (if performing validation):
ORION ELECTRONIC CORPORATION
Contract No (s) and Purchase Orders, if applicable
N00039-69-C-1530

| Chapter Section Paragraph | Date
 Validation
 Completed | Check here if
 not validated |
| :--- | :---: | :---: | :---: |

1	1 thru 6	September 172
2	1 thru 6	September 172
3	1 thru 4	September 172
4	1 thru 5	September 172
5	1 thru 6	September 172
6	1 thru 3	September 172
7	1 thru 4	September 172

\qquad
\qquad
\qquad
\qquad

Name \& Authority of Validating Officer:

Louis S. Gage
Exexutive Vice President
Signature of Verifying Officer:

Title of Publication

NAVELEX 0967-438-4010

Government Activity:
Date Verification Completed:
Date Correction Completed:
Date Reverification Completed: Completed tions made Reverified not Verified
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name \& Authority of Verifying
Signature of Verifying Officer: Officer:

TABLE OF CONTENTS

SECTION 1-GENERAL INFORMATION

Paragraph Page
1-1. Equipment Illustration 1-1
1-2. Functional Description 1-1
1-3. Description of the Major Unit 1-3
1-4. Factory or Field Changes 1-3
1-5. Quick Reference Data 1-3
a. AF Input Signal 1-3
b. Operating Frequencies 1-3
c. Maximum Keying Speeds 1-3
d. Output 1-3
e. Power Source Requirements 1-4
1-6. Equipment Lists 1-4
a. Equipment Supplied. 1-4
b. Equipment and Publications
Required but not Supplied 1-4
c. Test Equipment Required but not Supplied. 1-4
d. Shipping Data. 1-4
e. Equipment Similarities 1-4
f. Transistor and Diode Complement 1-4
SECTION 2-INSTALLATION
2-1. Ujpacking and Handling 2-1
2-2. Power Requirements and Distribution 2-1
2-3. Installation Layout 2-1
2-4. Installation Requirements 2-2
a. Outline Drawings 2-2
b. Equipment Mounting 2-2
(1) Table-Mounting the AN/URA-17D 2-2
(2) Table-Mounting the CV-483D/URA-17 2-2
(3) Rack-Mounting the AN/URA-17D 2-2
(4) Rack-Mounting the CV-483D/URA-17 2-3
c. Interconnection 2-4
(1) Interconnecting Cables for Single-Receiver Operation 2-5
(2) Interconnecting Cables for Diversity Operation 2-5
(3) Audio Input Lines 2-6
(4) Power Transformer Connections 2-6

SECTION 2-INSTALLATION (Cont.)

Paragraph Page
d. Cable Assembly 2-6
(1) Attaching UG-88D/U Connectors to $\mathrm{RG}-58 \mathrm{~A} / \mathrm{U}$ 2-6
(2) Attaching MS Connector to MCOS- 2 Cable 2-8
(3) Attaching MS Connectors to TTHFWA-1-1/2 Cable. 2-10
2-5. Inspection and Adjustments 2-11
a. Mechanical and Electrical Checks 2-11
(1) Mechanical Checks 2-11
(2) Electrical Checks 2-11
(a) CRT Adjustment Controls. 2-14
(b) Pre-Operational Check 2-14
(c) Operational Check 2-14
2-6. Preparation for Reshipment 2-17
a. Interconnecting Cables 2-17
b. Dismounting Equipment 2-17
c. Packing 2-17
SECTION 3-OPERATOR'S SECTION
3-1. Functional Operation 3-1
a. General 3-1
b. Frequency-Shift Method of Communication 3-1
c. Diversity Operation 3-1
d. Single-Receiver Operation 3-2
3-2. Operating Procedures 3-2
a. General 3-2
b. Description of Controls 3-2
c. Sequence of Operation 3-2
(1) Before Use 3-2
(2) During Use 3-2
(3) Secure 3-2
d. Indicator Presentations 3-2
e. Tuning Adjustments 3-2
(1) Single-Receiver Operation 3-2
(2) Diversity Operation 3-2
f. Illustrations 3-5
(1) Controls 3-5
(2) Indicator Presentation 3-5
g. Modes of Operation. 3-5
(1) Single-Receiver Operation 3-5
(2) Diversity Operation 3-5

SECTION 3-OPERATOR'S SECTION (Cont.)

Paragraph Page
3-3. Summary of Operating Procedures 3-6
a. Single-Receiver Operation 3-6
b. To Secure 3-7
c. Diversity Operation 3-7
d. To Secure 3-8
3-4. Operator's Maintenance 3-8
a. General 3-8
b. Routine Check Chart 3.8
c. Daily Check for Correct Diversity Operation 3-8
d. Indicator Lamp Replacement 3-11
e. Fuse Replacement 3-11
f. Emergency Maintenance 3-11
SECTION 4-PRINCIPLES OF OPERATION
4-1. Overall Functional Description 4-0
a. General 4-0
b. Diversity Operation 4-0
c. Single-Receiver Operation 4-1
d. Simplified Block Diagram 4-1
e. Functional Block Diagram 4-1
4-2. Functional Sections 4-1
a. General 4-1
b. Signal Processing Circuits 4-1
(1) Bandpass Filters 4-2
(2) Limiter 4-2
(3) Discriminators 4-4
(4) Mark-Space Amplifiers 4-4
(5) Detector 4-4
(6) Keying Filter. 4-6
c. Keyer Circuits 4-6
(1) DC Differential Amplifier 4-6
(2) Axis Restorer 4-7
(3) Comparator 4-7
(4) DC Limiter 4-7
(5) Loop Keyer 4-8
(6) Mark Lock-Up 4-9
(7) Tuning Indicator 4-10
d. Power Supplies 4-10
(1) +48 Volt Supply 4-10
(2) -48 Volt Supply 4-10
(3) - 560 Volt Supply 4-10

SECTION 5-TROUBLE-SHOOTING

Paragraph Page
5-1. General 5-1
5-2. Test Equipment and Special Tools 5-1
a. Test Equipment 5-1
b. Special Tools. 5-1
5-3. Overall Trouble-Shooting 5-1
a. Preliminary Check 5-1
b. Test Equipment and Special Tools 5-2
c. Control Settings 5-2
d. System Trouble-Shooting Chart. 5-2
(1) Malfunction During Single- Receiver Operation 5-3
(2) Malfunction During Diversity Operation 5-3
5-4. Functional Section Trouble-Shooting 5-4
a. General 5-4
b. Signal Processing Circuits
Trouble-Shooting 5-5
(1) Preliminary Check 5-5
(2) Test Equipment and Special Tools 5-5
(a) Test Equipment 5-5
(b) Special Tools 5-6
(3) Control Settings 5-6
(4) Illustrations. 5-6
(a) Test Points 5-6
(b) Schematic Diagrams 5-6
(c) Voltage and Resistance Diagram 5-6
(d) Signal Tracing Oscilloscope Patterns 5-6
(e) Alignment of the Converter AfterTrouble-Shooting5-6
c. Keyer Circuits Trouble-Shooting. 5-6
(1) Preliminary Check 5-6
(2) Test Equipment and Special Tools 5-6
(a) Test Equipment 5-6
(b) Special Tools 5-6
(3) Control Settings 5-6
(4) Illustrations 5-6
(a) Test Points 5-6
(b) Schematic Diagrams 5-6
(c) Voltage and Resistance Diagram 5-6
(d) Signal Tracing Oscilloscope Patterns 5-19
(e) Alignment of the Converter After
Trouble-Shooting 5-19
Paragraph Page
d. Power Supplies Trouble-Shooting 5-19
(1) Preliminary Check 5-19
(2) Test Equipment and Special Tools 5-19
(a) Test Equipment 5-19
(b) Special Tools 5-19
(3) Control Settings 5-19
(4) Illustrations 5-19
(a) Test Points 5-19
(b) Schematic Diagrams 5-19
5-5. Typical Troubles 5-19
5-6. Location of Parts 5-19
SECTION 6-REPAIR
6-1. Failure Report. 6-0
6-2. Tuning and Adjustment 6-0
a. General 6-0
b. Standards 6-1
c. Test Equipment and Special Tools 6-1
d. Special Jigs 6-1
e. Control Settings 6-1
f. Power Supply Check 6-1
(1) +48 Volt Supply 6-1
(2) -48 Volt Supply 6-1
g. Cathode-Ray Tube Adjustments 6-2
h. Mark and Space Gain Control Adjustments 6-2
i. DC Differential Amplifier Adjustments 6-3
6-3. Removal, Adjustment, Repair, and Reassembly. 6-4
a. General 6-5
b. Illustrations 6-5
(1) Photographs 6-5
(2) Wiring Diagrams 6-5
c. Removal and Reassembly 6-5
(1) Chassis Removal 6-5
(2) Transformer and Filter Replacement. 6-5
(3) Printed Circuit Board Replacement 6-5
(4) Receptacle Panel Removal 6-5
d. Adjustment and Repair 6-5A
(1) Test Equipment and Special Tools 6-5A
(2) Transistor Replacement 6-5A
(3) Tuning Indicator Cathode-Ray Tube Replacement 6-5A

SECTION 6-REPAIR (Cont.)

Paragraph Page
(4) Transistor Socket Replacement. 6-5A
(5) Rotary Switch Repairs 6-6
(a) Replacing Defective Switch Wafer 6-6
(b) Replacing Defective Switch. 6-6
(6) Bandpass Filter Tests. 6-6
(a) Wide-Shift Filter FLl 6-6
(b) Narrow-Shift Filter (Part of Z1) 6-7
(7) Discriminator Tests 6-11
(a) Wide-Shift Discriminator 6-11
(b) Narrow-Shift Discriminator 6-15
(8) Low- Pass Keying Filter Tests 6-16
SECTION 7-PARTS LIST
7-1. Introduction. 7-1
7-2. Maintenance Parts List 7-1
7-3. List of Manufacturers 7-1
7-4. Notes 7-1
LIST OF ILLUSTATIONS
SECTION l-GENERAL INFORMATIONPage
1-1 Comparator-Converter Group AN/URA-17D, Equipment Supplied. 1-0
1-2 Frequency Shift Converter CV-483D/URA-17,
Top View, Chassis Fully Withdrawn 1-2
SECTION 2-INSTALLATION
2-1 Comparator-Converter Group AN/URA-17D,
Table-Mounting Installation Drawing 2-3
2-2 Frequency Shift Converter CV-483D/URA-17,
Table-Mounting Installation Drawing 2-4
2-3 Frequency Shift Converter CV-483D/URA-17,Rack- Mounting Installation Drawing2-5
2-4 Frequency Shift Converter CV-483D/URA-17,
Interconnecting Data for Single-Receiver Operation 2-62-5
Comparator-Converter Group AN/URA-17D, Interconnecting Data for Diversity Operation. 2-7

SECTION 2-INSTALLATION (Cont.)

Figure Page
2-6 Frequency Shift Converter CV-483D/URA-17, Cable Receptacle Panel, Interior View. 2-8
2-7
2-8 $2-8$ 2-10Coaxial Cable2-9
2-9
Attaching MS Plug to TTHFWA-1-1-1/2 Cable 2-11
2-10 Location of Cathode-Ray Tube Controls 2-15
2-11
Teletype Printer DC Keying Relay Circuit, Simplified Schematic Diagram 2-16
SECTION 3-OPERATOR'S SECTION
3-1 3-43-2ing Indicator Patterns3-3Connections between Receiver, Teletype Printer,and Converter Group for Daily Checkof Diversity Operation.3-9
SECTION 4-PRINCIPLES OF OPERATION
Figure
Page
4-1 Frequency-Shift Receiving System, Simplified Block Diagram $4-2$
4-2 Comparator-Converter Group AN/URA-17D, Functional Block Diagram 4-3
4-3 Discriminator Response Curves 4-5
4-4 Discriminator Detector, Simplified Diagram. 4-6
4-5 Comparator Circuit, Simplified Schematic Diagram 4-8
4-6 Loop Keyer and Teletype Printer
Keying Circuits 4-11
SECTION 5-TROUBLE-SHOOTING
5-1 Frequency Shift Converter CV-483D/URA-17,
Parts Location 5-4
5-2
Frequency Shift Converter CV-483D/URA-17,
Location of Test Points 5-55-3
Frequency Shift Converter CV-483D/URA-17, Signal Processing Circuits, Voltage and Resistance Measurements $5-9$

SECTION 5-TROUBLE-SHOOTING (Cont.)

Figure Page
5-4 Frequency Shift Converter CV-483D/URA-17, Signal
Processing Circuits, Functional Schematic Diagram 5-135-5$5-6$5-75-8
6-16-26-3$6-4$6-5
Frequency Shift Converter CV-483D/URA-17, Keyer Circuits, Voltage and Resistance Measurements 5-15
Frequency Shift Converter CV-483D/URA-17, Keyer Circuits, Functional Schematic Diagram 5-17
Frequency Shift Converter CV-483D/URA-17, Primary Power Distribution Diagram. 5-19
Frequency Shift Converter CV-483D/URA-17, Power Supplies, Functional Schematic Diagram 5-21
SECTION 6-REPAIR
Discriminator Frequency Response Curves 6-12
Filter, Relay, and Transformer Resistance Data 6-13
Frequency Shift Converter CV-483D/URA-17, Left-Hand
Terminal Board, Wiring Diagram 6-19
Frequency Shift Converter CV-483D/URA-17, Right-Hand
Terminal Board, Wiring Diagram 6-21
Erequency Shift Converter CV-483D/URA-17, OverallSchematic Diagram6-23
LIST OF TABLES
SECTION 1-GENERAL INFORMATIONTablePage
1-1 Comparator-Converter Group AN/URA-17D, Equipment Supplied 1-5
Comparator-Converter Group AN/URA-17D,
Equipment and Publications Required but not Supplied 1-6
Comparator-Converter Group AN/URA-17D, Test Equipment Required but not Supplied. 1-8
Comparator-Converter Group AN/URA-17D, Shipping Data 1-9
Frequency Shift Converter CV-483D/URA-17, Transistor Complement 1-9
Frequency Shift Converter CV-483D/URA-17,Diode Complement1-10

SECTION 2-INSTALLATION

$2-$ Cabling Required for Single-Receiver Operation 2-12
2-2 Cabling of Each Converter for Diversity Operation. 2-13
2-3 Frequency Shift Converter CV-483D/URA-17,
CRT Adjustment Controls 2-14
SECTION 3-OPERATOR'S SECTION
3-1 Frequency Shift Converter CV-483D/URA-17, Operating Controls 3-3
3-2 Operator's Check Chart. 3-9
3-3 Comparator-Converter Group AN/URA-17D, Operator's Trouble-Shooting Chart 3-10
SECTION 5-TROUBLE-SHOOTING
5-1 Frequency Shift Converter CV-483D/URA-17, System Trouble-Shooting Chart 5-3
5-2
Frequency Shift Converter CV-483D/URA-17, Signal Processing Circuits Functional Section Trouble-Shooting Chart 5-7
5-3
Frequency Shift Converter CV-483D/URA-17,Keyer Circuits Function SectionTrouble-Shooting Chart5-23
5-4 5-5 5-26
Signal Tracing Oscilloscope Patterns 5-28 5-285-6
Frequency Shift Converter CV-483D/URA-17, Typical Troubles 5-29
SECTION 6-REPAIR
6-1 Adjustments after Transistor Replacements 6-8
6-2 Filter Characteristics 6-9
SECTION 7-PARTS LIST
7-1 Comparator-Converter Group AN/URA-17D,
Maintenance Parts List 7-2
7-2 Comparator-Converter Group AN/URA-17D, List of Manufacturers 7-28

RACK-MOUNTING BRACKETS (4)

UG-88D/U
CONNECTORS (6)

TABLE MOUNTING FEET (4)

Figure 1-1. Comparator-Converter Group AN/URA-17D. Equipment Supplied

SECTION 1

GENERAL INFORMATION

1-1. EQUIPMENT ILLUSTRATION.

Figure 1-1 illustrates Compara-tor-Converter Group AN/URA-17D, Federal Stock No.
the equipment supplied under Contract

1-2. FUNCTIONAL DESCRIPTION.

Comparator-Converter Group AN/URA-17D, hereinafter referred to as the AN/URA-17D, provides a link in the receiving end of a fre-quency-shift communication system. In this system, teletype markspace characters are transmitted as rapid shifts above and below the center frequency of an rf carrier. These frequency-shift-keyed (fsk) signals are translated by a standard communications receiver into frequency variations about a center frequency of 1000 or 2000 cycles per second (cps). The AN/URA-17D changes these frequency-shifted audio signals into dc mark-space pulses for operation of a loop keying circuit of an automatic recording device. This method of communication provides the noise reduction advantages of frequency modulation for coded teletype messages at speeds to 400 words per minute.

The AN/URA-17D consists of two Frequency Shift Converters CV-483D/URA-17, hereinafter referred to as converters. Either converter may be operated in a single receiver
fsk receiving system or used together in combination with two receivers and a single teletype printer to provide a 'diversity' receiving system. The diversity system makes use of the principles of space-diversity or frequency-diversity reception to eliminate severe signal fading over long transmission distances.

In space-diversity operation, two receivers are tuned to the same rf carrier frequency but their receiving antennas are spaced several wavelengths apart. The advantage of this method of reception is that maximum fading of a given carrier frequency usually does not coincide in time at points so separated. The audio output of each receiver is applied to a separate converter.

In frequency-diversity operation, two receivers are tuned to different rf carrier frequencies, both containing the same mark-space modulation. The audio output of each receiver is applied to a separate converter. The advantage of this method of reception is that maximum fading of two different carrier frequencies seldom occurs at the same time in a given location. Two transmitting stations as well as two frequency channels are required. This method may be used when space limitations at the receiving site do not allow sufficient antenna separation for effective space-diversity operation.

Figure l-2. Frequency Shift Converter CV-483D/URA-17, Top View, Chassis Fully Withdrawn

During diversity operation, a comparator circuit in each converter continuously compares the two received signals, selecting the stronger signal for operation of the teletype printer. The teletype printer may be connected to either of the converters. When operating in a single-receiver system, the comparator circuits are inoperative.

1-3. DESCRIPTION OF THE MAJOR UNIT.

Each converter is installed in a navy gray aluminum cabinet. A handle is provided on each side of the front panel and at each end of the back panel. The cabinet is equipped with ball-bearing drawer slides which lock in the fully withdrawn position (figure l-2). When fully withdrawn, all chassis terminals and connections are visible and easily accessible.

All external cables are attached to the converter by means of connectors which match receptacles on a removable panel at the rear of the cabinet. This panel is sloped 30 degrees to allow easy access to the cable receptacles. The cable receptacles at the rear of the cabinet are connected to the chassis by a single cable and connector. This cable is equipped with a retractor which keeps the cable in place.

A tuning indicator (two-inch cathode-ray tube) is located in the center of the front panel of each converter to allow a quick visual check of receiver tuning. The tuning indicator uses a 60 cps sweep voltage. An external indicator may be connected to a receptacle on the rear panel, for use when the operator cannot see the converter tuning indicator while tuning the receiver,

The converters each operate from a power source of 105 , 115 , or 125 volts, 50 to 400 cps , single phase ac. Except for the tuning indicator cathode-ray tube, only semiconductors are used.

Brackets and mounting bolts are supplied (figure l-1) for installation of the converters in standard $19-$ inch racks. Feet for table-mounting a single converter and clamps for table-mounting two converters (one above the other) are also included.

1-4. FACTORY OR FIELD CHANGES.

No factory or field changes have been made at this date.

1-5. QUICK REFERENCE DATA.
a. AF INPUT SIGNAL. - Operates from 600 ohm line, with input signals of 60 microwatts to 60 milliwatts power.
b. OPERATING FREQUENCIES. Narrow shift 1000 cps mean frequency; width of shift, 10 to 200 cps . Wide shift, 2000 cps mean frequency; width of shift, 200 to 100 cps .
c. MAXIMUM KEYING SPEEDS. 100 words per minute, single channel; 400 words per minute, when used in four-channel, time-division multiplex with each channel operating at 100 words per minute.
d. OUTPUT. - Keys 60 ma current, high level polar and neutral, isolated from system ground. It also provides a polar low level keying output of $1 \mathrm{ma} @ \pm 6 \mathrm{~V}$ referenced to the system ground.
e. POWER SOURCE REQUIREMENTS. - Frequency Shift Converter CV-483D/URA-17, 35 watts each, with source of 105 to 125 volts, 50 to 400 cps , single phase ac.

1-6. EQUIPMENT LISTS.
a. EQUIPMENT SUPPLIES. Table l-l lists equipment supplied.
b. EQUIPMENT AND PUBLICA TIONS REQUIRED BUT NOT SUPPLIED. - Table l-2 lists equipment and publications required but not supplied.
c. TEST EQUIPMENT REQUIRED BUT NOT SUPPLIED. - Table l-3 lists test equipment required but not supplied.
d. SHIPPING DATA. - Table l-4 provides information covering the complete equipment as packed for shipment.
e. EQUIPMENT SIMILARITIES. -Comparator-Converter Group AN/ URA-17D performs functions similar to those of Comparator-Converter Group AN/URA-17C, ComparatorConverter Group AN/URA-8 and AN/URA-17. The AN/URA-17 through AN/URA-17D use semiconductors rather than vacuum tubes. The AN/URA-17 and AN/URA - 17C and AN/URA-17D are not electrically or mechanically interchangeable with the AN/URA-8. AN/URA-17D is mechanically but not electrically interchangeable with AN/URA-17A, B, C.

f. TRANSISTOR AND DIODE

 COMPLEMENT. - Tables 1-5 and l-6 list the transistor and diode complement.TABLE 1-1. COMPARATOR-CONVERTER GROUP AN/URA-17D
EQUIPMENT SUPPLIED

$\begin{aligned} & \text { QUANT. } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	NOMENCLATURE		*OVERALL DIMENSIONS			*VOLUME	*WEIGHT
	NA.ME	DESIGNATION	HEIGHT	WIDTH	DEPTH		
2	Frequency Shift Converter	$\begin{aligned} & \text { CV-483D / } \\ & \text { URA-17 } \end{aligned}$	3-15/32	16-11/16	18-7/8	0.63	26
2	Clamps for table-mounting AN/URA-17D		8	17-11/16	3-3/4	0.08	1.5
8	Feet for tablemounting Frequency Shift Converter CV-483D/URA-17		1/4	2-3/8	$2-3 / 8$	0.005	0.12
4	Bracket for rack-mounting Frequency Shift Converter CV-483D/URA-17		3-15/32	1-5/32	8	0.007	0.75
6	Cable connector	UG-88D/U					
2	Cable connector	MS3106Al4S75					
2	Cable connector	MS3106A14S- $7 \mathrm{P}$					
2	Cable connector	MS3106A14S- $9 p$					
2	Cable connector	$\begin{aligned} & \text { MS3106A10SL- } \\ & \text { 3S(c) } \end{aligned}$					
6	Clamp, Cable	AN3057-6					
2	Clamp, Cable	AN3057-4					
2	Technical Manual	$\begin{aligned} & \text { NAVELEX } \\ & 0967-438-4010 \end{aligned}$					

*Unless otherwise stated, dimensions are in inches, volume in cubic feet, weight in pounds.

TABLE 1-2. COMPARATOR-CONVERTER GROUP AN/URA-17D, EQUIPMENT AND
PUBLICATIONS REQUIRED BUT NOT SUPPLIED.

QUANT.	NOMENCLATURE		$\begin{aligned} & \text { REQUIRED } \\ & \text { USE } \end{aligned}$	$\begin{gathered} \text { REQUIRED } \\ \text { CHARACTERISTICS } \end{gathered}$
EQUIP.	NAME	DESIGNATION		
2	Standard navy radio receiver	$\begin{aligned} & \text { RBA, RBB, } \\ & \text { RBC, SRR-11, } \\ & \text { SRR-12, } \\ & \text { SRR-13, WRR-2, } \\ & \text { WRR-3 or } \\ & \text { equivalent } \end{aligned}$	To receive frequencyshifted rfsignals and deliver frequencyshifted af signals to input of ComparatorConverter Group AN/ URA-17D	Frequency-shifted af output of 600 ohms impedance, and up to 60 milliwatts power.
-	Technical manual for each receiver used.	--	For operating instructions.	---
4	Mounting bolts	--	For table-mounting the AN/URA - 17D	1/4-28 thread x mounting surface thickness + 3/8 inch long.
-	Interconnecting cables	MCOS-2	Connect source power to POWER	---
		TTHFWA-1-1/2	Connect teletype printer to TTY OUTPUT connector (J6) HIGH LEVEL.	
		$\text { TTHFWA - } 1-1 / 2$	Connect teletype printer to TTY OUTPUT connector (J8) LOW LEVEL.	
		TTHFWA-1-1/2	Connect audio input to AUDIO INPUT connector (J2).	

TABLE1-2. COMPARATOR-CONVERTER GROUP AN/URA-17D, EQUIPMENT AND PUBLICATIONS REQUIRED BUT NOT SUPPLIED (Cont)

$\begin{aligned} & \text { QUANT. } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	NOMENCLATURE		$\begin{aligned} & \text { REQUIRED } \\ & \text { USE } \end{aligned}$	REQUIRED CHARACTERISTICS
	NAME	DESIGNATION		
-	Interconnecting cables (cont)	$\mathrm{RG}-58 \mathrm{~A} / \mathrm{U}$ $R G-58 \mathrm{~A} / \mathrm{U}$	Connect remote indicator (if used) to REMOTE TUNING IND connector (J7). Connect DIV. A connector (J4) of each converter to the DIV.B connector (J5) of the other converter.	
1	Teletype printer or other automatic recorder	--	To record messages represented by the keyed output of the AN/URA-17D	Keying loop current of 60 ma , dc. on high level or low level polar

TABLE 1-3. COMPARATOR-CONVERTER GROUP AN/URA-17D, TEST EQUIPMENT REQUIRED BUT NOT SUPPLIED

QUANT. PER EQUIP.	NOMENCLATURE		REQUIREDUSE	REQUIRED CHARACTERISTICS
	NAME	DESIGNATION		
1	Oscilloscope	DuMont 304-A	Trouble-shooting the AN/URA-17D	Display 800 to 3600 cps audio frequency signals at amplitude of 0.1 to 50.0 volts.
2	Vtvm, ac	ME-30/U	Trouble-shooting and alignment of converters; checking filters and discriminators.	Measure audio frequency voltages, 0.1 to 20 volts at 800 to $3600 \mathrm{cps}, \pm 5 \%$.
1	Audio oscillator	TS-382A/U	Alignment of converters; checking filters and discriminators.	Audio frequency output: 800 to 3600 cps at amplitudes 0 to 10 volts.
1	Frequency meter	AN/TSM-9	Checking filters and discriminators.	Measurement of audio frequencies, $\pm 1 \%$.
2	Multimeter	AN/PSM-4	Trouble-shooting, measurement of power supply outputs, alignment, checking filters and discriminators.	DC voltages 0 to 560 volts $\pm 3 \%$, ac voltages 0 to 125 volts $\pm 5 \%$, at 50 to 400 cps .
1	Test set, transistor	TS-1100/U	Test transistors and diodes.	Test semiconductors (in circuit or out).

TABLE 1-4. COMPARATOR-CONVERTER GROUP AN/URA-17D, SHIPPING DATA

$\begin{aligned} & \text { BOX } \\ & \text { NO. } \end{aligned}$	NOMENCLATURE		*OVERALL DIMENSIONS			*VOL.	*WT.
	NAME	DESIG.	HEIGHT	WIDTH	DEPTH		
1	ComparatorConverter Group	$\begin{aligned} & \text { AN/URA } \\ & -17 D \end{aligned}$	16-3/4	26-3/4	24-3/4	6.42	125

* Unless otherwise stated, dimensions are in inches, volume in cubic feet, and weight in pounds; equipment crated and ready for shipment.

TABLE 1-5. FREQUENCY SHIFT CONVERTER CV-483D/URA-17,* TRANSISTOR COMPLEMENT

* The AN/URA-17D complement is twice the above.

TABLE 1-6. FREQUENCY SHIFT CONVERTER CV-483D/URA-17,* DIODE COMPLEMENT

	NUMBER OF DIODES OF TYPES INDICATED								
SYMBOL		$\stackrel{10}{\sim}$	$\stackrel{\underset{\sim}{2}}{\stackrel{\sim}{Z}}$	m 合 N N 号		\sim \sim \sim \sim \sim \sim \sim \sim	M N ¢ N Z	$\stackrel{M}{M}$	H H - O H
CR 1		1							1
CR2		1							1
CR3		1							1
CR4		1							1
CR5		1							1
CR6		1							1
CR7						1			1
CR8						1			1
CR9		1							1
CR10		1							1
CR11	1								1
CR 12	1								1
CRI3	1								1
CR 14	1								1
CR 15	1								1
CR16	1								1
CR17	1								1
CR20		1							1
CR23		1							1
CR24		1							1
CR25		1							1
CR26		1							1
CR27				1					1
CR29								1	
CR 30								1	1
CR 32			1						1
CR34					1				
CR35		1							
Total Number of Each Type	7	14	1	1	1	2	0	2	26

* The AN/URA- 17 complement is twice the above.

INSTALLATION

2-1. UNPACKING AND HANDLING.

Comparator-Converter Group AN/URA-17D (hereinafter referred to as the AN/URA-17D and accessories are packed in one corrugated fiber shipping container. The equipment is packaged in a corrugated fiberboard carton inside a moisture-vaporproof wrapper with a desiccant included. Do not unpack until ready for use.

Place shipping box in right-sideup position, cut fiberglass tapes. Open the outer fiberboard carton and the barrier bag. Open the inner carton and remove the equipment.

CAUTION

Do not cut the inner carton open unless the cutting blade has a guard which will prevent cutting deeper than the thickness of the fiberboard.

Remove the accessories from the packing cells and check the equipment for shipping damage, and against the list of equipment supplied, table 1-1.

2-2. POWER REQUIREMENTS AND DISTRIBUTION.

The AN/URA-17D consists of two Frequency Shift Converters CV-483D/URA-17. Each Frequency Shift Converter CV-483D/URA-17 (hereinafter referred to as the converter) requires 35 watts of input power and is internally wired for operation on 115 volts, 50 to 400 cps, single phase ac. If 105 or 125 volt line voltage is to be used, the connections to power transformers T3 and T4 (figure 5-1) will require changing (refer to paragraph 2-4c(4)). Figure 5-9 shows the primary power distribution for the converter.

2-3. INSTALLATION LAYOUT.

Install the AN/URA-17D so the tuning indicators may be observed while tuning the associated receivers. If this is not feasible, any oscilloscope with a dc vertical amplifier may be used as a remote tuning indicator, located near the receivers. It is desirable to install the two converters together if used for diversity operation. Converters used for single-receivers operation should be located near their respective receivers. The installation layout should also allow sufficient space in front of the converters to permit withdrawal of the chassis for servicing (refer to paragraph 2-4a).

2-4. INSTALLATION REQUIREMENTS.

a. OUTLINE DRAWINGS.

- Figure 2-1 shows all mounting dimensions and clearances required for table-mounting the AN/URA-17D. Figure 2-2 shows all mounting dimensions and clearances required for tablemounting the CV-483D/URA-17. Figure 2-3 shows all mounting dimensions and clearances required for rack-mounting the CV-483D/URA-17.
b. EQUIPMENT MOUNTING. - The AN/URA-17D may be tablemounted, or the clamps removed and the individual converters separately table or rack-mounted. Refer to applicable mounting procedure in the following paragraphs.
(1) TABLE-MOUNTING THE AN/URA-17D. - Table-mounting of the AN/URA-17D is performed as follows

Step 1 Layout and drill four 9/32 inch holes (figure 2-1) through mounting surface.
Step 2 Place AN/URA-17D in position on mounting surface.

Step 3 Insert four bolts (1/4-28 thread x mounting surface thickness $+3 / 8$ inch long) up through mounting surface into captive nuts in AN/URA-17D. Tighten securely.
(2) TABLE-MOUNTING THE CV-483D/URA-17. - Tablemounting of the CV-483D/URA-17 is performed as follows

Step 1. Layout and drill four 9/32 inch holes (figure 2-2) through mounting surface.

Step 2. Install mounting feet on bottom of cabinet, using 8-32 binder-head screws and washers provided.

Step 3. Remove chassis from cabinet (Section 6, paragraph 6-3c(1)).

Step 4. Insert four socket-head cap screws (1/4-20 thread) through holes in bottom of cabinet (of sufficient length to pass through mounting surface and allow use of flat washer and lockwasher under each unit).

Step 5. Install flat washer, lockwasher, and nut on each bolt and tighten securely.

Step 6. Replace chassis in cabinet.
(3) RACK-MOUNTING THE AN/

URA-17D. - Rack-mounting of the AN/URA-17D is performed as follows
Step 1. Remove clamps holding converters together, and lift off upper converter.

Step 2. Remove 10-32 binder-head screws (six on side of each cabinet, figure 2-3).

Step 3. Fasten rack-mounting brackets on each cabinet, using screws just removed (figure 2-3). Tighten screws securely.

Step 4. Remove chassis from each cabinet (Section 6, paragraph 6-3c(1).

Figure 2-1. Comparator-Converter Group AN/URA-17D, Table-Mounting Installation Drawing

Step 5. Install cabinets in rack. Bolt securely.

Step 6. Replace chassis in cabinets.
(4) RACK-MOUNTING THE CV-483D/URA-17. - Rack-mounting of the CV-483D/URA-17 is performed as follows
Step l. Remove 10-32 binderhead screws (six on each side of cabinet, figure 2-3).

Step 2. Fasten rack-mounting brackets on cabinet, using screws just removed (figure 2-3).
Tighten screws securely.
Step 3. Remove chassis from cabinet (Section 6, paragraph 6-3c(1).

Step 4. Install cabinet in rack. Bolt securely.

Step 5. Replace chassis in cabinet.

Figure 2-2. Frequency Shift Converter CV-483D/URA-17, Table-Mounting Installation Drawing
c. INTERCONNECTION. - All
interconnecting cables attach to receptacles on the rear of the converter cabinets. These cables must be fabricated during installation, in lengths determined by equipment layout. Instructions for attaching the supplied connectors to the required cables are given in paragraph 2-4d.

NOTE

Interconnecting cable types may vary between installations. Refer to applicable ship or station plans to determine the correct cabling for the specific installation.

RACK-MOUNTED

Figure 2-3. Frequency Shift Converter CV-483D/URA-17, Rack-Mounting Installation Drawing
(1) INTERCONNECTING CABLES FOR SINGLE-RECEIVER OPERATION. - Table 2-1 lists the required cable and connector information for single-receiver operation of one converter. Figure 2-4 illustrates the interconnection to associated equipment.
(2) INTERCONNECTING CABLES FOR DIVERSITY OPERATION. - Table 2-2 lists the required cable and connector information for diversity operation of the AN/URA-17D. Figure 2-5 illustrates the interconnection to associated equipment.

- optional

Figure 2-4. Frequency Shift Converter CV-483D/URA-17, Interconnecting Data for Single-Receiver Operation
(3) AUDIO INPUT LINES. -

The AN/URA-17D requires 600 ohm, 60 milliwatt outputs from the associated receivers. If the receiver outputs are balanced, STANDOFF El in each converter should be grounded. To accomplish this, loosen the four captive screws at corners of receptacle panel, remove panel from the rear of each converter cabinet (figure 2-6), and solder a lead from STANDOFF El to a a nearby ground terminal. If the receiver outputs are unbalanced (one side grounded), leave STANDOFF El ungrounded.
(4) POWER TRANSFORMER CONNECTIONS. - The AN/URA-17D is shipped from the factory with power transformers T3 and T4 in
each converter connected for a nominal line voltage of 115 volts. If nominal line voltage is 105 volts, the leads connected to terminals 3 of T3 and T4 (see Section 5, figure 5-1) must be moved to terminal 2 of the respective transformer. If nominal line voltage is 125 volts, the leads connected to terminal 3 to T3 and T4 must be moved to terminal 4 of the respective transformer.

d. CABLE ASSEMBLY. - Attach

 the connectors to interconnecting cables as follows(1) ATTACHING UG-88D/U CONNECTORS TO RG-58A/U COAXIAL CABLE. Attach the UG-88D/U connectors (supplied) to RG-58A/U coaxial cable as described in figure 2-7.

Figure 2-5. Comparator-Converter Group AN/URA-17D, Interconnecting Data for Diversity Operation

Figure 2-6. Frequency Shift Converter CV-483D/URA-17, Cable Receptacle Panel, Interior View
(2) ATTACHING MS CONNECTOR TO MCOS-2 CABLE. Attach each MS connector (supplied) to MCOS-2 cable as described below (see figure 2-8).

Step 1. Cut cable and even.
Step 2. Slide cable clamp (1), rubber washer (2), soldering ring (3), and extension (4) over end of cable, in order given.

Step 3. Remove vinyl jacket from 11/16 inch of cable.

Step 4. Unbraid and pigtail braid.

Step 5. Remove insulation from 3/16 inch of leads.

Step 6. Tin bare lead ends.
Step 7. Slide a $1 / 2$ inch length of vinyl tubing over end of each lead.

Step 8. Solder each lead to plug pin, according to table 2-1 or 2-2, as applicable.

Step 9. Slide vinyl tubing on each lead so it covers soldered connection. Wrap a layer of adhesive plastic tape around leads.

Step 10. Slide extension (4) over pigtail and screw it on shell (5).

2. REMOVE $5 / 16$ INCH OF VINYL JACKET. DO NOT NICK BRAID.

1. CUT END OF CABLE EVEN. SLIDE NUT AND WASHER (NOTCHED SIDE OUT) ON CAbLE.
2. SLIDE BRAID CLAMP OVER BRAID. INSIDE SHOULDER OF CLAMP MUST SEAT AGAINST END OF CABLE JACKET.
3. COMB OUT BRAID, BEND BACK OVER CLAMP, AND TRIM TO LENGTH.
4. REMOVE 7/64 INCH OF DIELECTRIC. DO NOT NICK CONDUCTOR . TIN CONDUCTOR LIGHTLY.
5. SOLDER MALE CONTACT TO CONDUCTOR. OUTSIDE SURFACE MUST BE FREE OF SOLDER.
6. PUSH INTO PLUG BODY AS FAR AS IT WILL GO. SCREW NUT INTO PLUG BODY WITH WRENCH UNTIL MODERATELY TIGHT.

NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 2-7. Attaching UG-88D/U Plug to RG-58A/U Coaxial Cable

ASSEMBLED
NOTE: ALL DIMENSIONS ARE IN INCHES

Figure 2-8. Attaching MS Plug to MCOS-2 Cable

Step 11. Solder pigtail to soldering ring (3).

Step 12. Screw cable clamp (1) on extension and tighten cable clamp screws.
(3) ATTACHING MS CON-

NECTORS TO TTHFWA-1-1/2
CABLE. - Attach each MS connector (supplied) to TTHFWA-1-1/2 cable as described below (see figure 2-9):

Step 1. Cut cable end even. Step 2. Wrap layer of adhesive
plastic tape around armor (exposing 11/16 inch end of cable).

Step 3. Slide cable clamp (1), rubber washer (2), soldering ring (3), and extension (4) over end of cable in order given.

Step 4. Remove armor, vinyl jacket, and wrappings from 11/16 inch of cable.

Step 5. Remove insulation from 3/16 inch of leads.

Figure 2-9. Attaching MS Plug to TTHFWA-1-1/2 Cable

Step 6. Tin bare lead ends.
Step 7. Slide a $1 / 2$ inch length of vinyl tubing over end of each lead to be used.

Step 8. Solder each lead to plug pin, according to table 2-1 or 2-2, as applicable.

Step 9. Slide vinyl tubing on each lead so it covers soldered connection. Wrap a layer of adhesive plastic tape around leads.

Step 10. Slide extension (4) over pigtail and screw it on shell (5).

Step 11. Screw cable clamp (1) on extension and tighten cable clamp screws.

2-5. INSPECTION AND ADJUSTMENTS.
a. MECHANICAL AND ELECTRICAL CHECKS. Before releasing the AN/URA-17D to operating personnel, perform the following mechanical and electrical checks:
(1) MECHANICAL CHECKS. Check each control for smoothness of operation. Check chassis drawer slides and lubricate lightly with lubriplate, if required.
(2) ELECTRICAL CHECKS.

TABLE 2-1. CABLING REQUIRED FOR SINGLE-RECEIVER OPERATION*

$\begin{aligned} & \text { CABLE } \\ & \text { TYPE } \end{aligned}$	PLUG		CONNECTIONS		TERMINATIONS	
	SYMBOL	DESIGNATION	$\begin{aligned} & \text { LEAD } \\ & \text { COLOR } \end{aligned}$	PIN NO.	FROM	TO
$\begin{aligned} & \text { TTHFWA- } \\ & 1-1 / 2 \\ & (W 6) \end{aligned}$	P202	MS3106A14S-7P	BLACK WHITE RED	$\begin{gathered} \text { A } \\ \text { B } \\ \text { SPARE } \end{gathered}$	AUDIO INPUT connector J2	FSK receiver
$\begin{gathered} \mathrm{MCOS}-2 \\ (\mathrm{~W} 4) \end{gathered}$	P203	MS3106A14S-7S	BLACK WHITE	$\begin{gathered} \mathrm{A} \\ \mathrm{~B}(\mathrm{GRD}) \end{gathered}$	POWER INPUT connector J3	Line voltage source
$\begin{gathered} \text { TTHFWA- } \\ 1-1 / 2 \\ (W 5) . \ldots \end{gathered}$	P206	$\begin{aligned} & \text { MS3106A10SL- } \\ & 3 S(c) \end{aligned}$	BLACK WHITE RED	$\begin{aligned} & \text { B COM- } \\ & \text { MON } \\ & \text { A (HOT+) } \\ & \text { C (HOT-) } \end{aligned}$	TTY OUTPUT connector J6 HIGH LEVEL	Teletype printer keying loop HIGH LEVEL
$\begin{gathered} \mathrm{RG}-58 \mathrm{~A} / \mathrm{U} \\ (\mathrm{Wl}) * * \end{gathered}$	P207	UG-88D/U	-	--	REMOTE TUNING IND. connector J7	Remote tuning indicator
Copper strap (solid)	--	---	---	---	GRD terminal	Good earth ground
$\begin{aligned} & \text { TTHFWA- } \\ & 1-1 / 2 \\ & \ldots . \mathrm{W} 7 \end{aligned}$	P208	MS3106A14S-9S	BLACK WHITE	A HOT B GRD	TTY OUTPUT connector J8 LOW LEVEL	Teletype printer keying loop LOW LEVEL

$\begin{aligned} & \text { CABLE } \\ & \text { TYPE } \end{aligned}$	PLUG		CONNECTIONS		TERMINATIONS	
	SYMBOL	DESIGNATION	$\begin{aligned} & \text { LEAD } \\ & \text { COLOR } \end{aligned}$	PIN NO.	FROM	TO
$\begin{gathered} \text { TTHFWA- } \\ 1-1 / 2 \\ (W 6) \end{gathered}$	P202	MS3106A14S-7P	BLACK WHITE RED	$\begin{gathered} \text { A } \\ \text { B } \\ \text { SPARE } \end{gathered}$	AUDIO INPUT connector J2	FSK receiver
$\begin{gathered} \text { MCOS- } 2 \\ (\mathrm{~W} 4) \end{gathered}$	P203	MS3106A14S-7S	BLACK WHITE	$\stackrel{\mathrm{A}}{\mathrm{~B}}(\mathrm{GRD})$	POWER input connector J3	Line voltage source
TTHFWA-1-1/2 (W5) **	P206	MS3106A10SL- 3S(c)	BLACK WHITE RED	$\begin{aligned} & \text { B (COM- } \\ & \text { MON) } \\ & \text { A (HOT+) } \\ & \text { C (HOT-) } \end{aligned}$	TTY OUTPUT connector J6 HIGH LEVEL	Teletype printer keying loop HIGH LEVEL
TTHFWA. 1-1/2 (W7) $\% * * *$	P208	MS3106A14S-9P		A HOT B GRD	LOW LEVEL connector J8	LOW LEVEL
$\begin{aligned} & \text { RG-58A/U } \\ & (\mathrm{W} 3) * * \end{aligned}$	P204	UG-88D/U	--	---	DIV. A connector J4	DIV. B, on other converter
$\begin{aligned} & \mathrm{RG}-58 \mathrm{~A} / \mathrm{U} \\ & (\mathrm{~W} 2) * * * \end{aligned}$	P205	UG-88D/U	---	---	DIV. B connector J5	DIV. A, on other converter
$\begin{gathered} \text { RG-58A/U } \\ \text { (W1) } \% * * \end{gathered}$	P207	UG-88D/U	---	---	REMOTE TUNING IND. J7 connector	Remote tuning indicator
Copper strap (solid)	-	---	---	---	GRD terminal	Good earth ground

(a) CRT ADJUSTMENT CONTROLS. (Table2-3.) - Turn POWER switch of one converter to On and set the FUNCTION switch to TUNE. With no signal input to converter, horizontal trace on tuning indicator should coincide with center line of crt bezel and be bright and sharp. If not, proceed as follows:

Step 1. Loosen captive screw at each corner of front panel.

Step 2. Pull chassis forward until controls (figure 2-10) are accessible.

Step 3. Operate interlock switch (figure 2-10) by pressing in on button at left side of switch.

Step 4. Adjust FOCUS, INTEN_ SITY, and VERT CRT controls as required, push chassis back into cabinet, and tighten captive screws.

Step 5. Repeat for second converter.
(b) PRE-OPERATIONAL

CHECK. - Interconnect the converter and teletype printer as illustrated in figure 2-11. Turn teletype printer dc loop current supply on. Check teletype printer dc loop voltage and polarity. It should
be approximately 12 volts, positive with respect to chassis, at terminal A of TTY OUTPU'T receptacle (J6) on rear of converter to which teletype printer is connected. Adjust teletype printer dc loop current for 60 milliampere indication on TTY panel ammeter by means of applicable rheostat.
(c) OPERATIONAL

CHECK. - Upon completion of preoperational checks, check equipment for proper operation as described in Section 3, paragraph $3-2 g(1)$ for single-receiver operation or in Section 3, paragraph $3-2 g(2)$ for diversity operation. Check with both narrow-shift and wide-shift signals, if practicable. If operation is not correct, recheck all steps of installation. If difficulty cannot be found and corrected, notify communications officer at station or ship.
(d) OPERATIONAL CHECK FOR LOW LEVEL. - Upon completion of the pre-operational check and operational check as in C above, check the equipment for proper operation in low level by connecting the equipment as in figure $2-11 \mathrm{D}$ and repeating the operation as described in Section 3 paragraph 3-2G(1) for single receiver operation.

TABLE 2-3. FREQUENCY SHIFT CONVERTER CV483DURA-17, CRT ADJUSTMENT CONTROLS

CONTROL	FUNCTION
FOCUS	Used to sharpen the lines in the cathode-ray tube display.
INTENSITY	Used to adjust the intensity of the cathode-ray tube display. VERT CTR
Used to center the cathode-ray tube display (with no signal input).	

Figure 2-10. Location of Cathode-Ray Tube Controls

a) POSITIVE NEUTRAL CONLECTION, HIGH LEVEL

b) negative neutral connection, high level

Figure 2-11. Teletype Printer DC Keying Relay Circuit, Simplified Schematic Diagram

2-6. PREPARATION FOR RESHIPMENT.

a. INTERCONNECTING

CABLES. Disconnect all cables from the receptacles on rear of converters. Remove all connectors from cable ends at converter, for use at next installation.
b. DISMOUNTING EQUIPMENT. - If table-mounted, remove the converter chassis from cabinet (as described in Section 6, paragraph $6-3 c(1)$), and take out bolts holding cabinet to mounting surface. If
rack-mounted, remove converter from rack and take off mounting brackets. Replace bolts removed from converter cabinet.
c. PACKING. - Before packing for shipment, check all items against table 1-1. Instruct packaging and packing facility as to type of equipment and whether the preparation shall be for domestic shipmentimmediate use, domestic shipment and storage, or for overseas shipment; and to mark the box containing the technical manuals, 'TECHNICAL MANUALS INSIDE.'

SECTION 3

OPERATOR'S SECTION

3-1. FUNCTIONAL OPERATION.

a. GENERAL. - ComparatorConverter Group AN/URA-17D, hereinafter referred to as the AN/URA-17D, is used to convert the frequency-shift-keyed (fsk) audio output of standard radio receivers into dc pulses for the operation of teletype printers. The AN/URA-17D may be used in one or two single-channel receiving systems or in a single 'diversity' system.
b. FREQUENCY-SHIFT METHOD OF COMMUNICATION. - In the frequency-shift method of communication, code messages are transmitted as shifts in the rf carrier frequency. These frequency shifts represent the mark and space portions of code characters for operation of a teletype printer. Radio receivers are used to change these rf carrier frequency shifts into audio tones containing the same frequency shift information. Coded messages transmitted at speeds to 400 words per minute may be received and recorded in this system.

The AN/URA-17D consists of two Frequency Shift Converters CV-483D/URA-17. The CV-483D/URA-17, hereinafter referred to as the converter, changes audio frequency tones into dc pulses for operation of a teletype printer.
c. DIVERSITY OPERATION. The AN/URA-17D may be used with two radio receivers operating in a diversity system. There are two methods of diversity operation, space-diversity and frequencydiversity. Diversity operation provides an improvement over singlereceivers operation by reducing the effects of signal fading.

In space-diversity operation, two receivers are tuned to the same frequency but their antennas are spaced several wavelengths apart. An rf carrier usually does not fade simultaneously at spots that are several wavelengths apart.

In frequency-diversity operation, two receivers are tuned to different rf carrier frequencies, each carrying the same frequency-shift information. Carriers of different frequencies do not generally fade simultaneously at a given spot.

The audio output from the receivers is applied to the converters. The converters change the frequencyshifted audio signals into dc pulses representing the mark-space information. These dc pulses are applied to a comparator circuit in each converter. The comparator circuits continuously select the better of the two signals for control of the teletype printer. A teletype printer may be connected to the output of either converter.
d. SINGLE-RECEIVER OPERATION. - When conditions do not require diversity operation istrong signals with no evidence of fading), either converter may be used separately with a receiver for reception of fsk signals. In this mode of operation, the two converters may be used simultaneously in two independent single-receiver systems. A teletype printer is connected to the output of each converter.

3-2. OPERATING PROCEDURES.
a. GENERAL. - Since the AN/URA-17D is part of a system for the reception of coded teletype messages, the operator must be familiar with the complete system before attempting any of the following procedure.
b. DESCRIPTION OF CONTROLS. - All controls normally used during operation are located on the front panels of the two identical converters (figure 3-1). Table 3-l lists all operator's controls by name and function. Other controls are to be adjusted only by a technician.
c. SEQUENCE OF OPERATION.
(1) BEFORE USE. - Ascertain if equipment is connected for diversity or single-receiver operation. Allow the associated receivers and teletype printer(s) to warm up (see applicable technical manuals). Turn the converter POWER switches to the On (up) position and allow a five minute warmup period.
(2) DURING USE. - Adjust converters and associated equipment as directed in paragraph 3-2g(l) for single-receiver operation or paragraph $3-2 g(2)$ for diversity operation.
(3) SECURE. - To secure the AN/URA-17D, turn POWER switch on each converter to Off (down) position.
d. INDICATOR PRESENTATIONS. - Figure 3-2 illustrates the tuning indicator displays obtained when the associated receiver is properly tuned (A) and when the associated receiver needs retuning (B or C).
e. TUNING ADJUSTMENTS.
(1) SINGLE-RECEIVER OP_ ERATION. - The need for retuning the associated receiver to compensate for frequency drift can be determined by observing the converter tuning indicator pattern (figure 3-2). If the pattern departs from that in (A) of figure 3-2, retune the receiver.
(2) DIVERSITY OPERATION. - Retuning the associated receivers to compensate for frequency drift is the same as for single-receiver opation. However, to prevent interruption of communication while one of the receivers is being tuned, set the FUNCTION switch of the associated converter to TUNE. During retuning, the other receiverconverter combination will operate the teletype printer. After the receiver has been tuned, set the converter FUNCTION switch to DIVERSITY.

TABLE 3-1. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, OPERATING CONTROLS

CONTROL	POSITION	FUNCTION
LEVEL	Variable, 0 to 10	Adjusts the signal level to the discriminator.
SHIF T	NARROW WIDE	Selects the narrow input filter and discriminator (10 to 200 cps shift width). Selects the wide input filter and discriminator (200 to 1000 cps shift width).
FUNTION	SINGLE TUNE DIVERSITY	Used for single-receiver operation. Used when tuning the receiver (removes the input signal from teletype printer). Used for diversity operation.
POLARITY	NORMAL REVERSE	Used when keying pulses are of normal polarity. Used when keying pulses are of reversed polarity.
SPEED	FAST SLOW	Used for high speed keying signals. Used for low speed keying signals.
POWER	On - Off	Turns line voltage on and off.

Figure 3-1. Frequency Shift Converter CV-483D/URA-17,
Front Panel Controls

Figure 3-2. Tuning Indicator Patterns
f. ILLUSTRATIONS.
(1) CONTROLS. - The controls used by the operator are illustrated in figure 3-1 and listed in table 3-1.
(2) INDICATOR PRESENTATION. - Refer to figure 3-2 for tuning indicator presentations during receiver tuning.
g. MODES OF OPERATION. The operator has a choice of two modes of operation: 1) singlereceiver operation, or 2) diversity operation.
(1) SINGLE-RECEIVER OPERATION. - Either converter may be adjusted for singlereceiver operation, as follows:

Step 1. Turn POWER switch to ON.

Step 2. Set FUNCTION switch to TUNE.

Step 3. Set POLARITY switch to NORMAL.

Step 4. Set LEVEL control to 3.
Step 5. Set SHIFT switch to WIDE if wide-shift signals (200 to 1000 cps) are being received or to NARROW if narrow-shift signals (10 to 200 cps) are being received.

Step 6. Adjust associated receiver bfo to 1 kc for narrow-shift signals or to 2.0 kc for wideshift signals. If receiver has agc switch, turn on.

Step 7. Tune receiver to desired rf signal. Set receiver bandwidth to approximately 800 cps for narrow-shift signals or to approximately 3 kc for wide-shift signals. Tune receiver until strongest beatnote is heard in headphones plugged in receiver headphone jack. Adjust receiver tuning for symmetrical, vertically centered pattern on tuning indicator (as in (A) figure 3-2). There are sometimes two receiver tuning positions that give a proper tuning indication; always select the stronger. Adjust audio output of receiver to 60 milliwatts.

Step 8. Set converter SPEED switch to SLOW if singlechannel teletype signals are being received or to FAST if four-channel, time-division multiplex is being received.

Step 9. Adjust LEVEL control until pattern fills space between upper and lower horizontal lines on crt bezel.

Step 10. Set FUNCTION switch to SINGLE.

Step 11. Teletype printer should be printing properly. If not, set POLARITY switch to REVERSE.
(2) DIVERSITY OPERATION.

- Each converter of the AN/URA -17D is adjusted for diversity operation as follows:

Step 1. Turn POWER switch to On.

Step 2. Set FUNCTION switch to TUNE.

Step 3. Set LEVEL control to approximately 3.

Step 4. Set POLARITY switch to NORMAL,

Step 5. Set SHIFT switch to WIDE if wide-shift signals (200 to 1000 cps) are being received or to NARROW if narrow-shift signals (10 to 200 cps) are being received.

Step 6. Adjust associated receiver bfo to 1 kc for narrow-shift signals or to 2.0 kc for wideshift signals. If receiver has agc switch turn on.

Step 7. Tune associated receiver to desired rf signal. Set receiver bandwidth to approximately 800 cps if narrow-shift signals are being received or to approximately 3 kc if wide-shift signals are being received. Tune receiver until strongest beat-note is heard in headphones plugged in receiver headphone jack. Adjust receiver tuning for a symmetrical, vertically centered pattern on tuning indicator (as in (A) figure 3-2). There are sometimes two
receiver tuning positions that give a proper tuning indication; always select the stronger. Adjust audio output of receiver to 60 milliwatts.

Step 8. Set converter SPEED switch to SLOW if singlechannel teletype signals are being received or to FAST if four-channel, time-division multiplex is being received.

Step 9. Adjust LEVEL control until pattern fills space between upper and lower horizontal lines on crt bezel.

Step 10. Set FUNCTION switch to DIVERSITY.

Step 11. The teletype printer should be printing properly. If not, set POLARITY switch to REVERSE.

Step 12. Set FUNCTION switch to TUNE.

Step 13. Repeat steps 1 though 11 for the second converter.

Step 14. Set FUNCTION switch to first converter to DIVERSITY.

3-3. SUMMARY OF OPERATING PROCEDURES.

a. SINGLE-RECEIVER OPERATION.
(1) Turn receiver and teletype printer power switch to On.
(2) Set converter controls as follows:
(a) POWER switch to On .
(b) FUNCTION switch to TUNE.
(c) POLARITY switch to NORMAL.
(d) LEVEL control to 3 .
(e) SHIFT switch to WIDE (for wide-shift signals) or to NARROW (for narrow-shift signals).
(3) Set receiver controls as follows:
(a) Set receiver bfo to 1 kc for narrow-shift signals or to 2.0 kc for wide-shift signals.
(b) Tune receiver to desired rf signal.
(c) Set receiver bandwidth to approximately 3 kc for wide-shift signals or to approximately 800 cps for narrow-shift signals.
(d) Tune receiver for strongest beat-note.
(e) Tune receiver for symmetrical, vertically centered pattern on converter tuning indicator. (If two receiver tuning positions occur, use stronger.)
(f) Adjust receiver audio output to 60 milliwatts.
(4) Set converter SPEED switch to SLOW for single-channel
teletype signals or to FAST for four-channel, time-division multiplex.
(5) Adjust converter LEVEL control until pattern fills space between upper and lower horizontal lines on crt.
(6) Set converter FUNCTION switch to SINGLE.

NOTE

If teletype printer is printing garbled copy, set converter POLARITY switch to REVERSE.
b. TO SECURE.
(1) Turn converter POWER switch to Off.
c. DIVERSITY OPERATION.
(1) Turn receiver and teletype printer power switches to On.
(2) Set controls on one converter as follows:
(a) POWER switch to On .
(b) FUNCTION switch to TUNE.
(c) POLARITY switch to NORMAL.
(d) LEVEL control to 3 .
(e) SHIFT switch to

WIDE for wide-shift signals or to NARROW for narrow-shift signals.
(3) Adjust associated receiver controls as follows:
(a) SET receiver bfo to 1 kc for narrow-shift signals or to 2.0 kc for wide-shift signals. If receiver has agc switch, turn on.
(b) Tune receiver to desired rf signal.
(c) Set receiver bandwidth to approximately 3 kc for wide-shift signals or to approximately 800 cps for narrow-shift signals.
(d) Tune receiver for strongest beat-note.
(e) Tune receiver for symmetrical, vertically centered pattern on converter tuning indicator. (If two receiver tuning positions occur, use stronger.)
(f) Adjust receiver
audio output to 60 milliwatts.
(4) Set converter SPEED switch to SLOW for single-channel teletype signals or to FAST for four-channel, time-division multiplex.
(5) Adjust converter LEVEL control until pattern fills space between upper and lower horizontal lines on crt.
(6) Set converter FUNCTION switch to DIVERSITY.

NOTE

If teletype printer is printing garbled copy, set converter POLARITY switch to REVERSE.
(7) Set FUNCTION switch to TUNE.
(8) Repeat steps 2 through 6 for second converter.
(9) If teletype printer is printing garbled copy, set converter POLARITY switch to REVERSE.
(10) Set FUNCTION switch of first converter to DIVERSITY.

d. TO SECURE.

(1) Turn POWER switches of both converters to Off.

3-4. OPERATOR'S MAINTENANCE.

a. GENERAL. - Maintenance responsibility of the operator is limited to monitoring equipment controls and the tuning indicator during operation, plus indicator lamp and fuse replacement. If troubles develop in the system that cannot be remedied by the specific instructions in the following paragraphs, qualified maintenance personnel must be notified.
b. ROUTING CHECK CHART. Table 3-2 outlines checks that should be made in the course of normal operation. If indications are other than normal, the operator should refer to the operator's troubleshooting chart, table 3-3. Troubles listed in table 3-3 should be considered and checked in the order given.

c. DAILY CHECK FOR

 CORRECT DIVERSITY OPERATION. - When the AN/URA -17D is used for diversity operation, a daily check should be made by the operator to assure optimum results.TABLE 3-2. OPERATOR'S CHECK CHART

CONTROL	SETTING	NORMAL INDICATION
Receiver power switch	On	Indicator light glows.
Receiver frequency control	To desired rf signal	Audio in headphones or loudspeaker; pattern on converter tuning indicator similar to A in figure 3-2.
Converter POWER switch	On	Indicator light glows. Converter LEVEL control
Teletype printer power switch	---Tuning indicator pattern fills space between hori- zontal lines on crt (see A in figure 3-2).	

Figure 3-3. Connections between Receiver, Teletype Printer, and Converter Group for Daily Check of Diversity Operation

TABLE 3-3. COMPARATOR-CONVERTER GROUP AN/URA-17D, OPERATOR'S TROUBLE-SHOOTING CHART

TROUBLE SYMPTOM	PROBABLE CAUSE	CORRECTION
Indicator light off with POWER switch On.	Defective indicator lamp bulb.	Replace bulb. Refer to paragraph 3-4d.
	Fuse blown.	Replace fuse. Refer to CAUTION and fuse replacement, paragraph 3-4e.
	Interlock switch open.	Tighten the four captive screws on front panel.
	AC power not on, or defective power input cable or connector.	Turn ac power on; report power failure. Check power input cable and connectors.
Still does not light.	---	Notify technician.
No tuning indicator display.	Blown fuse.	Replace fuse. Refer to CAUTION and fuse replacement, paragraph 3-4e.
Tuning indicator display not centered vertically.	Receiver mistuned.	Retune receiver. Refer to paragraph 3-2e.
Tuning indicator display centered and of proper amplitude, but teletype printer is locked up.	Converter FUNCTION switch in TUNE position.	Set FUNCTION switch to SINGLE or DIVERSITY position, as applicable.
Tuning indicator display correct, but teletype printer runs open.	Teletype printer power supply defective.	Notify technician.
	Teletype printer defective.	Notify technician.

The signals from both converters are compared in the converter to which the teletype printer is connected. Failure of one section of the comparator will eliminate the selection function and the advantage of diversity operation. To check for faulty section in the comparator, proceed as follows:

Step 1. Check each converter for single-receiver operation per paragraph $3-2 g(1)$.

Step 2. Connect receiver (tuned for fsk reception) to AUDIO INPUT receptacle on one converter (see figure 3-3).

Step 3. Connect teletype printer to TTY OUTPUT receptacle on other converter.

Step 4. Set FUNCTION switches on both converters to DIVERSITY.

Step 5. Energize equipment.
Step 6. If teletype printer prints readable copy, switch receiver and teletype printer connections to converters as shown by broken lines in figure 3-3. If teletype printer does not print, notify technician.

NOTE
If teletype printer prints readable copy during one of the preceding tests, the
equipment may be operated with teletype printer so connected until technician can make necessary repairs.
d. INDICATOR LAMP REPLACEMENT. - To replace indicator lamp, unscrew lens assembly from the front panel. Release lamp by pressing in and turning counterclockwise. Insert new lamp and lock it in place by pressing in and turning clockwise. Reinstall the lens assembly.
e. FUSE REPLACEMENT. Fuses Fl and F2 are mounted on the front panel (see figure 3-1). Both fuses are $1 / 2$ ampere. To remove, press in on the cap, turn counterclockwise, and pull out the cap with the fuse attached. Remove and discard blown fuse. Insert a new fuse in the cap, insert cap in the holder, press in, and turn clockwise to lock. Replenish spare fuses from general stock.

CAUTION

Never replace a fuse with one of higher rating unless continued operation of the equipment is more important than possible damage to the equipment. If a fuse blows immediately after replacement, do not replace it a second time until the cause has been corrected.
f. EMERGENCY MAINTENANCE. - No maintenance other than that described in this section is to be performed by the operator.

PRINCIPLES OF OPERATION

4-1. OVERALL FUNCTIONAL DESCRIPTION.
a. GENERAL. - The overall function of Comparator-Converter Group AN/URA-17D is to provide a link in the receiving end of a frequency-shift communication system. The frequency-shift method of communication is a system of automatic code transmission, and reception, by means of a frequency modulated rf carrier. In this system, the mark and space portions of the code characters are represented by shifts above and below the rf carrier frequenc̀y.

The frequency-shift separation employed between mark and space signals may be as little as 10 cycles per second or as much as 1000 cycles per second. This scope of frequency-shifts is divided into two ranges called 'narrow shift' and 'wide shift.' Narrow shift covers the range of 10 to 200 cycles per second, and wide shift covers the range of 200 to 1000 cycles per second.

The system of reception to be considered here involves the use of a radio receiver for changing the rf carrier into an audio tone by means of a beat-frequency oscillator. The carrier-shift then becomes an audio frequencyshift of the same number of cycles per second.
b. DIVERSITY OPERATION. -

Comparator-Converter Group AN/URA-17D consists of two Frequency Shift Converters CV-483D/URA-17, designed for use with two standard radio receivers operating a diversity system. In space-diversity operation, the two receivers are tuned to the same frequency but the receiving antennas are spaced more than one wavelength apart. In frequency-diversity operation, two receivers are tuned to separtate frequency-shift carriers (of different frequencies) which are simultaneously carrying the same mark-space characters. The advantage of space-diversity operation for reception of distant signals results from the fact that a single rf carrier does not generally fade simultaneously at spots more than one wavelength apart. The advantage of frequency-diversity operation results from the fact that fading of carries of different frequencies does not generally occur at the same time.

The output of each receiver is connected to one Frequency Shift Converter CV-483D/URA-17 (hereinafter referred to as the converter) which converts the frequency-shift characters into dc pulses. These pulses are applied to a comparator circuit in each of the converters. The comparators select the better of the two input signals for operation of the teletype printer. The teletype printer may be connected to the output of either converter.
c. SINGLE-RECEIVER OP. ERATION. - Where conditions do not require diversity operation, each converter may be used separately with a single receiver for reception of frequency-shift signals. In this case, the two converter units may be used in two independent communication circuits.

d. SIMPLIFIED BLOCK

 DIAGRAM. - The simplified block diagram, figure 4-l, indicates the basic functions of converting the rf frequencyshift signal into a signal for controlling the dc loop of a teletype printer. The frequency shifts of the audio-frequency output of the radio receiver are converted into dc pulses by the action of an audio-frequency discriminator. The dc pulses are fed into a loop keyer which opens and closes the dc loop of the associated teletype printer in accordance with the mark and space characters received.The frequency versus markspace relationship shown in figure 4-1 is the most typical. The higher frequency represents the mark signal and the lower frequency represents the space signal. However, the opposite is also used, or the tuning and heterodyning of the signal in the receiver may reverse the relationship. When such reversed characters are applied to the teletype printer, garbled copy results. A reversing switch (not shown) is provided on each converter to reverse the relationship when required.
e. FUNCTION BLOCK DIAGRAM. - Figure 4-2 is a block diagram representing the principal functions
of the circuits of the complete equipment. Two receivers and a teletype printer are also shown, connected for diversity operation.
The two converters are identical and one is shown as a signal block for simplicity. The receivers may be operating is space diversity or frequency diversity on any radio frequency within their ranges. Both high level and low level outputs are provided.

The converter circuits represented by the blocks are discussed separately in the following paragraphs. Reference should be made to the overall schematic, figure 6-5. For the functions of the individual component parts of figure 6-5, refer to the parts list, table 7-1, Section 7.

4-2. FUNCTIONAL SECTIONS.
a. GENERAL. - Each converter is a single unit with the filters and transformers mounted around the sides of printed circuit boards. In the following paragraphs, the converter is covered as three functional sections: l) signal processing circuits, 2) Keyer circuits, and 3) power supplies (see figure 4-2). Waveforms at significant test points are illustrated in table 5-5. Refer to the overall schematic, figure 6-5, during the detailed theory which follows.
b. SIGNAL PROCESSING CIRCUITS. - The input signal from the receiver is applied to the AUDIO INPUT connector J2 (figure 6-5). A center-tap is provided at STANDOFF El for the accomodation of balanced inputs. The input transformer matches the 8000 ohm impedance of the bandpass filter to the 600 ohm line from the receiver. The input transformer is encased with the bandpass filter Zl.

Figure 4-1. Frequency-Shift Receiving System, Simplified Block Diagram
(1) BANDPASS FILTERS.

The bandpass filters attenuate high frequency noise pulses while passing both extremes of the shifted audio signal to the limiter. Selection of the correct filter for the shift-width of the input signal is made by section A of the SHIFT switch, Sl, The narrow filter, Zl, is used when the center frequency of the input signal is 1000 cycles per second (cps) with shifts of 5 to 100 cps each side of center. The wide filter, FLl, is used when the center frequency of the input signal is 2000 cps with shifts of 100 to 500 cps each side of center. The characteristics of the bandpass filters are given in table 6-2.
(2) LIMITER. - The limiter holds the output level at the detector to within 2 db with input signals of from 60 microwatts to 60 milliwatts.

The limiter consists of two lN4245 silicon diodes, CRl and CR2, connected in parrallel with opposite polarities grounded. These diodes have a very high forward resistance to signals below approximately 0.6 volt in amplitude. By maintaining the signal level at approximately 0.6 volt, strong noise pulses are removed from the input signal and the signal to the discriminator is held at a constant level with fading input signals. The limiter output is amplified by Q1, a commonemitter amplifier that uses the LEVEL control, R4, as a collector load. The LEVEL control is used for adjustment of the signal level to the discriminators. The signal level during reception of a narrowshift signal must be higher than when receiving a wide-shift signal. The amplified signal is applied to the discriminator through section B of SHIFT switch Sl.
ORIGINAL
วxn8ิ!ㅂ

frequency shift converter
CV-483/URA-17

Paragraph 4-2b(3)
(3) DISCRIMINATORS.

The discriminators are frequencyselective networks that determine the frequency versus amplitude slope of the mark and space signals. Each discriminator consists of two resonant networks with overlapping frequency response patterns (see figure 4-3).

The narrow-shift discriminator, FL2, is used for signals with shift-widths of from 10 to 200 cps . The output from terminal 1 of the narrow-shift discriminator increases with frequency to a maximum at about 1200 cps . At terminal 4 the output increases as frequency decreases to a maximum at about 800 cps . The crossover point at which the voltages from terminals 1 and 4 are equal is $1000 \mathrm{cps}+15 \mathrm{cps}$.

The wide-shift discriminator, FL3, is used for input signals with shift-widths between 200 and 1000 cps . The wide-shift discriminator contains two resonant networks with a crossover frequency of $2000 \mathrm{cps}+40$ cps. The output from terminal l increases with frequency to about 2850 cps . The output from terminal 4 increases as frequency decreases to a maximum at approximately 1150 cps .

The output from terminal 1 of the discriminator is applied to the first mark amplifier, and the output from terminal 4 is applied to the first space amplifier. The characteristics of the discriminators are given in figure 6-1.
(4) MARK-SPACE AMPLIFIERS. - The first mark amplifier, Q2, is common-emitter connected. Fixed base biasing is provided by

Rll and R12. The MARK GAIN control, R96, provides adjustment of the signal gain by controlling degeneration in the emitter circuit. The mark signal is coupled from the collector of Q2 to the base of Q4, the second mark amplifier, by C 8 . The space amplifiers, Q3 and Q5, are identical to the mark amplifiers. The SPACE GAIN control is R17. The MARK GAIN and SPACE GAIN controls allow equalizing the mark and space amplifier outputs at the cross-over frequencies. The mark amplifier output signal is applied to the primary of discriminator transformer Tl. The space amplifier output is applied to the primary of discriminator transformer T2.
(5) DETECTOR. - The detector rectifies and combines the outputs of the discriminator transformers into a pulsating dc which contains the mark-space intelligence. The mark signal at the secondary of Tl is full-wave rectified by CR3 and CR4, and the space signal at the secondary of T2 is full-wave rectified by CR5 and CR6. The rectified mark and space signals are next combined across R25 and R26 (see figure 4-4). The dc signal from the detector is applied to the POLARITY switch, S2.

In conventional frequency-shift keying transmissions, the high frequency portion of the shifted signal corresponds to teletype mark pulses and the low frequency corresponds to space pulses. Because of unusual conditions, the mark space relationship may be reversed. When such reversed characters are applied to a teletype printer, garbled copy results. The POLARITY switch, S2, is provided for inverting the markspace relationship when required.

NARROW-SHIFT CISCRIMINATOR, FL2

DISCRIMINATOR, FL3

Figure 4-3. Discriminator Response Curves

Paragraph 4-2b(6)

IF $E_{m}>E_{s}$, OUTPUT VOLTAGE is POSItIVE If $E_{m}^{m}<E_{s}$, OUTPUT VOltage is negative
Figure 4-4. Discriminator Detector, Simplified Diagramı
(6) KEYING FILTER. The low-pass keying filter, FL4, removes noise pulses and the carrier from the signal at the output of the detector. The keying filter consists of two sections, with selection being made by the position of the SPEED switch, S3. When the switch is in the SLOW position, the keying filter section passes keying signals up to 100 words per minute, and attenuates all frequencies above 45 cps . The other section of the keying filter, selected by the FAST position of the SPEED switch, passes keying signals up to 400 words per minute (four-channel, timedivision multiplex, up to 100 words per minute per channel), and attenuates all frequencies above 180 cps. Keying filter characteristics are included in table 6-2.
c. KEYER CIRCUITS. - The pulsating dc signals from the detector are converted by the keyer circuits into off-on pulses for operation of the teletype printer relay.
(1) DC DIFFERENTIAL AMPLFIER. - The dc differential amplfier provides amplification of the mark-space signals before they are applied to the dc limiter. Transistors Q6 and Q9 comprise an emitter-coupled amplifier. The input to the base terminal of $Q 6$ is the output signal from the keying filter; the input to the base terminal of Q9 is supplied by Q10, via the feedback resistor, R41, from the output of the dc differential amplifier. These two signals are amplified by another emittercoupled amplifier consisting of Q7 and Q8. The two signals (input and feedback) are mixed in Q8 and then applied to the base terminal of the output transistor, Q10. Zener diodes CR7 and CR8 establish -32 volts at the emitter of Q10.

The feedback from the output to the base of $Q 9$ stabllizes the gain of the dc differential amplifier over wide temperature variations. The VERTICAL CRT control, R31, is adjusted for vertical centering of the tuning indicator display and establishes zero balance of the amplifier. The LIN (linearity) control, R39, (part of the voltage divider for the base terminal of Q10), is provided to adjust the bias of Q10 for the most linear signal capability.

The input signal to the base of Q6 is approximately +1.7 for the mark and space signals. The dc differential amplifier raises this level to approximately +20 volts. This level is suitable for operating the mark lock-up, the tuning indicator, the axis restorer, and subsequent keying circuitry.
(2) AXIS RESTORER. - The axis restorer maintains the signal axis at ground potential and restores signal symmetry when the transmitter or receiver frequency drifts during operation. The positive mark signal from the dc differential amplifier charges C17 and C18 through CR9 which clamps the signal to ground. The negative space signal charges C19 and C20 through CR10 which clamps the signal to ground. The signals are combined again through R45 and R46. By clamping both the mark and space signals separately and then recombining them, the signal axis is automatically placed at ground potential. The signal is coupled to the comparator through the FUNCTION switch, S4.
(3) COMPARATOR. The main function of the comparator is to compare the strength of signals from the two receivers during diversity operation, and allow only the stronger signal to be applied to the dc limiter. The comparator consists of CR14, CR15, CR16, CR17, R54, and R55. In diversity operation, two converters are used with two receivers for the operation of a single teletype printer. The signals are compared at the comparator in each
of the converters (see figure 4-5), with the stronger signal being applied to the dc limiter. The FUNCTION switch, S4, on both converters must be placed at DIVERSITY. The teletype printer may be connected to either converter.

In figure 4-5, the peak amplitudes of both input signals are equal but the signal from converter A contains noise. The signal from converter B has a constant peak value of +20 volts and will develop a greater voltage across R54 and R55. This places a reverse bias of two volts on CR14 and CR16, preventing converter A from actuating the dc limiter. The FUNCTION switch, S4, has two other positions, SINGLE and TUNE. In the SINGLE position, the positive mark pulses cause CRI6 to conduct and negative space pulses cause CR14 to conduct. In the TUNE position, the signal input to the dc limiter is removed while the receiver is being tuned. A small, positive voltage is applied to the dc limiter input by R56 and R57 to lock up the teletype printer during the interruption in the input signal. Without the positive voltage, the teletype printer would run open.
(4) DC LIMITER, - The dc limiter, Q13, Q14, Q15, Q16, and associated circuit, is a class B pushpull circuit which supplies approximately 20 db of postdetection limiting and aids in proper operation during reception of signals containing strong noise pulses. The signal from the comparator is applied simultaneously to the base terminals of Q13 (an npn transistor), and Q15 (a pnp transistor). A positive mark signal causes Q13 to conduct but cut off Q15. The collector of Q13 is direct-coupled to

Paragraph
4-2c(4)
state relay Kl , and keying transistors Q17 and Q18 (see figure 4-6) which provides high level polar 60 ma (with a 120 VDEPS) keying current output which is isolated from the system ground. It also provides a Positive Neutral or Negative Neutral output if required (see figure $2-11$ a, b, c.$) .$
(a) SOLID STATE RELAY

Kl. The function of the Solid State Relay is to isolate the High LEVEL TTY output at J6 from the system ground. This is accomplished by modulating an oscillator in the sealed unit (K1) in accordance with the digital information fed from R65 (see figure 5-6) and demodulating after passing through isolating transformers. The output of Kl at pin 5, with respect to pin 6 is a positive isolated digital signal corresponding to a MARK signal. The output of Kl at pin 7, with respect to pin 6 is a negative isolated digital signal corresponding to a SPACE signal.
the base of Q14. The signal is phase-shifted 180 degrees by Q13, causing Q14, a pnp transistor, to conduct and deliver a strong positive signal at its output. A negative space signal causes Q15 to conduct but cuts off Q13. The collector of Q15 is direct-coupled to the base of Ql6 (an npn transistor), and because of the 180 degree signal voltage phase-shift, Q16 conducts and delivers a strong negative signal at its output. The dc limiter controls the swittching action of the loop keyer. And provides the low level output.
(5) LOOP KEYER. - The loop keyer is comprised of a solid

When no signal is present at R65, a steady dc voltage applied at pin 1 of Kl from R65 keeps an internal gate open allowing the oscillator in Kl to supply a CW to be demodulated. The demodulation of the CW gives rise to a constant (not time varying) positive dc voltage at pin 5 with respect to pin 6 of K1. This voltage is used to achieve MARK-LOCK UP in conjuction with Ql7.
(b) KEYING TRAN-

SISTORS Q17 and Q18. The function of Q17 and Q18 is to provide a solid state switch to open and close the desired keying loops (see figure 2-11 a, b, c and 5-6).

The configuration of Q17 and Q18 is such as to be identical to a single pole double throw switch, where the circuitry leading to the collector of Q17 is one pole and likewise, to the collector of Q18, the other pole. The junction of the two emitters is analogous to the arm of the switch.

The operation of the keying transistors is as follows:

When a MARK signal is applied to pin 1 of Kl from R65, a corresponding positive signal is applied between the base and emitter of Q17 (as described in paragraph 5(a)) from pin 5 of Kl. This positive signal forward bias the base junction of Q17 causing Q17 to saturate. When Q17 is in saturation, a very low resistance manifests itself from collector to emitter thus the switch is closed in that the transistor is providing a low resistance path for the loop keying current.

The same sequence is followed in "closing" Q18 when a negative signal is applied between its base and emitter. Q18 closes when a SPACE signal is applied to pin 1 of K1. Transistors Q17 and Q18 are never on symultaneously. Resistors R67 and R69 as used to limit the collector currents of Q17, and Q18 in the event excessive currents are allowed to flow in the respective keying loops. Diodes CR20 and CR19 protect their respective transistors from an accidental reversal of the keying loop power supplies. That is, a reversal of the power supplies as shown in figures 2-11 a, b, c, would forward bias the collector junctions and destroy the transistors Q17, and Q18.

Capacitor C16 is used solely for RFl suppressing by supplying a very low impedance path to ground to high frequency components either generated in or picked up by the keying loop conductors.

The isolated output of the high level TTY output J6, allows the installation of a system ground at any one point in the keying loop circuitry for optimum performance.
(c) LOW LEVEL TTY

OUTPUT. A low level output is provided which will accommodate recording equipment requiring a polar low level signal at $\pm 6 \mathrm{~V}$, 1 ma . The output is obtained from J8.

One side of the output (pin B) is permanently connected to the system ground. Pin a derives the 6V from the junction of R64 and R65, (see figure 6-5).

This constant voltage is obtained from the dc limiter (Q14 and Q16) by setting the collector voltages of Ql4 and Q16 by zener diodes CR29 and CR30 in their respective emitter circuits.

Over the dynamic range of the limiter Q14 and Q16 are in saturation, thus the collector drop is very low. Therefore, the collector voltages are essentially the emitter voltages which is governed by the zeners. (See paragraph 4.0, page 4-4).
(6) MARK LOCK-UP. - The marklock-up provides a strong, artifical mark signal to the dc limiter during traffic interruptions. If a deep fade occurred or if the signal-to-noise ratio were very low, noise pulses could cancel the small positive bias on the dc limiter input, provided by R56 and R57, and allow garbled copy to be printed. A steady mark signal is transmitted between messages.

This steady mark signal charges C17 in the axis restorer allowing no signal to be applied to the dc limiter. The mark lock-up, Qll, Q12, and circuit, provides a bypass around the axis restorer (shown as dashed line in figure 4-2) during these signal inter ruptions.

During normal keying pulses, C32 charges through CR1l on the negative space pulses and slowly discharges through R48 and CR12, keeping Qll cut off. While Qll is cut off, Q12 conducts heavily (having a high base-emitter forward bias), reducing the voltage at the junction of R52 and R53 to near zero. When the keying pulses stop, the charge on C32 leaks off to the point where Q1l conducts, removing the forward bias from Q12 and causing it to cut off. When Q12 is cut off, +48 volts is supplied to the de limiter from the junction of R52 and R53. When keying is resumed, the first mark-to-space transition charges C32 to a level which cuts off Q11 and turns on Q12, removing the artificial mark signal.

(7) TUNING INDICATOR. -

 Tuning indicator VI is a 2 BPl cathode-ray tube. Horizontal deflection voltage (60 cps) is obtained from the high voltage transformer T4. Controls for HORIZontal CENTERING, FOCUS, INTensity, VERTical ADJustment, VERTical CRT, and LINearity (R77, R92, R93, R80, R31, and R29, respectively) are provided on the converter chassis as screwdriver adjustments. The vertical deflection voltage is supplied from the dc differential amplifier output. When the associated receiver is tuned properly, the crt pattern will be centered vertically. The LEVEL control adjustment iscorrect when the horizontal lines of the pattern coincide with those on the bezel.
d. POWER SUPPLIES. - Three dc power supplies furnish all operating voltages and currents required by the converter. The ac line voltage is applied to POWER receptacle, J3, on the rear of the converter cabinet. Safety interlocks, S5A and S5B, and fuses, F1 and F2 (1/2 ampere each), are installed in the ac input lines. The indicator, DS-1, lights when power is applied to the converter by POWER switch S6. The two power transformers, T3 and T4, have tapped primaries to allow operation on line voltages of 105,115 , or 125 volts.
(1) +48 VOLT SUPPLY. For the AN/URA-17D, the +48 volt supply consists of a full wave rectifier and CR34, a zener diodes for regualtion. The full wave rectifier consists of diodes CR29 and CR31. Resistor R85 limits the zener current. Capacitors C28 and C30 in conjunction with R85 comprise an RC ripple filter.
(2) -48 VOLT SUPPLY. For the AN/URA-17D the -48 volt supply consist of a full wave rectifier and CR27, a zener diode, for regulation. The full wave rectifier consists of diodes CR23 and CR25. Resistor R68 limits the zener currents capacitors C22, C23, and C24 in conjunction with R60, R75, and R74 comprise an RC ripple filter.
(3) - 560 VOLT SUPPLY. The -560 volt supply uses on 1 N1731 diode, CR32 as a half-wave rectifier. A voltage divider consisting of R91, R92, R93, and R94 provide the high voltage required by the crt.

Figure 4-6. Loop Keyer and Teletype Printer Keying Circuits

SECTION
 5

TROUBLE-SHOOTING

5-1. GENERAL.

Comparator-Converter Group AN/URA-17D, hereinafter referred to as the AN/URA-17D is part of a system for the reception and recording of transmitted teletype messages.

The AN/URA-17D consists of two Frequency Shift Converters CV-483D/URA-17, hereinafter referred to as the converters.

Maintenance personnel should be thoroughly familiar with the operation of the overall frequency-shift receiving system, and the function of each equipment used. The receivers and teletype printers used with the AN/URA-17D should be tested, adjusted, and maintained in accordance with their individual maintenance instructions.

Prior to trouble-shooting the AN/URA-17D, the technician should become familiar with the equipment operation during normal conditions. By keeping records of discrepancies occurring during operation, it may be possible to prevent equipment breakdown by foreseeing failures. It is mandatory that maintenance personnel read Section 1, 3, and 4 of this technical manual before performing any trouble-shooting procedures.

It is assumed that maintenance personnel are experienced in stand-
ard methods of testing and repairing navel electronic equipment; therefore, detailed descriptions of common tests are not given.

As an aid in trouble-shooting, the following system of test point symbols is used in tables and illustrations of this manual. The major test point symbol consists of the test point number enclosed within a star. The secondary test point letter enclosed within a circle. Figure 5-2 shows locations of all test points used in this manual. In the text, major test points are shown as $\quad 1$, 2 , etc., and secondary test points are shown as A, B, etc.

5-2. TEST EQUIPMENT AND SPECIAL TOOLS.
a. TEST EQUIPMENT. - The following test equipment or the equivalent (refer to table l-3), will be required:

```
DuMont 304-A
ME-30/U
AN/PSM-4
TS-1100/U
oscilloscope
ac vtvm
multimeter
test set, transistor
```

b. SPECIAL TOOLS. - No special tools will be required.

5-3. OVERALL TROUBLE-

 SHOOTING.a. PRELIMINARY CHECK. A preliminary check of the equipment should be made before pro-
ceeding to the trouble-shooting charts. The first and most natural step in trouble-shooting is to analyze the symptoms of the equipment. Often the conclusions reached will aid the technician in selecting the test(s) that will most quickly locate the cause of trouble. The operator's maintenance tests in Section 3 will be of assistance in making this analysis. Normally, the malfunction can be traced to the receiver, the teletype printer, or one of the converters.

When possible, use sensory tests, such as visually checking parts (fuses, resistors, capacitors, etc.), and smelling or feeling for signs of overheating. Simple tests often will reveal the difficulty.

NOTE

If, during the preliminary check, a part is found that is responsible for the malfunction, determine what caused its failure before replacing it.

Malfunctions other than the result of faulty transmission, bad receiving conditions, or improper operating methods must be localized to one of the system components. If the evidence is not definite, a simple expedient is to substitute equipment known to be in proper operating condition for the suspected equipment.

The receiver may be tested independently by monitoring the audio output with a headset or loudspeaker and tuning in various signals.

The teletype printer may be checked with signals from another source of known accuracy, such as another teletype circuit.

The best method of testing the converter is by recording its output with a teletype printer or other automatic recorder.

During the test given in the following paragraphs, the converter is to be connected to a receiver adjusted to receive fsk signals and a teletype printer is to be connected to the output of the converter. The receiver and teletype printer are to be in satisfactory operating condition.
b. TEST EQUIPMENT AND SPECIAL TOOLS. - No test equipment or special tools are required.
c. CONTROL SETTINGS. - Set the converter controls as follows:
(1) LEVEL control to 0 .
(2) SHIFT switch to NARROW.
(3) FUNCTION switch to TUNE.
(4) POLARITY switch to NORMAL.
(5) SPEED switch to SLOW.
(6) POWER switch to Off (down).
d. SYSTEM TROUBLE-SHOOTING CHART. - The system troubleshooting chart, table 5-1, will aid the technician in isolating a malfunction to a functional section (paragraph 5-4) Table 5-1 is arranged so as to utilize the converter's front panel indicators as a means of determining which functional section is defective.

TABLE 5-1. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, SYSTEM TROUBLE-SHOOTING CHART

STEP	PRELIMINARY ACTION	NORMAL INDICATION	NEXT STEP
1	Turn converter POWER switch to On.	Indicator lamp glows.	If lamp glows, proceed to step 2; if not, proceed to table 5-4, step 1.
2	Connect fsk receiver audio output to AUDIO INPUT jack (J2) at rear of converter cabinet. Adjust receiver and converter controls for single-receiver operation (Section 3, paragraph $3-2 \mathrm{~g}$ (1), steps 1 through 10).	Tuning indicator pattern as (A) in figure 3-2.	If pattern is ok, proceed to step 3; if not, proceed to table 5-2, step 1 .
3	Connect teletype printer to TTY OUTPUT jack (J6) at rear of converter or J 8 for low level	Teletype printer prints readable copy.	If teletype printer does not print readable copy, place POLARITY switch to REVERSE. If trouble still persists, proceed to table 5-3.

If the technician is thoroughly familiar with the equipment, he may start directly with functional section trouble-shooting. Refer to the overall schematic diagram, figure 6-5, during performance of the trouble-shooting procedures.

(1) MALFUNCTION

 DURING SINGLE-RECEIVER OPERATION. - If the equipment is rejected for malfunction during single-receiver operation, perform the procedures listed in table 5-1.(2) MALFUNCTION DURING DIVERSITY OPERATION. - If the equipment is rejected for malfunction during diversity operation, proceed as follows:

Step 1. Check each converter for single-receiver operation (Section 3, paragraph $3-2 \mathrm{~g}$ (1). If operation is satisfactory, continue with step 2 of this paragraph. If not, perform the procedures listed in table 5-1.

*FOR COMPONENTS MOUNTED ON TE. 1 , REFER TO FIGUAE G-4.
*FOR COMPONENTS MOUNTED ON TE2, REFER TO FIGURE 6.3.

Figure 5-1. Frequency Shift Converter CV-483D/URA-17, Parts Location

Step 2. Perform steps in Section 3, paragraph 3-4c. If, upon completion of the diversity check listed in paragraph 3-4c, the teletype printer does not print, check CR15 and CR17 (figure 6-3) in converter to which teletype printer is connected.

5-4. FUNCTIONAL SECTION TROUBLE-SHOOTING.

a. GENERAL. - Functional section trouble-shooting will aid the technician in isolating the malfunction to a defective part or parts. Tables 5-2, 5-3, and 5-4 are the functional section trouble-shooting charts of the three functional sections of this

Figure 5-2. Frequency Shift Converter CV-483D/URA-17, Location of Test Points
equipment: i.e., signal processing circuits; keyer circuits; and power supplies.
b. SIGNAL PROCESSING CIRCUITS TROUBLE-SHOOTING.
(1) PRELIMINARY CHECK. - The preliminary check for functional trouble-shooting of the signal processing circuits is the same as the preliminary check for overall trouble-shooting (refer to
paragraph 5-3a).
(2) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) TEST EQUIPMENT.

- The following test equipment will be required:

DuMont 304-A oscilloscope ME-30/U ac vtvm AN/PSM- 4 multimeter TS-1100/U test set, transistor
(b) SPECIAL TOOLS. No special tools will be required.
(3) CONTROL SETTINGS. The control settings for the converter during functional troubleshooting of the signal processing circuits are the same as the control settings for overall troubleshooting (refer to paragraph 5-3c).
(4) ILLUSTRATIONS.
(a) TEST POINTS. -

Figure 5-2 illustrates the physical locations of all test points to be used in functional section troubleshooting.
(b) SCHEMATIC DIAGRAMS. - Figure 5-4 is the schematic diagram of the signal processing circuits.
(c) VOLTAGE AND RESISTANCE DIAGRAM. Figure 5-3 lists dc voltages and resistance measured from the terminals of the transistors in the signal processing circuits to the converter chassis, with no signal applied.
(d) SIGNAL TRACING OSCILLOSCOPE PATTERNS. Table 5-5 illustrates oscilloscope patterns to be used as guides during signal tracing.
(e) ALIGNMENT OF THE CONVERTER AFTER TROUBLE-SHOOTING. - After trouble-shooting the signal processing circuits, if repairs of component changes were made, refer to Section 6, paragraph 6-2, for alignment procedures. Table 6-1 lists adjustments required after specific transistors are replaced or values in the circuits of these transistors are changed.
c. KEYER CIRCUITS TROUBLESHOOTING.
(1) PRELIMINARY CHECK. The preliminary check for functional trouble-shooting the keyer cirucits is the same as the preliminary check for overall trouble-shooting (refer to paragraph 5-3a).
(2) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) TEST EQUIPMENT. The following test equipment will be required:

DuMont 304-A	oscilloscope
ME-30/U	ac vtvm
AN/PSM-4	Multimeter
TS-1100/U	test set, transistor

(b) SPECIAL TOOLS. No special tools will be required.
(3) CONTROL SETTINGS. The control settings for the converter during functional troubleshooting of the keyer circuits are the same as the control settings for overall trouble-shooting (refer to paragraph 5-3c).
(4) ILLUSTRATIONS.
(a) TEST POINTS. -

Figure 5-2 illustrates the physical locations of all test points to be used in functional section trouble-shooting.
(b) SCHEMATIC DIA-

GRAMS. - Figure 5-6 is the schematic diagram of the keyer circuits.
(c) VOLTAGE AND RESISTANCE DIAGRAM. - Figure 5-5 lists voltages and resistances measured from the terminals of the transistors in the keyer circuits to the converter chassis, with no signal applied.

TABLE 5-2. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, SIGNAL PROCESSING GIRCUITS FUNCTIONAL SECTION

TROUBLE-SHOOTING CHART

STEP	$\begin{gathered} \text { TEST } \\ \text { POINT } \end{gathered}$	PRELIMINARY ACTION	NORMAL INDICATION	NEXT STEP
1		Connect fsk receiver audio output to AUDIO INPUT jack (J2) at rear of converter. Adjust receiver and converter controls for singlereceiver operation (Section 3, paragraph 3-2g(1), steps 1 through 10).	Tuning indicator pattern as (A) in figure 3-2.	(1) If pattern shifts unevenly above and below center line of crt bezel: recheck receiver tuning is ok, proceed to table 5-4, step 2; check Q2, Q3, Q4, and Q5 (figure 6-3); measure dc voltages on Q2, Q3, Q4, and Q5 terminals (figure 5-3); measure resistances of T1 and T2 windings (figures 5-1 and 6-2); check CR3, CR4, CR5, and CR6 (figure 6-3); measure resistances of R25 and R26 (figure 6-3); realign mark-space amplifiers (Section 6, paragraph 6-2h). (2) If pattern shifts up only; check receiver tuning. If receiver tuning is ok, proceed to table 5-4, step 2; check Q3 and Q5 (figure 6-3); measure dc voltages on Q3 and Q5 terminals (figure 5-3); measure resistances of T2 windings (figures 5-1 and 6-2); measure resistance of R26 (figure 6-3); check CR5 and CR6 (figure 6-3).

TABLE 5-2. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, SIGNAL PROCESSING CIRCUITS FUNCTIONAL SECTION TROUBLE-SHOOTING CHART (Cont.)

NOTES:
V INDICATES DC VOLTAGE TO CHASSIS WITH VTVM (NO SIGNAL). R INDICATES RESISTANCE (IN OHMS) TO CHASSIS WITH POWER SWITCH OFF.

Figure 5-3. Frequency Shift Converter CV-483D/URA-17. Signal Processing Circuits, Voltage and Resistance Measurements

TABLE 5-2. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, SIGNAL PROCESSING CIRCUITS FUNCTIONAL SECTION

TROUBLE-SHOOTING CHART (Cont.)

STEP	TEST POINT	$\begin{gathered} \text { PRELIMINARY } \\ \text { ACTION } \end{gathered}$	NORMAL INDICATION	NEXT STEP
2		Set up oscilloscope to display low frequency signals. Connect oscilloscope ground terminal to converter chassis.		
	$\begin{aligned} & \text { (Figures } \\ & 5-2 \text { and } \\ & 5-4 \text {) } \end{aligned}$	Touch vertical input lead to TP-1.	Pattern as in step 2 of table 5-5.	If ok, proceed to step 3. If not, check Q1 (figure 6-3); measure dc voltages on terminals of Q1 (figure 5-3).
3	(Figures 5-2 and 5-4)	Touch oscilloscope vertical input lead to TP-2.	Pattern as in step 3 of table 5-5.	If ok, proceed to step 4. If not, check Q2 and Q4 (figure 6-3); measure dc voltages on terminals of Q2 and Q4 (figure 5-3).
4	(Figures 5-2 and 5-4)	Touch oscilloscope vertical input lead to TP-3.	Pattern as in step 4 of table 5-5.	If ok, proceed to step 5. If not, check Q3 and Q5 (figure 6-3); measure dc voltage on terminals of Q3 and Q5 (figure 5-3).

TABLE 5-2. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, SIGNAL PROCESSING CIRCUITS FUNCTIONAL SECTION

TROUBLE-SHOOTING CHART (Cont.)

STEP	TEST POINT	PRELIMINARY ACTION	NORMAL INDICATION	NEXT STEP
5	(Figure $5-2$ and $5-4)$	Touch oscilloscope vertical input lead to TP-4.	Pattern as in step 5 of table 5-5.	If not similar, check Q6, Q7, Q8, Q9, and Q10 (figure 6-4); measure dc voltages on terminals of Q6, Q7, Q8, Q9, and Q10 (figure 5-3).

Figure 5-5. Frequency Shift Converter CV-483D/URA-17 Keyer Circuits, Voltage and Resistance Measurements

(d) SIGNAL TRACING OSCILLOSCOPE PATTERNS. Table 5-5 illustrates oscilloscope patterns to be used as guides during signal tracing.
(e) ALIGNMENT OF

THE CONVERTER AFTER TROUBLE-SHOOTING. - After trouble-shooting the keyer circuits, if repairs or component changes were made, refer to Section 6, paragraph 6-2, for alignment procedures. Table 6-1 lists adjustments required after specific transistors are replaced or values in the circuits of these transistors are changed.
d. POWER SUPPLIES TROUBLE-SHOOTING.
(1) PRELIMINARY CHECK. - The preliminary check for functional trouble-shooting the power supplies is the same as the preliminary check for overall trouble-shooting (refer to paragraph 5-3a).
(2) TEST EQUIPMENT AND SPECIAL TOOLS.
(a) TEST EQUIPMENT.

- The following test equipment will be required:

AN/PSM-4	Multimeter
ME-30/U	ac vtvm
TS-1100/U	test set, transistor

(b) SPECIAL TOOLS. No special tools will be required.
(3) CONTROL SETTINGS. The control setting for the converter during functional troubleshooting of the power supplies are the same as the control settings for overall trouble-shooting (refer to paragraph 5-3c).

(4) ILLUSTRATIONS.

(a) TEST POINTS. -

Figure 5-2 illustrates the physical locations of all test points to be used in functional section trouble-shooting.
(b) SCHEMATIC DIA-

GRAMS. - Figure 5-8 is the schematic diagram of the power supplies. Figure 5-7 is the primary power distribution diagram.

5-5. TYPICAL TROUBLES.
Table 5-6 lists typical troubles that may occur during the service life of the AN/URA-17D.

5-6. LOCATION OF PARTS.

Figure 6-3 and 6-4 illustrate the location of all circuit elements that may require replacement during the service life of the AN/URA-17D.

Figure 5-7. Frequency Shift Converter CV-483D/URA-17, Primary Power Distribution Diagram

NOTES:

1. UNLESS OTHERWISE SPECIFIED all capacitors are in uf
ALL RESISTORS ARE IN OHMS
ALL RESISTORS $1 / 2$ WATT 10
$K=1000 \quad$ MEG $=1,000,000$
2. UNLESS OTHERWISE INDICATED: ALL VOLTAGES TAKEN TO CHASSIS WITH 20,000 OHM NOLT VOLTMETER WITH NO INPUT SIGNAL.
EXCEPT FOR POWER TRANSFORMER
VOLTAGES, ALL VOLTAGES ARE DC
3. (B) ZENER DIODE
 CONTROL.

Figure 5-8. Frequency Shift Converter CV-483D/URA-17, Power
Supplies, Functional
Schematic Diagram

TABLE 5-3. FREQUENCY SHIFT CONVERTER CV-483D/URA-17
KEYER CIRCUITS FUNCTIONAL SECTION
TROUBLE-SHOOTING CHART
a- HIGH LEVEL (J6)

STEP	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	PRELIMINARY ACTION	NORMAL INDICATION	NEXT STEP
1		Connect fsk receiver audio output to AUDIO INPUT jack (J2) at rear of converter. Connect teletype printer to HIGH LEVEL TTY OUTPUT jack (J6) at rear of converter. Adjust receiver and converter controls for singlereceiver operation (Section 3, paragraph 3-2g(1) the converter is now connected for HIGH LEVEL Polar-neutral operation. See figure 2-12c.	Teletype printer prints readable copy.	If teletype printer is locked up: check Q11 through Q18 (figures 6-3 and 6-4); measure dc voltages on terminals of Q11 through Q18 (figure 5-5). If teletype printer runs open: check Q13 through Q16 (figure 6-3), the solid state relay Kl (figure 6-2) and Q17 and Q18 (figure 5-5) for all voltage and resistance measurements. If trouble persists, proceed to step step 2.

TABLE 5-3. FREQUENCY SHIFT CONVERTER CV-483D/URA-17 KEYER CIRCUITS FUNCTIONAL SECTION TROUBLE-SHOOTING CHART (Cont.)
a- HIGH LEVEL (J6)

STEP	TEST POINT	$\begin{aligned} & \text { PRELIMINARY } \\ & \text { ACTION } \end{aligned}$	NORMAL INDICATION	NEXT STEP
2		Set up oscilloscope to display low frequency signals. Connect oscilloscope ground terminal to converter chassis.		If ok, measure resistance of R67, R69, CR19, and CR20 (figure 6-3).
	(Figures $5-2$ and 5-6)	Touch vertical input lead to TP-5 (collector of Q17) and ground lead to emitter of Q17.	Pattern as in step 6 of table 5-5, where baseline is zero volts and voltage is positive.	If pattern is not ok: check Q13 through Q16 (figure 6-3), measure dc voltages on terminals of Q13 through Q16 (figure 5-5) check Q17 (figure 5-5). If ok, proceed to step 3.
3	$\begin{aligned} & \text { Q18 } \\ & \text { Figure } \\ & 6-5 \end{aligned}$	Touch vertical input lead to collector of Q18 (leave ground lead on emitter of Q17).	Pattern as in step 6 of table 5-5, where baseline is zero volts and voltage is negative.	If pattern is not ok: check Q18 (figure 6-5), measure voltage and resistance on the terminals of Q18 (figure 5-5).
	LOW LEV	(J8)		
4		Connect equipment as directed in step 1, except utilize TTY LOW LEVEL OUTPUT (J8) as shown in Figure 2-12d.	Teletype printer prints readable copy.	If teletype printer is locked up: check Q11 through Q16 (figures $6-3$ and 6-5); measure dc voltages on terminals of Q1l through Q16 (figure 5-5).

TABLE 5-3. FREQUENCY SHIFT CONVERTER CV-483D/URA-17 KEYER CIRCUITS FUNCTIONAL SECTION TROUBLE-SHOOTING CHART (Cont.)
b- LOW LEVEL (J8)

STEP	TEST POINT	PRELIMINARY ACTION	NORMAL INDICATION	NEXT STEP
$\begin{gathered} 4 \\ \text { (Cont.) } \end{gathered}$				If teletype printer runs open: check Q11 through Q16 (figures 6-3 and 6-5); measure dc voltages on terminals of Q11 through Q16 (figure 5-5).
5		Set up oscilloscope to display low frequency signals. Connect oscilloscope grd-terminal to converter chassis.		
6	Junction of R64 and R65 (figure 6-5)	Place vertical input lead to junction of R64 and R65.	The pattern should be a ± 6.0 volts Polar Signal. The shape is similar to step 6 of table 5-5.	If pattern is not ok: check the resistance of CR29 and CR30 (figures 6-3 and 6-5).

TABLE 5-4. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, POWER SUPPLIES FUNCTIONAL SECTION

TROUBLE-SHOOTING CHART

TABLE 5-4. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, POWER SUPPLIES FUNCTIONAL SECTION TROUBLE-SHOOTING CHART (Cont.)

STEP	$\begin{gathered} \text { TEST } \\ \text { POINT } \end{gathered}$	PRELIMINARY ACTION	NORMAL INDICATION		NEXT STEP
2	(Figures 5-2 and 5-8)	Turn converter POWER switch to Off. Adjust multimeter to measure -560 volts dc. Connect positive lead to multimeter to converter chassis. Connect negative lead of multimeter to TP-6. Turn converter POWER switch to On.	- 560 volts	10\%	If ok, continue with step 2. If not, check CR 32 and CR33 (figure 6-4); measure R84 (figure 6-4).
3	(Figures 5-2 and 5-8)	Adjust multimeter to measure -48 volts dc. Connect positive lead of multimeter to converter chassis. Connect negative lead of multimeter to TP-7.	- 48 volts	10\%	If ok, continue with step 3 . If not, check CR27 (figure 6-4).
4	(Figures 5-2 and 5-8)	Adjust multimeter to measure +48 volts dc. Connect negative leas of multimeter to converter chassis. Connect positive lead of multimeter to TP-8.	+48 volts	10\%	If incorrect, check CR34 (figure 6-4). If, upon completion of the trouble-shooting procedure given in this task, the tuning indicator pattern is not as (A) in figure 3-2, proceed to table 5-2 and applicable step.

TABLE 5-5. SIGNAL TRACING OSCILLOSCOPE PATTERNS*

STEP	TEST POINT	WAVEFORM	NOTES
1	A (figure 5-2)	ค0.	Terminal 1 of 51-A (figure 6-3)
2	(figure $5-2)$		
3	$\underset{\substack{\text { (figure } \\ 5-2)}}{\substack{2 \\ \hline}}$		
4	$\begin{gathered} \text { (figure } \\ 5-2) \end{gathered}$	10,	
5	$\underset{\substack{\text { (figure } \\ 5-2)}}{\substack{4 \\ \hline}}$	$\square \square$	
6	$\underset{\substack{\text { figure } \\ 5-2)}}{5}$		
7	B (figure 5-2)	$\square \square$	Junction of R45 and R46 (figure 6-4)
8	(figure 5-2)		Collector terminals of Q14 and Q16 (figure 6-3)

* Waveforms shown represent reception of an " R " character repeated continuously by a tape-fed transmitter and displayed on an oscilloscope whose sweep is operating at the character repetition rate. When receiving mixed characters or the sweep is not in sync with the character repetition rate, various moving characters will normally be displayed.

TABLE 5-6. FREQUENCY SHIFT CONVERTER CV-483D/URA-17, TYPICAL TROUBLES

TROUBLE	NATURE OF TROUBLE	SYMPTOMS
Teletype printer runs open.	Fuses blown ($F 1$ or $F 2$, on front panel of converter). Ac power not on. Defective connection on power input cable. Defective POWER input receptacle (on rear of converter cabinet). Safety interlock switches open or defective (figure 2-10).	Indicator light out when POWER switch is On; no pattern on tuning indicator.
	```Receiver detuned. Receiver output connection defective. Defective converter.```	Indicator light is on but no pattern on tuning indicator.
	Teletype printer loop power supply defective. Loop keyer or dc limiter in converter defective.	Tuning indicator pattern normal, but teletype printer runs open.
Teltype printer locked up.	FUNCTION switch on converter left in TUNE position.	Tuning indicator pattern normal; teletype printer locked up.
Teletype printer prints garbled copy.	Receiver not properly tuned.	Tuning indicator patter not centered vertically.
	POLARITY switch on converter in wrong position.	Tuning indicator pattern normal, teletype printer prints garbled copy.

REPAIR

6-1. FAILURE REPORT.

## FAILURE REPORT

'Report each failure of the equipment, whether caused by a defective part, wear, improper operation, or an external cause. Use ELECTRONIC FAILURE REPORT form DD787. Each pad of the forms includes full instructions for filling out the forms and forwarding them to the Naval Electronic Systems Command. However, the importance of providing complete information cannot be emphasized too much. Be sure that you include the model designation and serial number of the equipment (from the equipment identification plate), the type number and serial number of the major unit (from the major unit identification plate), and the type number and reference designation of the particular defective part (from the technical manual). Describe the cause of the failure completely, continuing on the back of the form if necessary. Do not substitute brevity for clarity. And re-member--there are two sides to the failure report.--
'YOUR SIDE'

[^0]2. It helps make your job easier.
3. It insures available replacements.
4. It gives you a chance to pass your knowledge to every man on the team.

## 'COMMAND SIDE'

'The Electronic Systems Command uses the information to:

1. Evaluate present equipment.
2. Improve future equipment.
3. Order replacements for stock.
4. Prepare field changes.
5. Publish maintenance data.

Always keep a supply of failure report forms on board. You can get them from the nearest District Publications and Printing Office.'

## 6-2. TUNING AND ADJUSTMENT.

a. GENERAL. - Reference to this section is usually made after completion of trouble-shooting procedures in Section 5. If the defective part has been found, but the method of replacement is not easily determined, refer to paragraph 6-3. Table 6-1 lists adjustments required after replacing specific transistors (or components in these transistor circuits). Tests of filter characteristics are given in paragraph 6-3d(5), and tests of discriminator characteristics are given in paragraph 6-3d(6).

REPAIR
The following procedures provide the required alignment for the converters. Each procedure is complete. If two or more procedures are to be performed, reading ahead can prevent duplicating steps.

WARNING
Dangerous voltages exist within the converter when connected to the line voltage source, even when the POWER switch is in the Off position.
b. STANDARDS. - Maintenance Standards Book NAVSHIPS 0967-034-9030 contains a series of maintenance standard test procedures which provide indications representing optimum equipment performance, and a series of preventative maintenance procedures. Performance Standard Sheet NAVSHIPS 0967-034-9020 lists minimum acceptable limits for overall performance of the equipment.
c. TEST EQUIPMENT AND SPECIAL TOOLS. - The following test equipment, or the equivalent (refer to table l-3), will be required. No special tools will be required.

ME-30/U	vtvm (two required)
TS- $382 / \mathrm{U}$	audio oscillator
AN/TSM-9	frequency meter
AN/PSM-4	multimeter
d. SPECIAL JIGS. - No special	
jigs, fixtures, etc, will be	
required.	

the converter POWER switch to the Off position. The other converter controls will be set during the respective adjustment or alignment procedures.

## f. POWER SUPPLY CHECK.

(1) +48 VOLT SUPPLY.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Connect negative lead from multimeter to chassis, and positive lead to red test point, TP- $\$ 8$ (figure 5-2).

Step 3. Adjust multimeter to appropriate dc voltage scale.

Step 4. Turn converter POWER switch to $O n$ and allow five minute warm-up period.

Step 5. Check for multimeter indication of +48 volts.

Step 6. Turn POWER switch to Off and disconnect multimeter leads from converter.
(2) - 48 VOLT SUPPLY.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Connect positive lead from multimeter to converter chassis, and negative lead to white test point, TP- $\star 7$ (figure 5-2).

Step 3. Adjust multimeter to appropriate dc voltage scale.

Step 4. Turn converter POWER switch to On and allow five minute warm-up period.

Step 5. Check for multimeter indication of -48 volts.

Step 6. Turn POWER switch to Off and disconnect multimeter leads from converter.
g. CATHODE-RAY TUBE ADJUSTMENTS.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Turn converter POWER switch to On position and allow five minute warm-up period.

Step 3. Adjust FOCUS control, R92, and INT (intensity) control, R93 (figure 2-10), for normal operation.

Step 4. Short black test point, TP_ $\downarrow 4$ (figure 5-2), to converter chassis with a clip lead.

Step 5. Adjust VERT ADJ control, R80 (figure 5-1), to center trace on crt bezel.

Step 6. Adjust HORIZ CENTERING control, R77 (figure 5-1), to center trace on crt bezel.

Step 7. If trace on crt bezel is not horizontal, loosen the screw in clamp at crt base (figure 5-1), and rotate crt until trace is horizontal. Tighten screw in crt clamp.

Step 8. Turn POWER switch to Off and remove clip lead from TP- $\star 4$.
h. MARK AND SPACE GAIN CONTROL ADJUSTMENTS.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Connect vtvm's and audio oscillator to power source and turn power switches on. Allow at least five minute warm-up period.

Step 3. Adjust converter LEVEL control to 6 , set SHIFT switch to NARROW and SPEED switch to SLOW. Turn POWER switch to On position and allow five minute warm-up period.

Step 4. Disconnect cable from AUDIO INPUT connector, J2, on rear of converter cabinet.

Step 5. Adjust audio oscillator
frequency to 1000 cps.
Step 6. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals.

Step 7. Connect audio oscillator output terminals to AUDIO INPUT connector, $J 2$, on rear of converter cabinet or to terminals 1 and 3 of Z1 (figure 5-1). Adjust audio oscillator for output of 6.0 volts as measured on vtvm. Leave vtvm connected to audio oscillator terminals.

Step 8. Set range switch to second vtvm to 1 volt and connect between terminal 1 of $F L 2$ (figure 5-1) and converter chassis. Record vtvm indication.

Step 9. Move vtvm lead from terminal 1 of FL 2 to terminal 4 of FL 2 . Adjust vtvm range switch as required. Record vtvm indication.

Step 10. Adjust audio oscillator frequency and repeat steps 8 and 9 until voltage at terminals 1 and 4 of FL2 are equal. Maintain constant audio oscillator output voltage.

Step 11. Move vtrm lead from terminal 1 or 4 of FL2 to green test point, TP- $\star 3$ (figure 5-2). Adjust SPACE GAIN
control, R17 (figure 5-1), for 4.0 volt vtrm indication.

Step 12. Move vtvm lead from test point, TP- $\star$ 3, to blue test point, TP- 2, (figure 5-2), and adjust MARK GAIN control, R96 (figure 5-1), for 4.0 volt vtvm indication.

Step 13. Repeat steps 11 and 12 until 4.0 volt indications are obtained at TP- $\star 2$ and TP- $\quad 3$.

Step 14. Turn POWER switch to Off and disconnect audio oscillator and vtrm from converter. Reconnect cable removed from AUDIO INPUT connector, J2, on rear of converter cabinet.
i. DC DIFFERENTIAL AMPLIFIER ADJUSTMENTS.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Connect vtvm and audio oscillator to power source and turn power switches on. Allow at least five minute warm-up period.

Step 3. Turn converter POWER switch to On and allow five minute warm-up period.

Step 4. Disconnect cable from AUDIO INPUT connector, J2, at rear of converter cabinet.

Step 5.	Adjust converter LEVEL control to 0 , and set POLARITY switch to NORMAL.	Step 14.	Adjust LIN (linearity) control, R39 (figure 5-1), for multimeter indication of +32 volts (at TP-
Step 6.	Adjust multimeter to 40 volt dc scale.	Step 15.	Adjust audio oscillator output to zero, set converter LEVEL control to
Step 7.	Connect negative lead from multimeter to converter chassis and positive lead to black test point, TP(figure 5-2).		0 , and adjust VERT CTR control, R31 (figure 5-1), for zero multimeter indication. Adjust multimeter range switch as required. Return multimeter range switch to 40 volt dc scale.
Step 8.	Adjust VERT CTR control, R3l (figure 2-10), for a zero indication on multimeter. Change multimeter range switch as required to obtain exact setting	Step 16.	Set converter LEVEL control to 6 and adjust audio oscillator output to 6.0 volts as measured by vtvm.
Step 9.	for R31.   Adjust audio oscillator for an output of 2650 cps .	Step 17.	Adjust converter LIN (linearity) control, R39 (figure 5-1), for equal positive and negative voltages on multimeter
Step 10.	Set vtvm range switch to 10 volts and connect to audio oscillator output terminals.		as converter POLARITY switch is changed from NORMAL to REVERSE.
Step 11.	Connect audio oscillator output terminals to AUDIO INPUT connector, J2, on rear of converter cabinet or to terminals 1 and 3 of Zl (figure 5-1). Adjust audio oscillator	Step 18.	Adjust audio oscillator output to zero, set converter LEVEL control to 0 , and adjust VERT CTR control, R31 (figure 2-10), for zero multimeter indication.
	for 6.0 volt indication on vtvm. Leave vtvm connected to audio oscillator.	Step 19.	Turn POWER switch to Off and disconnect test equipment from converter. Reconnect cable removed from AUDIO
Step 12.	Adjust multimeter to 40 volt dc scale.		INPUT connector, J2, on rear of converter cabinet.
Step 13.	Adjust converter LEVEL control to 6 .	$\begin{array}{ll} \text { 6-3. } & \mathrm{RE} \\ \mathrm{RE} \end{array}$	OVAL, ADJUSTMENT, AIR, AND REASSEMBLY.

Step 14. Adjust LIN (linearity) control, R39 (figure 5-1), for multimeter indication of +32 volts (at TP- $\boldsymbol{*}$ ).

Step 15. Adjust audio oscillator output to zero, set converter LEVEL control to 0 , and adjust VERT CTR for zero multimeter indication. Adjust multimeter range switch as required. Return multimeter range switch to 40 volt dc scale.

Step 16. Set converter LEVEL control to 6 and adjust audio oscillator output to 6.0 volts as measured by vtvm.

Step 17. Adjust converter LIN (linearity) control, R39 (figure 5-1), for equal positive and negative voltages on multimeter as converter POLARITY switch is changed from NORMAL to REVERSE.

Step 18. Adjust audio oscillator output to zero, set converter LEVEL control to , and for meter indication.

Off Pow er switch to equipment from converter. Reconnect cable removed from AUDIO INPUT connector, J2, on rear of converter cabinet.

6-3. REMOVAL, ADJUSTMENT, REPAIR, AND REASSEMBLY.

a. GENERAL. - All electrical components of the converter are installed on two printed circuit boards or the surrounding metal frame. See figures 5-1, 6-3, and 6-4 for locations of component parts.

## CAUTION

Most of these components are small and a heat sink must be used when soldering or unsoldering them. Be sure all loose solder and bits of wire are removed before power is applied.

## b. ILLUSTRATIONS.

(1) PHOTOGRAPHS. -

Figure 5-1 illustrates the physical locations of all parts in the converter that may require replacement during the normal service life of the AN/URA-17D. Figure 5-2 illustrates the physical location of all test points in the converter.
(2) WIRING DIAGRAMS. Figures 6-3 and 6-4 are wiring diagrams of the converter.

## c. REMOVAL AND RE-

 ASSEMBLY. - Removal and reassembly instructions are given in the following paragraphs.(1) CHASSIS REMOVAL. -

To remove converter chassis from cabinet, proceed as follows:

Step 1. Loosen four captive screws on front panel, one at each corner.

Step 2. Pull converter chassis forward until drawer slides lock.

Step 3. Remove main cable plug, Pl, from Jl at rear of chassis (figure 5-1), and remove cable from clamp near Jl.

Step 4. Lift latch on bottom near front of each drawer slide, grasp both sides of converter chassis, and pull forward until chassis is free of cabinet drawer slides. To replace chassis, reverse this procedure.
(2) TRANSFORMER AND FILTER REPLACEMENT. - The transformers and filters are bolted to the metal frame around the printed circuit boards (figure 5-1). Remove the securing nuts and washers beneath the frame, tag and unsolder connecting wires, and lift transformer or filter straight upward. Replace by reversing this procedure.
(3) PRINTED CIRCUIT BOARD REPLACEMENT. - There are two printed circuit boards (figure 5-1) used in the converter. Remove either of them as follows:

Step 1. Tag for identification and unsolder leads to terminals on printed circuit board.

Step 2. Remove securing screws holding printed circuit board to metal frame and remove board. To replace printed circuit board, reverse this procedure.
(4) RECEPTACLE PANEL REMOVAL. - To remove receptacle panel at rear of converter (figure 2-6), loosen the captive screw at each corner of receptacle panel and pull panel from cabinet.
d. ADJUSTMENT AND REPAIR.
(1) TEST EQUIPMENT AND SPECIAL TOOLS. Refer to paragraph 6-2c.
(2) TRANSISTOR REPLACEMENT. - All transistors are mounted in sockets, with clamps holding them in place. The transistors are easily removed by pulling clamps away from the transistors.

NOTE
Pins on replacement transistors must be cut to $13 / 64+1 / 64$ inch. Do not force transistors into sockets. Bending of pins may crack the seal. Never attempt to solder or otherwise apply heat to transistor pins.
(3) TUNING INDICATOR CATHODE-RAY TUBE REPLACEMENT. - Replace the tuning indicator crt as follows:

Step l. Pull chassis forward on drawer slides.

Step 2. Remove socket from tube base.

Step 3. Loosen screws that hold hood and window assembly in front of tube face and remove the assembly.

Step 4. Loosen screw in clamp at tube base.

Step 5. Remove tube and shield. Install new tube in shield (tube socket key way up). Install tube and shield behind chassis opening. Replace tube socket, front hood, and window assembly. Push tube forward against hood assembly and tighten clamp.

Step 6. Perform cathode-ray tube adjustments in paragraph 6-2g.
(4) TRANSIS TOR SOCKET REPLACEMENT. Transistor sockets are attached to the printed circuit boards by screws. Remove the $3 / 32$ inch lock nuts from below socket, unsolder socket terminals from printed circuit board, and lift off socket. To reinstall, position socket and check that socket terminals line up properly with printed circuit leads. Then replace the screws and lock nuts and solder socket terminals to printed circuit leads.
(5) ROTARY SWITCH

REPAIRS.
(a) REPLACING DEFECTIVE SWITCH WAFER. Replace defective switch wafer as follows:

Step 1. Remove nuts and washers from rear (chassis side) of switch.

Step 2. Slip defective wafer from switch shaft.

NOTE
SHIF T switch (SIA-B) has two switch wafers. If front wafer is defective, remove rear wafer, spacers between wafers, and the defective wafer. Pay close attention to position of wafers on switch shaft.

Step 3. Place new wafer on switch shaft. Be sure wafer is correctly positioned.

Step 4. Replace removed hardware (nuts, lock washers, and spacers) if applicable.

Step 5. Unsolder wires (one at a time) from defecitve wafer and solder to replacement wafer. Be very careful that wires are correctly placed and mechanically secure before soldering.
(b) REPLACING DEFECTIVE

SWITCH. - If defect is other than switch wafer, replace entire switch as follows:

Step 1. Loosen set-screw in front panel knob and remove knob.

Step 2. Remove securing nut and lock washer from switch shaft.

Step 3. Tag and identify wires on switch terminals.

Step 4. Unsolder wires from defective switch.

Step 5. Push switch back, through front panel hole.

Step 6. Solder wires to new switch, being sure wires are correctly placed and mechanically secure before soldering to new switch terminals.

Step 7. Place switch in position, add securing nut, lock washer, and knob.
(6) BANDPASS FILTER

TESTS. - Table 6-2 lists characteristics of bandpass filters FLl and Zl. Resistance information is given in figure 6-2. Perform the following procedures to check characteristics of bandpass filters. Replace any filter not passing applicable tests.
(a) WIDE-SHIFT FILTER

FLl.
Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10) by pressing in on button at left side of switch block.

Step 2.	Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warmup for frequency meter.		indicates 2.5 volts, keeping audio oscillator output voltage constant. Record audio oscillator frequency. Increase frequency until vtvm connected to TP. $\star \quad 1$ indicates 2.5 volts, keeping audio
Step 3.	Set converter SHIFT switch to WIDE, and turn POWER switch to On position. Allow five minute warm-up period.		oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be $2100 \mathrm{cps}+150 \mathrm{cps}$.
Step 4.	Disconnect cable from AUDIO INPUT connector, J2, at rear of converter cabinet.	Step 11.	Increase audio oscillator frequency to TP_ $\boldsymbol{\star} \quad 1$ indicates 0.05 volts, keeping audio oscillator output voltage constant. Record audio oscillator
Step 5.	Connect audio oscillator input terminals to AUDIO INPUT connector, J2, or to terminals 1 and 3 of Zl (figure 5-1).		frequency. Decrease frequency until vtrm connected to TP- $\quad 1$ indicates 0.05 volt, keeping audio oscillator output voltage constant. Subtract lower
Step 6.	Set audio oscillator to 2000 cps , measured with frequency meter.		frequency from higher frequency. Result must be $3100 \mathrm{cps}+200 \mathrm{cps}$.
Step 7.	Set vtvm range switch to 10 volts and connect between gray test point TP- $\star \quad 1$ (figure 5-2) and converter chassis.	Step 12.	Turn POWER switch to Off and disconnect vtrm and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, J2, on rear
Step 8.	Adjust audio oscillator output to obtain vtvm indication of 5.0 volts.	FILTER	of converter cabinet.   (b) NARROW-SHIFT (PART OF Zl).
Step 9.	Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals.	Step 1.	Withdraw chassis to stops on drawer slides, and operate interlock switches (figure 2-10)
Step 10.	Decrease audio oscillator frequency until vtvm connected to TP.		by pressing in on button at left side of switch block.

TABLE 6-1. ADJUSTMENTS AFTER TRANSISTOR REPLACEMENTS

TRANSISTOR   REPLACED	ADJUSTMENTS TO BE MADE	ADJUSTMENT   PARAGRAPH
$Q 2, Q 3, Q 4$ or Q5	Mark and space gain adjustments	$6-2 \mathrm{~h}$
Q6, Q7, Q8, Q9,   or Q10	Dc amplifier adjustments	$6-2 \mathrm{i}$

Step 2. Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.

Step 3. Set converter SHIF T switch to NARROW, and turn POWER switch to On position. Allow five minute warm-up period.

Step 4. Remove cable attached to AUDIO INPUT connector, J2, at rear of converter cabinet.

Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J2, or to terminals 1 and 3 of Z 1 (figure 5-1).

Step 6. Set audio oscillator to 1000 cps , using frequency meter.

Step 7. Set vtvm range switch to 10 volts and connect between gray test point, TP- $\star \quad l$ (figure 5-2) and converter chassis.

Step 8. Adjust audio oscillator output to obtain vtvm indication of 5.0 volts.

Step 9. Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals. Record vtvm indication.

Step 10. Decrease audio oscillator frequency until vtvm connected to TP $\star 1$ indicates 2.5 volts, keeping audio oscillator output voltage constant. Record audio oscillator frequency. Increase audio oscillator frequency until vtvm connected to TP- $\star \quad 1$ indicates 2.5 volts, keeping audio oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be $500 \mathrm{cps}+50 \mathrm{cps}$.

Step 11. Increase audio oscillator frequency until vtvm connected to TP- $\star \quad 1$ indicates 0.05 volt, keeping audio oscillator output voltage constant.

SYMBOL	NAME	INPUT TERMINATION (OHMS)	OUTPUT   TERMINATION (OHMS)	REQUIRED   FRE-   QUENCY   RESPONSE	$\begin{aligned} & \text { ATTENU- } \\ & \text { ATION } \end{aligned}$	$\begin{gathered} \text { INSERTION } \\ \text { LOSS } \end{gathered}$	$\begin{aligned} & \text { TEST } \\ & \text { LEVEL } \end{aligned}$
$\underset{\text { (figure }}{\text { Zl }}$ $5-1)$	Narrowshift bandpass filter.	$\begin{aligned} & 8000+5 \% \\ & \text { at } 1000 \\ & \text { cps. } \end{aligned}$	$\begin{aligned} & 8000+5 \% \\ & \text { at } 1000 \\ & \text { cps. } \end{aligned}$	$\begin{aligned} & 900 \text { to } \\ & 1100 \mathrm{cps.} \end{aligned}$	6 db bandwidth: $500+50$ cps. 40 db bandwidth: $1400+100$   cps.	3 db max. at 1000 cps .	$\begin{aligned} & 10 \mathrm{v} \mathrm{rms} . \\ & (\mathrm{no} \mathrm{dc}) \end{aligned}$
$\begin{gathered} \text { FLl } \\ \text { (figure } \\ 5-1 \text { ) } \end{gathered}$	Wide-   shift bandpass filter.	$\begin{aligned} & 8000+5 \% \\ & \text { at } 2000 \\ & \text { cps. } \end{aligned}$	$\begin{aligned} & 8000+5 \% \\ & \text { at } 2000 \\ & \text { cps. } \end{aligned}$	$\begin{aligned} & 1500 \text { to } \\ & 2500 \mathrm{cps} . \end{aligned}$	6 db bandwidth:   $2100+150$   cps. 40   db band-   width:   $3100+200$   cps.	3 db max. at 2000 cps .	$\begin{aligned} & 10 \mathrm{v} \mathrm{rms.} \\ & \text { (no dc) } \end{aligned}$
$\begin{gathered} \text { FL4 } \\ \text { (figure } \\ 5-1 \text { ) } \end{gathered}$	Lowpass   keying   filter.   Section A: (terminals 1, 2, 3.)	$\begin{aligned} & 20 \mathrm{~K}+20 \% \\ & \text { at } 5 \mathrm{cps.} \end{aligned}$	$\begin{aligned} & 20 \mathrm{~K}+20 \% \\ & \text { at } 5 \mathrm{cps.} \end{aligned}$	0 to 45 cps .	2 db at 15   cps. 3.5   db at 45   cps. 18   $\mathrm{db}(\min )$   at 140 cps .   $65 \mathrm{db}(\mathrm{min})$   from 1500   cps to   8000 cps .	--	$\begin{aligned} & 10 \mathrm{v} \cdot \mathrm{rms} . \\ & (\mathrm{no} \mathrm{dc}) \end{aligned}$


TABLE 6-2. FILTER CHARACTERISTICS (Cont.)
SYMBOL

Record audio oscillator frequency. Decrease audio oscillator frequency until vtvm connected to TP_ 1 indicates 0.05 volt, keeping audio oscillator output voltage constant. Subtract lower frequency from higher frequency. Result must be 1400 cps +100 cps .

Step 12. Turn POWER switch to Off and disconnect vtvm and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, J2, at rear of converter cabinet.
(7) DISCRIMINATOR TESTS. - Discriminator frequency response characteristics are given in the curves of figure 6-1. These are in terms of frequency versus output voltage. Resistance information is given in figure 6-2. Perform the following procedures to check the discriminator characterics. Replace any discriminator not passing applicable tests.

## (a) WIDE-SHIFT

DISCRIMINATOR.
Step 1. Withdraw chassis to stops on drawer slides, and OPERATE INTERLOCK SWITCHES (figure 2-10) by pressing in on button at left side of switch block.

Step 2. Connect vtvm, audio oscillator, and frequency meter to power
source and turn power switches on. Allow at least 15 minutes warmup for frequency meter.

Step 3. Set converter SHIFT switch to WIDE, and SPEED switch to SLOW. Turn POWER switch to On position. Allow five minute warm-up period.

Step 4. Remove cable attached to AUDIO INPUT connector, J2, at rear of converter cabinet.

Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J 2 , or to terminals 1 and 3 of Z 1 (figure 5-1).

Step 6. Set audio oscillator to 3 kc , using frequency meter.

Step 7. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals. Adjust audio oscillator to obtain vtvm indication of 6.0 volts.

Step 8. Adjust multimeter to measure 15 volts dc. Connect positive lead to multimeter to black test point, TP_ $\star 4$ (figure 5-2). Connect negative lead of multimeter to converter chassis.

Step 9. Adjust converter LEVEL control to obtain multimeter indication of 15 volts.


Figure 6-1. Discriminator Frequency Response Curves


Figure 6-2. Filter, Relay, and Transformer Resistance Data (Sheet 1 of 2)


Figure 6-2. Filter, Relay, and Transformer Resistance Data (Sheet 2 of 2)

Step 10. Adjust audio oscillator to 950 cps , using frequency meter, keeping output voltage at 6.0 volts. Reverse multimeter leads. Record multimeter indication.

Step 11. Increase audio oscillator frequency in 50 cps steps to 3150 cps . Record multimeter voltage indication at each frequency.

Step 12. Plot these points on a graph. Connect points with a smooth curve.

Step 13. Draw a straight line between 1650 and 2350 cps points. Frequency deviation from curve shall not be greater than 35 cps. Crossover point shall be between 1950 and 2050 cps. Peaks shall be $1150+100 \mathrm{cps}$ and $2850+150 \mathrm{cps}$.

Step 14. Turn POWER switch to Off and disconnect vtvm, multimeter, and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, J2, at rear of converter cabinet.
(b) NARROW-SHIFT

DISCRIMINATOR.
Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure $2-10$ ) by pressing in on button at left side of switch block.

Step 2. Connect vtvm, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.

Step 3. Set converter SHIF T switch to NARROW and turn POWER switch to On position. Allow five minute warm-up period.

Step 4. Remove cable connected to AUDIO INPUT connector, J2, at rear of converter cabinet.

Step 5. Connect audio oscillator output terminals to AUDIO INPUT connector, J 2 , or to terminals 1 and 3 of Zl (figure 5-1).

Step 6. Set audio oscillator to 1200 cps , using frequency meter.

Step 7. Set vtvm range switch to 10 volts and connect to audio oscillator output terminals. Adjust audio oscillator to obtain vtvm indication of 6.0 volts.

Step 8. Adjust multimeter to measure 15 volts dc. Connect positive lead of multimeter to black test point, TP- 4 (figure 5-2). Connect negative lead of multimeter to converter chassis.

Step 9. Adjust converter LEVEL control to obtain multimeter indication of 15 volts.

Step 10. Adjust audio oscillator to 500 cps , keeping output voltage at 6.0 volts. Reverse multimeter leads. Record multimeter indication.

Step 11. Increase audio oscillator frequency in 100 cps steps to 700 cps and in 20 cps steps from 700 cps to 1500 cps . Record multimeter voltage indication at each frequency.

Step 12. Plot these points on a graph. Connect points with a smooth curve.

Step 13. Draw a straight line between 900 and 1100 cps points. Frequency deviation from curve shall not be greater than 15 cps . Crossover point shall be between 980 and 1020 cps . Peaks shall be $800+30 \mathrm{cps}$ and $1200+40 \mathrm{cps}$.

Step 14. Turn POWER switch to Off and disconnect vtvm, multimeter, and audio oscillator from converter. Reconnect cable to AUDIO INPUT connector, J2, at rear of converter cabinet.
(8) LOW-PASS KEYING

FILTER TESTS. - Table 6-2 lists characteristics of low-pass keying
filter. Resistance information is given in figure 6-2. Perform the following procedures to check characteristics of low-pass keying filter FL4. Replace filter if it fails these tests.

Step 1. Withdraw chassis to stops on drawer slides, and operate interlock switches (figure $2-10$ ) by pressing in on button at left side of switch block.

Step 2. Connect vtvm's, audio oscillator, and frequency meter to power source and turn power switches on. Allow at least 15 minutes warm-up for frequency meter.

Step 3. Set converter SPEED switch to SLOW, and turn POWER switch to On position. Allow five minute warm-up period.

Step 4. Connect a $20 \mathrm{k}+1 \% \mathrm{re}-$ sistor to 'hot' terminal of audio oscillator. Connect other end of resistor to terminal 1 of FL4 (figure 5-1). Connect ground terminal of audio oscillator to converter chassis.

Step 5. Adjust audio oscillator frequency to 15 cps , using frequency meter.

Step 6. Connect a $20 \mathrm{k}+1 \%$ resistor across vtvm terminals.

Step 7. Set vtvm range switch to 10 volts. Connect
vtvm between terminal 3 of FL4 and converter chassis using coaxial cable.

Step 8. Adjust audio oscillator for vtvm indication of 5.0 volts.

Step 9. Set range switch of second vtvm to 10 volts and connect to audio oscillator output terminals (on oscillator side of 20 k resistor). Record vtvm indication.

Step 10. Increase audio oscillator frequency to 45 cps , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must be 3.15 to 4.0 volts.

Step 11. Increase audio oscillator frequency to 140 cps , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.63 volt.

Step 12. Increase audio oscillator frequency to 560 cps , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.016 volt.

Step 13. Increase audio oscillator
frequency to 8 kc , keeping output voltage constant. Indication of vtvm connected to terminal 3 of FL4 must not be greater than 0.0027 volt at any frequency from 1500 cps to 8 kc .

Step 14. Set converter SPEED switch to FAST.

Step 15. Adjust audio oscillator frequency to 60 cps , using frequency meter.

Step 16. Move audio oscillator lead from terminal 1 of FL4 to terminal 4 of FL4.

Step 17. Move vtvm lead from terminal 3 of FL4 to terminal 6 of FL4.

Step 18. Adjust audio oscillator output for 5.0 volt indication on vtvm connected to terminal 6 of FL4.

Step 19. Record audio oscillator output voltage (on oscillator side of 20 k resistor).

Step 20. Increase audio óscillator frequency to 175 cps , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must be 3.15 to 4.0 volts.

Step 21. Increase audio oscillator frequency to 560 cps , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.63 volt.

Step 22. Increase audio oscillator frequency to 2240 cps , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.016 volt.

Step 24. Increase audio oscillator frequency to 8 kc , keeping output voltage constant. Indication of vtvm connected to terminal 6 of FL4 must not be greater than 0.0027 volt at any frequency from 4 kc to 8 kc .

Step 25. Turn POWER switch to Off and disconnect audio oscillator and vtvm from converter.



Luce Numess ane santo Numese









PARTS LIST

## 7-1. INTRODUCTION.

Reference designations have been assigned to identify all maintenance parts of Comparator-Converter Group AN/URA-17D, hereinafter referred to as the AN/URA-17D. They are used for marking the equipment (adjacent to the part they identify) and are included on drawings, diagrams, and the parts list. The letters of a reference designation indicate the kind of part (generic group), such as resistor, capacitor, transistor, etc. The number differentiates between parts of the same generic group. Sockets are associated with a particular plug-in device, such as a transistor or fuse, are identified by a reference designation which includes the reference designation of the plug-in device. For example, the socket for fuse Fl is designated XFl.

Stock Number Identification Tables (SNIT) or Allowance Parts List (APS) issued by the Electronics Supply Office include Federal Stock Numbers and Source Maintenance and Recoverability Codes. Therefore, reference shall be made to the appropriate SNIT or APL for this information.

## 7-2. MAINTENANCE PARTS LIST.

Table 7-1 lists all maintenance parts used in the AN/URA-17D. Column lists the reference designations of the various parts in alphabetical and numerical order. Column 2 refers to explanatory notes, if any, that appear in paragraph 7-4. Column 3 gives the name and describes the various parts. Complete information is given for all key parts (parts differing from any part previously listed in this table). The name and description are omitted for other parts. However, reference is made to the key part for the data. Column 4 indicates how thepart is used and gives its functional location in the equipment. The figure listed shows the physical location of the part.

## 7-3. LIST OF MANUFACTURERS.

Table 7-2 lists manufacturers of parts used in the AN/URA-17D.

7-4. NOTES.
Not applicable.

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST

| REF. |
| :--- | :--- | :--- | :--- |
| DESIG. | NOTES | NAME AND DESCRIPTION |
| :--- |
| C-199 |

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
CR11		SEMICONDUCTOR DEVICE, DIODE: Silicon, per MIL-S19500, type JAN1N457	Key pulse rectifier, mark lock-up input (Figure 6-4).
CR12		Same as CR11	Bias discharge, Qll base (Figure 6-4).
CR 13		Same as CR11	Q12 base bias (Figure 6-4).
CRI 4		Same as CR11	$\mathrm{P} / \mathrm{O}$ diversity comparator network   (Figure 6-3).
CR15		Same as CR11	$\mathrm{P} / \mathrm{O}$ diversity comparator network   (Figure 6-3).
CR16		Same as CRII	$\mathrm{P} / \mathrm{O}$ diveristy comparator network   (Figure 6-3).
CR17		Same as CRIl	$\mathrm{P} / \mathrm{O}$ diversity comparator network   (Figure 6-3).
CR18		Not used	
CR19		Same as CRI	Protects against reversal of +120 vdc keyer supply (figure 6-3).
CR20		Same as CR1	Protects against reversal of +120 vdc keyer supply (figure 6-3).
CR21		Not used	
CR22		Not used	
CR23		Same as CRl	+48 vdc supply rectifier (figure 6-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PASTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
CR24		Same as CRI	+48 vdc supply rectifier   (Figure 6-4).
CR25		Same as CRI	+48 vdc supply rectifier (Figure 6-4).
CR26		Same as CRI	-48 vdc supply rectifier (Figure 6-4).
CR27		SEMICONDUCTOR DEVICE, DIODE: Zener per MIL-S. 19500/115, type JAN1N2995RB	- 48 volt regulator (Figure 6-4).
CR28		Not used	
CR29		SEMICONDUCTOR DEVICE, DIODE: Zener per MIL-S19500 JANIN753	Emitter Q14 DC limiter
CR30		SEMICONDUCTOR DEVICE, DIODE: Zener per MIL-S19500 JAN1N753.	Emitter Q16 DC limiter
CR31		Not used	
CR32		SEMICONDUCTOR DEVICE, DIODE: Silicon per MIL-S19500/142, type JANIN1731	-560 vdc supply rectifier (Figure 6-4).
CR33		Not used	
CR34		SEMICONDUCTOR DEVICE, DIODE: Zener per MIL-S. 19500/115, type JAN1N2995B	+48 volt regulator

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
C 1		CAPACITOR, FIXED, ELECTROLYTIC: Tantalytic, $6.8 \mathrm{uf}, 35 \mathrm{vdc}$ working, part no. CS13AF6R8M	Coupling, Sl-A to Q1 base (Figure 6-3).
C2		Same as Cl	Bypass, Q1 emitter   (Figure 6-3).
C3		Same as Cl	Decoupling, Ql collector (Figure 6-3).
C4		Same as Cl	Coupling, Ql collector to Sl-B   (Figure 6-3).
C5		Same as Cl	Coupling, Sl-B to Q2 base (Figure 6-3).
C6		Same as Cl	Coupling S1-B to Q3 base (Figure 6-3).
C7		Same as Cl	Decoupling, Q2 collector (Figure 6-3).
C8		Same as Cl	Coupling, Q2 collector to Q4 base   (Figure 6-3).
C9		Same as Cl	Bypass, Q2 emitter (Figure 6-3).
C 10		Same as Cl	Bypass, Q3 emitter   (Figure 6-3).
Cll		Same as Cl	Coupling, Q3 collector to Q5 base   (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA. 17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
C 12		CAPACITOR, FIXED, ELECTROLYTIC: 120 uf, 10 vdc working, solid tant, cap., $\pm 20 \%$ insulating sleeve, part no. CS13AC121M, per MIL-C-26655/2C	Bypass, Q4 emitter   (Figure 6-3).
C 13		Same as C12	Bypass, Q5 emitter   (Figure 6-3).
C 14		CAPACITOR, FIXED, ELECTROLYTIC: 20 uf $\pm 20 \%$ $+50 \%, 60 \mathrm{vdc}$ working, MIL-C-3965, type CL65BK200MP3	Decoupling, Q5 collector (Figure 6-3).
C 15		CAPACITOR, FIXED, PAPER DIELECTRIC: 0.22 uf $\pm 10 \%$, 100 vdc, MIL-C-25/1 type CP05A1KB224K1	Decoupling, Q8 collector (Figure 6-4).
C 16		CAPACITOR, FIXED, PAPER DIELECTRIC: 0.18 uf 600 vdc , MIL-C-25/1K type CP05A3EF184V1	Rfi suppression (Figure 5-6).
C 17		```CAPACITOR, FIXED, ELECTROLYTIC: 50 uf }\pm20 +50%, 60 vdc working, MIL-C-3965-4C type CL65BK500MP3```	P/O axis restorer network (Figure 6-4).
C18		Same as Cl7	P/O axis restorer network (Figure 6-4).
C 19		Same as Cl7	P/O axis restorer network   (Figure 6-4).
C20		Same as C17	$\mathrm{P} / \mathrm{O}$ axis restorer network (Figure 6-4).
C21		Not used	

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
C22		CAPACITOR, FIXED, ELECTROLYTIC: 22 uf $\pm 20 \%$ $+50 \%, 100$ vdc, MIL-C- 3965 type CL65BN220MP3	P/O-48v power supply filter network (Figure 6-4).
C23		Same as C22	P/O-48v power supply filter network (Figure 6-4).
C24		Same as C22	$\mathrm{P} / \mathrm{O}-48 \mathrm{v}$ power supply filter network (Figure 6-4).
C24A		Same as C22	P/O-48v power supply filter network (Figure 6-4).
C25		CAPACITOR, FIXED, MICA DIELECTRIC: 430 uf $\pm 10 \%$ 500 vdc; MIL-C-5B, type CM15E431KN3	$\mathrm{P} / \mathrm{O}+48 \mathrm{v}$ power supply filter network (Figure 6-4).
C26		Same as Cl7	P/O -48 v power supply filter network (Figure 6-4).
$\begin{aligned} & \mathrm{C} 27 \\ & \mathrm{~A}-\mathrm{B} \end{aligned}$		CAPACITOR, FIXED, PAPER DIELECTRIC: dual section; $0.1 \mathrm{uf}+20 \%, 1000 \mathrm{vdc}$ working per section; MIL-C-25 type CP54B4EG104V1	P/O-560v power supply filter network (Figure 5-1).
C28		Same as C22	$\mathrm{P} / \mathrm{O}+48 \mathrm{v}$ power supply filter network (Figure 6-4).
C29		Same as C25	$\mathrm{P} / \mathrm{O}-48 \mathrm{v}$ power supply filter network (Figure 6-4).
C30		Same as Cl4	P/O +48 v power supply filter network (Figure 6-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
$\begin{aligned} & \mathrm{C} 31 \\ & \mathrm{~A}-\mathrm{B} \end{aligned}$		Same as C27 A-B	P/O -560 v power supply   filter network   (Figure 5-1).
C32		Same as Cl	P/O biasing RC network for Q11   (Figure 6-4).
DS 1		LAMP, GLOW: 0.04 watt, T-3-1/4 bulb; MIL-L-15098B type NE-51	Power on-off indicator (Figure 5-1).
El		TERMINAL STUD: silver plated brass term; 39/64 in. lg by l/4 in. hex base; No. 6-32 threaded ceramic base; 2, 500 RM S breakdown voltage at 60 cps ; Electronic Molding part No. 2013-91-1	Grourded input center tap (Figure 2-6).
E2		CLAMP, CABLE AN3057-6	Secure cables to connectors.
FLl		FILTER, BANDPASS: 2000 cps +50 cps operating freq; 8000 ohms $+5 \%$ input/output impedance at 2000 cps ; four terminals; 2-1/4 in. $\lg$ by $2-1 / 4 \mathrm{in}$. h by 1-3/4 in. w; Orion Spec Control dwg D-031705-68	Wideband filter, input to Sl-A   (Figure 5-1).
FL2		FILTER, BANDPASS: peaked at $800 \mathrm{cps}+40 \mathrm{cps}$ and 1200 cps +49 cps with crossover at 1000 cps +15 cps , four terminals $2-1 / 4 \mathrm{in} .1 \mathrm{~g}$ by $1-3 / 4 \mathrm{in}$. h by 1-1/2 in. w; Orion Spec Control dwg D-030602-65	Narrow-shift discriminator between Q1 and Q2 or Q3 (Figure 5-1).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
FL3		FILTER, BANDPASS: peaked at $1150 \mathrm{cps}+100 \mathrm{cps}$ and 2850 cps +150 cps with crossover at 2000 cps +40 cps ; four terminals; $2-1 / 4 \mathrm{in}$. $\lg$ by $1-3 / 4$ in. $h$ by $1-1 / 2$ in. w; Orion Spec Control dwg D-031705-66; Transonic Inc., type TS-5216.	Wide-Shift   discriminator between   Q1 and Q2 or Q3   (Figure 5-1).
FL4		FILTER, BANDPASS, LOW PASS: section A: 45 cps cutoff frequency; 2 db or less insertion loss at $15 \mathrm{cps} ; 18 \mathrm{db}$ at 140 cps ; $50 \mathrm{db} \min$ at $560 \mathrm{cps} ; 65 \mathrm{db}$ at 1500 cps to $8 \mathrm{kc} ; 20 \mathrm{k}+20 \%$ input and output impedance at 5 cps ; Section B: 175 cps cutoff frequency, 2 db or less insertion loss at $15 \mathrm{cps} ; 18 \mathrm{db}$ at 560 cps ; 50 db at $2240 \mathrm{cps} ; 65 \mathrm{db}$ at 4 kc to 8 kc ; Orion Spec Control dwg D-030602-67	Keying filter at input to Q6   (Figure 5-1).
F1		FUSE, CARTRIDGE: Silver plated, MS90079-18-1 type F03GR500B	AC line fuse (Figure 5-1).
F2		Same as Fl	AC line fuse   (Figure 5-1).
J 1		CONNECTOR, RECEPTACLE, ELECTRICAL: 15 contacts, gold plated; low loss plastic dielectric; brass body, irridite finish; Cannon Electric Co. part No. DAM-15P	Distribution jack on CV-483D/URA-17   chassis (Figure 5-1).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
J2		CONNECTOR, RECEPTACLE, ELECTRICAL: three No. 16 female contacts, low loss plastic dielectric insulation; box type aluminum allow body; cad plate and chromate finish; MS3102A14S-7S; MIL-C-5015	AUDIO INPUT connector on cable receptacle panel (Figure 2-4).
J3		CONNECTOR, RECEPTACLE, ELECTRICAL: three No. 16 male contacts, low loss plastic dielectric insulation; box type aluminum alloy body; cad plate and chromate finish; MS3102A14S-7P; MIL-C-5015	POWER input connector on cable receptacle panel (Figure 2-4).
J 4		```CONNECTOR, RECEPTACLE, ELECTRICAL: MIL-G-3608 type UG-1094/U```	DIV. A connector for comparator interconnection (Figure 2-4).
J5		Same as J4	DIV. B connector for comparator interconnection (Figure 2-4).
J6		CONNECTOR, RECEPTACLE, ELECTRICAL: 3 male contacts, low loss plastic dielectric; box type aluminum alloy body; cad plate and chromate finish; MS-3102A-10SL-3P	TTY OUTPUT connector.   Loop keyer output to TTY HIGH LEVEL (Figure 2-4).
J 7		Same as J4	REMOTE TUNING IND.   connector to remote tuning indicator (Figure 2-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
J8		CONNECTOR, RECEPTACLE, ELECTRIAL: 2 female contacts, low loss plastic dielectric; box type aluminum alloy body; cad plate and chromate finish; MS-3102A-14S-9S	TTY OUTPUT connector. Loop keyer output to TTY LOW LEVEL (Figure 2-4).
K1		RELAY, SOLID STATE: P/N dwg \# C0010	DRIVES Q17 and Q18 (Figure 6-5).
Pl		CONNECTOR, PLUG, ELECTRICAL: 15 contacts, gold plated; low loss plastic dielectric; brass body, iridite finish; Cannon Electric Co. part No. DAM-15S	Connects Jl to external cable receptacle panel (Figure 5-1).
Q1		TRANSISTOR: germanium, PNP, Sylvania Electric Products Inc., type JAN2N526; MIL-S19500	Audio amplifier (Figure 6-3) .
Q2		Same as Q1	lst mark amplifier (Figure 6-3).
Q3		Same as Q1	1 st space amplifier (Figure 6-3).
Q4		TRANSISTOR: JAN2N1041; MIL-S- 19500	2nd mark amplifier (Figure 6-3).
Q5		Same as Q4	2nd space amplifier (Figure 6-3).
Q6		TRANSISTOR: silicon, NPN, MIL-T-19500/37A type JAN2N333	DC amplifier (Figure 6-4).
Q7		Same as Q6	DC amplifier (Figure 6-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
Q8		Same as Q6	DC amplifier (Figure 6-4).
Q9		Same as Q6	DC amplifier (Figure 6-4).
Q10		TRANSISTOR: silicon, NPN; Texas Instrument Corp., type JAN2N657; MIL-S-19500/74C	DC amplifier   (Figure 6-4).
Q11		TRANSISTOR: germanium, NPN; Texas Instrument Corp., type JAN2N336; MIL-S-19500	Mark lock-up control (Figure 6-4).
Q12		TRANSISTOR: Silicon, NPN; Texas Instrument Corp., type JAN2N497; MIL-S-19500/74C	Mark lock-up switching (Figure 6-4).
Q13		Same as Q11	$\mathrm{P} / \mathrm{O}$ dc limiter   (Figure 6-3).
Q14		TRANSISTOR: germanium,   PNP; Sylvania Electric Products   Inc., type JAN2N328A;   MIL-S-19500/115	$\mathrm{P} / \mathrm{O}$ dc limiter   (Figure 6-3).
Q15		Same as Q14	$\mathrm{P} / \mathrm{O}$ dc limiter   (Figure 6-3).
Q16		Same as Q6	P/O dc limiter   (Figure 6-3).
Q17		TRANSISTOR: Silicon, NPN, RCA Inc., type JAN2N3440; MIL-S-19500	P/O loop keyer   (Figure 6-3).
Q18		TRANSISTOR: Silicon, PNP, RCA Inc., type JAN2N5415; MIL-S-19500	P/O loop keyer (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R1		$\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION: } \\ & 5600 \text { ohms }+5 \%, 1 / 2 \text { w; MIL-R-11, } \\ & \text { type RC20GF562J; part No. } \\ & \text { MS } 35043-105 \end{aligned}$	Impedance matching (Figure 6-3).
R2		RESISTOR, FIXED, COMPOSITION: $10 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11 type RC20GF103K; part No. MS35043-19	Base bias, Ql (Figure 6-3).
R3		RESISTOR, FIXED, COMPOSITION: $47 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF473K; part No. MS35043-23	Base bias, Ql (Figure 6-3).
R4		$\begin{aligned} & \text { RESISTOR, VARIABLE, COM- } \\ & \text { POSITION: 10K, }+10 \%, 2 \mathrm{w} ; \\ & \text { single section; MIL-R- } 94 / 5 \text { type } \\ & \text { RV4NAYSD103C } \end{aligned}$	LEVEL control, variable collector load, Q1 (Figure 6-3).
R5		RESISTOR, FIXED, COMPOSITION: 680 ohms $+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GR681K; part No. MS35043-12	Decoupling - 26 v (Figure 6-3).
R6		$\begin{aligned} & \text { RESISTOR, FIXED, COMPOSITION: } \\ & 120 \text { ohms +10\%, 1/2 w; MIL-R-11, } \\ & \text { type RC } 20 \mathrm{GF} 121 \mathrm{~K} \text {; part No. } \\ & \text { MS } 35043-198 \end{aligned}$	Degeneration, Q1 emitter (Figure 6-3).
R7		RESISTOR, FIXED, COMPOSITION: $3.9 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF392K; part No. MS35043-207	Emitter bias, Q1 (Figure 6-3).
R 8		RESISTOR, FIXED, COMPOSITION: $18 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF183K; part No. MS35043-211	Impedance matching (Figure 6-3).
R9		Same as R8	Impedance matching (Figure 6-3).
R10		Same as R8	Impedance matching (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R11		RESISTOR, FIXED, COMPOSITION: $22 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF223K; part No. MS35043-21	Base bias, Q2 (Figure 6-3).
R 12		RESISTOR, FIXED, COMPOSITION: $6.8 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF682K; part No. MS35043-18	Base bias, Q2   (Figure 6-3).
R13		Same as R12	Base bias, Q3 (Figure 6-3).
R 14		Same as R11	Base bias, Q3 (Figure 6-3).
R15		RESISTOR, FIXED, COMPOSITION: $1.5 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF152K; part No. MS35043-14	Decoupling, -26 v line (Figure 6-3).
R16		Same as R15	Collector load, Q2 (Figure 6-3).
R17		RESISTOR, VARIABLE, COM-   POSITION: 2500 ohms;   MIL-R-94A type RV6LAYSA252A	SPACE GAIN control,   Q3 emitter   (Figure 5-1).
R18		Same as R15	Collector load, Q3 (Figure 6-3).
R19		RESISTOR, FIXED, COMPOSITION: 470 ohms $+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF471K; part No. MS35043-11	Base bias, Q4 (Figure 6-3).
R20		RESISTOR, FIXED, COMPOSITION: $1.8 \mathrm{k}+10 \%$, 1 W ; MIL-R-11, type RC32GF182K; part No. MS35044-225	Degenerative feedback,   Q4   (Figure 6-3).
R21		Same as R19	Base bias, Q5 (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R22		Same as R20	Degenerative feedback, Q5 (Figure 6-3).
R 23		RESISTOR, FIXED, COMPOSTION: 390 ohms $+10 \%$, 1/2 w; MIL-R-11, type RC20GF391K	Emitter bias, Q4 (Figure 6-3).
R24		Same as R23	Emitter bias, Q5 (Figure 6-3).
R25		RESISTOR, FIXED, COMPOSITION: $12 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF123K; part No. MS35043-210	Mark signal summing resistor   (Figure 6-3).
R26		Same as R25	Space signal summing resistor   (Figure 6-3).
R27		RESISTOR, FIXED, COMPOSITION: 2200 ohms $+10 \%$, 1 w ; MIL-R-11, type RC32GF222K	Voltage dropping resistor (Figure 6-3).
R28		Same as R27	Voltage dropping resistor (Figure 6-3).
R29		RESISTOR, FIXED, COMPOSITION: $27 \mathrm{k}+10 \%$, 1/2 w; MIL-R-11, type RC20GF273K; part No. MS35043-212	Base Biasing, Q6 (Figure 6-4).
R 30		RESISTOR, FIXED, COMPOSITION: $15 \mathrm{k},+10 \%$, l/2 w; MIL-R-11, type RC20GF153K; part No. MS35043-20	Emitter bias, Q6 and Q9 (Figure 6-4).
R 31		RESISTOR, VARIABLE, COMPOSITION: lk; MIL-R-11 type RV6LAYSA102A	```VERT CTR control, variable emitter bias for Q6 and Q9 (Figure 5-1).```
R32		Same as R11	Collector load, Q6 (Figure 6-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R 33		RESISTOR, FIXED, COMPOSITION: $8.2 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF822K; part No. MS35043-209	Collector load, Q7   (Figure 6-4).
R 34		Same as R33	Collector load, Q8 (Figure 6-4).
R 35		Same as R30	Emitter bias, Q7 and Q8 (Figure 6-4).
R 36		Same as R11	Collector load, Q9 (Figure 6-4).
R37		Same as R25	Base bias, Q9 (Figure 6-4).
R38		RESISTOR, FIXED, COMPOSITION: $3 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF333K; part No. MS35043-22	Base bias, Q10   (Figure 6-4).
R39		RESISTOR, VARIABLE, COMPOSITION: 10k; MIL-R-94 type RV6LAYSA103A	LIN control, variable; base bias, Ql0 (Figure 5-1).
R40		Same as R33	Base bias, Q10 (Figure 6-4).
R41		RESISTOR, FIXED, COMPOSTION: 150k $+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF154K; part No. MS35043-26	Degenerative feedback,   Q10 to Q?   (Figure 6-4).
R 42		RESISTOR, FIXED, COMPOSITION: $4.7 \mathrm{k}+10 \%$, 1 w ; MIL-R-11, type RC32GF472K; part No. MS35044-17	Collector load, Q10 (Figure 6-4).
R 43		RESISTOR, FIXED, COMPOSITION:   560 ohms $+10 \%$, 1 w ; MIL-R-11,   type RC32GF561K; part No.   MS35044-222	Emitter bias, Q10 (Figure 6-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R44		RESISTOR, FIXED, COMPOSITION: $2.2 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF222K; part No. MS35043-15	Isolates TP-4 from axis restorer (Figure 6-4).
R 45		Same as R11	Axis restorer combining resistor   (Figure 6-4).
R46		Same as R11	Axis restorer combining resistor   (Figure 6-4).
R47		RESISTOR, FIXED, COMPOSTION: $1.8 \mathrm{meg}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF185K	Voltage dropping resistor (Figure 6-4).
R 48		Same as R3	P/O biasing RC network for Qll   (Figure 6-4).
R49		Same as R30	Collector load, Qll (Figure 6-4).
R50		Same as R2	Coupling resistor, Q11 collector to Q12 base (Figure 6-4).
R 51		Same as R3	Base bias, Q12 (Figure 6-4).
R 52		Same as R33	Collector load, Q12 (Figure 6-4).
R 53		RESISTOR, FIXED, COMPOSITION: $120 \mathrm{k}+10 \%$, l/2 w; MIL-R-11, type RC20GF124K; part No. MS35043-216	Voltage dropping resistor (Figure 6-4).
R 54		Same as R38	Comparison resistor (Figure 6-4).
R55		Same as R38	Comparison resistor (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R 56		RESISTOR, FIXED, COMPOSITION:   $2.2 \mathrm{meg}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF225K; part No. MS35043-33	Base bias, Q13 and Q15 (Figure 6-3).
R 57		Same as R 56	Base bias Q13 and Q15 (Figure 6-3).
R58		Same as R11	Coupling, comparator to Q13 and Q15 base (Figure 6-3).
R59		RESISTOR, FIXED, COMPOSITION: $2.2 k+10 \%$, 2 w ; MIL-R-11, type RC42GF222K; part No. MS35045-15	Voltage dropping resistor (Figure 6-3).
R60		Not used	
R61		Not used	
R62		Same as R59	Emitter bias, Q14 (Figure 6-3).
R63	-	RESISTOR, FIXED, COMPOSITION: $680 \mathrm{ohms}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF681K; part No. MS35043-12	Stabilizes dc limiter by feedback to Q13, Q15 emitters (Figure 6-3).
R64		Same as R15	Collector load, Q14 and Q16   (Figure 6-3).
R65		RESISTOR, FIXED, COMPOSITION: $1 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF102K; part No. MS35043-13	Base bias, Ql8 (Figure 6-3).
R66		Not used	
R67		RESISTOR, FIXED, COMPOSITION: RC20GF101K	Current limiting (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R68		RESISTOR, WIREWOUND: 125 ohm, $10 \mathrm{w}, 5 \%$ MIL-R-26/3 RW31G125RD	Current limiter for Zener CR27
R69		Same as R67	Current limiter.
R70		Not used	
R71		Not used	
R 72		Not used	
R73		Not used	
R74		RESISTOR, FIXED, COMPOSITION: $2.2 \mathrm{k}+10 \%$, 1 w ; MIL-R-11, type RC32GF222K; part No. MS35044-15	P/O voltage divider, -48 vdc to -26 vdc (Figure 6-4).
R75		RESISTOR, FIXED, COMPOSITION: $1 \mathrm{k}+10 \%$, 1 w; MIL-R-11, type RC32GF102K; part No. MS35044-13	$\mathrm{P} / \mathrm{O}$ voltage divider, -48 vdc to -26 vdc (Figure 6-4).
R 76		Same as R11	$\mathrm{P} / \mathrm{O}$ voltage divider for crt control   (Figure 6-3).
R 77		RESISTOR, VARIABLE, COMPOSITION: 25k; MIL-R-94/4, type RV6LAYSA253A	HORIZ CENTERING control for crt P/O voltage divider (Figure 5-1).
R78		Same as R11	$\mathrm{P} / \mathrm{O}$ voltage divider for crt control   (Figure 6-3).
R79		Same as R11	$\mathrm{P} / \mathrm{O}$ voltage divider for crt control   (Figure 6-3).
R80		Same as R77	VERT ADJ control for crt, P/O voltage divider (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R81		Same as R11	P/O voltage divider for crt control (Figure 6-3).
R 82		Same as R56	Voltage divider, V1 sweep (Figure 6-4).
R 83		RESISTOR, FIXED, COMPOSITION: $100 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF104K; part No. MS35043-25	Voltage divider, Vl sweep (Figure 6-4).
R 84		Same as R3	```Current limiting, -560 vdc supply (Figure 6-4).```
R 85		RESISTOR, WIREWOUND:   RW67V401; MIL-R-26E/4 $400 \Omega$,   $5 \mathrm{~W}, \pm 5 \%$	Current limiter for Zener CR34.
R86		Not used	
R87		Not used	
R88		Not used	
R 89		Not used	
R90		Not used	
R 91		RESISTOR, FIXED, COMPOSITION: $680 \mathrm{k}+10 \%$, $1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF684K; part No. MS35043-30	$\mathrm{P} / \mathrm{O}$ voltage divider for crt controls   (Figure 6-4).
R 92		RESISTOR, VARIABLE, COMPOSITION: 500k; MIL-R-94/4, type RV6LAYSA504A	FOCUS, variable control for Vl   (Figure 2-10).
R 93		RESISTOR, VARIABLE, COMPOSITION: 1 meg; MIL-R-94/4, type RV6LAYSA105A	INT, variable control for Vl   (Figure 2-10).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
R 94		RESISTOR, FIXED, COMPOSITION: $820 \mathrm{k}+10 \%, 1 / 2 \mathrm{w}$; MIL-R-11, type RC20GF824K; part No. MS35043-221	$\mathrm{P} / \mathrm{O}$ voltage divider for crt controls (Figure 6-4).
R 95		Same as R53	Biasing resistor for V1 cathode   (Figure 6-4).
R 96		Same as R17	MARK GAIN, variable control, Q2 emitter (Figure 5-1).
R97		Same as R94	Base bias for Q6 (Figure 6-4).
$\begin{aligned} & \mathrm{Sl} \\ & \mathrm{~A}-\mathrm{B} \end{aligned}$		SWITCH, ROTARY: First section, two position two shorting movable contacts, six fixed contacts; second section, two position three shorting movable contacts, nine fixed contacts, silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Orion Spec Control dwg D-030602-69	SHIFT switch. Sl-A selects bandpass filter. Sl-B selects discriminator. (Figure 3-1).
S2		SWITCH, ROTARY: One-section, two position; $30^{\circ}$ positioning increments; two shorting moving contacts; six fixed contacts; silver plated brass per QQ-B-613; nonsealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Orion Spec Control dwg D-030602-71	POLARITY switch. Changes polarity of signal to keying filter. (Figure 3-1).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
S3		SWITCH, ROTARY: One-section, two-position; $30^{\circ}$ positioning increments; two shorting moving contacts; six fixed contacts; silver plated brass per QQ-B-613; nonsealed shaft per MIL-S-3786; solder type terminals on Mycalex sections; Orion Spec Control dwg D-030602-72	SPEED switch. Selects keying filter section. (Figure 3-1).
S4		SWITCH, ROTARY: One-section, three-position $30^{\circ}$ positioning increments; two shorting moving contacts; ten fixed contacts, silver plated brass per QQ-B-613; non-sealed shaft per MIL-S-3786; solder type terminals on Mycalex section; Orion Spec Control dwg D-030602-70	FUNCTION switch.   Selects input to comparator. (Figure 3-1).

POWER switch (Figure 3-1).

Provides support for component parts (Figure 5-1).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF. DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNTION
TB2		TERMINAL BOARD: Epoxy glass lamin. 3/32 in. thick per MIL-C-18177, type GEE: Orion dwg No. D-033009-54 1, 2, 3, 4	Provides support for component parts (Figure 5-1).
T1		TRANSFORMER, DISCRIMINATOR: 600 cps to 3600 cps frequency range; shield between pri and sec grounded to case $2-1 / 6 \mathrm{in} . \lg$, 2-1/4 in. w, 1-3/4in. h; Orion Spec Control dwg No. D-030602-61	Coupling from second mark amplifier (Figure 5-1).
T 2		Same as T1	Coupling from second space amplifier (Figure 5-1).
T3		TRANSFORMER, POWER, STEP_ DOWN: Terminals 1 and 2,1 and 3, 1 and 4 for input voltages of $105 \mathrm{vac}, 115 \mathrm{vac}$ and 125 vac at 47.5 cps to $420 \mathrm{cps} ; 0.2 \mathrm{amp}$ primary; 59 vrms $+3 \%$ secondary at $0.25 \mathrm{amp} ; 2-3 / 4 \mathrm{in} . \lg , 2-1 / 4 \mathrm{in}$. w, l-3/4in. h case; six solder stud terminals; four No. 6-32 by $9 / 32$ in. mtg studs; internal shield between pri and sec grounded to case; Orion Spec Control dwg D-030602-63	```Provides power for - 48 vdc supply (Figure 5-1).```

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
T 4		TRANSFORMER, POWER, STEP_ UP, STEP-DOWN: Input terminals 1 and 2,1 and 3,1 and 4 for 105 vac, 115 vac and 125 vac input voltages; 47.5 cps to 420 cps ; output terminals 5 and 6 for 59 vrms $+3 \%$ and 85 ma ; terminals 7 and 8 for $550 \mathrm{vac}+3 \%$ and 0.8 ma ; terminals 8 and 9 for $6.3 \mathrm{vac}+3 \%$ and 0.6 amp; 2-3/4in. lg, 2-1/4in. w, 1-3/4in. h case with four $6-32$ by $9 / 32 \mathrm{in}$. mtg studs; ten solder stud terminals; internal shield between pri and sec grounded to case; Orion Spec Control dwg D-030602-62	Supplies voltage for +48 vdc and -560 vdc supplies (Figure 5-1).
V1		ELECTRON TUBE: Cathode ray; RCA type JAN2BPI MIL-E-272B	Tuning indicator visual display   (Figure 5-1).
XDS 1		LAMPHOLDER: type LH64BC-2; MIL-L-3661	Hoder for DSI   (Figure 5-1).
XFl		FUSEHOLDER: Extractor post type per MIL-R-19207	Holder for Fl   (Figure 5-1).
XF2		Same as XF1	Holder for F2   (Figure 5-1).
XQ1		SOCKET, TRANSISTOR: Three contacts; H. H. Eby part No. 9866-13-6	Socket for Ql (Figure 6-3).
XQ2		Same as XQl	Socket for Q2   (Figure 6-3).
XQ3		Same as XQ1	Socket for Q3 (Figure 6-3).
XQ4		Same as $\mathrm{XQ1}$	Socket for Q4

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF.   DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
XQ5		Same as XQl	Socket for Q5
XQ6		Same as XQ1	Socket for Q6 (Figure 6-4).
XQ 7		Same as XQl	Socket for Q7   (Figure 6-4).
XQ8		Same as XQ1	Socket for Q8 (Figure 6-4).
XQ9		Same as XQ1	Socket for Q9 (Figure 6-4).
XQ10		Same as XQ1	Socket for Q10 (Figure 6-4).
XQ11		Same as XQ1	Socket for Qll   (Figure 6-4).
XQ12		Same as XQ1	Socket for Q12 (Figure 6-4).
XQ13		Same as XQ1	Socket for Q13 (Figure 6-3).
XQ14		Same as XQl	Socket for Q14 (Figure 6-3).
XQ15		Same as $\mathrm{XQ1}$	Socket for Q15   (Figure 6-3).
XQ16		Same as $\mathrm{XQ1}$	Socket for Q16 (Figure 6-3).
XQ17		Same as XQl	Socket for Q17   (Figure 6-3).
XQ18		Same as XQ1	Socket for Q18 (Figure 6-3).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF.   DESIG.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
XV1		SOCKET, ELECTRON TUBE: 12 pin, H. H. Eby part No. 9707-10	Socket for Vl (Figure 5-1).
Z1		FILTER-TRANSFORMER NETWORK: Filter and transformer circuits contained in single case, not interconnected; filter bandpass operating freq 1000 cps ; 6 db bandwidth $500 \mathrm{cps}, 40 \mathrm{db}$ bandwidth $1400 \mathrm{cps} ; 8 \mathrm{k}$ input and output impedance at 1000 cps a-f input transformer pri impedance 600 ohms with secondary terminated in 8000 ohm load at 1000 cps ; frequency response 600 cps to 3600 ; $2-1 / 4$ in. 1 g by $2-1 / 4 \mathrm{in}$. w by $1-3 / 4$ in. h; Orion Spec Contol dwg D-030602-64	High frequency noise attenuation bandpass filter and impedance matching transformer (Figure 5-1).
P201		Not used	
P202		$\begin{aligned} & \text { CONNECTOR, PLUG, } \\ & \text { ELECTRICAL: Two No. } 16 \\ & \text { female contacts; low loss plastic } \\ & \text { dielectric; straight shaped } \\ & \text { aluminum shell; } \\ & \text { MS-3106A-145-9S } \end{aligned}$	External cable connector for AUDIO OUTPUT, J2 (Figure 2-4).
P203		CONNECTOR, PLUG,   ELECTRICAL: Three No. 16 female contacts; low loss plastic dielectric; straight shaped aluminum shell; MS-3106A14S-7S	External cable connector for POWER INPUT, J3 (Figure 2-4).
P204		CONNECTOR, PLUG   ELECTRICAL: MIL-C-3608; type UG-88D/U	External cable connector for J4 (Figure 2-4).
P205		Same as P204	External cable connector for J5 (Figure 2-4).

TABLE 7-1. COMPARATOR-CONVERTER GROUP AN/URA-17D, MAINTENANCE PARTS LIST (Cont.)

REF.	NOTES	NAME AND DESCRIPTION	LOCATING FUNCTION
P206		CONNECTOR, PLUG, ELECTRICAL: Three female contacts; low loss plastic dielectric; straight shaped aluminum shell; MS - 3106A10SL-3P	External cable connector for TTY OUTPUT, J6 HIGH LEVEL (Figure 2-4).
P207		Same as P204	External cable connector for REMOTE RUNNING IND. , J7   (Figure 2-4).
P208		CONNECTOR, PLUG   ELECTRICAL: Two male contacts;   low loss plastic dielectric ;   straight shaped aluminum shell;   MS-3106A1-4S-9S	External cable connector for TTY OUTPUT, J8 LOW LEVEL (Figure 2-4).

TABLE 7-2. COMPARATOR-CONVERTER GROUP AN/URA-17D, LIST OF MANUFACTURERS

ABBREVIATION	NAME	ADDRESS
CTC	Cambridge Thermionic Corp.	Cambridge, Mass.
	Cannon Electric Co.	Los Angeles, Calif.
	Cinch Mfg. Co.	Chicago, Ill.
	Delco Radio   (Div. General Motors Corp.)	Detroit, Mich.
	Electroboard Corp.	Costa Mesa, Calif.
	General Electric Co.	Schenectady, N.Y.
Amphenol	Amphenol	Chicago, Ill.
Littelfuse	Littelfuse, Inc.	Chicago, Ill.
Oak Mfg.	Oak Mfg. Co.	Chicago, Ill.
Orion	Orion Electronic Corp.	Bronx, N.Y.
	Pacific Semiconductor, Inc.	Culver City, Calif.
RCA	Radio Corporation of America	New York, N. Y.
Sprague	Sprague Electric Co.	New York, N. Y.
	Sylvania Electric Products, Inc.	New York, N. Y.
	Texas Instrument Corp.	Dallas, Texas
Eby	H. H. Eby Co.	Philadelphia, Pa.
	Unimax Switch   (Div. W.L. Maxson Corp.)	Wallingford, Conn.
PM	Panel Maker Corp.	Bronx, N. Y.

INDEX

SUBJECT A	PARA. GRAPH (Figure) *Table	SUBJECT C	PARAGRAPH (Figure) *Table
Accessory Equipment	$\begin{aligned} & 1-3,(1-1), \\ & * 2-1 \end{aligned}$	Cable Assembly:   Attaching UG-88D/U	
Adjustments:		Connectors to	
After Transistor		RG-58A/U	
Replacements	*6-1	Coaxial Cable	2-4d(1),
Cathode-Ray Tube	6-2g		
DC Differential			
Amplifier	6-2i	Attaching MS Con-	
Mark-Space Amplifier	6-2h	nectors to	
Power Supply   Adjustments	6-2f	MCOS-2 Cable	$\begin{aligned} & 2-4 \mathrm{~d}(2), \\ & (2-8) \end{aligned}$
Tuning, Single-			
Receiver		Attaching MS Con-	
Operation	3-2e(1)	nectors to TTHFWA	
Tuning, Diversity Operation	3-2e(2)	1-1/2 Cable	$\begin{aligned} & 2-4 d(3), \\ & (2-9) \end{aligned}$
Amplifiers:			
DC Differential,		Cables, Interconnecting:	
Functional Operation		Diversity Operation Single-Receiver	(2-5), *2-2
DC Differential,	4-2c(1)	Single-Receiver	(2-4), *2-1
Adjustments	6-2i	Cable Receptacle Panel	1-3, (2-6)
Mark-Space,		Cathode-Ray Tube:	
Functional		Adjustments	2-5a(2)
Operation	4-2b(4)		(a), 6-2g
Mark-Spec,		Controls	*2-3
Adjustments	6-2h	Replacement	$6-3 \mathrm{~d}(3)$
Audio Input Lines	2-4c(3)	Charts:	
Audio Input Signal	1-5a	Functional Section	
Axis Restorer	4-2c(2)	Troubleshooting	$\begin{aligned} & * 5-2, * 5-3, \\ & * 5-4 \end{aligned}$
B	System TroubleShooting		*5-1
Bandpass Filters:	4-2b(1), $\begin{gathered}\text { Operator's Routine } \\ \text { Check }\end{gathered}$		
			*3-2
	*6-2	Operator's Trouble-	
Tests	6-3d(6)	Shooting	*3-3
Block Diagrams (See Diagrams)		Chassis Removal Checks:	6-3c(1)
		Daily Check for Cor rect Diversity Op eration	
			$3-4 \mathrm{c},(3-3)$


	PARA-
SUBJECT	GRAPH
C(Cont.)	(Figure)
*Table	

Electrical
Mechanical
Comparator
Complement:
Diode
Transistor
Controls:
Cathode-Ray Tuve
Front Panel

## D

## Data:

Quick Reference 1-5
Filter and Transformer Resistance (6-2)
Shipping
*1-4
Daily Check for Correct
Diversity Operation
DC Differential Amplfier:
Adjustments
3-4c, (3-3)

Functional
Operation
DC Limiter
Detector
Diagrams:
Comparator, Simplified(4-5)
Detector, Simplified
(4-4)
Functional Block
4-1e, (4-2)
Interconnecting
$(2-4),(2-5)$
Keyer Cirucits, Schematic
Loop Keyer and Teletype Printer Keying Circuits
Overall Schematic
Power Supply Schematic
Primary Power Distribution Schematic (5-7)
*2-3
(3-1), *3-1

PARA-
GRAPH
(Figure)
D (Cont.)
*Table
Simplified Block
Signal Processing
Circuits Schematic (5-4)
Voltage and Resistance Diagrams:
Signal Processing Circuits
Keyer Circuits
(5-3)
Wiring
(5-5)
Diode Complement
$(6-3),(6-4)$
Discriminator:
Functional Operation $4-2 \mathrm{~b}(3)$,
Response Curves (4-3)
Tests 6-3d(7),
(6-1)
Diversity Operation 1-2,3-1c, 3-2g(2)

E
Emergency Maintenance 3-4f
Equipment:
Accessory $1-3,(1-1)$,
Mounting
(2-1), (2-2),
Supplied
(2-3), 2-4b
Required but not
Supplied *1-2
Test Equipment Required but not
Supplied *1-3
Similarities 1-6e
Electrical:
Pre-Operational Tests 2-5a(2)(b)
Operational Tests 2-5a(2)(c)
External Tuning Indicator 1-3

## F

Factory or Field Changes 1-4
Failure Report 6-1

SUBJECT   F (Cont.)	PARAGRAPH   (Figure)   *Table	SUBJECT I (Cont.)	PARAGRAPH   (Figure) *Table
Filters:		Interconnection:	
Bandpass, Functional		Cables for Diversity	
Operation	$\begin{aligned} & 4-2 b(1), \\ & * 6-2 \end{aligned}$	Operation Cables for Single-	*2-2, (2-5)
Bandpass, Tests	$\begin{aligned} & 6-3 d(6) \\ & (5-4) \end{aligned}$	Receiver Operation	*2-1, $2-4)$
Lowpass Keying, Functional		K	
Operation	$\begin{aligned} & 4-2 b(6), \\ & * 6-2 \end{aligned}$	Keyer Circuits	$\begin{aligned} & 4-2 c,(4-2), \\ & (5-6) \end{aligned}$
Lowpass Keying,		Keyer, Loop	$4-2 c(5)$
Tests	$\begin{aligned} & 6-3 d(8), \\ & (5-4) \end{aligned}$	Keying Filter:	$(4-6),(5-6)$
Resistance Data	$(6-2)$	Functional Operation	4-2b(6),
Frequency-Diversity	1-2		*6-2
Frequency Shift Method of Communication	3-1b	Tests	$6-3 d(7)$
Frequencies, Operating	1-5b	Key Part	7-2
Front Panel Controls	(3-1) , *3-1		
Functional Description:		L	
Diversity Operation	4-1b		
Overall Operation	4-1	Layout Installation	2-3
Single-Receiver		Limiter:	
Operation	4-1c	DC	4-2c(4),
Fuse Replacement	3-4e		$(5-6)$
I		Input	$\begin{aligned} & 4-2 \mathrm{~b}(2), \\ & (5-4) \end{aligned}$
		List of Manufacturers	*7-2
Indicator Lamp		Loop Keyer	4-2c(5),
Replacement	3-4d		$(4-6),(5-6)$
Indicator, Tuning:		Lowpass Keying Filter	4-2b(6),
External	1-3		$* 6-2,(5-4)$
Functional Operation	4-2c(7)		
Presentations	3-2d, (3-2)	M	
Input Signal, af	1-5a		
Input Lines, Audio	$2-4 \mathrm{c}$ (3)	Maintenance:	
Inspection and		Emergency	3-4f
Adjustments	2-5	Operator's	3-4
Installation:		Maintenance Standards	6-2b
Inspection	2-5	Malfunction During	
Layout	2-3	Diversity Operation	5-3d(2)
Requirements	$(2-1),(2-2)$	Malfunction During Single	
	$(2-3)$	Receiver Operation	5-3d(1)


SUBJECT $M$ (Cont. )	PARA-   GRAPH   (Figure)   *Table	SUBJECT $P$	PARAGRAPH (Figure) *Table
Manufacturers, List of	*7-2	Part, Key	7-2
Mechanical Tests	2-5a	Parts:	
Mark Lock-up	$\begin{aligned} & 4-2 c(6), \\ & (5-4) \end{aligned}$	Maintenance, List of Location of	$\begin{aligned} & 7-2, * 7-1 \\ & (5-1) \end{aligned}$
Mark Space Amplifiers:		Performance Standards	6-2b
Adjustments	6-2h, (5-4)	Power Requirements and	
Functional Operation	4-2b(4)	Distribution	1-5e, 2-2
Mounting Equipment:		Power Supplies:	
AN/URA-17D, RackMounting	2-4b(3)	+48 Volt Supply, Functional Operation	4-2d(1)
AN/URA-17D, Table-		+48 Volt Supply,	
Mounting	$\begin{aligned} & 2-4 b(1), \\ & (2-1) \end{aligned}$	Adjustment   - 48 Volt Supply, Func-	6-2f(1)
CV-483D/URA-17,		tional Operation	4-2d(2)
Rack-Mounting	$\begin{aligned} & 2-4 \mathrm{~b}(4), \\ & (2-3) \end{aligned}$	- 48 Volt Supply,   Adjustment	6-2f(2)
CV-483D/URA-17,		-560 Volt Supply, Func-	
Table-Mounting	$\begin{aligned} & 2-4 \mathrm{~b}(2), \\ & (2-2) \end{aligned}$	tional Operation   Power Transformer	4-2d(3)
		Connections	$2-4 \mathrm{c}(4),(5-8)$
0		Preparation for Reshipment:	
Operating Frequencies	1-5b	Dismounting Equip-	
Operator's:		ment	$2-6 b$
Check Chart	*3-2	Packing	2-6c
Controls	*3-1, (3-1)	Presentations, Tuning	
Maintenance	3-4	Indicator	(3-2)
Trouble-Shooting		Primary Power	
Chart	*3-3	Distribution Diagram	(5-7)
Operation:		Principles of Operation	4
Diversity	$\begin{aligned} & 3-1 c, 3-2 g \\ & (2), 3-3 c \end{aligned}$	Publications Required but not Supplied	*1-2
Principles of	4		
Sequence of	3-2	R	
Single-Receiver	3-1d,3-2g   (1), 3-3a	Rack-Mounting	
Operational Check	2-5b	AN/URA-17D	2-4b(3)
Oscilloscope Patterns,		Rack-Mounting	
Signal Tracing .	*5-5	CV-483D/URA-17	2-4b(4)
Outline Drawings,	(2-1), (2-2),	Receiver Tuning Reception:	3-2e
Installat	$(2-3)$	Diversity	3-1c

SUBJECT
R (Cont.)

PARA-
GRAPH
(Figure)
*Table

Single-Receiver	$3-1 \mathrm{~d}$
Reference Data	$1-5$
Removal:	
$\quad$ Chassis	$6-3 \mathrm{c}(1)$
Receptacle Panel	$6-3 \mathrm{c}(4)$
Repair	6
Replacement:	
Cathode-Ray Tube	$6-3 \mathrm{~d}(3)$
Filter	$6-3 \mathrm{c}(2)$
Fuse	$3-4 \mathrm{e}$
Indicator Lamp	$3-4 \mathrm{~d}$
Printed Circuit Board	$6-3 \mathrm{c}(3)$
Rotary Switch Wafer	$6-3 \mathrm{~d}(5)$
Transformer	$6-3 \mathrm{c}(2)$
Transistor	$6-3 \mathrm{~d}(2)$
Transistor Socket	$6-3 \mathrm{~d}(4)$
Report, Failure	$6-1$
Reshipment, Preparation	
for	$2-6$
Resistance Data:	
Filter and Trans-	
$\quad$ former	$(6-2)$
Transistor	$(5-3),(5-5)$
Routine Check Chart,	$* 3-2$
Operator's	

## S

Schematic Diagram:
Comparator, Simplified
Keyer Circuits
Overall
Power Supplies
Primary Power Distribution
Signal Processing Circuits
Teletype Printer DC Keying Relay Circuit, Simplified
Shipping Data
Signal Processing
Circuits
(2-11)
*1-4
$4-2 \mathrm{~b},(5-4)$
Signal
Tracing
Oscilloscope
Patterns

SUBJECT
S (Cont.)

PARA-
GRAPH (Figure) *Table

Single-Receiver Operation 3-1d,

$$
3-2 g(1)
$$

Space Diversity

Standards
$6-2 \mathrm{~b}$

## T

Teletype Printer DC
Keying Relay Circuit, Simplified Schematic
Terminal Board Wiring Diagrams
$(6-3),(6-4)$
Tests:
Bandpass Filter $\quad 6-3 b(6)$
Discriminator $6-3 \mathrm{~d}(7)$
Electrical, Operational

2-5a(2)(c)
Electrical, PreOperational

2-5a(2)(b)
Mechanical
2-5a(1)
Test Points, Location of (5-2)
Transformer and Filter
Resistance Data
Transistor:
Base Data
(5-3), (5-5)
Complement
Voltage and Resistance Data
Trouble-Shooting
Keyer Circuits

Operator's Chart System
Power Supplies
Signal Processing Circuits

Test Equipment Required for
Malfunction During Diversity Operation
Malfunction During Single
Receiver Operation

SUBJECT T (Cont.)	PARA-   GRAPH   (Figure)   *Table	SUBJECT T (Cont.)	PARA-   GRAPH   (Figure)   *Table
Troubles, Typical   Tuning Adjustments:	*5-6	Test Equipment Required for	6-2c
Diversity Operation	3-2e(2)		
Single-Receiver		U	
Operation	3-2e(1)		
Tuning Indicator:		Unpacking and Handling	2-1
Controls	$\begin{aligned} & * 2-3, \\ & (2-10) \end{aligned}$	V	
External	1-3,2-3		
Functional Operation	$4-2 \mathrm{c}(7)$	Voltages, Transistors	$(5-3),(5-5)$
Presentations	3-2d, (3-2)		
Cathode-Ray Tube		W	
Replacement	6-3d(3)		
Tuning and Adjustment:	6-2	Wiring Diagrams	$(6-3),(6-4)$

(Fold on dotted lines on reverse side, staple in corner, and send to Commander, Naval Electronic Systems Command
Technical Publications Branch
Washington, D. C. 20360)

## PROBLEM AREA:

Both sides of this form to be reproduced locally as required.

COMMANDER, NAVAL
ELECTRONIC SYSTEMS COMMAND TECHNICAL PUBLICATIONS BRANCH WASHINGTON, D. C. 20360

## OFFICIAL BUSINESS

COMMANDER, NAVAL ELECTRONIC SYSTEMS COMMAND TECHNICAL PUBLICATIONS BRANCH W ASHINGTON, D. C. 20360


[^0]:    'Every FAILURE REPORT is a boost for you:

    1. It shows that you are doing your job.
