MODEL 40 PAPER WINDER

CONTENTS Page

1. GENERAL 1
2. DESCRIPTION 2
TECHNICAL DATA 2
3. OPERATION 2
40PWU101 EARLY DESIGN
PAPER WINDER (WithoutSensing Arm).2
40PWU101 LATE DESIGN
PAPER WINDER (With
Sensing Arm) AND 40PWU102
PAPER WINDER (17- and 20-
Inch Mounting Brackets for Friction Cabinets) 3
4. INSTALLATION 3
5. ADJUSTMENTS 8
PAPER SPOOL ENDPLAY 8
LATERAL WINDER POSITION (40PWU101) 9
CLUTCH TORQUE (40PWU101
Early Design) 9
CLUTCH TORQUE (40PWU101
Late Design) 10
SENSING ARM (40PWU101
Late Design and 40PWU102). 10
MERCURY SWITCH (40PWU101
Late Design and 40PWU102). 11
LOW CLUTCH TORQUE (40PWU101 Late Design) 11

RTTY ELECTRONICS TELETYPE=Sales-Service-Parts PO Box 20101 El Sobrante, Ca. 94820. (510)222-3102 mr_rtty@pacboll.net

1.02 The 40PWU101 paper winder (Fig. 1early design or Fig. 2-late design or 40PWU102) is a self-contained unit. It is operable with a friction feed printer operating at a line feed rate of 5.2 lines per second or less, and is recommended for single-copy paper only.

Note: When ordering replaceable components, unless otherwise specified, prefix each part number with the letters "TP" (ie, TP410055).

Fig. 1-40PWU101 Paper Winder (Early Design)

Fig. 2-40PWU101 (Late Design) or 40PWU102 Paper Winders

2. DESCRIPTION

2.01 These paper winders consist of a winder frame, paper spool, mounting frame, and mounting hardware.
2.02 The paper spool consists of a two-piece spindle with plastic flanges. The spindle can be easily separated for paper removal.
2.03 The 40PWU101 late design and 40PWU1 02 paper winders also include a sensing arm mechanism, a mercury switch, and a 2 -stage (high-low) slide resistor.

TECHNICAL DATA

2.04 Electrical Characteristics

(a) Power 115 volts ac $\pm 10 \%$, $50 / 60 \mathrm{~Hz}$ single phase
(b) Power dissipation at full load 45 watts

2.05 Physical Characteristics

(a) Dimensions 6-5/8" high 16" deep 17' wide
(b) Weight 9-1/2 lbs (unpacked)
(c) Paper capacity 5'' dia roll, single ply, approximately 490 ' long, not more than 4-1/2 lbs, 8-7/16" wide or less

3. OPERATION

3.01 The drive motor, located on the winder frame, provides the power for winding the paper from the printer onto the paper spool. A slip clutch equipped with a drive brace $w / h u b$, mounted on the motor shaft, supports one end of the paper spool and provides the motion to it through the motor shaft. The brace is driven through a drive disc that is between two clutch washers. A friction sleeve, disc, spring, and nut apply pressure on the drive disc through the two clutch washers.

40PWU101 EARLY DESIGN PAPER WINDER (Without Sensing Arm)
3.02 A slack paper condition causes the friction pressure to rotate the drive brace and in turn rotates the paper spool. A taut paper condition holds the drive brace stationary, causing a slippage that enables the motor shaft to continue to rotate. The amount of slippage can be varied through the amount of compression placed on the friction spring by adjusting the friction nut. Spent paper may be pulled back off the paper spool, overcoming the torque produced in the clutch mechanism, allowing the copy to be viewed.

40PWU101 LATE DESIGN PAPER WINDER (With Sensing Arm) AND 40PWU102 PAPER WINDER (17- and 20-Inch Mounting Brackets for Friction Cabinets)
3.03 A provision termed the "stalled" motor concept is used for controlling the output torque of the clutch. A sensing arm follows the change in the diameter of the paper roll. At a 3 inch diameter roll, a mercury switch is activated, transferring low torque to high torque by means of a 2 -stage slide resistor. A slack paper condition allows the motor to rotate the drive brace which rotates the paper spool. A taut paper condition holds the drive brace stationary and essentially "stalls" the motor. The motor having a determined amount of voltage applied to it by the resistor is readied for immediate rotation. Spent paper may be pulled back off the paper spool, overcoming the clutch torque or the internal gearing within the motor, allowing the copy to be viewed.
3.04 The paper winder has been factory adjusted for operating at 60 hertz. For 50 hertz operation, the low and high resistor values must be readjusted to meet the specified torque requirements shown in LOW MOTOR TORQUE and HIGH MOTOR TORQUE adjustments.

4. INSTALLATION

Danger: Disconnect all power to the printer cabinet.
4.01 Carefully remove the paper winder assembly, paper spool, and mounting frame from the carton and place on a suitable working surface near the cabinet.

4.02 Parts List

(a) For 40PWU101, remove the loose parts from a muslin bag tied to the mounting frame. The loose parts consist of:

Qty	Part No.	Description
4	2191	Lockwasher
3	3646	Lockwasher
4	111427	Washer, Flat
4	151632	Screw, 6-40 x 3/8 Hex
3	156768	Screw, 8-32 x 9/32 Hex
3	181204	Washer, Flat
2	401203	Bumper
2	408898	Tape (3-inch length)

(b) For 40PWU102, place the following parts on a suitable surface for assembly. The loose parts consist of the following:

Qty	Part No.
2	2191
*2	2322
*2	2846
* 4	3292
4	3646
2	408898
2	111427
2	151631
4	156768
4	181204
4	401203
*2	407161
*2	407162
1	407478
1	407479

Description

Lockwasher
Lockwasher
Washer, Flat
Nut, 1/4-20 Hex
Lockwasher
Tape (3-inch length)
Washer, Flat
Screw, 6-40 x 5/16 Hex
Screw, 8-32 x 9/32 Hex
Washer, Flat
Bumper
Leveler, Leg
Cap
Bracket, Right
Bracket, Left
*Not used with 40CAB371 cabinets.
4.03 Remove display monitor (if applicable) (Fig. 3) from printer cabinet. Grasp monitor by sides near supports and simply lift up. Electrical cable connectors are part of support assembly.

Fig. 3-Display Monitor
4.04 Remove printer from cabinet (Fig. 4).
(1) Open cover.

Fig. 4-Printer in Cabinet
(2) Disconnect interlock cable connector.
(3) Remove paper roll.
(4) Release printer to tilt position (Fig. 5) by depressing left and right release levers.

Fig. 5-Printer in Tilt Position
(5) Disconnect 115 V ac connector.
(6) Disconnect SSI cable from printer cable.
(7) Release (push in) printer slide detents and pull printer out by grasping it by the frame (front bottom).
4.05 Assemble paper winder to cabinet. Use Fig. 6 for 40PWU101 and Figs. 7 and 8 for 40PWU102.

Warning: At no time should the cabinet be lifted using the winder frame as one end of the lifting surface.
(1) The 40CAB251/AA cabinets are equipped with a 402143 cable clamp. Remove the cable clamp and cut off approximately $1 / 2$ inch of the right side using a diagonal cutter. Replace the cable clamp.
(2) Reinstall the printer into the cabinet by reversing the procedure used for removal.
(3) Reinstall the display monitor (if so equipped).
(4) Insert the plug of the paper winder cord into a 110 volt power source.
(5) With the power switch in OFF position, feed approximately eight inches of paper from the printer and insert through spindle, rotating the spindle to the rear to take up the slack paper. Depress power switch to ON position.

Fig. 6-40PWU101 Paper Winder Mounted Under Cabinet (17-Inch Wide)

SPECIFICATION 50817S

Note: For 40CAB201/AA/AC and 40CAB251/AA cabinets, two leveling feet are to be installed in the holes located at each front corner of the cabinet. Adjust the levelers to meet the difference in height by raising and lowering the nut located outside of the cabinet.

Fig. 7-40PWU102 Paper Winder Mounted Under Cabinet (17 Inch Wide)

Note: The 40CAB371/AA cabinet has its own leveling feed and can be adjusted for any difference in height, therefore, the leveling feet required for other cabinets is not used.

Fan duct must be removed to gain access to left rear hole. Replace after mounting paper winder.

Fig. 8-40PWU102 Paper Winder Mounted Under Cabinet (20 Inch Wide)

5. ADJUSTMENTS

- Adjustments are common to all paper winders, unless otherwise specified.

Note: Remove paper winder motor cover when making the following adjustments.

PAPER SPOOL ENDPLAY

Requirement

With the plastic pilot seated in the retainer spring on the right and the drive pin seated in the spool hub on the left, there should be a clearance of

Min Some---Max 0.040 inch
between the plastic pivot and frame when the endplay in the motor shaft is taken up to make the clearance a minimum.
To Adjust
Loosen the two setscrews that secure the clutch assembly to the motor shaft. Position the clutch assembly to meet the requirement. Tighten both setscrews. Check that the spool drive pin seats in the spool hub and that the spool rotates freely through the complete revolution.

Warning: Do not distort the vertical ends of the winder frame when making the adjustment.

(Rear View)

LATERAL WINDER POSITION (40PWU101)

Requirement
The paper spool flange must align with spent paper exiting from printer, and the paper should be flat on cabinet top when being wound.

To Adjust
Loosen the three winder assembly mounting screws. Position the winder left or right to meet requirement.

CLUTCH TORQUE (40PWU101 Early Design)

Note: Remove paper spool assembly and motor cover.
Requirement
It should require
Min 7 ounces---Max 11 ounces
to stop rotation of the drive brace with hub.
To Adjust
Operate the winder and hook a spring scale over one of the spacers between the drive disc and drive brace with hub. Loosen the locknut and rotate the friction nut in or out to meet the requirement. Tighten the locknut.

CLUTCH TORQUE (40PWU101 Late Design)

Requirement

With motor side of the clutch in a locked position (use spanner wrench on friction nut) and spring scale hook applied over one of the spacers on the clutch, it should require

Min 40 ounces--Max 50 ounces
to move drive flange.
Note: Take up play in direction of pull before reading scale.
To Adjust
Loosen locknut. Rotate friction nut in or out to meet requirement. Tighten locknut.

SENSING ARM (40PWU101 Late Design and 40PWU102)
Requirement
With an empty paper spool installed in the winder and the stop lever engaging its stop post, there should be approximately
$1 / 8$ inch gap between closest paper spool rod and sensing arm extension post.

To Adjust
With setscrew associated with sensing arm friction tight, position arm to meet requirement. Tighten setscrew.

Requirement
The mercury switch should be activated to the ON position at a Min 3 inch--Max 3-1/2 inch roll diameter.
Danger: Adjustment to be made with unit in the OFF condition.

To Adjust
With mercury switch friction tight and sensing arm rotated to obtain a 3 inch to 3-1/2 inch roll diameter, position switch to a point of just making contact. Tighten screw and recheck requirement.
(Left View)

LOW CLUTCH TORQUE (40PWU101 Late Design)

Requirement (Without Paper Spool)
With unit in the ON position, sensing arm in upper position, and spring scale hook applied over the spacer on the clutch, it should require

Min 7-1/2 ounces---Max 9-1/2 ounces
to allow the clutch to rotate.
Note: Apply greater spring tension than required, then relax tension to obtain values of adjustment.
Danger: Adjustment to be made with unit disconnected from ac line voltage.
To Adjust
Loosen slide clamp locking screw friction tight. Position resistor slide clamp to obtain requirement.
Tighten clamp screw. (To prevent damage to resistor, do not overtighten clamp.) Recheck requirement.

HIGH CLUTCH TORQUE (40PWU101 Late Design)

Requirement (Without Paper Spool)
With unit in the ON position, sensing arm held down, and spring scale hook applied over the spacer on the clutch, it should require

Min 15 ounces---Max 20 ounces
to allow clutch to rotate.
Note: Apply greater spring tension than required, then relax tension to obtain values of adjustment.
Danger: Adjustment to be made with unit disconnected from ac line voltage.
To Adjust
Loosen slide clamp locking screw friction tight, position resistor slide clamp to obtain requirement.
Tighten clamp screw. (To prevent damage to resistor, do not overtighten clamp.) Recheck requirement.

SENSING ARM

LATERAL WINDER POSITION (40PWU102)

Requirement
The paper spool flange must align with spent paper exiting from printer, and the paper should be flat on cabinet top when being wound.

To Adjust
Loosen the four winder assembly mounting screws. Position the winder left or right to meet
requirement.

CLUTCH TORQUE (40PWU102)

Requirement (Preliminary)
With motor side of the clutch in a locked position (use spanner wrench on friction nut) and spring scale hook applied over one of the spacers on the clutch, it should require

Min 40 ounces---Max 50 ounces to move drive flange.

Note: Take up play in direction of pull before reading scale.

To Adjust
Loosen locknut. Rotate friction nut in or out to meet requirement. Tighten locknut.

Requirement (Final)
After installing the clutch on motor shaft, and operating unit for a period of time, clutch torque should measure Min 25 ounces.
If below 25 ounces, readjust clutch.

LOW MOTOR TORQUE (40PWU102)

Requirement
With unit in the ON position, sensing arm in upper position, and spring scale hook applied into the hole of spool flange, it should require

Min 3 ounces---Max 4 ounces
to allow the clutch to rotate.
Note: Apply greater spring tension than required, then relax tension to obtain values of adjustment.

Danger: Adjustment to be made with unit disconnected from ac line voltage.

To Adjust

Loosen slide clamp locking screw friction tight. Position resistor slide clamp to obtain requirement. Tighten clamp screw. (To prevent damage to resistor, do not overtighten clamp.) Recheck requirement.

SPRING SCALE

HIGH MOTOR TORQUE (40PWU102)

Requirement

With unit in the ON position, sensing arm held down, and spring scale hook applied into the hole of spool flange, it should require

Min 6 ounces---Max 8 ounces
to allow clutch to rotate.
Note: Apply greater spring tension than required, then relax tension to obtain values of adjustment.
Danger: Adjustment to be made with unit disconnected from ac line voltage.
To Adjust
Loosen slide clamp locking screw friction tight. Position resistor slide clamp to obtain requirement.
Tighten clamp screw. (To prevent damage to resistor, do not overtighten clamp.) Recheck requirement.

Resistor Assembly for High Torque

Fig. 9

MOTOR ASSEMBLY (40PWU101 Early Design)

MOTOR ASSEMBLY (40PWU101 Late Design and 40PWU102)

SENSING ARM SHAFT MOUNTING HOLES

7. TROUBLESHOOTING

TABLE A
EARLY DESIGN 40PWU101 PAPER WINDER

SYMPTOM	PROBABLE CAUSE
Paper too loose on paper winder (egg shaped roll).	Clutch Torque adjustment. Lubrication on clutch discs, clutch discs should be dry.
Paper edge ruffled on either side of roll.	Lateral Winder Position adjustment. Paper not tracking correctly on printer paper rollers. Extraneous or irregular line feed on printer.

TABLE B
LATE DESIGN 40PWU101 PAPER WINDER

SYMPTOM	PROBABLE CAUSE		
Paper too loose on paper winder (egg shaped roll).	$\frac{\text { High Clutch Torque adjustment. }}{\text { Requirement not met. }}$	\left\lvert\,	Paper edge ruffled on either
:---			
side of roll.	\quad	Lateral Winder Position adjustment.	
:---			
Paper not tracking correctly on printer paper rollers.			
Extraneous or irregular line feed on printer.			
High clutch torque crossing over before 3 inch diameter roll is on paper winder.	\right.		

TABLE C
PAPER WINDER (40PWU102)

SYMPTOM	PROBABLE CAUSE
Paper too loose on paper winder (egg shaped roll).	$\frac{\text { High Motor Torque adjustment. }}{\text { Requirement not met. }}$
Paper edge ruffled on either side of roll.	Lateral Winder Position adjustment. Paper not tracking correctly on printer paper rollers.
Extraneous or irregular line feed on printer.	High motor torque crossing over before 3 -inch diameter roll is on paper winder.

8. WIRING

ACTUAL DIAGRAM

Fig. 10-40PWU101 (Late Design) and 40PWU102 Paper Winders

SCHEMATIC DIAGRAM

SW1 430566 SWITCH

TB1
151415
P1

ACTUAL DIAGRAM

Fig. 11-40PWU101 Paper Winder (Early Design)
9. PART IDENTIFICATION

Fig. 12-Motor

Fig. 13-Clutch Mechanism

Fig. 14-Paper Sensing Arm Mechanism (Late Design)

Fig. 15-Variable Resistor (Late Design)

Fig. 16-Paper Spool

NUMERICAL INDEX

Part Number	Description and Page Number	Part Number	Description and Page Number	Part Number	Description and Page Number
1248	Screw, 6-40 $\times 1 / 2$ Flat	121245	Clamp, 5/16 ID Cable	330183	Flange 22
	22		19, 21	330212	Flange, Right 22
2191	Lockwasher 19, 20,	125313	Washer, Insulating 22	330213	Flange, Left 22
	21, 22	150966	Insulator, Terminal	330443	Spring 22
3339	Nut, 9/16-32 Hex 20		Block 19	336810	Plate, Identification 20
3340	Lockwasher 20	151335	Stud 19	403351	Frame, Winder 19
3598	Nut, 6-40 Hex 20, 22	151349	Nut, Speed 19, 20	403353	Spring, Retainer 20
3949	Collar 20	151415	Block, Terminal 19	403355	Cover 19
6807	Screw, Set 20	151416	Nut, 6-40 Hex 19	403356	Cover 20
6987	Washer, Flat 20	153803	Jumper, 5" Slate 19	403357	Bracket 19
55090	Spring 21	154259	Screw, No. 62 Self	403358	Washer, Clutch 20
74695	Sleeve, Clutch 20		Tapping 19, 20	403359	Disc, Drive 20
75750	Washer, Insulating 22	155081	Post, Spring 21	403360	Brace, Drive 20
76085	Disc, Friction 20	172727	Post 21	403362	Cord Assembly 19
76086	Washer, Spring 20	184056	Screw, w/Lockwasher,	403368	Post 20
76087	Nut, 9/16-32 Friction 20		6-40 x 1/4 Hex 19, 21	403369	Bearing 20
76178	Stud 20	184058	Screw, w/Lockwasher,	403393	Motor 19
76968	Setscrew, 6-32 21		6-40 x 7/16 Hex 20	407469	Bracket 22
77902	Screw, $6.40 \times 2.3 / 8 \mathrm{Rd}$	185871	Screw, w/Lockwasher,	407470	Shaft 21
	22		$8.32 \times 3 / 8$ Hex 22	407471	Resistor, 750 Ohm 22
80342	Screw, 6-40 x 23/64 Hex	187072	Network 19	407472	Insulator 22
	20	198670	Screw w/Lockwasher,	407473	Lever, Stop 21
92527	Lockwasher 19		$6-40 \times 5 / 16$ Hex 21	407474	Arm 21
107116	Lockwasher 21	312573	Jumper, 6" Red 19	407476	Switch, Mercury 21
111017	Screw, 6-40 x 5/16 Fil 19	312574	Jumper, 6" Black 19	407477	Bracket 19
111064	Screw, 8-32 \times 3/8 Rd 19	312919	Strap, Cable 19	407480	Resistor, 500 Ohm 22
119653	Ring, Retaining 21	320418	Terminal, Ring Type 19	430566	Switch, Rocket 19

