

PLANT MANUAL BK2
ISSUE 2A
AUGUST 1973

TELETYPE EQUIPMENT

INDEX

```
BK2.3 Model 15 Teletype
BK2.3.2 Model 15 Teletype - Adjustments
BK2.3.3 Model 15 Perforator Transmitter (Model 19 Keyboard) - Adj.
BK2.3.4 Lorenz Model 15 - Adjustments
    Model 28 Teletype
BK2.6.2 Mcdel 28 Teletype - Adjustments
BK2.6.3 Model 28 Transmitter Distributor - Adjustments
BK2.6.4 Model 28 Transmitter Distributor (LAXD, BLXD and LCXD) -
                                    Adjustments.
BK2.6.5 Model 28 Typing Reperforator (LPR) - IJjuscments
BK2.6.6 Model 28 Perforator Transmitter (LPE) - Adjustments
BK2.6.7 Model 28 Receiving Selector Set (LPS) - Adjustments
    Models 32 and 33
BK2.7.2 Model 32/33 Teletype (KSR, RO, ASR) - Adjustments
BK2.7.3 Telex Rotary Dial Assembly-Servicing
    Tickers
BK2.13 5A Ticker - Adjustments
BK2.15 Teletype Tape Printer Set for Stock Ticker Service - Adj.
BK2.16 High Speed Tape Punch Set (BRPE)
```

Texas Instrument Terminal

BK2.20.1 TI Silent 700 Data Terminal Model 720C

MODEL 15 TELETYPE

ADJUSTMENTS

CONTENTS		PAGE
	PRINTING ADJUSTMENTS	1
1.	FUNCTION ADJUSTMENTS	5
2.	LINE FEED ADJUSTMENTS	9
3.	FRICTION FEED ADJUSTMENTS	11
4.	MARGIN BELL ADJUSTMENTS	14
5.	SIGNAL BELL ADJUSTMENTS	15
6.	CARRIAGE RETURN ADJUSTMENTS	16
7.	SPACING ADJUSTMENTS	19
9.	RIBBON ADJUSTMENTS	21
10.	SEND-RECEIVE-BREAK MECHANISM	25
11.	MAIN SHAFT ADJUSTME NTS	28
12.	ADJUSTME NTS FOR PRINTERS EQUIPPED FOR STATION	
13.	SELECTOR OPERATION	29
	ELECTRICAL MOTOR CONTROL ADJUSTMENT	33

1. PRINTING ADJUSTMENTS
1.1 Plunger Guide Roller Bracket
1.1.1 There should be not more than $.010^{\prime \prime}$ clearance between either the right or left end of the pull bar bail and stripper plate when the bail is moved to its extreme forward position. TO ADJUST the position of the pull bar bail with relation to the stripper plate, loosen the plunger guide roller bracket mounting screws and move the bracket to the right or left.

1.2 Flanged Guide Roller

1.2.1 The flanged guide roller should be parallel, or within. $002^{\prime \prime}$ of being parallel, to the surface of the plunger, and both guide rollers should rotate freely. TO ADJUST the flanged roller with relation to the plunger, move the roller end of the bracket up or down with the mounting screws friction tight. Tighten the mounting screws.

Figure 1

1.3 Plunger Guide Roller Bracket Final

1.3.1 Operate the pull bar bail slowly and see that all pull bars start to move away from the code bars simultaneously, within $.020^{\prime \prime}$. If necessary, re-locate the plunger guide roller bracket to the left or right to meet this requirement. Check to see that the flange roller is parallel to the surface of the plunger within $.002^{\prime \prime}$ and that both guide rollers rotate freely.
1.4 Plunger Roller Eccentric Mounting Stud
1.4.1 There should be some play, not more than .004", between the pull bar bail plunger and the rollers. Check for this play throughout the entire travel of the plunger. ADJUST the position of the eccentric mounting stud to obtain this requirement.
1.5 Pull Bar Spring Tension
1.5.1 It should require $2-1 / 2$ to $3-1 / 2$ ozs. to pull the spring to its position length.

1.6 Left and Right Pull Bar Spring Bracket

1.6.1 With the pull bar bail in its extreme rear position, the end pull bar and the fourth pull bar from the end should have some play, not more than .004'. TO ADJUST, loosen the mounting screw of the pull bar spring bracket and position the bracket so that all four pull bars are free and that the end pull bar and at least one of the other three pull bars have some play, not more than .004".

BK2.3.2
ISSUE 1
AUGUST, 1964

1.7 Carriage Support and Pull Bar Bail Plunger Rollers

1.7.1 The three carriage support rollers and the pull bar bail plunger roller should turn freely with a barely perceptible amount of end play. TO ADJUST, loosen the lock nuts and position the cone nuts.

1.8 Type Bar Backstop

1.8.1 With the pull bar bail in its extreme rear position, there should be not less than $.010^{\prime \prime}$ clearance between the type bar backstop and the pull bars when the type bars are held in the type bar guide. Make this check on the two end pull bars and the middle pull bar. TO ADJUST, set the up and down position of the type bar backstop by means of its elongated mounting holes to meet this requirement.

1.9 Selector Vanes

1.9.1 The forked arms of the vanes should line up with their respective T-levers. When the printing bail is in its extreme rear position, each vane should have some end play, not more than .004". TO ADJUST, loosen the vane clamping screws and position the vanes by means of their pilot screws. Tighten the clamping screws.
1.10 Pull Bar Guide (Code Bar Mounting Plate)
1.10.1 With the pull bar bail in its extremerear position, move the code bars to the right. Then move the pull bar bail opposite the pull bar humps. There should be $.008^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the humps on all pull bars (except the blank pull bar) and the pull bar bail. With the code bars moved to the left position, there should be a like clearance between the blank pull bar hump and the pull bar bail. TO ADJUST, position the code bar mounting plate by means of its elongated mounting holes.

1.11 Code Bar Bell Cranks

1.11.1 The code bars should be carried firmly aga inst their stops in both the MARKING and SPACING positions when the LETTERS and BLANK combinations are alternately selected. ADJUST by means of the bell crank eccentric bushings.
1.12 Printing Bail Shaft Right Bearings
1.12.1 With the printing bail held toward the right, there should be some, not more than $.015^{\prime \prime}$, clearance between the end of the printing bail casting
1.12.1 and the left bearing of the printing bail shaft. TO ADJUST, remove the printing bail spring and position the right bearing by utilizing its elongated mounting holes. Replace the printing bail spring.
1.13 Printing Bail
1.13.1 The pull bars should clear the code bars $.010^{\prime \prime}$ to $.050^{\prime \prime}$ when the main shaft is rotated until the printing bail is in its extreme rear position, with the type bar carriage in both its extreme right and left positions. TO ADJUST, position the printing bail by means of its adjusting screw and lock nut, located on the printing bail operating arm. If the clearance at one side is unobtainable, it will be necessary to refine the PULL BAR GUIDE in such a way that the clearance between the pull bar bail and the pull bar humps, at the side that had the least clearance, is reduced to a minimum and, at the side that had the most clearance, is increased to a maximum for the PRINTING BAIL.

SOME CLEARANCE, NOT MORE THAN OOQ'
Figure 2
1.14 Printing Bail Spring Tension
1.14.1 With the printing bail in its extreme rear position, it should require $6-1 / 2$ to $8-1 / 2 \mathrm{lbs}$. for 60 or 75 wpm operation (4 to 6 lbs . for 100 wpm operation), to start the lever moving. TO ADJUST, position the spring adjusting lever screw.

BK2.3.2
ISSUE 1
AUGUST, 1964

2. FUNCTION ADJUSTMENTS

2.1 Function Lever Bail

2.1.1 There should be $.040^{\prime \prime}$ to $.060^{\prime \prime}$ clearance between the rear edge of the No. 1 vane and the front edges of the function levers, except the universal function lever, when the printing bail is in its rearmost position and the No. 1 vane is held midway between its marking and spacing positions. TO ADJUST, position the function lever ba il by means of its elongated mounting holes.
2.2 Blocking Plate
2.2.1 The position of the blocking plate should be as follows:
(a) With the CARRIAGE RETURN combination selected, and the main shaft rotated until the travel of the function lever bail is blocked by the selected function lever and the front edge of the right projection of the function lever bail should be flush (within $.005^{\prime \prime}$) with the top front edge of the rear prong of the carriage return function lever.
(b) With the LINE FEED combination selected and the main shaft rotated until the travel of the function lever bail is blocked by the selected function lever, and the front edge of the left projection of the function lever bail should be flush (within .005') with the top front edge of the rear prong of the line feed function lever.

TO ADJUST, position the blocking plate by means of its slotted holes.
2.3 Function Bail Spring Tension
2.3.1 With the function bail in its extreme rear, it should require 2 to 3 lbs . to extend the spring to its position length.

2.4 Function Bail Blade

2.4.1 With the FIGURES, LINE FEED, and LETTERS function levers alternately selected and the main shaft rotated until the travel of the function lever bail is blocked by the selected function lever, there should be . 004" to $.015^{\prime \prime}$ clearance between the rear edge of No. 1 vane and the rear edge of a notch in the selected function lever. TO ADJUST, select the FIGURES function lever and adjust the right end of the function bail blade by raising or lowering it by means of its elongated mounting holes to
2.4.1 secure the specified clearance between the rear edge of the No. 1 vane and the bottom of a notch in the SHIFT junction lever. Then select the LINE FEED function lever and adjust the left end of the function bail blade by raising or lowering it to secure the specified clearance between the rear edge of the No. 1 vane and the bottom of a notch in the LINE FEED function lever.

Figure 3
2.5 Platen Unit Pilot Screws
2.5.1 The platen unit should be midway between the side frames and should be free on its bearings without end play. TO ADJUST, position the platen unit by means of its pilot screws. (Care should be taken not to tighten the pilot screws to the extent that they cause a strain on the side frames.)
2.6 Platen Shift - Unshift Stop Post
2.6.1 The top and bottom surfaces of the platen shift-unshift stop post should be parallel to a line through the centre of the platen detent roller screw and the platen pilot screw. TO ADJUST, loosen the platen shift-unshift stop post nut and rotate the post.
2.7 Unshift on Space Cutout Lever
2.7.1 If it is desired that the platen should not return to the UNSHIFT position when the SPACE combination is received, the UNSHIFT on space cutout

BK2.3.2
ISSUE 1
AUG UST, 1964

2.7 .1	lever should be rotated so that the hooked end of the cutout lever is to the rear of the SPACE function lever extension and the cutout lever touches the side of the SPACE function lever extension. There should be some clearance, not more than $.006^{\prime \prime}$ between the rear surface of the SPACE function lever extension and the cutout lever.
2.8	Shift (FIGURES) and Unshift (LETTERS)
2.8 .1	With the SHIFT-UNSHIFT detent and platen balance springs removedand LETTERS and FIGURES alternately selected, the SHIFT-UNSHIFT stop post should move to within $.010^{\prime \prime}$ to $.025^{\prime \prime}$ of the UNSHIFT stop screw and the SHIFT stop screw respectively, when the main shaft is rotated and the selected push bar is moved to its rearmost position when oper ated by the function bail blade. TO ADJUST, place the typing unit on its right side and rotate the main shaft until the function bail is in its extreme forward position. Adjust the turnbuckle on the shift-unshift link so as to equalize (within . $010^{\prime \prime}$) the clearance between the function bail blade and the shoulder on the UNSHIFT push bar when the platen is in the FIGURES position. Select the LETTERS and FIGURES alternately and check for the specifed clearances between the shift-unshift stop post and the UNSHIFT and SHIFT stop screws. If either of these clearances is greater than .025", move the shift-unshift link bracket toward the front of the unit; if less than $.010^{\prime \prime}$, move it toward the rear. Adjust the shift-unshift link turnbuckle to equalize both clearances with in $.010^{\prime \prime}$ the specified limits. Replace the shift-unshift detent spring and platen balance spring.
2.9	Platen Balance Spring Tension
2.9.1	With the platen in the LETTERS position, it should require 3-1/2 to 5 lbs. to pull the spring to position length on units equipped with cast iron platen brackets, and $1-1 / 4$ to 2 lbs . on units equipped with alumi mum platen brackets.
2.10	Shift - Unshift Detent
2.10.1	When the platen is shifted to the SHIFT and UNSHIFT positions, the platen detent roller should ride equally on either side of the detent. TO ADJUST, position the shift-unshift detent by means of its eccentric shoulder screw.
2.11	Shift - Unshift Detent Spring Tension

2.11.1 It should require from 10 to 14 lbs. to start the detent moving.

BK2.3.2
ISSUE 1
A UG UST, 1964

LETTERS Stop Screw

2.12.1 With the platen in the UNSHIFT position, insert a sheet of paper with a carbon in the printer and press the letter N firmly against the platen. The impression made on the paper should be of uniform shade. TO ADUST, raise the UNSHIFT stop screw if the shading is lighter at the bottom of the character and lower it if the shading is lighter at the top.
2.13 FIGURES Stop Screw
2.13.1 With the platen in the LETTERS position (down), print the letter W on the platen. Then, with the platen in the FIGURES position (up), the Figure 2 should be in direct alignment with the letter W when the Figure 2 is printed directly on the platen. ADJUST by means of the SHIFT stop screw.
2.14 FIGURES and LETTERS, Function Lever Spring Tensions
2.14.1 It should require 15 to 19 ozs. to start each of these function levers

BK2.3.2
ISSUE 1
A UGUST, 1964

2.14.1 moving. When checking these tensions, the push bars should be held
away from the function levers. away from the function levers.
2.15 Space Function Lever Spring Tension
2.15.1 With the printing bail in the forward position, it should require 12 to 16 ounces to start the space function lever moving. When checking this tension, the push bar should be held away from the function lever.
2.16 LETTERS and FIGURES Push Bars Spring Tensions
2.16.1 It should require 3 to 5 ozs. to start the LETTERS and FIGURES push bars moving.

2.17 Platen Shaft

2.17.1 The platen shaft should have some end play, not more than $.004^{\prime \prime}$. TO
ADJUST, position the friction assembly on the platen shaft by means
of its set screws.
3. LINE FEED ADJUSTMENTS
3.1 Single - Double Line Feed Detent and Spring Pressure
3.1.1 The single-double line feed lever should travel equally on either side of its detent and it should require $1-1 / 4$ to 4 lbs . to move the lever to the opposite position.
3.2 Line Feed Detent Lever
(a) With the single-double line feed lever in the SINGLE line feed position (up), and the line feed bail operated by hand, the line feed pawl, when sliding off the rear edge of the single-double line feed lever, should just miss the edge of a tooth on the ratchet.
(b) With the line feed detent lever positioned away from the ratchet and line feed selected, the detent roller should drop into a notch on the ratchet without moving the ratchet either up or down. TO ADUST, loosen the detent lever eccentric screw nut and turn the eccentric screw and recheck the requirement. Tighten the detent lever eccentric screw.

Line Feed Link Turnbuckle (Figure 4)

3.3.1 With the single-double line feed lever in the SINGLE line feed position, select the LINE FEED combination and rotate the main shaft until the line feed push bar just touches the function bail blade, there should be a $.005^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the function bail blade and the notch in the upper surface of the line feed push bar. TO ADJUST, loosen the lock nuts and rotate the turnbuckle. Tighten the lock nuts.
3.4 Line Feed Function Lever Spring Tension
3.4.1 It should require 15 to 19 ozs . to start the function lever moving. (The push bar should be held away from the function lever.)
3.5 Line Feed Push Bar Spring Tension
3.5.1 It should require $1-1 / 2$ to $2-1 / 2$ ozs. to start the push bar moving.
3.6 Line Feed Detent Lever Spring Tension
3.6.1 It should require 5 to 6 lbs . to start the detent lever moving.

3.7 Line Feed Pawl Spring Tension

3.7.1 It should require 2 to 4 ozs. to start the pawl moving.

Figure 5

BK2.3. 2
ISSUE 1
AUGUST, 1964

3.8 Line Feed Check Screw

3.8.1 The line feed check screw should drop in the twelfth notch above the detent roller. There should be some clearance, not more than .020", between the front face of the screw and the face of the tooth at the point of minimum clearance, when the check screw is held in the bottom of a notch on the ratchet. TO ADJUST, loosen the line feed check screw lock nut and position the check screw. If necessary, loosen the clamping nut of the line feed check post stop screw and back off the stop screw before making this adjustment.
3.9 Line Feed Check Post Stop Screw
3.9.1 With the line feed check post stop screw held down against the casting, there should be $.015^{\prime \prime}$ to $.030^{\prime \prime}$ clearance between the line feed check screw and each tooth on the detent ratchet, when the platen is rotated. TO ADJUST, loosen the check post clamping nut and position the stop screw.

3.10 Line Feed Check Lever

3.10.1 With the LINE FEED combination selected and the ma in shaft rotated until the line feed pawl has reached its farthest travel in rotating the platen, the line feed pawl lever should be in contact with the check lever. There should be some clearance, not more than $.015^{\prime \prime}$, between the lower edge of the line feed check screw and the bottom of any notch in the detent ratchet. TO ADJUST, loosen the check lever set screw and position the check lever. Before tightening the set screw see that the shaft has some end play, not more than $.008^{\prime \prime}$.

3.11 Line Feed Check Lever Spring Tension

3.11.1 It should require 2 to 3 ozs. to start the lever moving.
4. FRICTION FEED ADJUSTMENTS
4.1 Pressure Roller Release Shaft Collars
4.1.1 The pressure roller release shaft should have some end play, not more than $.004^{\prime \prime}$ and the pressure roller release arm should be approximately $5 / 32^{\prime \prime}$ to $7 / 32^{\prime \prime}$ from the extreme right hand side of the platen casting. ADJUST the clearance of the release shaft arm by means of the right locating collar and the end play of the left locating collar.

Figure 6

4.2 Pressure Roller Release Cams

4.2.1 On units equipped with six pressure rollers, the following applies: With the pressure roller release shaft arm in its rear position, the camming surfaces should line up with the release levers. With all the travel of the front pressure rollers taken up manually in a downward direction (so that the rear pressure rollers are resting against the platen), there should be a least $.060^{\prime \prime}$ between the front pressure rollers and the platen. With all the travel of the rear pressure rollers taken up manually in a downward direction (so that the front pressure rollers are resting against the platen), there should be at least $.060^{\prime \prime}$ between the rear pressure rollers and the platen.

On units equipped with one pressure roller, the following applies: With the pressure roller release shaft arm in its rear position, the pressure roller should be from $.015^{\prime \prime}$ to $.050^{\prime \prime}$ away from the platen. TO ADJUST, position the cams on the release shaft by means of their set screws.
4.3 Pressure Roller Spring Tension
4.3.1 It should require 4 to 6 lbs . to start the adjusting lever moving. ADJUST the spring adjusting lever screw so that all tensions are equal.

4.4 Pressure Roller Release Lever Shafts

4.4.1 With the two paper chute mounting extensions touching the outer edges of the two release lever shafts, the left end of the left release lever shaft (viewed from the rear of the printer) should project through the

BK2.3.2
ISSUE 1
AUGUST, 1964
4.4.1 left paper chute mounting extension and touch the platen bracket. The outer end of the right release lever shaft should project beyond the outer surface of the right paper chute extension by not more than $3 / 64$ " to $3 / 32^{\prime \prime}$. TO ADJUST, position the release shafts by means of their set screws.
4.5 Paper Chute Spring Tension
4.5.1 It should require 2 to 7 ozs . to start the paper chute moving.
4.6 Paper Chute
4.6.1 The paper chute should have some end play, not more than $.004^{\prime \prime}$, and there should be some clearance, not more than $.020^{\prime \prime}$, between the front edge of the paper chute and the surface of the platen. TO ADJUST, bend the chute manually to meet the above requirements. (Rotate the platen shaft to see that the paper chute does not bind the platen.)

4.7 Paper Fingers

4.7.1 The paper finger shaft stop arm should clear its stop post .004" to $.020^{\prime \prime}$ with both paper fingers resting against the platen. The outer edge of the lower portion of each finger should be within $3 / 32^{\prime \prime}$ of the end of the rubber portion of the platen and should not extend beyond the end of the rubber portion. TO ADJUST, first set the position of the right paper finger and secure it to the shaft by means of its set screw with the specified clearance between the stop arm and the stop post. Then set the left paper finger to correspond to the width of the paper.
4.8 Paper Fingers Shaft Spring Tension
4.8.1 It should require 16 to 22 ozs. to start the stop arm moving.
4.9 Paper Straightener Rod stops
4.9.1 When the paper straightener rod is in its extreme upward position, there should be a clearance of $.030^{\prime \prime}$ to $.050^{\prime \prime}$ between the straightener rod and the blocking edge of the stops. TO ADJUST, position the stops by means of their elongated holes.
4.10 Paper Straightener Rod Spring Tension
4.10 .1 It should require 8 to 12 ozs . to start the levers moving.
4.11.1 The outer sides of both paper guides should be $.040^{\prime \prime}$ to .050 from the shoulder on their respective ends of the straightener rod. TO ADJUST, position the guides on the shaft by means of their set screws.
4.12 Paper Spindle Drag Spring
4.12.1 Apply the push end of a scale to the left end of the spindle shaft and push toward the right side of the typing unit. It should require 5 to 8 lbs. to start the spindle moving. This pressure may be adjusted by bending the spindle drag spring.
4.13 Platen Friction Assembly
4.13.1 Move the pressure roller release shaft arm to its extreme rear position. Unhook the line feed detent lever spring and place the platen crank vertically upward. Hook scale to the end of the crank handle and pull horizontally toward the front of the typing unit. It should require 5 to 9 ounces to start the platen rotating. Replace the detent lever spring. This tension may be regulated by means of the adjusting nuts on the friction assembly.
5. MARGIN BELL ADJUSTMENTS
5.1 Margin Signal Bell
5.1.1 The bell should ring on the sixty-sixth printed character for lines of seventy-two character length, on the seventieth for lines of seventysix character length, and on the thirty-ninth for lines of forty-four character length. TO ADJUST, return the carriage to the left end of the line. Then space the carriage sixty-six, seventy or thirty-nine spaces to the right, depending on the length of line being printed. Loosen the margin bell cam thumb screw and adjust the cam so that its right side is in contact with the margin bell pawl and tighten the thumb screw.
5.2 Margin Bell Pawl Spring Tension
5.2.1 It should require $1 / 2$ to $1-1 / 2$ ozs. to start the pawl moving.
5.3 Margin Bell Hammer
5.3.1 With the bell hammer arm resting against the stop post, there should

BK2.3.2
ISSUE 1
AUGUST, 1964
5.3.1 be $.002^{\prime \prime}$ to $.060^{\prime \prime}$ clearance between the bell and the bell hammer. TO ADJUST, loosen the margin bell hammer bracket mounting screws and shift the bracket; if this does not give the required clearance, then bend the bell hammer arm along its entire length, avoiding a sharp bend at any point.

5.4 Margin Bell Hammer Spring Tension

5.4.1 It should require $10-1 / 2$ to 13-1/2 ozs. to start the arm moving.
6. SIGNAL BELL ADJUSTMENTS
6.1 Signal Bell Hammer Spring Tension
6.1.1 It should require 3 to 5 ozs. to start the bell hammer moving.
6.2 Signal Bell Latch Bar Latch Shims
6.2.1 Set the typing unit on its right side. With the platen in the LETTERS position, the BELL combination selected and the main shaft rotated until the printing bail is in its extreme forward position, there should be $.004^{\prime \prime}$ to $.010^{\prime \prime}$ clearance between the bell latch bar and the lobe on the rear extension of the bell function lever. TO ADJUST, add or remove shims between the latch and the function lever comb.

6.3 Signal Bell Latch Bar Latch

6.3.1 With the main shaft rotated until the function bail is in its extreme rear position, there should be a clearance of $.010^{\prime \prime}$ to $.020^{\prime \prime}$ between the front shoulder of the bell latch bar and its latch. TO ADJUST, position the bell latch bar latch toward the front or rear by means of its elongated mounting holes.
6.4 Signal Bell Hammer Backstop
6.4.1 With the bell latch bar in its latched position, there should be $.020^{\prime \prime}$ to $.040^{\prime \prime}$ clearance between the bell hammer arm extension and the bell operating lever. TO ADJUST, position the bell hammer backstop by means of its elongated mounting holes.
6. 5 Signal Bell Operating Lever Spring Tension
6.5.1 It should require $1-1 / 4$ to $2-1 / 4 \mathrm{lbs}$. to start the lever moving.

Figure 7
6.6 Signal Bell Reset Bar Spring Tension
6.6.1 It should require 3 to 5 ozs . to start the reset bar moving.
6.7 Bell Function Lever Spring Tension
6.7.1 It should require $1-3 / 4$ to $2-1 / 4 \mathrm{lbs}$. to start the lever moving.
7. CARRIAGE RETURN ADJUSTMENTS

7.1 Carriage Return Latch Bar Latch Shims

7.1.1 With the letter O combination selected and the main shaft rotated until the printing bail is in its extreme forward position, there should be $.004^{\prime \prime}$ to $.010^{\prime \prime}$ clearance between the carriage return latch bar and the lobe on the rear extension of the carriage return function lever. TO ADJUST, add or remove shims between the carriage return latch bar latch and the function lever comb.

BK2.3.2
ISSUE 1
AUGUST, 1964

7.2 Carriage Return Latch Bar Latch

7.2.1 With the main shaft rotated until the function bail is in its extreme rear position, there should be $.010^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the shoulder on the carriage return latch bar and the latch. TO ADJUST, position the latch to the front or rear by means of its elongated mounting holes.
7.3 Carriage Return Lock Bar Latch Eccentric Screw
7.3.1 With the front end of the dashpot lever held in its extreme left position, there should be $.006^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the lower edge of the lock bar latch and the upper edge of the lock bar. TOADJUST, reposition the lock bar latch with its lock nut loosened.
7.4 Carriage Return Function Lever Spring Tension
7.4.1 It should require $1-3 / 4$ to $2-1 / 4 \mathrm{lbs}$. to start the lever moving.
7.5 Carriage Return Lock Bar Latch Spring Tension
7.5.1 It should require 7 to 10 ozs . to start the latch moving.
7. 6 Carriage Return Lock Bar
7.6.1 With the carriage return lock bar in its latched position and the shoulder of the lock bar held against the edge of the latch, there should be a clearance of. $010^{\prime \prime}$ to $.020^{\prime \prime}$ between the teeth of the carriage return clutch members. ADJUST the length of the lock bar by means of its sliding joint to obtain this clearance.
7.7 Carriage Return Spring Drum
7.7.1 It should require $3-3 / 4$ to $4-1 / 4 \mathrm{lbs}$. to start the carriage moving away from the extreme left position. When measuring this tension, the carriage return lock bar should be operated. TO ADJUST, wind up the carriage return spring by rotating the centre shaft of the drum to increase the tension, and operated the carriage return drum escapement lever to decrease the tension.
7.8 Carriage Return Operating Lever Stop Serew
7.8.1 Select CARRIAGE RETURN and rotate the main shaft until the carriage return function lever just trips the carriage return latch bar off its
7.8.1 latch. There should be from $.002^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the lock bar shoulder and the inner edge of the lock bar latch when the play in the mechanism is taken up in a direction to make the clearance a minimum. TO ADJUST, set the height of the carriage return operating lever stop screw.

7.9 Carriage Return Reset Bar Spring Tension

7.9.1 It should require 3 to 5 ounces to start the reset bar moving.
7.10 Carriage Return Operating Lever Spring Tension
7.10.1 It should require 5 to 7 lbs . to extend the spring to position length.
7.11 Carriage Return Clutch Spring Compression
7.11.1 It should require $1-1 / 2$ to $2-1 / 2 \mathrm{lbs}$. to start the driving clutch member moving away from the driven member.

7.12 Carriage Guide Screws (Figure 2)

7.12.1 With the printing bail in its extreme rear position, there should be some clearance, not more than $.008^{\prime \prime}$, between the upper surface of the

BK2.3.2
ISSUE 1
AUGUST, 1964
7.12.1 guide screw heads and the upper surface of the groove in the front carriage track. Check for this clearance over the entire travel of the carriage. ADJUST by means of the guide screws and lock nuts.

7.13 Dashpot Vent Screw

7.13.1 The carriage should return from its right stop to its left stop without bouncing and with minimum shock when the carriage return lock bar is held in its latched position. ADJUST by means of the dashpot vent screw and lock nut.

7.14 Dashpot Lever Spring Tension

7.14.1 It should require 16 to 22 ozs. to extend the spring to its position length.

7.15 Margin Adjusting Screw Arm Spring Pressure

7.15.1 It should require 2 to 7 lbs . to disengage the arm from the detent spring.

7.16 Left Margin Adjusting Screw

7.16.1 The left edge of the letter M should print $7 / 8^{\prime \prime}$ (plus or minus $1 / 16^{\prime \prime}$) from the left edge of the platen. Also, with the type bar carriage fully returned and the dashpot lever manually positioned to the extreme left, there should be some clearance, not more than .002" between the dashpot lever and the left margin adjusting screw. TO ADJUST, reposition the left hand margin adjusting screw.

7.17 Right Margin Adjusting Screw

7.17.1 The printer should normally print seventy-two characters on a line before spacing is blocked by the spacing stop pawl. TO ADJUST, return the carriage to the left end of the line and back off the right margin adjusting screw. Then, with the right margin adjusting screw arm in engagement with its detent, space the carriage seventy -one spaces. ADJUST the stop screw so that the spacing stop lever is moved within $\overline{015}{ }^{\prime \prime}$ to $.030^{\prime \prime}$ from a projection on the spacing stop sleeve.
8. SPACING ADJUSTMENTS
8.1 Spacing Escapement Pawl Operating Arm
8.1.1 With the LINE FEED combination selected and the main shaft rotated
8.1.1 until the function lever bail rests on the line feed function lever, there should be $.020^{\prime \prime}$ to $.040^{\prime \prime}$ clearance between the rear spacing escapement pawl and the low part of the spacing escapement ratchet. TO ADJUST, loosen the spacing escapement pawl operating arm mounting screws and position the arm. Tighten the mounting screws.
8.2 Spacing Escapement Pawl Spring Tension
8.2.1 It should require 10 to 14 ozs . to start the pawl moving.

Figure 9

8.3 Spacing Shaft Lower Bearing Bracket

8.3.1 There should be a minimum amount of play without binding at any point of engagement between the spacing shaft gear and the main shaft spacing gear during one complete revolution of the spacing shaft gear. TO ADJUST, position the bracket by means of its elongated mounting holes, and reposition the eccentric against the bearing bracket.
8.4 Spacing Rack
8.4.1 There should be some backlash, not more than .006" between the spacing rack along the entire travel of the rack. TO ADJUST, remove the type bar carriage draw strap, loosen the spacing rack mounting screws and position the rack toward the front or rear. ADJUST for this backlash with the carriage in its extreme left and right hand positions and also in its centre position. Tighten the mounting screws and replace the draw strap.

BK2.3. 2
ISSUE 1
AUGUST, 1964
8.5 Spacing Stop Lever Bracket
8.5.1 The lower end of the spacing stop lever should clear the driving discof the main shaft $.060^{\prime \prime}$ to $.080^{\prime \prime}$. With the spacing stop lever heldagainst the stop on the bracket by means of its spring, there should bea clearance of $.040^{\prime \prime}$ to $.080^{\prime \prime}$ between the lower left edge of the stoplever and the right side of a tooth on the spacing stop sleeve when thetooth is opposite the lever. ADJUST the spacing stop lever bracketvertically by means of its enlarged mounting holes to meet the firstrequirement and adjust it horizontally to meet the latter requirement.
8.6 Spacing Stop Lever Spring Tension
8.6.1 It should require 8 to 12 ozs . to start the lever moving.
9. RIBBON ADJUSTMENTS
9.1 Ribbon Feed Shaft Bearing Plates
9.1.1 The end of the ribbon feed shaft should be flush with or extend not morethan $.015^{\prime \prime}$ over the inner end of the vertical feed shaft bevel gear teeth,when the ribbon feed shaft is in its right and then in its left position andtheir vertical feed shaft bevel gear is held in engagement with the ribbonshaft gear. TO ADJUST, loosen the mounting screws of both right andleft ribbon spool brackets and position the bearing plate by means ofits clamping nuts.
9.2 Ribbon Feed Shaft Detent Spring
9.2.1 The ribbon feed shaft detent should travel equally on either side of thedetent roller when the shaft is moved from its extreme left to its ex-treme right position or vice versa. TO ADJUST, loosen the mountingscrews of the ribbon feed shaft detent spring, and position the spring.
9.3 Ribbon Feed Shaft Detent Spring Pressure
9.3.1 It should require 18 to 26 ozs . to start the roller moving away fromthe detent. Check the tension of the detent in the left and right positions,the tensions should be approximately equal. To increase or decreasethe spring pressure, remove the spring and bend it. To equalize thepressure, position the spring to right or left.
9.4.1 The lower ends of the right and left vertical ribbon feed shafts should
9.4.1 be flush with the outside edges of their respective bevel gears. ADJUST by means of the bevel gear set screws, being sure that when the set screws are tightened they bear against the flat faces on the shafts.
9.5 Ribbon Spool Brackets
9.5.1 With the ribbon feed shaft in its left position, the left vertical ribbon feed shafts should have some end play, not more than . 015', during one revolution of the vertical ribbon feed shaft bevel gear. The right vertical ribbon feed shaft should have a like amount of end play, when the ribbon feed shaft is in the right position. ADJUST both right and left ribbon spool brackets by means of their elongated mounting holes to meet this requirement, being sure that the brackets are vertical.

Figure 10
9.6 Ribbon Spool Shaft Spur Gears
9.6.1 The ribbon spool shafts should have some end play.not more than . 006:' TO ADJUST, position the ribbon spool shaft spur gears by means of their set screws.
9.7 Vertical Ribbon Feed Shaft Spur Gears
9.7.1 Both right and left vertical ribbon feed shaft spur gears should line up

BK2.3.2
ISSUE 1
AUGUST, 1964
9.7.1 with their respective ribbon spool shaft spur gears. TO ADJUST, position the vertical ribbon feed shaft spur gears by means of their set screws.

9.8 Ribbon Spool Cups

9.8.1 The centres of the ribbon rollers should be $3 / 4^{\prime \prime}$ to $7 / 8^{\prime \prime}$ in front of a line through the centres of the ribbon spool shafts. There should be no bind between the ribbon spool shaft spur gears and the vertical ribbon feed shaft spur gears at any point in their engagement. TO ADUST, position each ribbon spool cup by means of the nut on its ribbon spool cup bushing.
9.9 Vertical Ribbon Feed Shaft Spring Tension
9.9.1 It should require $2-1 / 2$ to $3-1 / 2 \mathrm{ozs}$. ($1-1 / 2$ to $2-1 / 2$ ozs. for 100 wpm) to start the shaft turning. TO ADJUST, position the collars on the vertical feed shafts by means of their set screws to obtain the proper tension.
9.10 Ribbon Reverse Arms Ribbon Guide Slot
9.10.1 The ribbon guide slot should be $.025^{\prime \prime}$ to $.035^{\prime \prime}$ wide and the straight upright piece should clear the angled arm by .010" to .020'. TO ADJUST, bend the upright ends of the ribbon reverse arms.

9.11 Ribbon Reverse Shafts

9.11.1 There should be $.040^{\prime \prime}$ to $.060^{\prime \prime}$ clearance between the bottoms of the ribbon spool cups and the upper ends of the ribbon reverse shafts when the ribbon reverse arms are held up against the ribbon spool brackets. TO ADJUST, loosen the set screw, position the shaft while holding the ribbon reverse arm up against the ribbon spool bracket and then tighten the ribbon reverse arm set screw.
9.12 Ribbon Reverse Shafts Collar
9.12.1 The ribbon reverse shafts should have from $.002^{\prime \prime}$ to $.010^{\prime \prime}$ end play. TO ADJUST, position the collars by means of their set screws.
9.13 Ribbon Reverse Shafts Links
9.13.1 The ribbon reverse bail should clear both left and right ribbon reverse pawls by $.015^{\prime \prime}$ to $.050^{\prime \prime}$ when the pull bar bail is in its extreme rear
9.13.1 position and both the left and right ribbon reverse arms are held for ward against their stops. TO ADJUST, position the ribbon reverse shafts links by means of their set screws.

Figure 11
9.14 Ribbon Spool Cups and Ribbon Reverse Arm Backstop
9.14.1 The centres of the ribbon rollers should be $3 / 4^{\prime \prime}$ to $7 / 8^{\prime \prime}$ in front of a line through the centres of the ribbon spool shafts. TO ADJUST, position the ribbon spool cups by means of the nuts on the ribbon spool cup bushings.
9.15 Ribbon Reverse Arm Yield Spring Tension
9.15.1 It should require $1-1 / 2$ to $4-1 / 2$ ozs. to start the ribbon reverse arm moving.
9.16 Ribbon Reverse Pawl Spring Tension
9.16.1 It should require 1 to 2 ozs . to start the ribbon reverse pawl moving.
9.17 Ribbon Reverse Bail Spring Compression
9.17.1 It should require 2 to 4 lbs. to just start the left and the right end of the ribbon reverse bail moving.
9.18 Ribbon Oscillator Lever
9.18.1 With the ribbon lockout bar in its unoperated position (pulled outward

ISSUE 1
AUGUST, 1964

9.18 .1	toward the right), the ribbon should fully cover any character as it is being printed and the top edge of the ribbon should not be above the bottom edge of the printed character when the printing has been completed and the main shaft clutch has disengaged. TO ADJUST, shift the platen to the FIGURES position (up) and loosen the ribbon oscillator lever clamping screw and nut. Position the ribbon oscillator lever and tighten the clamping screw and nut. Check this adjustment with the platen in the LETTERS position (down).
9.19	Ribbon Feed Pawl Spring Tension
9.19	With the pull bar bail in its extreme rear position it should require $2-1 / 4$ to $3-1 / 4$ ozs. to pull the spring to its position length.
9.20	Ribbon Shift Lever Bracket
9.20 .1	The ribbon oscillator lever should move freely in its slot when its spring is unhooked and the ribbon carrier is approximately centrally located with respect to the type bar guide. TO ADJUST, position the ribbon shift lever bracket by means of its enlarged mounting holes. Replace the ribbon oscillator lever spring.
9.21	Ribbon Oscillator Lever Spring Tension
9.21 .1	With the ribbon shift lever spring removed, it should require 2-1/2 to $3-1 / 2$ ozs. to start the oscillator lever moving. Replace the ribbon oscillator lever spring.
9.22	$\underline{\text { Ribbon Shift Lever Spring Tension }}$
9.22.1	With the ribbon oscillator lever spring unhooked, it should require 1 to $1-3 / 4 \mathrm{lbs}$. to start the shift lever moving. Replace the ribbon oscillator lever spring.
9.23	Ribbon Lockout Bar Detent Spring Pressure
9.23 .1	It should require 16 to 32 ozs. to pull the lockout bar out to its unoperated position.
10.	SEND-RECEIVE-BREAK MECHANISM
10.1	Send-Receive Mechanism Plate

10.1.1 extension, there should be some clearance, not more than $.008^{\prime \prime}$, between the r ight arm of the T lever and the universal function lever extension when the BLANK combination is selected and the main shaft rotated until the blank function lever is completely selected, stopping rotation at the point where the function lever bail roller just leaves the cam surface of the blank function lever. TO ADJUST, position the send-receive mechanism plate by means of its elongated mounting holes. When making this adjustment, the intermediate lever should be clear of the blank function lever extension.

Figure 12

10.2 Inter mediate Lever Stop Bracket

10.2.1 First select the BLANK combination and rotate the main shaft until the intermediate lever toe is under the blank function lever extension. Make sure that the intermediate lever is approximately vertical. Then select the T combination and rotate the main shaft until the printing bail is in its extreme forward position. During this latter operation the left end of the intermediate lever toe should move to a point at least $1 / 16^{\prime \prime}$ to the right of the blank function lever extension. TO ADJUST, position the inter mediate lever stop bracket by means of its elongated mounting holes.
10.3 Send-Receive Reset Lever Upper Adjusting Screw
10.3.1 With the printing bail in its extreme rear positionand the send-receive lever in the SEND position (up), move the toe of the intermediate lever under the blank function lever extension. Then select the T combination and rotate the motor until the intermediate lever is moved to a position where the blank function lever extension overlaps the toe of the intermed-

BK2.3.2
ISSUE 1
AUGUST, 1964
10.3.1 iate lever by one half the thickness of the blank function lever extension. Under these conditions, there should be $.004^{\prime \prime}$ to $.006^{\prime \prime}$ clearance between the upper edge of the intermediate lever toe and the bottom of the blank function lever extension. TO ADJUST, position the reset lever upper adjusting screw.

10.4 Send-Receive T Lever Friction Washer

10.4.1 With the printing bail rearward, it should require 5 to $6-1 / 2 \mathrm{ozs}$. to start the T lever moving . TO ADJUST, position the stop nut.
10.5 Intermediate Lever Spring Tension
10.5.1 It should require $3 / 4$ to $1-1 / 2$ ozs. to start the lever moving.
10.6 Locking Function Lever Spring Tension
10.6.1 It should require 40 to 50 ozs. to pull the spring to position length.
10.7 Sixth Vane Detent Spring Tension
10.7.1 It should require 6 to 8 ozs . to start the roller moving away from the sixth vane.
10.8 Sixth Vane Extension Spring Compression
10.8.1 It should require $3 / 4$ to $1-1 / 4$ ozs. to start the extension moving away from the vane.
10.9 Universal Function Lever Spring Tension
10.9.1 It should require 14 to 17 ozs. to start the lever moving.
10.10 Blank Function Lever Spring Tension
10.10.1 It should require $4-1 / 2$ to 6 lbs . to start the lever moving .
10.11 Blank Printing and Spacing Cutout Function Lever Spring Tension
10.11.1 With the printing bail in its extreme rear position, it should require 22 to 30 ozs . to extend the spring to its position length.
11.1 Main Shaft
11.1.1 When the main shaft is rotated, the selector cams on the selector cam sleeve should line up with their respective selector levers. TO ADJUST, loosen the four screws which hold the main shaft bearing caps and position the main shaft. Then tighten the bearing caps mounting screws.
11.2 Main Shaft Jaw Clutch Throwout Lever
11.2.1 With main shaft clutch fully disengaged, there should be from $.010^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the teeth of the two clutch members. ADJUST the clutch throw-out lever by means of its pilot screws to obtain this clearance. After adjusting, the lever should be free, with not more than $.002^{\prime \prime}$ end play.

Figure 13
11.3 Main Shaft Jaw Clutch Throwout Lever Spring Tension
11.3.1 It should require $2-1 / 2$ to 4 ozs. to start the lever moving.
11.4 Main Shaft Jaw Clutch Spring Tension
11.4.1 The tension required to separate the clutch teeth is as follows:

22 to 30 ounces for 60 wpm operation

BK2.3.2
ISSUE 1
AUGUST, 1964
$\begin{array}{ll}\text { 11.4.1 } & 32 \text { to } 42 \text { ounces for } 75 \mathrm{wpm} \text { operation } \\ 46 \text { to } 58 \text { ounces for } 100 \mathrm{wpm} \text { operation }\end{array}$
11.5 Spacing Clutch Torque
11.5.1 With the main shaft rotating, hold off the rear escapement pawl and pull horizontally toward the rear of the unit. It should require from 18 to 24 ozs. to hold the spacing escapement ratchet stationary.

11.6 Selector Clutch Torque

11.6.1 It should require a pull of 14 to 18 ozs . for 60 or 75 wpm operation and 16 to 22 ozs. for 100 wpm operation to hold the cam sleeve stationary. This clutch torque depends on the condition of the felt washers and the clutch spring.

11.7 Motor Plate

11.7.1 There should be a barely perceptible amount of backlash between the motor pinion and the highest point of the main shaft gear. The lateral alignment of the motor pinion and the main shaft gear should be such that the centre line of the gear coincides with a vertical line through the centre of the hole in the motor pinion. TO ADJUST for the backlash, loosen the rear motor plate mounting screw and the lock nut on the motor plate adjusting screw. Slightly loosen the two front motor plate mounting screws. Place the typing unit on the base and tighten the three thumb screws. Position the motor plate adjusting screw to obtain the specified backlash. Start the motor and carefully reposition the adjusting screw until the gear noise is reduced to a minimum. Tighten the three motor plate mounting screws and the adjusting screw lock nut. Recheck the backlash. (If the gear noise cannot be reduced, it may be necessary to replace the pinion and gear)
12. ADJUSTMENTS FOR PRINTERS EQUIPPED FOR STATION SELECTOR
12.1 Call-Contacts
(a) With the main shaft rotated so that the call-contact function lever is resting against the selector vanes, but not selected, there should be some clearance, not more than . $010^{\prime \prime}$ between the insulator on the end of the contact spring and the lobe on the callcontact function lever. TO ADJUST, bend the upper contact spring.
12.1 (b) With the ma in shaft in the same position as specified in paragraph (a) there should be a contact gap of $.015^{\prime \prime}$ to $.020^{\prime \prime}$. TO ADJUST, bend the lower contact spring.
12.2 Call - Contact Function - Lever Spring Tension
12.2.1 It should require a tension of 24 to 32 ozs . to start the function lever moving.

Figure 14
12.3

Transfer Contacts
(a) With the transfer contact lever held away from the insulator on the transfer contact spring, the centre contact should make with the lower contact. There should also be a clearance of $.030^{\prime \prime}$ to $.040^{\prime \prime}$ between the centre and upper contacts. TO ADJUST, bend the upper (heavy) contact spring so that it is parallel to and in line with the insulators between which it is mounted. Bend the centre contact spring so that it rests against the lower spring with just a slight amount of tension and then bend the lower contact spring to obtain the required gap.
(b) With the transfer contact lever held away from the contact insulator, hook an 8 oz . scale under the centre contact spring between the insulator and the contact and pull vertically upward. A tension of $3-1 / 2 \mathrm{ozs}$. should be required to open the contacts. TO ADJUST, bend the centre contact spring. Recheck (a).

BK2.3.2
ISSUE 1
AUGUST, 1964
12.3 (c) The position of the transfer contacts in relationship to the transfer contact lever should be such that, when the transfer contact lever is in its lower most position, there is a clearance of $.010^{\prime \prime}$ to $.020^{\prime \prime}$ between the end of the transfer contact lever and the insulator on the centre contact spring. TO ADJUST, loosen the screws which secure the transfer contact bracket to the sendreceive plate, and position the transfer contact assembly so that the upper and lower contact springs are parallel to the function lever spring plate. Tighten the transfer contact bracket mounting screws. Set up the SPACE and rotate the ma in shaft until the printing bail is in its extreme forward position. Position the adjusting screw on the transfer-contact function lever to meet the requirement and tighten the lock nut.
12.4 Transfer Contact-Lever Spring Tension
12.4.1 It should require a tension of 12 to 16 ozs. to start the lever moving.
12. 5 Transfer Contact Function - Lever Spring Tension
12.5.1 Place the typing unit on the right side. Select SPACE (\#3 vane down) and rotate the main shaft until the printing bail is in its extreme forward position. With the transfer contact lever held away from the adjusting screw head, hook a scale to the transfer-contact function lever extension and pull horizontally. It should require a tension of 20 to 28 ozs . to start the lever moving.
12.6 Function Lever Bail (See paragraph 2.1)
12.6.1 NOTE: A minimum clearance of $.025^{\prime \prime}$ is permissible between the rear edge of the transfer contact function lever when the typing unit is equipped with the station selector mechanism.
12.7 Disconnect Contact
(a) Set up the CARRIAGE-RETURN combination and rotate the main shaft until the printing bail is in its extreme forward position. There should be a clearance of $.010^{\prime \prime}$ to $.020^{\prime \prime}$ between the disconnect contacts. TO ADJUST, bend the stiffener to obtain this clearance.
(b) With the main shaft in its STOP position, make certain that there is some clearance between the insulator on the lower disconnect contact spring and the bell crank when the play in the bell crank
12.7 (b) is taken up in the direction to make this clearance a maximum. TO ADJUST, bend the stiffener and the upper contact spring.
(c) With the typing unit resting on the r ight side and the main shaft in its STOP position, hook an 8 oz . scale to the lower contact spring between the contact and insulator and pull at a right angle to the contact spring. It should require a tension of $3-1 / 2$ to 5 ozs. to just break contact. TO ADJUST, bend the lower contact spring.
12.8 Keylever Link
12.8.1 The keylever link should be positioned on its keylever to provide from $.020^{\prime \prime}$ to $.040^{\prime \prime}$ clearance between the vertical edge of the link and the vertical side of the bail. TO ADJUST, loosen the link clamping screw and position the link.
12.9 Bail Spring Tension
12.9.1 It should require a tension of 2 to 3 ozs. to start the spring moving away from the bail. TO ADJUST, bend the spring.

Figure 15
12.10 Bail Backstop
12.10.1 There should be some clearance, not more than . 004" between the edge of the bail and the hook on the keylever link. TO ADJUST, loosen the bail backstop eccentric mounting screw. Hold the bail against the eccentric backstop, and turn the eccentric. Tighten the screw.

M15-32

BK2.3.2
ISSUE 1
AUGUST, 1964
12.11 Answer-Back-Magnet Heel-Piece Air Gap
12.11.1 There should be a clearance of $.005^{\prime \prime}$ to $.015^{\prime \prime}$ between the end of the heel piece and the armature when the armature is held in the operated position. TO ADJUST, loosen the armature-yoke mounting screw and place a $.008^{\prime \prime}$ gauge between the heel piece and the armature. Hold the armature firmly against the gauge and tighten the mounting screw.
12.12 Bail
12.12.1 The eccentric bushing on the bail which is engaged in the forked end of the answer-back-magnet armature lever should be adjusted to provide full travel of the keylever which it operates. TO ADJUST, loosen the eccentric bushing mounting screw, fully depress the answer-back keylever, place the magnet armature in its operated postion and rotate the eccentric bushing until the bail just clears the keylever link. Tighten the eccentric bushing mounting screw.

NOTE: Adjust the eccentrics so that the keyboard clutch is just tripped when the answer-back magnet is energized with a piece of paper placed between the armature and the pole piece. It is important not to increase or decrease this adjustment as intermittent errors may occur.

Figure 16
13. ELECTRICAL MOTOR CONTROL ADJUSTMENTS
13.1 Motor Stop Function Lever Spring
13.1.1 It should require 5 to 6 lbs . to start the function lever moving.

13.2 Motor Stop Contact

13.2.1 With the printing bail to its rear position, there should be some clear ance, not more than $.006^{\prime \prime}$ between the insulator on the contact spring and the motor stop function lever front extension. TO ADJUST, bend the contact. With LETTERS selected and the main shaft rotated until all function levers are against the vanes, there should be a . 010 " to .015 " clearance between the contacts. TO ADJUST, bend the heavy contact spring.
13.3 Start Magnet and Stop Magnet Cores
13.3.1 With either magnet armature held operated, there should be not more than $.004^{\prime \prime}$ clearance between the magnet armature and either the magnet core or yoke. TO ADJUST, add or remove shims between the magnet core and the yoke.
13.4 Start Magnet Bracket
13.4.1 With the start magnet armature held operated, position the stop magnet armature until its inner edge aligns with the outer shoulder on the start magnet armature; there should be a . $004^{\prime \prime}$ to $.008^{\prime \prime}$ clearance between the stop magnet armature and the outer face of the yoke. TO ADJUST, reposition the stop magnet bracket by means of its mounting screws and remove the resistor.
13.5 Stop Magnet Bracket
13.5.1 With the stop magnet armature held in the operated position by its latch there should be . 004" to . 008" clearance between the stop magnet armature and the outer face of the yoke. TO ADJUST, reposition the stop magnet bracket with its mounting screws loosened and the resistor removed.
13.6 Armature Stop
13.6.1 With the stop magnet armature against the armature stop, there should be a $.070^{\prime \prime}$ to $.080^{\prime \prime}$ clearance between the stop magnet armature and the outer face of the yoke. TO ADJUST, reposition the armature stop with its mounting screws loosened.

BK2.3.2
ISSUE 1
A UG UST, 1964

Figure 17

13.7 Latch Backstop Screw

13.7.1 With the stop magnet armature held in the operated position by the notch in the start magnet armature, there should be some clearance. not more than $.008^{\prime \prime}$ between the high part of the latching surface of the latch and the end of the slot in the stop magnet armature. TO ADUST, reposition the latch backstop screw.
13.8 Stop Magnet Armature Spring Tension
13.8.1 It should require 14 to 16 ozs. to stretch the spring to its position length.

Figure 18

13.9 Start Magnet Armature Spring Tension

13.9.1 It should require $3-1 / 2$ to $4-\mathbf{1} / 2$ ozs. to start the ar mature moving.
13.10 Latch Spring Tension
13.10.1 It should require $1-1 / 2$ to $2-1 / 2$ ozs. to start the latch moving.

13.11 Inner Contact Assembly

13.11.1 It should require $1-1 / 2$ to 2 ozs. to start the long contact spring moving away from the stop magnet armature. TO ADJUST, bend the long contact spring.
With the stop magnet armature held in the operated position by the notch in the start magnet armature, there should be a $.015^{\prime \prime}$ to $.020^{\prime \prime}$ gap between the contact. TO ADJUST, bend the short contact spring.
13.12 Outer Contact Assembly
13.12.1 The stop magnet armature should be held operated by the notch in the start magnet armature during the following adjustments:
(a) The two short contact springs nearest the armature should bear against their stiffeners with slight pressure when the other springs are held off. TO ADJUST, bend the short contact springs.
(b) There should be some clearance, not more than $.006^{\prime \prime}$ between the insulator on the long contact spring and the stop magnet armature. TO ADJUST, bend the spring stiffener nearest the armature.
(c) It should require 1 to $1-1 / 2$ ozs. to separate the contacts when the adjacent springs are held away. TO ADJUST, bend the long contact spring.
(d) The long contact spring should be adjusted so that it bears lightly against the long contact spring nearest the stop magnet armature.
(e) It should require 1 to 2 ozs. to start the short contact spring farthest from the stop magnet armature moving. There should be a .015 " to $.020^{\prime \prime}$ gap between the contacts.

BK2.3.2
ISSUE 1
AUGUST, 1964

Figure 19

MODEL 15 TELETYPE WIRING

SINGLE CORD OPERATION	TWO CORD OPERATION
Line $-34 \& 41$	Send line $-32 \& 34$
Strap $-32 \& 42$	Rec line $-41 \& 42$

NON-RELAY OPERATION
G-61 remove and tape.
W - 65 move to 66 .
Y - 62 move to 61.
Disconnect D. C. cord

Figure 20. MODEL 15 WIRING DIAGRAM.

Figure 21. SE-200 STATION SELECTOR (with C-68 Modif.)

TO BY-PASS A SE-200 STATION SELECTOR

Place the following straps in the female jones plug connector

1 to 9
7 to 11
10 to 12
Wrap electric tape around the connector and straps. (use a heavy gauge solid wire for straps)

Disconnect D. C. plug to selector.
Place female connector on table shelf.

POLAR RELAY
s m

NEUTRAL RELAYS
operate circuit closes

relay fully de-energized (release time in millisecs.)
LR - Line relay
SR - Start relay
MCR- Motor control relay
CR - Call relay
BR - Busy relay
LR - Line relay (selector)

Figure 23. CDX-1: DIAL SELECTOR.

PLANT MANUAL BK2.3.3 ISSUE 1
AUGUST, 1964

MODEL 15 PERFORATOR TRANSMITTER (MODEL 19 KEYBOARD)

ADJUSTMENTS

CONTENTS PAGE

1. SELECTOR BAR ASSEMB LY SHIM ADJUSTMENT 2
2. TRIP-OFF PAWL STOP PLATE ADJUSTMENT 3
3. REPEAT SPACE ROD CUTOUT ADJUSTMENT 3
4. KEYBOARD CONTROL CONTACT ASSEMBLY ADJUSTMENT S 3
5. KEYBOAILD CONTROL OPERATING LEVER DETENT BRACKET ADJUSTMENT 5
6. UNIVERSAL BAR C UTOUT MECHANISM ADJUSTMENTS 5
6
6
7. CAM PULSING CONTACT ADJUSTME NTS
8. CAM PULSING CONTACT ADJUSTME NTS 6 6
7
7
9. TAPE TENSION LEVER STUD ADJUSTMENT 7
10. TAPE TENSION LEVER SPRING TENSION ADJUSTMENT
11. TAPE TENSION LEVER SPRING TENSION ADJUSTMENT 7 7
BACKSPACE MECHANISM SPRING TENSION REQUIREMENTS
BACKSPACE MECHANISM SPRING TENSION REQUIREMENTS 7 7
12. BACKSPACE MECHANISM SPRING TENSION REQUIREN 7
13. SELECTOR LEVER BRACKET ADJUSTMENT 7
14. FEED PUNCH SELECTOR LEVER ADJUSTMENT 8
ARMATURE LEVER LEFT STOP SCREW A JJUSTMENT 8
15. ARMATURE LEVER RIGHT STOP SCREW ADJUSTMENT 9
16. SELECTOR FINGER RETAINER ADJUSTMENT 9
17. TAPE GUIDE SPRING ADJUSTMENT 9
18. PUNCH CONTACT BRACKET ADJUSTMENT 9
PUNCH CONTACT SPRING TENSION 10
19. KEY PRESSURE ADJUSTING MECHANISM ADJUSTMENT 10
ANTI-CHA TTER MECHANISM ADJUSTMENTS 10
20. PUNCH CONTACT OPERATING LEVER LINK ADJUSTMENT 11
21. PUNCH CONTACT OPERATING LEVER BACKSTOP ADJUSTMENT 11
22. PUNCH CONTACT OPERATING LEVER SPRING TENSION: 12
23. PUNCH MAGNET ADJUSTMENT 12
24. FEED ROLL DETENT ADJUSTMENT 12
25. FEED PAWL ECCENTRIC ADJUSTMENT 13
FEED PAWL SPRING TENSION
13
13
26. FEED PAWL SPRINWOUT BRACKET ADJUSTMENT
13
13
FEED PAWL GUIDE ADJUSTMENT 13
CONTENTS PAGE
27. TAPE STRIPPER PLATE ADJUSTMENT 14
28. TAPE KNIFE ADJUSTMENT 14
29. COUNTER CONTROL CONTACT OPERATING MECHANISM ADJUSTMENTS 14
30. COUNTER CONTROL CONTACT ASSEMBLY ADJUSTMEN TS 15
31. FEED PAWL BRACKET ADJUSTMENT 16
32. RATCHET RETURN SPRING ADJUSTMENT 17
33. RATCHET SPRING TENSION 17
34. RELEASE MAGNET ARMATURE ECCENTRIC STOP ADJUSTMENT 18
35. CHECK LA TCH PAWL BRACKET ADJUSTMENT 18
18
18
36. RELEASE LEVER EXTENSION ADJUSTING SCREW
37. RELEASE LEVER EXTENSION ADJUSTING SCREW
ADJUSTMENT
38. COUNTING MAGNET ARMATURE ECCENTRIC STOP ADJUSTMENT 19
39. RELEASE LATCH BRACKET ADJUSTMENT 19
40. CHECK LATCH PAWL SPRING TENSION 19
41. RELEASE LATCH SPRING TENSION 19
42. DASHPOT POSITION ADJUSTMENT 19
43. FEED PAWL SPRING TENSION 20
44. CONTACT BRACKET ADJUSTMENT 20
45. CONTACT SPRING ADJUSTMENT 20
46. SIGNAL LAMP CONTACT PRESSURE 20
47. CONTACT CAM ADJUSTMENT 20
48. DASHPOT AIR VENT SCREW ADJUSTMENT 20
49. SELECTOR BAR ASSEMBLY SHIM ADJUSTMENT
1.1 When the " Q " key lever is fully depressed, all other key levers should have some play between the leather upstop and the selector bars and there should be some clearance, not over $.030^{\circ}$. between the high por tions of the first selector bar from the front ($\mathrm{A}-1$) and the unoperated key levers in line with the high portions. These conditions should also exist when the " P " or " B " key levers are depressed.
. 2 When the " T " key lever is fully depressed. there should be some clearance, not over . $020^{\prime \prime}$, between the rearmost code selector bar ($\mathrm{E}-2$) and

BK2.3.3
ISSUE 1
AUGUST, 1964
1.2 the unoperated key lever having the least clearance. TO ADJUST, add (or remove) an equal number of shims to the bracket at each of the rear corners. Tighten the mounting screws. Replace the " Y " lever connecting link extensions and the left and right keyboard slide plates.
2. TRIP-OFF PAWL STOP PLATE ADJUSTMENT
2.1 With the high part of the intermediate pawl eccentric towards the front of the unit, there should be $.070^{\circ}$ to $.080^{\circ}$ clearance between the tripoff pawl and the intermediate pawl when the trip-off pawl is resting against the trip-off pawlstop plate and the inter mediate pawl is against its eccentric. TO ADJUST, loosen the trip-off pawl stop plate mounting screws and position it. Tighten the screws.

3. REPEAT SPACE ROD CUTOUT ADJUSTMENT

3.1 With the keyboard control operating lever in the lower position and the space bar depressed until it rests lightly on its rubber downstops. there should be a clearance of $.010^{\prime \prime}$ to $.020^{\prime \prime}$ between the repeat space rod and the side of the intermediate pawl. TO ADJUS' : position the cutout in its slot utilizing the elongated mounting hole.
4. KEYBOARD CONTROL CONTACT ASSEMBLY ADJUSTMENTS

Figure 1
4.1 Place the keyboard control operating lever in the upper position.
4.1.1 Both prongs of the keyboard control operating lever should engage the insulating tips of contact springs No. 3 and No. 5 approximately centrally.
4.1.1 TO ADJUST, loosen the contact assembly bracket mounting screws and position the bracket. Tighten the screws.
. 2 There should be not less than $.010^{\circ}$ clearance between the keyboard casting and the insulating tip on contact spring No. 5. TO ADJUST, bend the lowest contact.
.3 There should be $.015^{\prime \prime}$ to $.040^{\prime \prime}$ clearance between the contact points on springs No. 4 and No. 5. TO ADJUST, bend contact spring No. 4.
not more than 1-1/2 oz to close coptact

Figure 2
4.2 Place the keyboard control operating lever in the centre position.
4.2.1 There should be not less than $.015^{\prime \prime}$ clearance between the lower prong on the keyboard control operating lever and the insulating tip on contact spring No. 5. TO ADJUST, bend contact spring No. 4.
. 2 With the insulating tip on contact spring No. 3 resting against the upper prong of the keyboard control operating lever, there should be $.015^{\circ}$ to $.040^{\prime \prime}$ clearance between the contact points on springs No. 2 and No. 3. TO ADJUST, bend the backstop of contact spring No. 2.
.3 There should be $.015^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the contact points of springs No. 1 and No. 2. TO ADJUST, bend contact spring No. 1.
. 4 It should require a pull of not more than 1-1 2 ozs . to raise contact spring No. 2 so that the points of springs No. 1 and No. 2 make contact.

BK2.3.3
ISSUE 1
AUGUST, 1964
4.2.4 TO ADJUST, bend contact spring No. 2. Recheck the above contact gaps.
at least $1 / 4 \mathrm{oz}$. to separate contacts

Figure 3
4.3 Place the keyboard control operating lever in the lower position.
4.3.1 It should require a push of 2 to 3 ozs . to separate the contact points of springs No. 4 and No. 5. TO ADJUST, bend contact spring No. 5. Recheck the contact gap.
. 2 It should require a push of 3 to 3-1 2 ozs. to separate the contact points of springs No. 2 and No. 3 when spring No. 2 is held to prevent follow. TO ADJUST, bend contact spring No. 3. Recheck the contact gap.
5. KEYBOARD CONTROL OPERA TING LEVER DETENT BRACKET ADJUSTMENT
5.1 With the keyboard control operating lever in its upper position. it should require a pull of at least 20 ozs . to more the operating lever from the upper (keyboard) position to the centre (Keyboard and Tape) position. TO ADJUST, loosen the detent bracket mounting screws and position the bracket. Tighten the screws.
6. UNIVERSAL BAR CUTOUT MECHANISM ADJUSTMENTS
6.1 With the keyboard control operating lever in the middle position. and all keylevers in the unoperated position. there should be some clearance. not over $116^{\prime \prime}$. between the universal bar and the cutout lever. TO ADJUST, bend the universal bar catout lever return spring.

BK2.3.3
ISSLE 1
AUGLST, 1964

7.

 TRIP-OFF PAWL CUTOUT ADJUSTMENT7.1 When the clutch throwout lever is resting against the low part of its cam and the keyboard control operating lever is moved slowly from the centre position to the lower position, there should be $.015^{\prime \prime}$ to $.030^{\prime \prime}$ clearance between the trip-off pawl and the intermediate pawl at the point where the clearance is a minimum. TO ADJUST, bend the trip-off pawl cutout.
8. CAM PULSING CONTACT ADJUSTMENTS
8.1 Rotate the transmitting cam assembly until the tip on the contact oper ating spring, which bears on the cam, falls into the cam indent. It will be necessary to remove the filters from their mounting bracket in order to make the measurements.

Figure 4
. 2 It should require a pull of 3-1 2 to 4-1 2 ozs. to separate the contact points. Also, the contact surfaces should meet squarely. TO ADJUST. bend the contact springs.
. 3 There should be $.010^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the curved tip on the contact operating spring and the insulating tip on the upper contact spring. TO ADJUST. bend the backstop for the contact operating spring.
. 4 It should require a pull of 2 to 3 ozs. to start the lower spring moring away from the end of the backstop. TO ADJUST. bend the contact operating spring.

BK2. 3.3
ISSUE 1
AUGUST, 1964
8.5 There should be at least $.020^{\prime \prime}$ clearance between the wearing tip on
the contact operating spring and the low part of the cam surface. If
necessary to adjust, recheck the previous adjustments.
9. TAPE FEED ROLL ADJUSTMENT
9.1 The tape feed roll should be free and should not have over .003' end play. TO ADJUST, increase or decrease the number of shims installed between the feed roll bracket and the casting. Tighten the screws.
10. TAPE TENSION LEVER STUD ADJUSTMENT
10.1 The feed pins on the feed roll should not touch either side of the slot in the tape tonsion lever when the play in both the feed roll and tape tension lever is taken up in opposite directions. TO ADJUST, increase or decrease the number of shims installed between the tape tension lever stud and the feed roll bracket.
11. TAPE TENSION LEVER SPRING TENSION ADJUSTMENT
11.1 It should require a pull of 5 to 5-1 2 ozs. to start the slotted extension of the lever moving away from the feed roll. TO ADJUST. loosen the tape tension lever stud lock nut and rotate the stud in either a clockwise or counterclockwise direction. Tighten the lock nut.
12. BACKSPACE MECHANISM SPRING TENSION REQUIREMENTS
12.1 It should require 4 to 6 ozs. to start the backspace lever moring. It should require 1 to 2 ozs. to start the feed pawl moving.
13. FEED ROLL DETENT SPRING TENSION REQUIREMIENT
13.1 It should require 15 to 17 ozs. to start the roller moving away from the star wheel. TO ADJUST. hold the adjusting thumb nut and loosen the lock nut. Then turn the thumb nut to obtain the proper tension. Hold the thumb nut when tightening the lock nut.
14. SELECTOR LEVER BRACKET ADJUSTMENT (Figure 5)
14.1 Place an " R " wrench on the R. T and Y keylevers. depress the wrench until the keylevers are stopped by the code bars. The engaging tips of the selector fingers (not including the feed punch selector finger) should be under the punches by not more than half the diameter of the punches (gauge by eye). TO ADJUST. loosen the selector lever bracket mount -
14.1 ing screws and position the bracket. Tighten the mounting screws.

Figure 5
15. FEED PUNCH SELECTOR LEVER ADJUSTMENT (Figure 5)
15.1 The left end of the feed punch selector finger should line up with the left edge of the feed punch pin (gauge by eye). TO ADJUST, position the feed punch selector lever by increasing or decreasing the number of shims between the formed-over ear of the selector lever bracket.
16. ARMATURE LEVER LEFT STOP SCREW ADJUSTMENT (Figure 5)
16.1 With the armat ure lever held firmly against its left stop and the left end of the uppermost section of the feed punch selector finger in line with the left edge of the feed punch pin. the clearance between the feed punch selector finger and the feed punch should be $.025^{\circ}$ to . 030°.

BK2.3.3
ISSUE 1
AUGUST: 1964

17. ARMATURE LEVER RIGHT STOP SCREW ADJUSTMENT

17.1 In order to check this adjustment it is necessary to remake it. TO ADJUST, proceed as follows: Place all of the punch selector fingers under the punch pins so that the left end of each selector finger lines up with the left end of the feed punch selector finger. Adjust the arm ature lever right stop screw so that the punches fail to punch through the tape when the punch magnets are energized by closing the punch contacts by hand. Then back off the stop screw until all of the punches just punch through the tape when the punch magnet contacts are operated vy hand. All of the punches should also perforate the tape when the selector fingers are positioned as far to the left as possivle. Back off the right stop screw farther if necessary. Then back off the stop screw 1/4 turn more for margin. Make certain that there is some clearance between the armature and the magnet core when the armature lever is held firmly against its right stop. Tighten the lock nut.
18. SELECTOR FINGER RETAINER ADJUSTMENT (Figure 5)
18.1 There should be some clearance. not over . 005° " between the retainer and the top of the feed punch selector lever when the armat ure lever is held in its operated position by the magnet. Also. the selector finger retainer should be equidistant (within $.005^{\prime \prime}$) from the No. 1 and No. 5 selector fingers when the ends of all the selector fingers are in line. TO ADJUST, loosen the retainer mounting screws and adijust the retainer. Tighten the screws.
19. TAPE GUIDE SPRING ADJUSTMENT
(a) The edge of the spring should be parallel to the edge of the casting on which it is mounted.
(b) The spring should hold the tape securely against the side of the guide in the die block adjacent to No. 1 punch without buckling the tape.

TO ADJUST, for requirement (a), position the spring. To check the latter requirement, take up the play of the tape in the die block toward the spring and observe whether the spring recurns the tape to the far side when the tape is released. TO ADJUST. bend the spring.
20. PUNCH CONTACT BRACKET ADJUSTMENT
20.1 The punch contact bracket should be pusitioned. so that its mounting
20.1 screws are midway in the elongated holes. TO ADJUST, loosen the mounting screws, reposition the bracket and tighten the mounting screws.
21. PUNCH CONTACT SPRING TENSION (Figure 7)
21.1 With any keylever depressed, it should require 2 to 3 ozs. to separate the contacts. TO ADJUST, bend the right-hand contact spring.
22. KEY PRESSURE ADJUSTING MECHANISM ADJUSTMENT
22.1 The punch contact operating lever backstop screw should be centrally located with the contact operating lever. TO ADJUST, position the key pressure adjusting mechanism by means of its mounting screws.

23. ANTI-CHATTER MECHANISM ADJUSTMENTS
23.1 With the armature lever in its unoperated position. the anti-chatter lever should be in contact with the adjusting screw on the armature. and its upper surface should be approximately horizontal. TO ADJUST. position the adjusting screw.
. 2 With the armature lever in the energized position, the anti-chatter lever should have at least . $005^{\prime \prime}$ play between the operating screw and the magnet.
. 3 With the armature lever in the unoperated position. the anti-chatter lever should extend at least $132^{\prime \prime}$ to the left of the centre of the

BK2. 3.3
ISSUE 1
AUGUST. 1964
23.3 operating screw. TO ADJUST, refine the operating screw.
. 4 It should require 2 to 3 ozs. to pull the anti-chatter lever spring to its position length.
24. PUNCH CONTACT OPERATING LEVER LINK ADJUSTMENT (Figure 7)
24.1 With the space bar fully depressed, there should be $.015^{\circ}$ to $.030^{\circ}$ clear ance between the right-hand contact spring and the insulator on the contact operating lever. TO ADJUST, reposition the adjustable link.

NOTE: Depress the LETTERS and BLANK keylevers alternately. the selector fingers should travel the same distance to the right or left after the punch contacts have closed.

25. PUNCH CONTACT OPERATING LEVER BACKSTOP ADJUSTAENT
25.1 With DC connected to 52 and 53. operate any keylever and slowly release until the contact operating lever just separates the punch contacts. Under this condition there should be a. $010^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the contact operating lever backstop and ne right-hand edge of the contact operating lever: TO ADJUST. loosen the backstop screw lock nut and position the screw, tighten the lock nut.

26. PUNCH CONTACT OPERATING LEVER SPRING TENSION

26.1 It should require 12 to 1 oz . to just start the contact operating lever moving away from the backstop screw. TO ADJUST, turn the spring adjusting screw to its highest position. Then position the extension on the adjusting lever by means of the elongated slot in the extension to meet the requirement.
27. PUNCH MAGNET ADJUSTMENT
27.1 With the punch magnet energized and the armature lever resting against its right-hand stop, there should be $.004^{\prime \prime}$ to $.008^{\prime \prime}$ clearance between the magnet cores and the armature.
. 2 In order to change this adjustment, it will be necessary to remove the counter unit and the counter mounting bracket. Replace the parts after making the adjustment.
.3 TO ADJUST, loosen the two eccentric stop mounting screws and rotate the eccentric away from the core. Loosen the magnet core mounting screws and position the core. Tighten the mounting screws. Rotate the eccentrics so they make contact with the core and tighten the screws which mount the eccentrics.

Figure 8
28. FEED ROLL DETENT ADJUSTMENT (Figure 8)
(a) With the detent lever roller resting between two teeth of the star wheel and the armature lever in the operated position.

BK2.3.3
ISSUE 1
AUGUST, 1964
28. (a) insert the feed roll positioning gauge (No. 73517) in the punch block guide slot so that the projection of the gauge stops against the feed hole punch. Under these conditions, a pin on the feed roll should line up with the centre hole of the gauge. TO ADJUST, loosen the detent eccentric bushing mounting screw and position the bushing keeping the centre of the eccentric bushing below the centre of the mounting screw. Tighten the mounting screw.
(b) The perforations in the tape should conform to the standard spacing of 10 holes to the inch. Check the tape against the tape gauge ($\# 2215$). TO ADJUST, loosen the detent lever eccentric bushing mounting screw and position the oushing using the lower semi-circle of its adjusting range. Tighten the mounting screw.
29. FEED PAWL ECCENTRIC ADJUSTMENT
29.1 The feed pawl should just engage a tooth on the feed roll, without over travel, when the armature lever is raised slowly by hand until the feed punch selector finger just touches the feed punch. TO ADJUST. loosen the feed pawl eccentric bushing mounting screw, and position the bushing. Tighten the bushing mounting screw.
30. FEED PAWL SPRING TENSION
30.1 With the armature lever resting against its left stop. it should require 3 to 4 lbs . to extend the spring to its installed length.
31. FEED PAWL THROWOUT BRACKET ADJUSTMENT (Figure 5)
31.1 With the armature lever resting against its left-hand stop, there should be . $005^{\prime \prime}$ to $.015^{\prime \prime}$ clearance between the tip of the tooth on the feed pawl and the tips of the teeth on the feed roll throughout a complete revolution of the feed roll. TO ADJUST. loosen the bracket mounting serew and the adjusting screw lock nut and set them both friction tight. Then, with the adjusting screw in contact with the punch block adrance or withdraw the screw until the desired clearance is obtained. Tighten the lock nut and the mounting screw.
32. FEED PAWL GUDE ADJUSTMENT (Figure 9)

When the armature lever is held in its uperated position by energizing
32.1 the punch magnet, and the feed roll is rotated, there should be some clearance, not more than $.005^{\prime \prime}$. between the feed pawl and the closest feed roll tooth. TO ADJUST, position the feed pawl guide.

33. TAPE STRIPPER PLATE ADJUSTMENT
33.1 There should be some clearance, not over . $010^{\prime \prime}$, between the tape stripper plate and the feed roll throughout a complete revolution of the feed roll. TO ADJUST, loosen the mounting screws and position the plate. Tighten the mount ing screws.
34. TAPE KNIFE ADJUSTMENT
34.1 The tape knife should be approximately horizontal and there should be at least $.015^{\prime \prime}$ clearance between the tape knife and the tape stripper at their closest point. TO ADJUST, loosen the tape knife mounting screws and position the knife. Tighten the mounting screws.
35. COUNTER CONTROL CONTACT OPERATING MECHANISM ADJUSTMENTS
35.1 With the "figures" key lever and any two other keys levers depressed until they are stopped by the code selector bars. the relation between the key levers and the cam levers on the contact operating mechanism should be such that the cam levers are just completely displaced. To check this adjustment, depress the "figures" and any two other key levers until they are stopped by the code selector bars. Then. obserring the counter control contact operating fibre extension, there should be very little or no further displacement as the "figures" key lever is

BK2.3.3
ISSUE 1
AUGUST, 1964
35.1 depressed to its full depth of stroke. In a similar manner repeat this check, using the "carriage return" key lever. It is important that the full displacement of the cam lever is not reached until the function key lever just reaches its neutral position. ADJUST, by means of shims located vetween the contact operating mechanism and the two rear mounting ears of the condenser cover.

Figure 10
. 2 When the cam levers are held away from the key levers against their backstops, there should be approximately equal clearance between the "carriage return' and 'line feed" key levers and the tips of their respective cam levers. TO ADJUST, position the counter control contact operating mechanism laterally by means of the elongated holes in the mounting ears.
36. COUNTER CONTROL CONTACT ASSEMBLY ADJUSTMENTS
36.1 Remove the contact cover by loosening its mounting nuts. The contact springs are numbered from left to right. with contact spring No. 3 nearest to the resistor.
. 2 Contact springs No. 1 and No. 2 should be approximately at right angles to the insulator pile-up in the assembly, and each contact point should have a follow of $.005^{\prime \prime}$ to $.010^{\prime \prime}$ when the other spring is moved away from it. ADJUST by bending the stiffeners for contact springs No. 1 and No. 2.

It should require a force of 1 to 1-1 2 ozs. to just separate the contact points on contact springs No. 1 and No. 2. TO ADJUST, bend contact spring No. 1 or No. 2 and recheck requirement No. 1.

The contact operating fibre extensions of the counter control contact mechanism should move freely in their guide slots, and there should be not more than $.005^{\prime \prime}$ clearance between the contact spring No. 2 and the right edge of the fibre tip, when the rear contact operating fibre extension is held to the right against the backstop. TO ADJUST. position the counter control contact assembly by means of the elongated mounting holes in the bracket.
. 5 Contact spring No. 3 should be held by its backstop so that when the "carriage return" key lever is depressed slowly, contact spring No. 3 will be moved $.005^{\prime \prime}$ to $.010^{\prime \prime}$ by the action of the contact point on contact spring No. 2. TO ADJUST, bend the stiffener for contact spring No. 3.
. 6 With the "carriage return" key lever fully depressed, it should require a force of $3 / 4$ to 1 oz . , applied to contact spring No. 3, to just separate the contact points on contact springs No. 2 and No. 3. TO ADJUST. bend the contact spring No. 3 and recheck requirement No. 4.
$.7 \quad$ With the contact operating fiore extensions on the counter contact operating mechanism not touching contact springs No. 1 and No. 2. there should be at least $.015^{\prime \prime}$ clearance between the contact points on contact springs No. 2 and No. 3. If this clearance does not exist. refine the preceding adjustments to obtain proper clearance.
. 8 When the "carriage return" key lever is depressed, contact spring No. 2 should move toward the right and should break contact with the contact point on contact spring No. 1 before it makes contact with the contact point on contact spring No. 3. If adjustment is necessary refine the preceding adjustments to meet the break before-make requirement.
. 9 Replace the contact cover. Hold the mounting screws with a screwdriver when tightening the nuts :o avoid loosening the contact pile-up mounting screws.
37. FEED PAWL BRACKET ADJUSTMENT
37.1 With the counting magnet armature play taken up in an outward direction. the outer edge of the pawl should not extend mure than . 035° outside the outer surface of the ratchet. With the play taken up in the opposite direc-

BK2.3.3
ISSUE 1
AUGUST. 1964
37.1 tion, the outer surface of the pawl should not be more than $.015^{\circ}$ with in the outer surface of the ratchet. TO ADJUST, remove the armature assembly from the init. Set the screws which hold the bracket to the armature so that the bracket is friction tight, and replace the armature assembly on the unit. Adjust the bracket for the correct position of the pawl, remove the armature assembly and tighten the oracket mounting screw. Replace the armature assembly.

38. RATCHET RETURN SPRING ADJUSTMENT (Figure 11)
38.1 The ratchet should be free throughout a complete revolution in a counterclockwise direction. TO ADJUST, proceed as follows: Remore the dashpot. When removing the dashpot, care should be taken to permit the ratchet spring to unwind slowly so as to aveid breaking the spring. Wind up the ratchet spring by turning the ratchet in a counterclockwise direction until the spring is tight. Then return the ratchet in a clockwise direction not less than one, nor more than two complete revolutions. Position the ratchet so that the stop lug is in the approximate location of 45° in the lower left-hand quadrant as the ratchet is viewed from the rear. Engage the latch pawl to hold the ratchet in place. Replace the dashpot and position it so that the stop lug is in full engagement with the plunger throughout the stroke of the plunger.
39. RATCHET SPRING TENSION (Figure 11)
39.1 Operate the release magnet armature and hold the dashpot plunger
depressed. Hook a scale over the spoke of the ratchet that carries the stop lug at the point on the spoke nearest the periphery of the ratchet and pull in a counterclockwise direction at a right angle to the radius. It should require $1-12$ to 3 ozs. to move the stop lug away from the end of the plunger.
40.1 With the feed pawl in full engagement with the teeth on the ratchet. there should be $.010^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the release lever extension and the feed pawl when the release magnet armature is against its stop. TO ADJUST, loosen the eccentric stop mounting screw and position the eccentric. Tighten the mounting screw.

Figure 12
41. CHECK LATCH PAWL BRACKET ADJUSTMENT (Figure 12)
41.1 With the counting magnet armature against the magnet cores. the teeth on the feed pawl should overtravel the ratchet teeth .008" to .020". TO ADJUST, loosen the check latch pawl bracket mounting screws and position the bracket. Tighten the mounting screws.

NOTE: When making this adjustment, back off the release lever extenion adjusting screw and hold the check latch pawl in full engagement with a tooth on the ratchet.
42. RELEASE LEVER EXTENSION ADJUSTING SCREW ADJUSTMENT
(Figure 11)
42.1 Hold the ratchet so that the teeth on the check latch pawl are not

BK2.3.3
ISSUE 1
AUGUST. 1964
42.1 opposite the place on the ratchet where the teeth are missing. There should be . $015^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the check latch pawl and the ratchet. TO ADJUST, loosen the release lever extension adjustment screw lock nut and position the screw. Tighten the lock nut.
43. COUNTING MAGNET ARMATURE ECCENTRIC STOP ADJUSTMENT
43.1 When the counting magnet armature is operated, its feed pawl should rotate the ratchet one tooth and the check latch pawl should be in full engagement with a tooth on the -atchet, with slight overtravel not over . $010^{\prime \prime}$, when the counting magnet armature is against its eccentric stop. Check this overtravel throughout a complete revolution of the ratchet. TO ADJUST, loosen the eccentric stop mounting screw and position the eccentric. Tighten the mounting screw.
44. RELEASE LATCH BRACKET ADJUSTMENT
44.1 With the release magnet armature against the magnet cores, the release lever extension should overtravel the notch in the release latch by .004. to $.015^{\prime \prime}$. TO ADJUST, loosen the release latch bracket mounting screws and position the bracket. Tighten the screws.
45. CHECK LATCH PAWL SPRING TENSION (Figure 11)
45.1 It should require 1-1 2 to $2-12$ ounces to start the pawl moving.
46. RELEASE LATCH SPRING TENSION
46.1 With the release latch in its unlatched position. it should require $3+$ to 1-3 4 ozs. to start.
47. DASHPOT POSITION ADJUSTMENT
47.1 With the plunger completely depressed into the dashpot cylinder. the stop on the ratchet resting firmly against the end of the plunger shaft, and the check latch pawl in engagement with the ratchet, there should be some clearance, not over . $004^{\prime \prime}$. between the engaging faces of the first tooth on the ratchet and the first (outer) tooth on the check pawl. Under the foregoing conditions the indicator should point to zero on the scale. Also, the point of contact of the plunger against the ratchet stop lug should be at least . $040^{\prime \prime}$ from the edge of the stop lug throughout the stroke of the plunger. TO ADJUST the dashpot. loosen the dashpot mounting screws and position the dashpot. Tighten the mounting screws.
$\underbrace{130 \mathrm{~V} \text { D. } \mathrm{C} .}$

Figure 13. MODEL 15 IEERFORATOR TRANSMITTER (19 Kybd).

19 TABLE WIRING.

Connect Line 1-E1 \& E2
Connect Line 2-E3 \& E4
Connect A. C. - A21 \& A22.

To connect one line without use of Table switching key
remove strap-C1 \& C6
add strap -C5 \& C6
Connect line-C1\& C6

PLANT MANUAL BK2.3.4 ISSUE 1
AUGUST, 1964

LORENZE MODEL 15 TELETYPE

ADJUSTMENTS

CONTENTS
 PAGE

1. KEYBOARD ADJUSTMENTS

1
2. ANSWER BACK ADJUSTMENTS

7

1. KEYBOARD ADJUSTMENTS
1.1 Selector Bar Assembly Position (Figure 1)

REQUIREMENT: With the selector bars resting against the two outer bearing plates, there should be a .004" to .012" clearance between the keylevers and the teeth of the selector bars and must be equal on both ends.

TO ADJUST: Reposition the two outer bearing plates on the selector bar assembly with its set screws loosened.
1.2 Selector Bar Stop Bracket (Figure 1)

REQUIREMENT: With the selector bars positioned to the extreme left hand position, the keylevers should engage the slanting sides of the selector bars. In a similar manner check with the selector bars in the extreme right hand position.

TO ADJUST: Reposition the right stop bracket if the requirement is not met with the selector bars in the left hand position and reposition the left stop oracket if the right hand requirement is not satisfied.

Figure 1
1.3 Keylever Locking Bar (Figure 1)

REQUIREMENT: (1) With the keylever locking bar to its extreme right hand position, the upper case keylevers should engage the middle of the locking bar teeth. In a similar manner check with the locking bar in its left hand position operating the lower case keylevers.

TO ADJUST:
Reposition the left or right hand keylever locking bar adjusting screws with its lock nut loosened.

REQUIREMENT: (2) With the keylever lozking bar resting against the inner bearing plates. there should be a $.008^{\circ}$ to $.016^{\prime \prime}$ clearance between the keylever locking bar and all the keylevers.

BK2.3.4
ISSUE 1
AUGUST: 1964

Figure 2
1.6 Transmitting Shaft End Play

REQUREMENT: The transmitting shaft should be free with no end play.

TO ADJUST: | Reposition the bushing in the rear bearing bracket |
| :--- |
| by means of its adjusting nuts. |

1.7 Clutch Throwout Lever

REQUIREMENT: There should be a $.004^{\prime \prime}$ to $.008^{\prime \prime}$ clearance between the clutch teeth with the clutch fully disengaged.

TO ADJUST: Position the clutch throwout lever by means of shims placed between the throwout lever post and the bracket.
1.8 Trip-Off Pawl (Figure 3)

REQUIREMENT: With any keylever depressed, rotate the transmitting shaft until the lower extension of the clutch throwout lever reaches its highest travel, there should be a $.008^{\prime \prime}$ to . 016" clearance between the clutch throwout lever and the latching surface of the trip-off pawl shoulder.

TO ADJUST: Reposition the trip-off pawl mounting plate with its mounting screws loosened.
1.9 Lock Loop Roller (Figure 2)

REQUIREMENT: With the keyboard clutch fully disengaged, position the locking levers directly below the lock loop blade. there should be a . $015^{\prime \prime}$ to $.060^{\prime \prime}$ clearance between the lock loop blade and the locking lever.

TO ADJUST: Readjust the lock loop eccentric screw with its lock nut loosened.
1.10 Transmitting Clutch Pressure Roller

REQUIREMENT: The transmitting clutch pressure roller should travel

BK2.3.4
ISSUE 1
AUGUST, 1964

REQUIREMENT: from . $020^{\prime \prime}$ to $.032^{\prime \prime}$ to the front of the keyboard when engaged by the driven clutch member.

Figure 3
1.11 Intermediate Lever Stop Plate (Figure 3)

REQUIREMENT: With the transmitting clutch tully disengaged. there should be some clearance not more than . $006^{\prime \prime}$ between the trip-off pawl and the notch in the intermediate lever.

TO ADJUST: Reposition the intermediate lever stop plate.
Universal Bar Position (Figure 4)
REQUIREMENT: With any keylever fully depressed. there should be a $.008^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the clutch throwout lever and the trip-off pawl.

TO ADJUST: Reposition the universal bar bearing plates with its clamping screws loosened.

Figure 4

Figure 5

BK2. 3.4
ISSUE 1
AUGUST, 1964

TO ADJUST:

REQUIREMENTS: (2) With any contact lever on the low part of its cam, it should require a pressure of 3-1 2 to 6 ozs. to open the contacts, with the scale applied to the contact spring just above the contact point.

TO ADJUST: Bend the longer contact springs. Recheck (1).
1.14 Repeat Keylever Eccentric

REQUIREMENT: The repeat keytop unoperated, it should align with the other keytops and should not be higher or lower than its adjacent keytops.

TO ADJUST: Reposition its eccentric screw with its lock nut loosened.
2. ANSWER BACK ADJUSTMENTS
2.1 Stripper Bail Pivot Screws (Figure 5)

REQUIREMENT: The stripper bail should have a . 008° to $.025^{\circ}$ end play.

TO ADJUST: Readjust the front pivot screw with its lock nuts loosened.
2.2 Stripper Bail Locking Lever (Figure 5)

REQUIREMENT: With the "HERE IS" key fully depressed, there should be a $.008^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the lower edge of the stripper bail and latching surface of the stripper bail locking lever.
2.2

TO ADJUST: Reposition the stripper bail locking lever with its two mounting screws loosened.

Rear Bearing Plate
Contact Lever Backstop

Figure 6
2.3 Answer Back Drum Alignment (Figure 6)

REQUIREMENT: (1) With the lock loop roller on the peak of its cam. depress the "HERE IS" key and rotate answer back drum until 5 contact lever backstops are directly opposite the contact levers. There should be a $.006^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between the contact levers and the contact lever backstops.

TO ADJUST:
Reposition the answer back drum assembly with its three mounting screws loosened. To equalize the clearance, reposition its rear bearing plate with its two clamp screws loosened.

REQUIREMENT: (2) With the "HERE IS" key depressed, rotate the transmitting shaft, the contact levers should fully engage the contact lever backstops in the first row. Continue rotating the transmitting

```
BK2.3.4
ISSUE 1
AUGUST, 1964
```

REQUIREMENT: TO ADJUST:
(2) shaft and check each row in a similar manner.

Rotate the answer-back drum until the " HERE IS' key lever rises into the notch of the ratchet disc. Loosen the rear lock nut (counterclockwise thread) of the drum, with a tommy inserted in the adjusting holes in the ratchet disc. rotate the disc counterclockwise to keep it stationary. Rotate the answer back drum ratchet wheel until the ratchet locking lever engages a tooth on the ratchet wheel and rotate the drum. See Figure 7 for location of parts.

Figure 7

REQUIREMENT: With the "HERE IS" keylever' operated, rotate the transmitting shaft until the lock loop roller is positioned to the right of its cam. Adrance the step pawl until a row of contact lever backstop are opposite the contact levers. The answer back drum locking lever should drop between two teeth on the ratchet and there should be a .004" to .008" clearance between the upper surface of the locking lever
2.4 REQUIREMENT: and a tooth on the ratchet

TO ADJUST: Reposition the step pawl eccentric screw with its lock nut loosened.
2.5 Answer Back Keylever (Figure 5)

REQUIREMENT: With the answer back keylever operated, its righthand extension should clear the stripper bail locking lever by $.008^{\prime \prime}$ to $.024^{\prime \prime}$.

TO ADJUST: Reposition the adjusting nut with its lock nut loosened.
2.6 Stripper Bail Adjusting Shim (Figure 5)

REQUIREMENT: With any keylever held fully depressed, there should be a $.004^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between the answer back keylever and the stripper bail shim with play taken up to make this clearance a minimum.

TO ADJUST: Reposition the adjusting shim with clamping screws loosened.
2.7 Repeater Trip-Off Lever (Figure 4)

REQUIREMENT: With the clutch fully disengaged there should be a $.005^{\prime \prime}$ to $.015^{\prime \prime}$ clearance between the repeater trip off lever and the trip off pawl.

TO ADJUST: $\quad \begin{aligned} & \text { Reposition the repeater trip off lever its mounting } \\ & \text { screws loosened. }\end{aligned}$
2.8 Answer Back Keylever Eccentric Screw (Figure 5)

REQUIREMENT: With the "HERE IS" keylever held depressed, there should be at least . 008' clearance between the stripper bail locking lever and the stripper bail.

TO ADJUST: Reposition the answer back keylerer eccentric screw with its lock nut loosen and recheck the answer back keylever adjustment paragraph 2.5.

BK2.3. 4
ISSUE 1
AUGUST. 1964
2.9 Answer Back Drum Step Pawl (Figure 7)

REQUIREMENT:	With the "HERE IS" keylever operated, rotate the transmitting shaft until the lock loop roller is on the peak of its cam. There should be a.008" to
.024 " clearance between the side of a tooth on the	
ratchet and the step pawl.	

Figure 8

REQUIREMENT: With the clutch fully disengaged and the locking lever arm rotated downard, there should be a $.040^{\circ}$ to $.120^{\prime \prime}$ clearance between the answer back stripper lever and the answer back retainins pawl.
2.10 TO ADJUST: Reposition the answer back stripper lever eccentric screw with its lock nut lousened.
2.11 Answer Back Locking Lever Stop Pin (Figure 8)

REQUIREMENT: There should be a $.002^{\prime *}$ to $.006^{\circ "}$ clearance between the locking lever and the shoulder on the front link lever and the front link lever should overlap the locking lever by . $060^{\prime \prime}$ to $.120^{\prime \prime}$, when the locking lever is not engaged in the shoulder of the retaining pawl.

TO ADJUST: Reposition the stop pin with its lock nut loosened.
2.12 Answer Back Retaining Pawl Eccentric (Figure 8)

REQUREMENT: With the answer back locking lever fully engaged with the shoulder of its retaining pawl, there should be a $.004^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between the lower extension of the locking lever and the front of the shoulder on the front link lever.

TO ADJUST: Reposition the answer back retaining pawl eccentric with its lock nut loosened.
2.13 Answer Back Keylever Stop Plate (Figures 5 and 8)

REQUIREMENT: With the clutch fully disengaged and the front link lever fully engaged with the locking lever, lift the rear link lever, there should be a $.004^{\circ}$ to $.012^{\circ}$ clearance between the front link lever and the answer back keylever stop plate.

TO ADJUST: Reposition the stop plate with its clamping screws loosened.

MODEL 28 TELETYPE

ADJUSTMENTS

CON			PAGE
1.	LK3 KEYBOARD ADJUSTMENTS		1
2.	LK10 KEYBOARD ADJUSTMENTS		10
3.	LP6 TYPING UNIT ADJUSTMENTS		13
1.	LK3 KEYBOARD ADJUSTMENTS		
1.1	Spring Tensions		
	Clutch latch lever	1-1 2 t	
	Clutch stop lever	1-3 4 t	
	Clutch trip bar	5 to 9	
	Code bar bail	6 to 8	
	Code bar bail latch	12 to	
	Code bar	3 to 4	
	Code bare latch	14 to	
	Code lever	3-1 2	
	Code lever bail	1-3 4	
	Code lever bail latch lever	3 to 5	
	Contact box	2 to 4	
	Detent Lever	8-1 2	
	Eccentric follower	1 to 2	
	Flutter lever	1 to 2-1	
	Inter mediate lever	2 to 4	
	Lock bar	5 to 9	
	Lock bail	2 to 4	
	Non-repeat	12 to	
	Reset lever	2 to 4	
	Selector lever	1 to 2	
	Transfer lever	5-1 2	

Selector Lever Guide
REQUIREMENT: With signal generator clutch disengaged, the clear ance between front selector lever and the low part of its cam should be Minimum .004"

Maximum .010"
TO ADJUST: Position the selector lever guide with its mounting screws loosened.
1.3 Rocker Bail Pivot Screw

REQUIREMENT: Rocker bail free on pivot with some end play maximum .010'.

TO ADJUST: Rotate pivot screw.

REQUIREMENT: Clearance between the rocker bail arm and both the marking and the spacing projections of the selector levers should be equal within $.005^{\prime \prime}$.

TO ADJUST: Equalize clearance by rotating the eccentric pivot stud of the detent with its lock nut loosened. Keep the high part of the eccentric toward the generator shaft.

1. 6 Detent Toggle Stop Bracket and Intermediate Lever Stop Plate

REQUIREMENT: Clearance between engaging surfaces of spacing and marking intermediate levers and associated surfaces of oscillating lever should be equal within $.004^{\prime \prime}$ and have some clearances not more than .006'.

TO CHECK: Front selector lever in marking position, generator shaft rotated until front selector lever is on peak of its cam. Move oscillating lever toward marking intermediate lever and gauge the gap. Then with front selector lever in spacing position and on peak of its cam, move oscillating lever toward spacing intermediate lever and check gap.

TO ADJUST: (a) Equalize the clearances by positioning the stop bracket with its mounting screws loosened.
(b) To get required clearances by positioning the intermediate stop plate with mounting post and mounting screw loosened.

1.7 Flutter Lever

REQUIREMENT: With the flutter lever on each low portion of its cam and the marking and spacing intermediate levers alternately selected, the clearance between

BK2.6.2
ISSUE 1
AUGUST, 1964
1.7 REQUIREMENT: the flutter lever and latching surface of selected intermediate lever should be : Minimum . $008^{\prime \prime}$ maximum .018"
With the clutch engaged and the selector levers (Figure 2) to marking (left), rotate the generator shaft to check clearance on marking intermediate levers. Hold selector levers to spacing (right) and rotate shaft to check spacing intermediate levers.

TO ADJUST: Position the flutter lever mounting stud in the elongated mounting hole with the lock nut loosened.

1.8 Clutch Shoe Lever

REQUIREMENT: Gap between clutch shoe lever and its stop lug should be . $055^{\prime \prime}$ to $.075^{\prime \prime}$ greater when clutch is engaged than when the clutch is disengaged.

TO ADJUST: With the two clamp screws in the clutch disk loosened, engage a wrench on the lug of the adjusting disk and rotate the disk.

NOTE: After the above adjustment is made, check for drag on the drum as follows: place clutch in stop position, hook 8 oz . scale on top tooth of gear and pull horizontally to the left. If a pull of more than 8 ozs. is required to move drum, refine the adjustment.

1.9 Generator Contact

REQUIREMENT: The marking and spacing contact gaps should be equal.

TO CHECK: Remove the cover from the contact box. First move the detent toggle against its spacing stop (left as viewed from rear) and gauge the marking contact gap. Then move the detent toggle against its marking stop and gauge spacing contact gap.

TO ADJUST: Rotate the adjusting serew with its lock nut loosened and with the contact box mounting screws
1.9 TO ADJUST: friction tight. Replace contact box cover.

Code Bar Bail Adjusting Screw
REQUIREMENT: Rotate clutch until code bar bail is in extreme lefthand position. Clearance between the code bar bail latch lever and code bar bail roller.
Minimum .004" Maximum .008"
TO ADJUST: Position the code bar bail adjusting screw with its lock nut loosened.
1.11 Non-Repeat Lever

REQUIREMENT: Any keylever depressed, signal generator shaft rotated until clutch is disengaged, while holding keylever depressed clearance between code lever bail extension and code lever bail latch lever: Minimum . $020^{\prime \prime}$ Maximum . 030" Let up on keylever until surfaces to be measured are in line.

TO ADJUST: Position non-repeat bell crank should pivot screw in its elongated hole with lock nut loosened.

1.12 Keylever Lock Ball Channel and Lock Ball End Play

REQUIREMENT: With the generator shaft rotating, the clutch should trip consistently when two keylevers are

```
BK2.6.2
ISSUE 1
AUGUST, 1964
```

1.12	REQUIREMENT:	depressed alternately. The clutch should not trip when two keylevers are depressed simultaneously. No keylever locking wedge should reach the bottom of the lock ball channel when depressed. When either the Q and P keylever is fully depressed, it should reach: Minimum some clearance Maximum .015" of the bottom of the channel.
	TO ADJUST:	Position the lock ball channel with its mounting screws loosened. Position the lock ball adjusting screw approximately . $060^{\prime \prime}$ above the bottom of the ball channel.
1.13	Code Lever Bail	atch Lever Eccentric
	REQUIREMENT:	Any keylever fully depressed. Clearance between front vertical surface of the code lever bail extension and the step on the rear end of the code lever bail latch lever: Minimum .025" Maximum .040"
	TO ADJUST:	Rotate the code lever bail latch lever eccentric. Keep high part of eccentric upward and toward the front. Make certain there is some clearance between the code bar bail latch lever and the code bar bail latch.
1.14	Code Lever Bail	Non-Repeat Extension
	REQUIREMENT:	Generator clutch disengaged. Code lever bail rotated until code lever bail latch lever just trips. With bail latching extension resting against vertical surface of latch lever and shaft rotated until nonrepeat lever is fully latched on code bar bail extension : Minimum some clearance Maximum . 015" between adjustable extension and non-repeat lever.
	TO ADJUST:	Position adjustable extension with clamp screw loosened.

Code Bar Guides
REQUIREMENT: Clearance between code bars and code bar guides: Minimum some clearance Maximum .010"

TO ADJUST: Position the two code bar guides with their mounting screws loos ened.

NOTE: \quad Check or adjust right hand guide only.
Code Bar Bail Bumper
REQUIREMENT: Letters selection applied to code bars clearance between shoulder on the closest code bar and the engaging face of the code bar bail: Minimum .010" Maximum .020"

TO ADJUST: Position the bumper with its mounting screws loosened.

Code Lever Guide
REQUIREMENT: CR keylever held depressed while disengaging clutch. Clearance between or function lever and stopping edge of number 5 code bar: Minimum . $005^{\prime \prime}$ Maximum . 015'

TO ADJUST: Position the code lever guide with its four mounting screws loosened.

BK2.6.2
ISSUE 1
AUGUST, 1964

1.18	Code Bar Bounce Suppressor Bracket Support Screw	
	REQUIREMENT:	Letters selection applied to code bars, bounce suppressor bail held against reset lever, clear ance between bounce suppressor bail and No. 5 code bar latch should be: Minimum some clearance Maximum .010"
	TO ADJUST:	Position support screw with its lock nut loosened.
1.19	Code Bar Latch	
	REQUIREMENT:	Letters selection applied to the code bars and the code bars against their stop. Clearance between code bar and latch: Minimum .010" Maximum . $025^{\prime \prime}$
	REQUIREMENT:	Bounce suppressor bail should ride centrally on reset lever.
	TO ADJUST:	Position bounce suppressor bracket with mounting screws loosened.
1.20	Code Lever Bail	
	REQUIREMENT:	Alignment of the code lever bail extension and the code lever bail latch lever should bring the edges flush within $.010^{\prime \prime}$. Code lever bail should have: Minimum some end play Maximum .010"
	TO ADJUST:	Position the code lever bail by means of the pilot screws.
1.21	Space Bar Pivot	
	REQUIREMENT:	The space bar should be free on its pivots and have some end play: Minimum some play Maximum . 010'. It should also be free from binds in the slots of the keytop guide plate.
	TO ADJUST:	Position the space bar bail pilot screws.

BK2.6.2
ISSUE 1
AUGUST, 1964
1.22

Intermediate Gear Bracket
(1) REQUIREMENT: There should be a barely perceptible a mount of backlash between the typing unit driven gear and the typing unit driving gear (On Intermediate Gear Assembly).

TO ADJUST: Position the complete intermediate gear mechanism bracket by utilizing the adjusting slots with the three hexagon head screws loosened. Align the gears at this time.
(2) REQUIREMENT: There should be a barely perceptible a mount of backlash between the motor pinion and the intermediate driven gear.

TO ADJUST: Raise or lower the front end of the intermediate gear bracket by means of the filister head adjusting and clamping screws located at the front end of the bracket. Refine requirements if necessary.
2. LK10 KEYBOARD ADJUSTMENTS
2.1 This section contains only the adjustments pertaining to the redesigned mechanisms, which do not appear on the LK3 Keyboard. The remainder of the adjustments may be found in the LK3 (earlier model) section.

LK10 KEYBOARD

Spring Tensions:

Clutch latch lever 2 to 3 oz .
Clutch shoe
Clutch shoe lever
Clutch stop lever
Clutch trip bar
Code bar
Code bar bail
Code bar bail latch

BK2.6.2
ISSUE 1
AUGUST, 1964
2.1

Code lever
Code lever universal bail Contact box Contact box drive link Lock bar
Margin indicator
Non-repeat lever Plunger Transfer bail detent latch Transfer lever Transfer lever locking bail Universal bail latch

```
1 to 2 oz.
1 to 2 oz.
2 to 3 oz.
11 to 13 oz.
4 to 7 oz.
7 to 11 oz.
1/2 to 1-1/2 oz.
3 to 5 oz.
2-3/4 to 4-1/4 oz .
1-1/2 to 2-1/2 oz.
5 to 6 oz.
7 to 8 oz.
```

2.2 Transfer Bail Detent

REQUIREMENT: Equal clearance with $.002^{\prime \prime}$ between the transfer bail and transfer bail detent plates, when transfer bail moved to marking and spacing.

TO ADJUST: Keyboard clutch fully disengaged, manually position the transfer bail to marking and spacing and gauge clearances. Rotate the detent plate right or left by means of the pry point with mounting screws loosened.
2.3 Function Bail and Code Lever Clearance

REQUIREMENT: Minimum .015'
TO ADJUST: Position function bail assembly with mounting screws loosened.

2.4 Code Bar Bail

REQUIREMENT: With the code bar bail in the extreme left-hand position:
Minimum .004" Maximum .012"
between code bar bail roller and code bar bail latch.

TO ADJUST: Adjust eccentric stud with lock nut loosened.
2. 5 Code Bar Bail and Non-Repeat Lever Clearance

REQUIREMENT: Any keylever fully depressed:
Minimum .010" Maximum . 030" between code bar bail and non-repeat lever shoulder.

TO ADJUST: Loosen lock nut and shoulder screw and move mechanism left or right.

2.6 Universal Bail Latch Lever

REQUIREMENT: G keylever held fully depressed. Clearance between universal bail latch lever and roller on universal bail extension: Minimum .005" Maximum .015"

TO ADJUST: Rotate eccentric. Keep high part of eccentric up.

BK2.6.2
ISSUE 1
AUGUST, 1964

2.7	Universal Bail Extension	
	REQUIREMENT: Universal bail extension roller resting against end of universal bail latch lever : Minimum .060" Maximum .080" between extension and non-repeat lever.	
	TO CHECK: $\quad \begin{aligned} & \text { Depress le } \\ & \text { clearance. }\end{aligned}$	ers keylever and release it. Check
	TO ADJUST: $\quad \begin{aligned} & \text { Position the } \\ & \text { loosened. }\end{aligned}$	extension with its clamp screw
3.	LP6 TYPING UNIT ADJUSTMENTS	
3.1	Spring Tensions:	
	Anti-deflection plate	1 to 5 lb .
	Breaker slide bail	$1 / 2$ to 1-3/4 oz.
	Carriage return	3 to 3-3/4 lb.
	Carriage return latch bail	3 to 4-1/2 oz.
	Clutch latch lever	5 to 7-1/4 oz.
	Clutch shoe	3 to 5 oz .
	Clutch shoe lever	15 to 22 oz .
	Clutch trip lever	5 to 16 oz .
	Code bar clutch cam follower	20 to 24 oz .
	Code bar detent	1-1/2 to 3-1/2 oz.
	Code bar yeild	17 to 23 oz .
	Common transfer lever	$1 / 2$ to $1-1 / 4 \mathrm{oz}$.
	Dash pot transfer slide	$3-1 / 2$ to $4-1 / 2 \mathrm{oz}$.
	Decelerating slide	1/2 to 1-1/2 oz.
	Function bar	2-1/2 to $3-1 / 2 \mathrm{oz}$.
	Function contact	1 to 2 oz .
	Function lever	1-1/2 to $2-3 / 4 \mathrm{oz}$.
	Function pawl 3 to 10-1/2 oz.	
	Horizontal positioning drive	
	Horizontal positioning lock	
	Horizontal stop slide	28 to 43 oz .
		$1 / 2$ to 3 oz .
	Keyboard lock leverLine feed bar vell crank	$1 / 2$ to $1-1 / 2 \mathrm{oz}$.
		19 to 24.
	Line feed bar release lever	3 to 8 oz .

3.1	Line feed stripper bail	12 to 2 oz .
	Lower wire rope pulley bail	18 to 22 oz .
	Marking lock lever	1-1 2 to 3 oz .
	Paper finger	3 to 6 oz .
	Paper straightener lever	1-1 2 to 4 oz .
	Paper pressure bail	10 to 18 oz .
	Paper pressure roller lever	28 to 36 oz .
	Platen detent bail	16 to 32 oz .
	Printing hammer operating bail	10 to 13 oz .
	Printing hammer operating bail latch	3 to 4-1 2 oz .
	Printing hammer plunger	3 to 5-3 4 oz .
	Printing hammer yield	1 to 2 oz .
	Push lever reset bail	4 to 8 oz .
	Reversing slide detent	2 to 4-1/2 oz.
	Ribbon feed lever	34 to 2 oz .
	Ribbon lever	1-1/2 to 3 oz .
	Ribbon ratchet wheel friction	3 to 7-1/2 oz.
	Ribion reverse detent lever	10 to 18 oz .
	Ribbon tension spring	3 to 5-1/2 oz.
	Selector armature	3 oz .
	Selector clutch latch lever	2 to 3-1/2 oz.
	Selector lever	1-1/4 to 2-1/2 oz.
	Selector push lever	$3 / 4$ to $1-1 / 2 \mathrm{oz}$.
	Shift linkage	7 to 14 oz .
	Spacing feed pawl	2-1/2 to 4 oz .
	Spacing feed pawl release link	1/2 to 2-1/2 oz.
	Spacing lock lever	3 to 6 oz .
	Space suppression bail	$1 / 2$ to 1-1/2 oz.
	Spacing trip lever	2-1/2 to 5 oz .
	Spacing trip lever bail	8 to 12 oz .
	Start lever	2-1/2 to 4-1/2 oz.
	Transfer lever	1-1/2 to 2-1/2 oz.
	Trip shaft lever	1 to 2 oz .
	Type box carriage roller arm	28 to 36 oz .
	Type pallet	$1 / 4$ to $3 / 4 \mathrm{oz}$.
	Vertical positioning lever	4 to 12 oz .
	Vertical positioning lock lever	2 to 4 oz .

Spacing lock lever on a high part of cam. Armature energized.

BK2.6.2
ISSUE 1
AUGUST, 1964
3.2 (1) REQUIREMENT: Clearance between the end of the armature extension and shoulder on spacing lock lever: Minimum .020" Maximum .030"

TO ADJUST: Position magnet bracket by means of adjusting link with its two mounting screws loosened. Tighten link clamp screw only.
(2) REQUIREMENT:

Some clearance between the upper surface of armature extension and lower surface of the spacing lock lever. When lock lever is held downward: Minimum some clearance Maximum .003"

TO ADJUST: Position upper end of magnet bracket with mounting screws loosened. Recheck requirement (1).

Selector Armature Spring Tension
(1) REQUIREMENT: Scale applied as nearly vertical as possible at end of armature extension. It should require approximately 3 ozs. to pull armature to marking position.

TO ADJUST: Rotate the adjusting nut.

. 4 Selector Clutch Drum

REQUIREMENT: Clutch disengaged in stop position. Clutch drum against shoulder on main shaft. Cam-clutch assembly should have: Minimum some end play Maximum .010"

TO ADJUST: Utilize clearance in clutch drum mounting hole with mounting screw loosened.

3.5 Selector Clutch Stop Arm

REQUIREMENT: Range scale set at 60. Selector in stop position. Clutch stop arm should engage clutch shoe lever. Minimum $3 / 4$ bite Maximum full bite for shoe lever.

TO ADJUST: \quad Position stop arm on stop arm bail with clamp screw loosened.

BK2.6.2
ISSUE 1
AUGUST, 1964

REQUIREMENT: Push levers positioned for letters. Selector clutch disengaged, Code bar shift lever link in upper most position, clearance between rear code bar shift lever and code bar shift bar farthest from rear code bar shift lever:
Minimum .010" Maximum . $025^{\prime \prime}$
when play of shift bar is taken up for maximum clearance.

TO ADJUST: Rotate eccentric bushing with clamp screw loosened. Keep both holes in eccentric bushing above horizontal centre.

NOTE: One or more code bar shift bars can touch code bar shift levers.

3.6.2 Intermediate Arm Backstop Bracket

REQUIREMENT: Select blank and rotate main shaft until shift lever link reaches highest travel. Take up play to make clearance maximum. Clearance between front code bar shift lever and inner step of farthest code bar shift bar: Minimum . $010^{\prime \prime}$ Maximum . $025^{\prime \prime}$

TRANSFER LEVER ECCENTRIC BUSHING •

BK2.6.2
ISSUE 1
AUG UST, 1964

3.6.2
 TO ADJUST:
 Position backstop bracket with its two clamp screws loosened.

Shift Lever Drive Arm
REQUIREMENT: Shift lever link in the uppermost position. Clearance between the top of the rollers and the top of the cam slots in the shift levers: Minimum some clearance Maximum .025" on closest lever.

TO ADJUST: Loosen the clamp screw. Position the shift lever drive arm on its shaft to meet the requirement and to provide some end play, not more than .006".
3.6.4 Code Bar Detent

REQUIREMENT: Front plate removed. All clutches disengaged. Supression and shift code bars should detent equally (gauge by eye).

TO ADJUST: Equalize the detenting of the code bars by adding or removing shims between the casting and the code bar bracket.
3.6.5 Code Bar Shift Lever Link Bracket

REQUIREMENT: Motion of front and rear code bar shift levers should be equalized with respect to code bar travel.

TO CHECK: Select M combination and rotate main shaft until code bar shift lever link reaches highest travel. Take up play for maximum clearance. Clearance between spacing and marking code bar shift lever and shoulder on nearest code bar shift bar: Minimum .002" Maximum . 025"

TO ADJUST: Position code bare shift lever link bracket with its 3 mounting screws loosened.

NOTE: \quad On later model the above adjustment is made by positioning the front and rear adjusting plates (pry points) with its clamp screws loosened.
3.7 Rocker Shaft Adjustments
3.7.1 Rocker Shaft Left Bracket

REQUIREMENT: Rocker shaft left bracket firmly seated against inner bearing race.

TO ADJUST: Hold rocker shaft in extreme left position and position the bracket against the inner bearing race with mounting scews loosened.

3.7.2 Rocker Shaft Bracket Eccentric Stud

REQUIREMENT: Type box clutch disengaged. Play in locking arm taken towards front. Gap between lower side of lock lever roller and top edge of shoulder on horizontal positioning lock lever : Minimum .065" Maximum .080"

TO ADJUST: Position eccentric stud in lower end of rocker shaft left bracket. Keep high part of eccentric (marked with dot) below centre line of drive link.

IMPORTANT:
Any change in this adjustment will require a rechecking of the following adjustments: horizontal

BK2.6.2
ISSUE 1
AUGUST, 1964

3.7 .2	IMPORTANT:	positioning drive linkage, right vertical positioning lever eccentric stud, left vertical positioning lever eccentric stud, vertical positioning lock lever, ribbon feed lever stop bracket, function stripper blade arms, spacing trip lever bail cam plate, printing track, printing arm, reversing slide brackets.
3.8	Main Shaft Clutch Shoe Lever Adjustments	
	NOTE:	All clutches shall be adjusted so that the clutch trip lever engages the full thickness of the shoe lever.
3.8 .1	Code Bar and Function Clutch Trip Lever Adjustment	
	REQUIREMENT:	All clutches in stop positions. 1. Code bar clutch trip lever should engage the clutch shoe lever by the full thickness of the shoe lever. 2. Function clutch trip lever should engage the clutch shoe lever by the full thickness of the shoe lever. Check at lug with least bite.
	TO ADJUST:	Position the trip lever on its shaft with its clamp screw loosened. Provide some end play of the trip lever shaft. Maximum .006"
3.8 .2	Spacing Clutch Trip Lever	
	REQUIREMENT:	Spacing clutch trip lever should engage shoe lever by full thickness of shoe lever. Check at stop lug with least bite.
	TO ADJUST:	Use adjusting screw to position spacing clutch trip arm.
3.8.3	Clutch Trip Shaft Set Collars	
	REQUIREMENT:	Spacing clutch latch lever should have side play: Minimum some Maximum .008"

3.8 .3

TO ADJUST: Position spacing clutch latch lever set collar.
(2) REQUIREMENT: Approximate alignment of right end of stop extenions on trip lever and shoe lever.

TO ADJUST: Position line feed clutch trip lever set collar.
(3) REQUIREMENT: Line feed clutch latch lever should have side play: Minimum some Maximum .008"

TO ADJUST: Position line feed clutch latch lever set collar.
3.8.4 Line Feed Clutch Trip Lever Eccentric Post

REQUIREMENT: Line feed clutch in its stop position. Trip lever should engage the clutch shoe lever by the full thickness of the shoe lever. Check at stop lug.

TO ADJUST: Position the trip lever eccentric post.
3.8.5 Type Box Clutch Trip Lever Eccentric Post

REQUIREMENT: Type box clutch disengaged. Trip lever should engage the clutch shoe lever by the full thickness of the shoe lever.

TO ADJUST: Position the trip lever eccentric post.
3.8.6 Type Box Clutch Trip Lever
(1) REQUIREMENT: Clutch trip shaft cam follower roller on the lowest surface of cam (located on code bar clutch). Clear ance between inner face of type box clutch trip lever and the clutch disk stop lug: Minimum .065" Maximum .080"

TO ADJUST: Loosen clamp screw and position stop.
(2) REQUIREMENT:

When positioning the trip arm determine that the latch lever has some side play:

Maximum .008"

BK2.6.2
ISSUE 1
AUGUST, 1964
3.8.6 TO ADJUST: Position the clutch trip arm on its shaft with the clamp screw loosened.

3.8.7 Clutch Shoe Lever

(1) REQUIREMENT: Gap between clutch shoe lever and its stop lug should be $.055^{\prime \prime}$ to $.075^{\prime \prime}$ greater when clutch is engaged than when the clutch is disengaged.

TO ADJUST: With the two clamp screws in the clutch disk loosened, engage a wrench on the lug of the adjusting disk and rotate the disk.
3.9 Vertical Positioning Adjustments
3.9.1 Lock Lever:

REQUIREMENT: Letters combination set up on code bars. Main side operating levers at the upper end of travel. Upper notch of vertical positioning lock lever fully engaged (manually if necessary) with the vertical slide projection. The upper surface of the follower arm rear extension should be in contact with or not more than .004" away from the inner extension of the main side lever.

TO ADJUST: \quad| Position the right and left vertical positioning lock |
| :--- |
| levers with their mounting screws loosened. Take |
| up play. |

3.9.2 Right Vertical Positioning Lever Eccentric Stud:

REQUIREMENT: Type box clutch disengaged. Common code bar in spacing position. Play taken up between the code bar and the type box track to make the clearance a minimum:
Minimum .035" Maximum .050' clearance between the vertical positioning lever toe and the lower surface of the common code bar.

TO ADJUST: Position the eccentric stud in the right rocker shaft bracket. Position high part of eccentric (marked with dot) towards the rear.

3.9.3 Left Vertical Positioning Lever Eccentric Stud

REQUIREMENT: Right and left vertical positioning levers should buckle equally within .006".

TO CHECK: Common code bar in spacing position. Trip type box clutch and rotate main shaft until right vertical positioning lever toe touches common code bar and just starts to buckle its link extension by some clearance not more than .008". The left vertical positioning lever toe, should touch the common code bar and buckle its link extens ion within .006" of the right link extension clearance.

TO ADJUST: Position eccentric stud on rocker shaft left bracket inner arm. Position high part of cam (marked with dot) towards the rear.
3.10 Horizontal Positioning Adjustments
3.10.1 Reversing Slide Brackets:

REQUIREMENT: Type box clutch, code bar clutch and function clutch disengaged. Reversing slide moved to right and left through its full travel, right motion should buckle left horizontal positioning drive linkage and left motion should buckle right horizontal positioning drive linkage. The amount of buckling in each case should be: Minimum .030" Maximum .045" measured at point of maximum clearance.

BK2.6. 2
ISSUE 1
AUGUST, 1964

3.10 .1	TO ADJUST:	Position each reversing slide bracket with their clamp screws loosened.
3.10 .2	Reversing Slide Adjusting Stud	
	REQUIREMENT:	Type box clutch disengaged. With No. 3 code bar in spacing position (right), the reversing slide detent rollers should be fully seated in the right-hand notches of the detent lever. With No. 3 code bar in marking position (left), the reversing slide detent rollers should be fully seated in the left-hand notches of the detent lever.
	TO ADJUST:	Position the reversing slide stud in its elongated hole with its mounting nut loosened.
3.10 .3	Horizontal Positioning Drive Linkage	
	REQUIREMENT:	Type box clutch disengaged. Code bars 4 and 5 to spacing (right). Clearance between each side of centre horizontal stop slide and decelerating slides, on side where knee link is straight should be equal (within. $008^{\prime \prime}$) Minimum .015" Maximum .040"
	TO ADJUST:	Loosen bearing stud mounting screws and connecting strip mounting screws friction tight. Position one or both bearing studs on the connecting strip to provide . $025^{\prime \prime}$ to $.035^{\prime \prime}$ between the centre horizontal slide and the decelerating slide on the side where the linkage is not buckled. Tighten the two inner mounting screws. Change position of reversing slide and check opposite clearance. Equalize by shifting both studs and connecting strip as a unit. Hold the drive linkage hub against the lower vertical link of the drive linkage. Tighten the two outer bearing stud mounting screws. Check the linkage for freeness throughout a complete cycle.
3.11	Stunt Box Adjustments	
3.11 .1	Function Bar Re	et Bail Blade:

3.11.1 (1) REQUIREMENT: Clearance between function bar and reset bail blade: Minimum .018" Maximum . 035" when function bar moved manually to rearward position.

TO CHECK: Measure clearance at bars located in stunt box slots 4,23 , and 41. If there is no bar in these slots use nearest bar.

TO ADJUST: Position blade on reset bail with blade mounting screws friction tight.
(2) REQUIREMENT: Type box clutch rotated $1 / 2$ revolution, with a function pawl moved to its extreme rear position, it should overtravel its bar by at least .002'.

TO ADJUST: Refine adjustment (1).

3.11.2 Shift Code Bar Operating Mechanism
(1) REQUIREMENT: Select figures, rotate main shaft until function clutch disk stop lug is toward bottom of unit. Clearance between upper guide plate extension and shift slide :
Minimum .005" Maximum .015"
(2) REQUIREMENT: Repeat the procedure for the letters function. Check

BK2.6.2
ISSUE 1
AUGUST, 1964
3.11.2 REQUIREMENT: clearance between lower guide plate extension and shift slide.

TO ADJUST: Position upper and/or guide plate by the adjusting slot with the clamp nuts loosened.
3.11.3 Stripper Blade Drive Cam Position

REQUIREMENT: Stripper blade drive cam should move the stripper blade an equal distance above and below centre line of its pivot (gauge by eye):
(a) upward direction
(b) downward direction

TO ADJUST: With stripper blade drive arm mounting screws loosened equalize the overtravel of each cam peak.

3.11.4 Blocking Bail

REQUIREMENT: With printer in the print-case, rotate main shaft until lower surface of the suppression arm is aligned (approx) with bottom surface of islocking bail extension. Clearance between suppression arm and blocking bail extension, with play taken up to produce minimum clearance: Minimum .008" Maximum .035'
3.11.4 TO ADJUST: Position extension with its mounting screw loosened. Refine the adjustment if necessary and recheck each shift mechanism.
Refine the stunt case code bar shift mechanism adjustment of any shift mechanism that does not meet the above requirement.
3.11.5 Unshift-On-Space Function Pawl

To prevent unshift-on-space function, loosen the lock nut and turn the disabling screw in, until a clearance between the lower edge of the unshift-onspace function pawl and its function bar. Minimum . 030" Maximum .060' Tighten lock nut.
3.12 Spacing Adjustments
3.12.1 Spacing Gear Phasing:

REQUIREMENT: Spacing clutch disengaged. Index line on the spacing pawl should de between the two lines on the pawl retaining washer.

TO ADJUST: Loosen the upper and lower mounting screws, disengage the spacing shaft gear from the spacing gear. Rotate the spacing shaft gear until the index

BK2.6.2
ISSUE 1
AUGUST, 1964
3.12.1 TO ADJUST: line on the spacing pawl is properly positioned. Mesh the spacing shaft gear with the spacing gear. Make sure the spacing clutch is fully disengaged while doing the above adjustment. Retighten the mounting screws.

3.12.2 Spacing Gear Clearance

REQUIREMENT: Carriage fully returned. Minimum backlash of spacing gears without bind.

TO ADJUST: Insert shims between the spacing shaft bearing and front plate at upper mounting screw to increase clearance and at lower mounting screw to decrease backlash.
3.12.3 Spacing Trip Lever Bail Cam Plate

REQUIREMENT: Spacing trip lever arm in upward position. Type box clutch rotated through approximately one-half of its cycle. All function pawls disengaged from function pawls disengaged from function bar. Clearance between top surface of trip lever armextension and spacing trip lever shoulder: Minimum .015" Maximum .030'

TO ADJUST: \quad| Position cam plate on rocker shaft with mounting |
| :--- |
| screws loosened. Position forward edge of cam |
| plate parallel to shaft. |

3.13 Line Feed Adjustments
3.13.1 Line Feed Clutch Phasing:

REQUIREMENT: Line feed clutch in stop position. Both line feed bars should engage the teeth of the line feed spur gear.

TO ADJUST: \quad| Remove the line feed clutch mounting screw, slide |
| :--- |
| the entire line feed clutch assembly out of engage- |
| ment with the line feed eccentric spur gear. |
| Rotate the line feed eccentric spur gear until both |
| line feed bars are fully engaged in the line feed |

3.13 .1	TO ADJUST: spur gear. Reposition the line feed clutch assembly and replace the clutch mounting screw. Rotate the line feed clutch until the clutch is fully disengaged and recheck requirement.
3.13 .2	Line Feed Clutch Trip Lever - Adjusting Screw
	REQUIREMENT: All main shaft clutches fully disengaged. Some clearance between the end of the trip lever adjusting screw and the trip arm. Maximum .006"
	TO ADJUST: Position the adjusting screw.
3.13 .3	Line Feed Spur Gear Detent Eccentric
	REQUIREMENT: Line feed clutch disengaged. Platen rotated until detent stud is seated between two teeth on line feed spur gear. When hand wheel is released, the teeth on the feed bars should mesh with teeth on the line feed spur gear. The detent stud should contact one gear tooth and be not more than .006" from other tooth.
	TO ADJUST: Rotate the detent eccentric with its mounting screws loosened. Keep high part of eccentric upward.
3.14	Carriage Return Adjustment
3.14 .1	Carriage Return Latch Bail:
	REQUIREMENT: Carriage fully returned. Clearance between carriage return latch bail and carriage return lever: Minimum . $004^{\prime \prime}$ Maximum .025"
	TO ADJUST: Position latch bail plate on latch bail with clamp screw loosened.
3.14 .2	Carriage Return Lever
	REQUIREMENT: Carriage return set up on selector. Main shaft rotated until function clutch stop lug is toward bottom of unit. Carriage return function pawl

BK2.6.2
ISSUE 1
AUGUST, 1964
3.14.2 REQUIREMENT: should be fully selected. Printing hammer mechanism held midway on the platen. Clearance between latch bail and carriage return lever. Minimum .006" Maximum .025"

TO ADJUST: Position carriage return lever on carriage return bail with clamp screw loosened.
3.14.3 Carriage Return Spring

REQUIREMENT: Spacing drum in its returned position. Spacing pawls. Transfer slide and carriage return latch held away. Printing track in its lowest position. Minimum: 3 lbs . Maximum:3-3/4 lbs. to start the spring drum moving.

TO ADJUST: Rotate the spring drum ratchet wheel with the spring drum nut loosened to increase tension. Operate escapement lever to decrease it.

3.14.4 Carriage Wire Rope

REQUIREMENT: Clearance between lower wire rope and carriage return latch bail post should be at least .006". With the horizontal positioning mechanism in its lowest position, clearance between the lower wire rope and shift slide drive linkage should be: Minimum .030'

TO ADJUST: Return the printing carriage to its left hand position. Loosen the rope clamp screw (mounted on outer surface of spring drum) one turn only. Position the pulley bearing studs with their mounting screws loosened to meet the requirement. Make certain that the rope moves around its clamp screw to an equalized position. Tighten the clamp screw and mounting screws.
3.14.5 Dash Pot Vent Screw

REQUIREMENT: Type box carriage should return from any length of line without bouncing. First character of each line should be printed in same location.

TO ADJUST: Turn down vent screw until slight pneumatic bounce is perceptible. Back off screw until effect disappears. For dashpots with one vent hole: Back screw off one full turn. Tighten nut. For dashpots with two vent holes: Back screw off $1 / 4$ turn. Tighten nut.
3.15 PRINTING ADJUSTMENTS
3.15.1 Printing Track

REQUIREMENT: Printing track in its extreme downward position. Printinghammer operating bail latching extension held with left face in line with the latch shoulder. Clearance between latching extension and operating bail latch should be : Minimum .015" Maximum .040"

TO ADJUST: Position the printing track up or down with its

BK2.6.2
ISSUE 1
AUGUST, 1964
3.15 .1

TO ADJUST:
NOTE:
mounting screws loosened.
Check the above with printing hammer in left and right hand position.

3.15.2 Printing Arm

(1) REQUIREMENT: Printing track in maximum downward position, printing hammer operating bail against its stop: Some clearance between secondary printing arm and forward extension of hammer operating bail.

Maximum . $012^{\prime \prime}$
when printing armslide is held downward over each printing track mounting screw for maximum clearance.
(2) REQUIREMENT: Printing track in uppermost position. Latching extension of printing hammer operating bail should overtravel latching surface of operating bail latch by:
Minimum .006"
Check right and left position.
TO ADJUST: Position secondary printing arm with clamp screws loosened.

3.15.3 Printing Hammer Stop Bracket

REQUIREMENT: Type box in blank position and near centre of

3.15 .3	REQUIREMENT:	platen. Printing track in its downward position. Printing hammer held against its stop. Clearance between printing hammer and dummy type pallet: Minimum . 008" Maximum . 020"
	TO ADJUST:	Position the stop bracket with its mounting screw and the printing hammer bail pivot stud loosened.

3.15.4 Printing Carriage Position

REQUIREMENT: Type Dox in letters position. M type pallet selected. Type box in printing position. M type pallet should ve approximately in centre of printing hammer when hammer is just touching M type pallet.

TO ADJUST: Position printing carriage on wire rope with clamp screws loosened.
3.15.5 Printing Hammer Bearing Stud

REQUIREMENT: Type box at midpoint of platen and in position to print period. Printing hammer in contact with type pallet and pressed downward at bearing post. Face of hammer should be fully on end of type pallet.

TO ADJUST: Add or remove shims between shoulder on bearing post and stop bracket.
3.15.6 Shift Linkage

REQUIREMENT: Carriage near midpoint of platen. Type box in position to print M. Manually buckle right shift linkage. Shift type box to left. Period type pallet should be approximately in centre of print hammer when hammer is just touching period type pallet.

TO ADJUST: Position left shift linkage on oscillator rail with two clamp screws loosened.

TO RECHECK: Shift alternately from M to period. Take up play in each direction. Refine adjustment if necessary.

3.15.7 Printing Carriage Lower Roller

REQUIREMENT: Carriage wire rope clamp screws loosened. Play of carriage on track: minimum without bind throughout track's full length.

TO ADJUST:	(Eccentric Bushing) Position lower roller with screw nut loosened. Keep high part of eccentric (chamfered corner) toward the right.
TO ADJUST:	(Sliding Screw) Position lower roller with mounting screw loosened.

3.15.8 Type Box Carriage Roller

REQUIREMENT: | Minimum vertical play without bind in type box |
| :--- |
| carriage. |

TO CHECK: Move carriage to right end of track. Place in upper position. Remove drive link. Check throughout entire travel of carriage.

TO ADJUST: Position lower roller arm with clamp screw loosened.
3.15.9 Type Box Alignment

REQUIREMENT: Printed impression of characters at top and at bottom should be equal (gauge visually).
TO ADJUST: Loosen nut. Operate printer under power. Repeat characters E and Z. Turn adjusting screw in or out (in steps of $1 / 4 \mathrm{turn}$) to meet requirement. Tighten nut.
3.16 Friction Feed Adjustment
3.16.1 Oscillating Rail Slide:

REQUIREMENT: Carriage return ring and automatic carriage return-line feed ring free to rotate on spacing drum (five mounting screws loosened). Spacing
3.16.1 REQUIREMENT: clutch disengaged. Feed pawl, which is farthesi advanced, engaging tooth immediately above cutaway section of ratchet. Clearance between slide and pulley:
Minimum . $025^{\prime \prime}$ Maximum . 050"
TO ADJUST: Position slide on wire rope with clamp screws loosened.

3.16.2 Left Hand Margin
(1) REQUIREMENT: (for 72 character line)

Type box clutch disengaged. Spacing drum in returned position. Type box shifted to the letters position. The letters print indicator on the type box should be:
Minimum 916" Maximum 11 16" from the left edge of the platen.
(2) REQUIREMENT: Spacing clutch disengaged. Front spacing feed pawl farthest advanced. Spacing drum fully re turned. Play in spacing shaft gear taken up clockwise. Clearance between pawl and shoulder ratchet wheel tooth immediately ahead: Minimum .002"

Maximum . $015^{\prime \prime}$

BK2.6.2
ISSUE 1
AUGUST, 1964

3.16 .2	(3) REQUIREMENT:	Rear pawl, when farthest advanced, should rest at bottom of indentation between ratchet wheel teeth.
	TO ADJUST:	Position carrriage return ring with four mounting screws loosened.
3.16 .3	Right Margin	
	REQUIREMENT:	(Operating on base) Type box Carriage in position to print character on which spacing cutout is desired. Front spacing pawl farthest advanced. Clearance between upper edge of spacing cutout lever and cutout transfer bail when spacing cutout transfer bail is held in its extreme upper position: Minimum .006" Maximum . $025^{\prime \prime}$
	TO ADJUST:	Position the cutout lever with its clamp screw loosened.
3.16 .4	Right Margin with	Automatic Carriage Return-Line Feed Ring
	REQUIREMENT:	Type box clutch disengaged. Carriage positioned two spaces before character on which auto CR-LF is to occur. Front feed pawl farthest advanced. Clearance between extension on right and auto CR-LF bell crank: Minimum . $040^{\prime \prime}$ Maximum . $055^{\prime \prime}$
	TO ADJUST:	Position ring with four mounting screws (3 round head screws and hexagonal screw on shoulder) loosened.
3.16 .5	Paper Finger Adjustment	
	REQUIRE MENT:	The pressure end of the paper fingers should overlap the paper from $3 / 8$ inch to $1 / 2$ inch.
	TO ADJUST:	Position the paper fingers by sliding them on their shaft.
3.16 .6	Paper Straightener	Rod Collar
	REQUIRE MENT:	Left collar spaced

Right collar spaced :
Minimum $16^{\prime \prime}$ Maximum $56^{\prime \prime}$
from the right shoulder.
TO ADJUST:
Position collars on shaft with set screws loosened.
3.17 Sprocket Feed Adjustments
3.17.1 Type Box Position

REQUIREMENT: Type box and spacing clutches disengaged. Type box shifted to letters position. Four mounting screws loosened so that space suppression ring, or automatic carriage return line feed ring, is free to rotate on drum (units equipped with standard spacing drum) spacing cutout and automatic carriage return-line feed arms in maximum counterclockwise position. Clearance between letters print indicator and centre line of sprocket pins in right hub:
Minimum 5/16" Maximum 7/16"

BK2.6.2
ISSUE 1
AUGUST, 1964
3.17.1 TO ADJUST: Loosen two type box clamp screws and two printing carriage clamp screws. Position type box. Tighten type box clamp screws. Do not tighten printing carriage clamp screws until printing carriage position adjustment is made.

3.17.2 Left Margin

(1) REQUIRE MENT:

Type box clutch disengaged. Spacing drum fully returned. Type box shifted to letters position. Clearance between centre of letters print indicator on type box and centre line of sprocket pins in left hub:
Minimum 5/16" Maximum 7/16"
(2) REQUIREMENT: Spacing clutch disengaged. Front spacing feed pawl farthest advanced. Spacing drum fully returned. Play in spacing shaft gear taken up clockwise. Clearance between pawl and shoulder of ratchet wheel tooth immediately ahead: Minimum .002" Maximum .015"
(3) REQUIREMENT: Rear pawl, when farthest advanced, should rest at bottom of indentation between ratchet wheel teeth.

TO ADJUST: Position carriage return. Ring with mounting screws loosened.
3.17.3 Printing Line

REQUIREMENT: Bottom of printed line should be: Maximum $0 \quad$ Minimum 1/32"

TO ADJUST: Position the left sprocket hub with its cam and gear retaining screws loosened. The spur gear and left platen retainer must be removed to make this adjustment.
3.17.4 Sprocket Pin Separation
(1) REQUIREMENT: With single sheet of sprocket feed paper placed on the platen the sprocket pins should be centrally located in the feed holes of the paper.
(2) REQUIRE MENT: Printed line should be parallel to a line drawn

BK2.6.2
ISSUE 1

3.	(2) REQUIREMENT:	perpendicular to edge of paper within plus or minus $132^{\prime \prime}$. The characters pr inted should be parallel to the lines on paper with in plus or minus $132^{\prime \prime}$.
	TO ADJUST:	Position right sprocket hub with clamp screw loosened.
3.17 .5	Platen End Play	
	REQUIREMENT:	Line feed bars disengaged. Platen shaft should have some end play:
		Maximum . 010"
	TO ADJUST:	Position platen spur gear with clamp screw loosened.
3.17 .6	Printing Hammer	Stop Bracket
		Same as standard adjustment except clearance between printing hammer and dummy tape pallet should be: Minimum some Maximum . $020^{\prime \prime}$
3.17 .7	Paper Guide	
	REQUIRE MENT:	The clearance between the platen and the front edge of the paper guide should be: Minimum . $050^{\prime \prime}$ Maximum . 060"
	TO ADJUST:	Position the guide with its rear mounting screws loosened.
3.17 .8	Right Margin	
		Refer to Friction Feed Adjustments page 33.
3.17 .9	Front Guide Brac	
	(1) REQUIREMENT:	The sprocket pins should be centrally located in the paper holes.
	(2) REQUIREMENT:	The gap between the platen and the front guide bracket should be:

BK2.6.2
ISSUE 1
AUGUST, 1964

| 3.17 .9 (2) REQUIREMENT: Minimum $.090^{\prime \prime} \quad$ Maximum $.105^{\prime \prime}$ | |
| :---: | :---: | :--- |
| TO ADJUST: | Latch bracket. Bring bracket against platen and
 position oracket arms hor izontally on shaft with
 clamp screws loosened to meet requirement No. |
| | (1). Rotate arms to meet requirement No. (2). |

3.18

Ribbon Adjustments
3.18.1 Ribbon Feed Lever Bracket:

REQUIREMENT: (left and right mech.) Reversing lever in upward position. Ribbon mechanism in upper position. The detent lever held against the ratchet wheel. Clearance between the front face of the feed lever and the shoulder of a toothon the ratchet wheel: Minimum .020" Maximum . $030^{\prime \prime}$

TO ADJUST: Position the feed lever bracket with its mounting screws loosened.

NOTE: Rotate the main shaft. The ratchet wheel should step one tooth only with each operation.

BK2.6.2
ISSUE 1
AUGUST, 1964

Ribbon Reverse Spur Gear
REQUIREMENT: When right reversing lever is in maximum downward position, the left reversing lever should be in its maximum upward position.

TO ADJUST:
Loosen the set screws in the detent cam. Loosen the left spur gear nut. Securely tighten the right spur gear nut. Move the right reversing lever to its maximum downward position and hold the left reversing lever in its maximum upward position. Then tighten the left spur gear nut.
3.18.3 Ribbon Reverse Detent

REQUIREMENT: Detent should seat equally in each notch of cam. Free end of the detent flush with cam.

TO ADJUST: Position the cam on its shaft with its set screws loosened.

Manual Selection of Combinations

1. Mount the armature clip on the selector.
2. Rotate main shaft until all clutches are fully disengaged.
3. Move the selector ar mature down, so as to release the selector clutch, then release the armature.
4. Rotate main shaft until the \#5 push lever just moves forward.
5. All push levers should be marking, therefore strip the push levers from the selector levers which are spacing in the code combination that is jeing selected.
6. Continue rotating main shaft until the selection is completed.
7. In order to repeat the selection, do not touch the armature clip. Operate the code bar clutch trip lever and rotate main shaft until the selection has been repeated.

Front Plate Removal

1. Remove the typing unit from the base.
2. Position the printing hammer mechanism to the extreme right, remove the tru-arc from the type box carriage link and disengage the link from the carriage. Note: it may ve necessary to loosen the clamping screws on the type box

BK2.6.2
ISSUE 1
A UGUST, 1964
3.20 2. carriage and position the carriage further to the right in order to make the tru-arc more accessible.
3. Return the printing hammer assembly to the extreme left.
4. Remove the two main bail drive bracket mounting screws on the rocker shaft.
5. Remove the four hexagonal screws which secure the front plate to the side frames.
6. The front plate can now be removed.
7. To reinstall the front plate reverse the above procedure, but care must be exercised so that: the horizontal motion stop slides, the shift code bar extension, \#3 code bar extension and the auto C. R. L. F. bell crank are properly repositioned.

NOTE: The spacing gear phasing adjustment must be remade.

REMOVE SCREWS INDICATED BY AN X

1. Remove the rear tie bar.
2. Disengage the drive arm from the stripper blade driven arm. Disengage the cam shaft drive arm from the stripper blade drive arm by removing the clamping screw and sliding the drive arm out of engagement.
3. Remove the two mounting screws which secure the stunt box at its lower extremity to the typing unit.
4. Pull the stunt box to the rear, it may be necessary to rotate the main shaft in order to move the stripper blade drive arm out of the path of the stunt box.
5. To reinstall the stunt reverse the above procedure. When function bars engage the rear of the code bars strip off all the function pawls from the function bars; all code bar forks should properly engage their posts.

3.22 Selector Cam Clutch Assembly Removal
6. Lift the push lever reset bail onto its shoulder.
7. Remove the mounting screw on the selector clutch drum.
8. With a screw driver position on the marking lock lever to the front.
9. While rotating the selector clutch, gently pull the selector clutch assembly.
10. Before the selector clutch assembly is completely removed it may be necessary to move the clutch stop arm forward as

BK2.6.2
ISSUE 1
AUGUST, 1964

REMOVE WICK
5. it may hinder in the removal of the selector clutch assembly.
6. To reinstall, reverse the above procedure.

Selector Mechanism Removal

1. Remove the selector cam clutch assembly.
2. Remove the felt wick in order to gain access to a mounting screw; remove this screw.
3. Remove the remaining three selector mounting screws.
4. Unhook the common transfer lever spring from the push lever guide.
5. Rotate the selector mounting bracket clockwise and remove the selector mechanism.
6. To reinstall, reverse the above procedure. Do not forget to uniatch the push lever reset bail.

3.24

Main Shaft Removal

1. Remove the selector cam clutch assembly.
2. Return the carriage to the left.

3.24 3. Remove the spacing shaft gear.

4. Remove the stripper blade drive arm.
5. Remove the clutch searing on the extreme right end of main shaft by removing its mounting screw.
6. Unhook the 8 clutch trip lever and latch lever springsplus the large cam follower spring.
7. Remove the mounting screws from the left and right hand bearing clamps.
8. Hold the function bar reset ibail to the front of the unit.
9. Move the ma in shaft assembly to left, position the main shaft so that left bearing clamp passes by the vertical positioning levers.
10. To reinstall, remove the type box clutch link then reverse the above procedure.
11. The spacing gear and line feed phasing must pe checked.

MODEL 28 TYPE BOX CHART (COMMERCIAL)

LETTERS

		LEF		
			$\begin{aligned} & \text { T- }-4 \\ & \text { SPACING } \\ & 5 \\ & M A R K: N G \end{aligned}$	$\begin{array}{ccc} \hline- & - & -7 \\ 4 & & 5 \\ \text { SPACING } \end{array}$
TOP	M	N	H	SPACE
RCW	- 345	--34-	--3-5	--3
2 NOM	X $1-345$	F $1-34-$	Y $1-3-5$	S $\begin{array}{r}\text { S } \\ 1-3\end{array}$
3 3 20	V	C	P	1
ROW	-2345	-234-	-23-5	-23-
SOTTOM	ETTERS	K	Q	U
- ROW	12345	1234-	123-5	123 -
3 MARKING				
	14 TH	1 $\begin{aligned} & 3 R 0 \\ & \text { ROW }\end{aligned}$	1 2ND	1ST
	1 ROW		1 ROW	ROW

FIGURES

LEFT			
485 I MARKING	$\begin{aligned} & 5-\underset{4}{4}-1 \\ & \text { MARKING } \\ & 5 \\ & \text { ISPACING } \end{aligned}$	$\begin{aligned} & 1-7-1 \\ & \text { ISPACING } \\ & \text { S } 5 \\ & \text { MARKING } \end{aligned}$	$\left.\begin{array}{\|ccc} T & - & - \\ \hline & & \\ 4 & a & 5 \\ \text { ISPACING } \end{array} \right\rvert\,$
- 445	1 $-34-$		SPACE $-3--$
1-345	1 $1-34-$	6 $1-3-5$	∇ $1-3-$
	-234-	$\begin{gathered} 0 \\ -23-5 \end{gathered}$	8 $-23--$
$\begin{aligned} & \text { LETTERS } \\ & 12345 \end{aligned}$	$1234-$	$\begin{gathered} 1 \\ 123-5 \end{gathered}$	123 ${ }^{7}$
3 MARKING			
14 TH	3 RD	2 ND	IST
ROW	ROW	R ROW	$\begin{array}{lc} 1 & \text { ROW } \\ 1 & -\infty \end{array}$

MODEL 28 WIRING

NON-RELAY OPERATION
Strap A3 \& A5
Strap - A4 \& A6
Remove Line Relay
Remove \& tape Transformer lead on E2.
SELECTOR MAGNETS PARALLEL
Remove 2 Bk straps - A1 \& A2
strap - A2 \& A3
strap - A1 \& A4.

LEGEND

A- sel. mag. block (LESU)
B- line-test (LESU)
C- cabinet block
D- mtr. control block (LESU)
E- power block (LESU)
F- keyboard connector

J(1)- term. strip (line relay assem. LESU)
J(2)- line relay connector (LESU)
J(3)- line relay filter (LESU)
K - term strip (line-test key LESU)
R - typing unit connector
S - motor term. block (LK)

PLANT MANUAL BK2.6.3 ISSUE 1
AUGUST, 1964

MODEL 28 TRANSMITTER DISTRIBUTOR (LXD)

ADJUSTMENTS

CONTENTS		PAGE
1. SPRING TENSIONS	1	
2.	COVER ADJUSTMENTS	2
3.	CONTROL CONTACTS ADJUSTMENTS	4
4.	CLUTCH AND MAGNET ADJUSTMENTS	6
5.	MAIN BAIL ADJUSTMENTS	8
6.	GENERATOR CONTACT ADJUSTMENTS	9

1. SPRING TENSIONS

Armature bail	1 to 2 oz.
Clutch latch lever	3 to $5-12 \mathrm{oz}$.
Clutch shoe lever	15 to 20 oz.
Clutch shoe	3 to 5 oz.
Clutch trip lever	7 to $10-12 \mathrm{oz}$.
Cover plate detent	28 to 40 oz.
Depressor bail torsion	3 to $7-12 \mathrm{oz}$.
Feed pawl	2 to $3-12 \mathrm{oz}$.
Feed ratchet detent	8 to 13 oz.
Inter mediate tape out bail	3 to 5 oz.
Locking bail	$6-12$ to $10-12 \mathrm{oz}$.
Main bail latch	34 to 2 oz.
Main bail	10 to 15 oz.
Stabilizer	$2-12$ to 5 oz.
Sensing finger	2 to 3 oz.
Signal contact	2 to $3-12 \mathrm{oz}$.
Start-stop detent	14 to 22 oz.
Tape lid release plunger	3 to 6 oz.
Tape out sensing pin	1 to 3 oz.

Tight tape intermediate Arm Tight tape start-stop contact Transfer lever Toggle link (signal contact)

34 to 1-1 2 oz .
3 to 4 oz .
1-1 2 to 2-1 2 oz .
6 to 9 oz .

2.1 Tape Lid

(1) REQUIREMENT: With the tape lid held against notch in tape guide plate there should be some clearance, not more than $.010^{\prime \prime}$, between the shoulder and tape lid bearings. The tape-out pin and the feed wheel grove should align with their respective slots.

TO ADJUST: Reposition the tape lid bracket with its mounting nuts friction tight, place the tip of a 156743 gauge thru slot and into groove of lid.
(2) REQUIREMENT: Tape lid front bearing surface should be flush against tape guide plate and rear bearing surface should be flush or within $.003^{\prime \prime}$ of being flush.

TO ADJUST: $\begin{aligned} & \text { Reposition tape lid bearing bracket with its mount- } \\ & \text { ing screws loosened. }\end{aligned}$ ing screws loosened.
2.2 Tape Lid Release Plunger

REQUIREMENT: With the tape lid latched the release plunger should have some end play.

TO ADJUST: With the eccentric mounting post friction tight and tape lid unlatched, rotate the high part of eccentric towards the tape guide plate. Hold tape lid down and rotate eccentric towards the bracket until latch just falls under post.
2.3 Tape Guide

REQUIREMENT: With perforated tape inserted. the tape should ve centrally located and not have more than . 003° between either edge of tape and tape guide.

BK2.6.3
ISSUE 1
AUGUST, 1964

Figure 1
2.3 TO ADJUST: Reposition tape guide with its mounting nut loosened.
2.4 Tape Guide Plate Position

REQUIREMENT: Tape guide plate should be firmly seated against the front and rear plates.

TO ADJUST: With the tape guide plate mounting bracket friction tight, place the start-stop lever to the run position and unlatch the tape lid. Trip the cl utch and press guide plate into position.
2.5 Top Plate Position
(1) REQUIREMENT: The top plate should ve approximately flush with the left edge of the tape guide plate and the feed wheel should rotate freely in slot when the start stop lever is in the freewheeling position.

TO ADJUST: Reposition top plate with its mounting screws loosened.
(2) REQUIREMENT: The tape lid projection should clear the top plate by $.010^{\prime \prime}$ to $.020^{\circ}$ with the tap lid latched.

TO ADJUST: Refine requirement $: 1$. It may be necessary to reposition the tape lid.

Figure 2
2. 6 Cover Plate Position
(1) REQUIREMENT: The cover plate should be held flush against the left edge of the top plate by the cover plate detents.
(2) REQUIREMENT: The cover plate should be firmly seated against the front and rear plates.

TO ADJUST: Reposition the detenting nut with its clamp screws loosened.
3. CONTROL CONTACTS ADJUSTMENTS
$\begin{array}{ll}3.1 & \text { Tape-Out Contact Assembly } \\ \text { REQUIREMENT: It should require } 8 \text { to } 15 \text { grams to separate the }\end{array}$
LXD-4

BK2.6.3
ISSUE 1
OCTOBER, 1964
3.1 REQUIREMENT: normally closed contacts and there should be $.008^{\circ}$
to $.015^{\prime \prime}$ clearance between the normally open contacts ($1 \mathrm{oz}=28$ grams).
3.2 Tape-Out Contact Bracket

REQUIREMENT: With the tape inserted, there should be a clearance of $.006^{\prime \prime}$ to $.012^{\prime \prime}$ between the tape-out pin shoulder and the swinger contact insulator.

TO ADJUST: Reposition the contact bracket with its mounting screws loosened.
3. 3 Tape-Out Sensing Pin
(1) REQUIREMENT: With the start-stop lever in the freewheeling position, the tape-out pin should be flush or not more than . $010^{\prime \prime}$ below the top surface of the tape guide plate.

TO ADJUST: Reposition the sensing pin stop arm with its clamp screw loosened.
(2) REQUIREMENT: With the start-stop lever in the run position, the tape-out pin should extend at least . 050° abore the top surface of the t?pe guide plate.

TO ADJUST: Reposition the intermediate tape out bail with its clamp screw loosened.

Figure 3

REQUIREMENT: With the start-stop lever in the run position, there should be a $.006^{\prime \prime}$ to $.015^{\prime \prime}$ clearance between the start stop bail extension and the contact swinger.

TO ADJUST: Reposition the contact bracket with its mounting screws loosened.
3.5 Tight Tape Intermediate Arm

REQUIREMENT: Place the start-stop lever in the run position and a . 060" gauge under the tight tape bail; under this condition the contacts should be open and with a $.040^{\prime \prime}$ gauge placed under the tight tape bail the contacts should close.

TO ADJUST: Reposition the tight tape intermediate arm by its pry point with its clamp screw loosened.
4. CLUTCH AND MAGNET ADJUSTMENTS
4.1 Clutch Shoe Lever

REQUIREMENT: The clearance between the clutch shoe and stop lug should be $.050^{\prime \prime}$ to $.080^{\circ}$ greater with the clutch engaged than disengaged.

TO ADJUST: Reposition clutch disk with clamping screws loosened.

4.2 Clutch Trip Lever

(1) REQUIREMENT: Trip clutch and rotate shaft until the clutch trip lever is opposite the clutch stop lug. the clearance between the trip lever and stop lug should ve . 012^{*} to $.025^{\prime \prime}$.

TO ADJUST: Reposition the trip bail eccentric post with its clamp nut loosend (keep eccentric in its lower extremity).

> BK2.6.3
> ISSUE 1
> AUGUST, 1964

Figure 4
4.3

Clutch Magnet
(1) REQUIREMENT: With the armature in operated position, the armature should engage the upper magnet core and have some clearance not more than $.002^{\prime \prime}$ at the lower magnet core.

TO ADJUST: Reposition hinge bracket with its mounting screws loosened after magnet assembly is removed.
(2) REQUIREMENT: With the armature in the operated position, there should be a. $045^{\prime \prime}$ to $.055^{\prime \prime}$ clearance between the armature and the backstop eccentric screw.

TO ADJUST: Reposition the backstop eccentric with its clamp screw loosened (keep eccentric in its upper extremity).
(3) REQUIREMENT: With clutch disengaged, there should be a . 010^{*} to $.015^{\prime \prime}$ clearance between the armature bail extension and the main bail latch.

TO ADJUST: Reposition the magnet bracket by its pry points with its mounting screws loosend.
5.1 Main Bail

REQUIREMENT: With the sensing pins in their lowest position. there should be a $.010^{\prime \prime}$ to $.020^{\prime \prime}$ clearance between the highest sensing pin and the top surface of the tape guide plate.

TO ADJUST: Reposition the main bail eccentric with its lock nut loosened (keep eccentric to its right extremity).

Figure 5
5. 2 Ma in Bail Trip Lever

REQUIREMENT: With clutch fully disengaged. the highest sensing finger should be flush or not more than . 005° below the top surface of tape guide plate.

TO ADJUST: Reposition the sensing finger eccentric post with its front and rear lock nuts loosened.

REQUIREMENT: With the sensing fingers down and the tape lid unlatched, place a letters perforation on the feed wheel. The fingers should be centrally located below their code holes when the tape is being lightly pulled to the right.

TO ADJUST: Reposition the detent eccentric with its clamp screw loosened.

Figure 6
5.4 Feed Pawl

REQUIREMENT: With the sensing fingers in their lowest position, there should be some clearance not more .002* between the feed pawl and a ratchet wheel tooth.

TO ADJUST: Reposition feed pawl eccentric with its lock nut loosened (keep eccentric to its right extremity).
6. GENERATOR CONTACT ADJUSTMENTS
6.1 Transfer Bail Stabilizer

REQUIREMENT: With the clutch fully disengaged, manually position
6. 1 REQUIREMENT: the transfer bail to marking and check the clearance between the side of the transfer bail extension and the side of its latch. Repeat the above procedure with the transfer bail positioned to spacing and check clearance. The two clearance should be equal within .002".

TO ADJUST: Reposition the stabilizer assembly with its mounting screws loosened.
6. 2 Signal Contact

REQUIREMENT: Disengage the clutch with the toggle positioned from marking to spacing; the contact clearance should be equal.

TO ADJUST: Reposition the contact box eccentric with the contact box mounting screws loosened.

Stablizer assembly mounting screws
Figure 7

Contact box mounting screw
Figure 8

LXD Wiring Diagram

PLANT MANUAL BK2.6.4 ENGINEERING DEPARTMENT

ISSUE 1
AUGUST, 1964

MODEL 28 TRANSMITTER DISTRIBUTOR
 (LAXD, LBXD AND LCXD)

ADJUSTMENTS

CONTENTS		PAGE
1.	SPRING TENSIONS	1
2.	COVER ADJUSTMENTS	2
3.	CONTROL CONTACT ADJUSTMENTS (FIXED HEAD)	2
4.	CONTROL CONTACT ADJUSTMENTS (PIVOTED HEAD)	2
5.	CLUTCH AND MAGNET ADJUSTMENTS	2
6.	DISTRIBUTOR ADJUSTMENTS	5
7.	STORING SWITCH ADJUSTMENTS	6
8.	SENSING ADJUSTMENTS	8
9.	FEED ADJUSTMENTS	8

1. SPRING TENSIONS

Armature bail	$2-14$ to $4-12 \mathrm{oz}$.
Auxiliary lever	$1-12$ to 3 oz.
Cam follower lever	12 to $1-12 \mathrm{oz}$.
Check Pawl	7 to 11 oz.
Clutch latch lever	12 to $1-12 \mathrm{oz}$.
Cover plate	28 to 40 oz.
Clutch shoe lever	15 to 20 oz.
Clutch shoe	3 to 5 oz.
Clutch trip lever	2 to 3 oz.
Contact lever extension	$1-34$ to $3-12 \mathrm{oz}$.
Contact lever slide	$3-12$ to $5-12 \mathrm{oz}$.
Distributor rocker	$6-12$ to $9-12 \mathrm{oz}$.
Feed lever	30 to 40 oz.
Feed pawl	14 to $1-12 \mathrm{oz}$.
Feed ratchet detent	7 to 13 oz.

1.	Last character contacts 14 to 12 oz. Latch lever 1 to $2-12 \mathrm{oz}$. Latch bail $2-34$ to 5 oz. Push lever 1 to 2 oz. Pusher stripper bail 7 to 19 oz. Sensing bail 14 to 1 oz. Sensing pins 2 to 3 oz. Tape deflector 12 to $1-12 \mathrm{oz}$. Tape depressor 14 to 34 oz. Tape lid pin $1-12$ to 3 oz. Tape lid re lease plunger 3 to 6 oz. Tape out pin (fixed head) 1 to 3 oz. Tape out pin (pivoted head) 3 to 5 oz. Tight-tape, start-stop contact 3 to 4 oz.
2.	COVER ADJUSTMENTS (see LXD section BK2.6.3)
3.	$\frac{\text { CONTROL CONTACT ADJUSTMENTS (FIXED HEAD) }}{\text { (see LXD section BK2.6.3) }}$
4.	CONTROL CONTACT ADJUSTMENTS (PIVOTED HEAD)
4.1	Tape-Out and Tape Lid Contacts
	REQUIREMENTS: It should require 8 to 15 grams to separate the normally closed contacts ($1 \mathrm{oz} .=28$ grams) The normally open contact should have a . $008^{\prime \prime}$ to . $015^{\prime \prime}$ gap.
4.2	Tape-Out and Tape Lid Downstop
	REQUIREMENT: The downstop post should be adjusted so that each may be lowered to flush with and not more than $.005^{\prime \prime}$ below the top surface of the tape guide plate.
5.	CLUTCH AND MAGNET ADJUSTMENTS
5.1	Cam Sleeve End Play
	REQUIREMENT: There should be end play not more than $.010^{\circ}$ between the cam sleeve and spacer.

BK2.6. 4
ISSUE 1
A UGUST, 1964
5.1 TO ADJUST: Remove the drive gear and position cam sleeve with its mounting screw loosened.
5.2 Cam Shaft Bearing Retainer

REQUIREMENT: All ball bearings shall be fully seated in their mounting position.

TO ADJUST: Rotate bearing retainer 180 degrees and reposition bearing.

Figure 1
5.3 Idler Gear Assembly

REQUIREMENT: The idler gear should be equidistant between the sensing and distributor drive gears, and should not have more than . 003" backlash.

TO ADJUST: Reposition idler gear assembly with its lock nut loosened.
5.4 Clutch Trip Magnet Armature Hinge

REQUIREMENT: With the armature flush against the magnet core. there should be a .004" to .008" gap between the magnet bracket assembly and the armature.

Remove armature extension spring post; reposition the hinge with its mounting screw loosened.
(1) REQUIRE MENT: With the clutch trip lever reset extension on the peak of its cam, there should be a $.020^{\circ}$ to $.030^{\circ}$ clearance between the trip lever latching surface and the end of the armature bail.

TO ADJUST: Reposition the mounting plate by its pry point with its mounting screws loosened.
(2) REQUIREMENT: Under the above conditions with the armature in attracted position, there should be a $.030^{\circ}$ to $.040^{\circ}$ clearance between the armature bail lower surface and top edge of trip lever.

TO ADJUST: Reposition magnet bracket by its upper pry point with its mounting and clamp screw loosened.

Figure 2
5.6 Clutch Trip Lever
(1) REQUIREMENT: Clutch fully disengaged. the trip lever should hare a full bite of the clutch shoe lever.

BK2.6.4
ISSUE 1
A UGUST, 1964
5. 6 (2) REQUIREMENT: There should be at least a . $005^{\prime \prime}$ clearance between the shoe lever and stop lug when they are opposite each other.

TO ADJUST: Reposition trip lever upper extension by its pry point with its clamp screw loosened.
5.7 Oil Reservoir Assembly

REQUIREMENT: The oil wicks should rest lightly on the cam sleeves.
TO ADJUST: Reposition reservoir assembly with its four mounting screws loosened and set it parallel to the cam sleeves.
5. 8 Clutch Shoe Lever

REQUIREMENT: With the clutch engaged, the clearance between the shoe lever and stop lug should be . 050° to $.080^{\circ}$ greater than when the clutch is engaged.

TO ADJUST: Reposition clutch disk with its clamp screws loosened.
6.

DISTRIBU TOR ADJUSTMENTS
6.1 Distributor Cam Follower

REQUIREMENT: The cam followers should be centrally located on their cams and should be free of binds.

Figure 3
LCXD-5

6.1	TO ADJUST: \quad R	Reposition the cam follower guide with its mounting screws loosened.
6.2	Distributor Contact Gap	
	REQUIREMENT: W	With the cam follower lever on the high part of its cam, the contacts should have $.025^{\circ}$ to $.030^{\circ}$ clear ance.
	TO ADJUST: R	Reposition contact screw.
6.3	Distributor Block Assembly	
	REQUIREMENT: T	The rocker levers should be centrally located on their individual cam follower lever insulator.
	TO ADJUST: \quad R	Reposition the distributor block with its mounting screw.
7.	STORING SWITCH A	ADJUSTMENTS
7.1	Storing Switch Guides	
	REQUIREMENT: T	There should be a $.005^{\circ \prime}$ to $.008^{\prime \prime}$ clearance between the contact lever slide and the post. (check only first and last slides).
	TO ADJUST: R	Reposition guide, with its mounting screws loosened.
7.2	Storing Switch Assembly	
	REQUIREMENT:	The latch levers and contact lever slides should be free from binds when ciperated.
	TO ADJUST: P	Reposition storing contact block with its mounting screws loosened.
7.3	Contact Lever Slide	
	REQUIREMENT:	With the sensing pins in their highest position. push levers selected and latch levers stripped: there should be a $.005^{\prime \prime}$ to $.012^{\circ}$ clearance between the closest push lever and contact lever slide.

LCXD-6

BK2.6.4
ISSUE 1
AUGUST', 1964
7.3

TO ADJUST:
Reposition contact lever slide eccentric shaft with its lock nuts loosened (keep eccentric in its right extremity).

Figure 4
7.4 Storing Switch Contacts
(1) REQUIREMENT: Select blank and rotate shaft until clutch fully disengaged; there should be a $.015^{\prime \prime}$ to $.020^{\circ}$ gap between each contact and its contact lever extensior.

TO ADJUST: Reposition the contact screw.
(2) REQUIREMENT: Select letters and rotate shaft until disengaged: there should be $.010^{\circ}$ clearance between the contact slide and the contact lever extension.

TO ADJUST: Refine the above adjustment.
8. SENSING ADJUSTMENTS

8.1 Sensing Pins
 REQUIREMENT: With clutchfully disengaged, pins should be flush

 plate.$\begin{array}{ll}\text { TO ADJUST: } & \begin{array}{l}\text { Reposition transfer lever eccentric with its lock } \\ \text { nut loosened (keep eccentric in its right extremity) }\end{array}\end{array}$

Figure 5
8.2

Push Lever

$$
\begin{array}{ll}
\text { REQUIREMENT: } & \begin{array}{l}
\text { With clutches fully disengaged the auxiliary lever } \\
\text { with the least clearance should clear its push } \\
\text { lever by } .025^{\prime \prime} \text { to } .040^{\prime} .
\end{array}
\end{array}
$$

TO ADJUST: Reposition the push lever eccentric with its lock nut loosened (keep eccentric in its upper extremity).
9.

FEED ADJUSTMENTS

9.1 Feed Lever Set Collar
 REQUIREMENT: The feed lever should move freely in its guide with out binding.
 TO ADJUST: Reposition the feed lever with its set coilar screws loosened.

BK2.6.4
ISSUE 1
AUGUST, 1964
9. 2 The Following Adjustments Pertain to the Fixed Head Mechanism
9.2.1 Feed Wheel Detent

REQUIREMENT: With clutches fully disengaged, place a letters perforated tape on the tape wheel and pull the tape lightly to the right. The sensing pins should be centrally located below the code holes or slightly to right of centre.

TO ADJUST: Reposition the detent eccentric with its lock nut loosened.

Figure 6

9.2.2 Feed Pawl

[^0]9.3 The Following Adjustments Pertain to the Pivoted Head Mechanism
9.3.1

Check Pawl
REQUIREMENT: With the feed pawl positioned upwards, the check pawl shall be fully seated between two teeth on the ratchet. Continue rotating shaft until clutch fully disengaged, the feed wheel should remain stationary.

TO ADJUST: Reposition check pawl eccentric with its lock nut loosened (keep eccentric in its left extremity).
9.3.2 Feed Pawl

REQUIREMENT: With the feed pawl resting against its upper stop. the feed wheel follower roller should not engage its cam. Continue rotating shaft until clutch is fully: disengaged; there should be a $.030^{\circ}$ to $.035^{\circ}$ clearance between the upper surface of the feed pawl and a tooth of its ratchet.

Figure 7

TO ADJUST: Reposition feed lever by its pry point with its lock nut loosened.

BK2.6.4
ISSUE 1
A UGUST, 1964

9.3.3 Tape Retaining Lid Latch

REQUIREMENT: With the retaining lid latched there should be no play between the retaining lid and the top plate.

TO ADJUST: Reposition the lid latch spring with its adjusting screw loosened. It should also require 1-1 2 to 2-1 2 ozs. to start the retaining lid latch spring moving .
9.3.4 Top Plate

REQUIREMENT: Place a letters perforated tape on the feed wheel and rotate shaft until sensing pins are in their highest position; the sensing pins should be centrally located in their code holes.

TO ADJUST: Reposition the retaining lid with its adjusting screws loosened.
9.3.5 Tape Deflector

REQUIREMENT: The tape deflector should pass freely between the 1st and 2 nd sensing pins and should have a minimum amount of end play.

Figure 8
9.3.5 TOADJUST: $\begin{aligned} & \text { Reposition the tape deflector with its pivot screws } \\ & \text { loosened. }\end{aligned}$
9.3.6 Tape Deflector Bracket

REQUIREMENT: The tape deflector should engage both arms of the deflector bracket.

TO ADJUST: Reposition the deflector bracket with its mounting screws loosened.

9.3.7 Tape Depressor

(1) REQUIREMENT: There should be some clearance not more than $.002^{\prime \prime}$ between the tape depressor and its bracket.

TO ADJUST: Reposition the depressor by its adjusting screw with its lock nut loosened.
(2) REQUIREMENT: With the depressor locked on the top plate. there should be a $.005^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between the top plate and the depressor.

TO ADJUST: Reposition tape depressor with its mounting screws loosened.

Figure 9

LAXD Wiring Diagram

PLANT MANUAL BK2.6.5 ISSUE 1
AUGUST, 1964

MODEL 28 TYPING REPERFORATOR (LPR)

ADJUSTMENTS

CONTENTS		PAGE
1.	SPRING TENSIONS	
2.	CLUTCH RELEASE AND RESET ADJUSTMENTS	1
3.	PERFORATOR ADJUSTMENTS	2
4.	FEED ADJUSTMENTS	4
5.	POSITIONING ADJUSTMENTS	7
6.	PRINTING ADJUSTMENTS	8
7.	GEAR BOX AND MOTOR ADJUSTMENTS	17
8.	NON-INTERFERING BLANK FEED TAPE OUT	20
9.	ADJUSTMENTS	
9.	SELECTOR ADJUSTMENTS	21

1.

SPRING TENSIONS

Accelerator Adjusting arm Bell crank Clutch shoe lever Clutch shoe Correcting drive link Detent lever
Eccentric shaft detent lever Feed pawl
Figures arm assembly Figures extension arm Function blade Function clutch lateh lever Function clutch release Letters arm assembly

20 to 26 oz .
2-1 2 to 4 oz .
1 to 3 oz .
15 to 20 oz .
3 to 5 oz .
2 to 4 oz .
7 to 10 oz .
7 to 10 oz .
3 to 4-1 2 oz .
1-1 2 to $3-12 \mathrm{oz}$.
5 to 8 oz .
7 to 10 oz .
12 to 15 oz .
5 to 8 oz .
1-1 2 to 3-1 2 oz .
1.

2.

2.1 Clutch Shoe Lever

REQUIREMENT: With the clutch engaged, the clearance between the shoe lever and stop lug should be . 050° to $.080^{\circ}$ greater than when the clutch is engaged.

TO ADJUST: Reposition clutch disk with its clamp screws loosened.

2.2 Clutch Drum End Play

REQUIREMENT: | The cam sleeve should have some end play not more |
| :--- |
| than $.010^{\prime \prime}$. with the clutch fully disengaged. |

TO ADJUST: \quad Reposition collar with its mounting screw loosened.

BK2.6.5
ISSUE 1
AUGUST, 1964
2.6

Rocker Bail
REQUIREMENT: With the rocker bail in its extreme left position, the function cam should have some play, not more than . $003^{\prime \prime}$ between the upper and lower rollers.

TO ADJUST: Reposition the lower roller in its elongated hole with its lock nut loosened.
2.4 Function Clutch Trip Lever

REQUIREMENT: The trip lever should have some end play not more than $.006^{\prime \prime}$ and should engage the full thickness of shoe lever when clutch is disengaged.

TO ADJUST: Reposition trip lever with its clamp screw loosened.

Reset Arm

See LPE section BK2.6.6 paragraph 3.6 and change the requirement to read as follows:
$.010^{\prime \prime}$ to $.030^{\prime \prime}$ clearance between the clutch release and the main trip lever.

6 Rocker Bail Guide Bracket

Figure 1

2.6	REQUIREMENT:	The rocker bail rollers should engage the full thickness of its cam and the lifter roller should engage the full thickness of rocker bail.
	TO ADJUST:	Reposition the rocker bail guide bracket with its mounting screws loosened.
2.7	Follower Lever	
	REQUIIREMENT:	With the follower lever on the peak of the function trip cam, there should be a $.025^{\prime \prime}$ to $.050^{\circ}$ clearance between the clutch release and the main trip lever.
	TO ADJUST:	Reposition the follower lever by its pry -point with its lock nut loosened.
2.8	Release Downstop Bracket	
	REQUIREMENT:	Function clutch operated, there should be a . 010° to to $.030^{\prime \prime}$ clearance between the clutch shoe lever and the trip lever.
	TO ADJUST:	Reposition the downstop bracket with its mounting screws loosened.
3.	PERFORA TOR A	DJUSTMENTS
3.1	Punch Position	
	REQUIREMENT:	The punch mounting screws should be centrally located in their elongated holes and the punch slide latches shall be horizontal when engaged by the punch slides.
	TO ADJUST:	All clutch disengaged, remore the rear plate mounting screw of the punch mechanism and reposition punch mechanism with remaining mounting screws loosened.
3.2	Rocker Arm	
	REQUIREMENT:	With rocker bail upper roller on the peak of its cam. place a 159926 gauge on the toggle shaft as shown in Figure 6: there should be the following

BK2.6.5
ISSUE 1
A UGUST, 1964

3.2 REQUIREMENT: clearances:

(1) $.002^{\prime \prime}$ to $.005^{\prime \prime}$ between the upper surface of 159926 gauge and the feed pawl stud.
(2) at least . $002^{\prime \prime}$ end play in rocker arm shaft.
(3) at least. $015^{\prime \prime}$ clearance between the rocker arm and bearing hub.

TO ADJUST: Select blank, remove punch slide guide and loosen downstop studs (see Figure 7). Rotate shaft until rocker bail upper roller is on peak of its cam. reposition rocker arm with its clamp screw loosened. Readjust the punch slide guide and downstop studs as described in the succeeding adjustments.

* Any change in this adjustment will require the rechecking all perforating and feeding adjustments that follow.
3.3 Perforator Position
(1) REQUIREMENT: Select letters and rotate shaft until function clutch just trips, there should be a . 020° to $.030^{\prime \prime}$ clearance between the punch slide and its latch.

Figure 2
3.5 Punch Pin Penetration

REQUIREMENT: With letters selected and shaft rotated until punch pins reach their highest travel, there should be a $.060^{\prime \prime}$ to $.070^{\circ \prime}$ clearance between the punch retractor bail and the upper surface of the guide plate.

TO ADJUST: Reposition the toggle bail eccentric shaft with its lock nut loosened (keep eccentric to its left extremity).
3.6 Punch Slide Guide

REQUIREMENT: With letters selected and the function clutch engaged the punch slides should engage and align with its punch pins.

TO ADJUST: Reposition the punch slide guide with its mounting nuts.

BK2.6.5
ISSUE 1
AUGUST, 1964

3.7 Reset Bail Trip Lever

REQUIREMENT: With letters selected and follower lever on the peak of function trip cam (selector cam sleeve), there should be some clearance not more than $.007^{\prime \prime}$, between the upper surface of reset bail and the punch slides.

TO ADJUST: Reposition the reset bail trip lever by its prypoint with its clamp screw loosened.

Figure 3
3.8 Punch Slide Reset Bail

See LPE, section BK2.6.6 paragraph 4.6, change requirement to read as follows:
some clearance not more than .008"
4.

FEED ADJUSTMENTS
4.1 Feed Pawl

REQUIREMENT: All clutches disengaged and detent roller in contact with the ratchet wheel. the feed pawl should engage the first tooth below the horizontal centre of the ratchet with no perceptible clearance.

TO ADJUST: Reposition the feed pawl eccentric with its clamp screw loosened (keep eccentric to its right extremity).

Feed Hole Spacing
REQUIREMENT: With the tape removed there should be a . 002^{*} to $.004^{\prime \prime}$ clearance between the feed wheel and die wheel. The tape should conform to 10 holes to the inch; check same with a 2215 or 156011 tape gauge.

TO ADJUST: \quad| Reposition the die wheel eccentric with its lock |
| :--- |
| nut loosened (keep eccentric to its lower |
| extremity). |

4.3 Detent Lever

REQUIREMENT: The feed hole should align centrally to the code
holes. Check with a 156011 tape gauge if available.
TO ADJUST: Reposition the detent eccentric with its clamp screw loosened, keep indentation approximately perpendicular to feed pawl.
4.4 Feed Hole Lateral Alignment

REQUIREMENT: Letters combinations should be centrally perforated on the tape.

TO ADJUST: Reposition the feed wheel adjusting screw with its lock nut loosened. If a 156011 ta pe gauge is available, the tape should conform to the gauge.
4. $5 \quad$ Punch Block Tape Guide Spring

The tape should not distort the tape while the perforator is in operation.
5. POSITIONING ADJUSTMENTS
5.1 Push Bar Operating Blade Shim

REQUIREMENT: Select letters and rotate main shaft until function clutch just trips. the top surface of the operating blade should be parallel with the $=2$ and $=3$ push bars.

BK2.6.5
ISSUE 1
AUGUST, 1964
5.1 TO ADJUST: $\begin{aligned} & \text { Add or remove shims under the operating blade } \\ & \text { rear mounting screw. }\end{aligned}$
5.2 Push Bar Operating Blade
(1) REQUIREMENT: Select letters, rotate main shaft until function clutch trips, move push bars to detented position: there should be a . $015^{\prime \prime}$ to . $025^{\prime \prime}$ clearance between the nearest push bar and the left edge of operating blade.
(2) REQUIREMENT: There should be some clearance between the push bars and the right edge of operating blade.
(3) REQUIREMENT: With all clutches disengaged, there should be some clearance between the push bars and right edge of operating blade.

TO ADJUST: Reposition the operating blade with its mounting screws loosened.
5.3 Rocker Bail Pilot Stud

REQUIREMENT: With blank selected and rocker bail to its extreme left, there should be a $.005^{\circ}$ to $.015^{\circ}$ clearance between the operating blade and the function box rear plate.

TO ADJUST: Reposition the pilot stud with its lock nut loosened.

Figure 4

Figure 5
5.4 Function Box

REQUIREMENT: With letters selected, rotate main shaft until function clutch trips and operating just touches the push bars; the top surface of the operating blade should be flush or not more than $.010^{*}$ below the top surface of $\# 2$ and $\# 3$ push bars.

TO ADJUST: Reposition function box by its pry-point with its three rear and one front mounting screws loosened.
5. $5 \quad$ Transfer Mounting Bracket

REQUIREMENT: Blank selected and main shaft rotated until function clutch trips; there should be some clearance, not more than . $018^{\prime \prime}$ between the bell crank and its top post (one or more bell cranks may touch the stop post).

TO ADJUST: Reposition transfer mounting bracket by its pry-point with its mounting screws loosened.

BK2.6.5 ISSUE 1 AUGUST, 1964

5.6

Letters and Figures Yield Arms
(1) REQUIREMENT: Rotate main shaft until rocker bail is to the extreme left, move arm assemblies to the letters position (letters arm just below figures arm) and hold the letters-figures bell crank against the left edge of its stop post. There should be some clearance not more than $.005^{\circ}$ between the bell crank and the letters extension arm.

TO ADJUST: \quad Reposition the lecters yield arm by its prypoint with its clamp screw loosend.
(2) REQUIREMENT: Rotate main shaft until rocker bail is to the extreme left, move arm assemblies to figures (figures arm just below letters arm) and hold the letters-figures bell crank against the right edge of its stop post. There should be some clearance.not more than $.006^{\prime \prime}$ between the bell crank and the figures extension arm.

TO ADJUST: \quad Reposition the figures yield arm by its prypoint with its clamp screw loosened.
5.7 Lifter Arm

REQUIREMENT: With function clutch operated and the main
5. 7 REQUIREMENT: shaft rotated, the lifter roller should have approximately equal travel on the well surfaces.

TO ADJUST: Reposition lifter arm with its lock nut and eccentric screw lock nut loosened.
5. 8 Lifter Arm Eccentric Screw

REQUIREMENT: All clutches disengaged, there should be a . 005° to $.016^{\prime \prime}$ clearance petween the bell cranks and the function blades.

Figure 7

Figure 8

BK2.6.5
ISSUE 1
AUGUST, 1964
5.8 TO ADJUST: Reposition lifter arm eccentric screw with its lock nut loosened.
5.9 Lock Lever
(1) REQUIREMENT: Letters selected and rocker bail to its left position when the toggle linkage and lock lever are in a straight line; the lifter should not r ise.
(2) REQUIREMENT: Under the above conditions there should be some clearance, not more than . 010° between the toggle link and the lifter pin.

TO ADJUST: Reposition lock lever with its clamp screw loosened.
5.10 Lock Lever Trip Post

REQUIREMENT: The lifter roller should drop onto the right dwell (rear view), just before the rocker bail reaches its extreme right position.

TO ADJUST: Reposition lock lever trip post by its pry-points with its clamp screw loosened.

Figure 9

Figure 10
5.11 Oscillating Drive Link

REQUIREMENT: With rocker bail to its extreme left, the sector mounting stud, toggle pivot screw and oscillating drive bail mounting screw should be in line.
TO ADJUST: Reposition oscillating drive link by its eccentric bushing.
5.12 Oscillating Drive Bail

REQUIREMENT: Select Blank and rotate main shaft until the rocker bail is to its extreme left. The axial correcting plate roller should be fully seated in the first notch of the axial sector.

TO ADJUST: Reposition the correcting drive link with the oscillating drive bail mounting screw loosened.
5.13 Axial Sector Alignment

REQUIREMENT: The top surfaces of the axial sector and axial output rack shouid align.
5.13 TO ADJUST: Add or remove shims under the axial output rack guide roller.

Figure 11
5.14 Axial Output Rack Guide Roller

REQUIREMENT: Select line feed and rotate main shaft until upper eccentric is positioned to extreme right; there should be some play, not more than $.007^{\prime \prime}$ between the axial output rack and its guide roller.

TO ADJUST: Reposition guide roller stud in its elongated hole with its lock nut loosened.
5.15 Push Bar Guide Bracket

REQUIREMENT: Select carriage return and rotate main shaft. During the complete travel of the $=4$ push bar there should be some play, not more than $.005^{\circ}$ between the $=4$ push bar and the guide bracket.

TO ADJUST: Reposition the guide bracket with its two mounting screws loosened.
5.16 Correcting Drive Link (Figure 10)
(1) REQUIREMENT: With blank selected the axial correcting roller should seat firmly in the first noteh of axial sector.
(2) REQUIREMENT: With letters selected the axial correcting roller should seat firmly in the fourth notch of axial sector.

TO ADJUST: Reposition correcting drive link with its clamping screws loosened.

Idler Gear Eccentric Shaft
REQUIREMENT: Select letters and rotate main shaft until clutches disengaged; there should be a . $003^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between the typewheel rack and idler gear.

TO ADJUST: Reposition the idler gear eccentric shaft with a tommy, with its mounting screw loosened.

5.18

Rotary Correcting Lever

(1) REQUIREMENT: The following typewheel rack teeth should be firmly seated between the lobes of the correcting lever with these selections.

1. 2nd tooth select 9 (Figures -4 . 5).
2. 4th tooth select con.ma (Figures -3. 4).
3. 9th tooth select CR (Letters -4).
4. 16 th tooth select H (Letters -3. 5).

Printing Trip Link
REQUIREMENT: With rocker bail to its extreme left, raise the accelerator until latching surfaces of accelerator and printing latch are opposite; there should ve some clearance not more than $.010^{\prime \prime}$ between the two latching surfaces.

TO ADJUST: Reposition printing trip link eccentric screw with. its lock nut loosened (keep eccentric to its left extremity).
6.3 Typewheel Position

REQUIREMENT: With " M " selected, the character should be ur' formly printed.

TO ADJUST: Reposition the typewheel with its lock nut loosened.

Figure 14

- the characters squarely.

TO ADJUST: Reposition eccentric stud with its lock nut iousened.

BK2.6.5
ISSUE 1
AUGUST; 1964

Figure 15
6. 5 Ribbon Feed Eccentric Stud

REQUIREMENT: With rocker bail to its extreme left, there should be a $.004^{\prime \prime}$ to $.012^{\prime \prime}$ clearance between retaining pawl and ribbon ratchet tooth (check side with least clearance).

TO ADJUST: Reposition ribbon feed eccentric stud (on rocker bail) with its lock nut loosened.
6. 6 Ribbon Feed Pawl Downstop Eccentric

REQUIREMENT: All clutches disengaged, there should be a .010 ." to . $030^{\prime \prime}$ clearance between feed pawl and ratchet tooth.

TO ADJUST: Reposition downstop eccentric with its lock nut loosened.
Note: feed pawl should feed one tooth at a time.

6.7
 Ribbon Reversing Plate

REQUIREMENT: With rocker bail to its extreme left, position the reversing arm under reversing plate and there should be a $.010^{\prime \prime}$ to $.020^{\circ}$ clearance between the arm and plate.

6. 7 TO ADJUST: Reposition reversing plate with its clamp screw loosened.
 7. GEAR BOX AND MOTOR ADJUSTMENTS
 7.1 Gear Alignment
 REQUREMENT: Motor pinion and intermediate shaft driven gear should mesh at right angles and should have barely perceptible backlash.
 TO ADJUST: Reposition gear assembly and adjusting stud with mounting screws loosened.

[^1]BK2.6.5
ISSUE 1
AUGUST, 1964

7.3	Timing Belt	
	REQUIREMENT:	The belt should have some play, not more than $1.16^{\prime \prime}$ when tested at the middle.
	TO ADJUST:	Reposition gear assembly with mounting screws loosened.
8.	NON-INTERFERING BLANK TAPE FEED OUT ADJUSTMENTS	
8.1	Spring Tensions	
	Armature lock lever 12 to 1-12 oz.	
	Drive arm 3 to 5 oz .	
	Feed out pawl 12 to 2 oz .	
	Inner ratchet check pawl 12 to 1-12 oz.	
	Latch arm 1-1 2 to 2-1 2 oz .	
	Metering feed pawl 2 to 3 oz .	
	Outer ratchet check pawl 4 to 5 oz .	
	Outer ratchet return 2 to 3 oz	
	Release arm latch 1-12 to 2-1 2 oz .	
	Release arm 10 to 15	
	Switch lever 3 to 6 oz .	
8.2	Drive Arm Shaft Rear Bearing	
	REQUIREMENT:	The drive arm shaft shouki move freely without binding.
	TO ADJUST:	Reposition rear bearing with its two mounting screws loosened.
8.3	Drive Arm	
	REQUIREMENT:	The drive arm should fully engage the release arm and should not engage the function cam.
	TO ADJUST:	Reposition drive arm with its clamp screw loosened.

Figure 17
8.4 Release Arm

REQUIREMENT: With drive arm on the peak of eccentric collar. there should be a . $005^{\prime \prime}$ to $.010^{\circ}$ clearance between the release arm and drive arm.

TO ADJUST: Reposition release arm pivot shaft in its elongated hole with its lock nut loosened.
8.5

Feed Out Pawl
REQUIREMENT: With power on, allow tape feed out to be terminated by the reception of any impulse; the feed hole should align with perforated code holes.

TO ADJUST: With power off, feed out mechanism operated. main shaft rotated until cirive arm on peak of eccentric follower and detent roller between teeth of ratchet. Reposition feed out pawl asainst first tooth to the left of vertical centre of ratchet with clamp screw fricion tight.and rotate main shaft until feed out pawl is returned $.020^{\circ}$ to $.030^{\circ}$ from tooth. Reposition feed out pawl against tooth and tighten clamp screw.

BK2.6.5
ISSUE 1
AUGUST, 1964
8.6

Armature Bail Hinge
REQUIREMENT: With armature operated, the armature should be flush with magnet core and there should be some clearance not more than .003" between armature and magnet mounting bracket.

TO ADJUST: Reposition hinge with mounting screw and armature spring post loosened.
8.7 Magnet Mounting Bracket

REQUIREMENT: With tape feed out mechanism unoperated, move armature bail against lock lever roller; there should be a $.030^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between antifreeze strip and magnet core.

TO ADJUST: Reposition magnet bracket by its pry-points with its mounting screws loosened.

Figure 18
3. 3 Release Arm Lateh

REQUIREMENT: With kick-out roller positioned awily from lock
8.8 REQUIREMENT: lever and armature operated. there should be some clearance, not more than . 005 " between release arm and release arm latch (see Fisure 19)

TO ADJUST: \quad| Reposition release arm latch shaft in its elong- |
| :--- |
| ated hole with its lock nut loosened. |

8.9 Inner Ratchet Check Pawl

REQUIREMENT: With feed out operated but drive arm unlatched. position a deep notch of ijoth ratchets opposite inner ratchet check pawl; there should be a . $005^{\prime \cdot}$ to $.015^{\prime \prime}$ clearance between check pawl and ratchet tooth

TO ADJUST: Reposition check pawl mounting plate with its two mounting screws loosened.
8.10 Non-Interfering Clamp Arm (Figure 18)

REQUIREMENT: With selector reset bail on peak of its cam. there should be a . 002° to $.015^{\circ}$ clearance between release arm and release arm latch. Also. the clamp arm should have some side play. not more than $.006^{\circ}$.

TO ADJUST: Reposition clamp arm with its clamp screw loosened.
8.11 Kick-Out Arm (Figure 18)
(1) REQUIREMENT: With selector reset bail on peak of its cam. there should be some clearance between kick-out roller and lock lever.
(2) REQUIREMENT: With feed out magnet energized. the lock lever roller should disengage from armature bail before the selector reset bail reaches the vear of cam.

TO ADJUST: Reposition kick-out arm with its clamp screw loosened.

BK2.6.5
ISSUE 1
AUGUST. 1964

8. 12 Tape Length Adjusting Flate

REQUIREMENT: Reposition adjusting plate with its spring post loosened to have desired length of tape (maximum $17^{\prime \prime}$) feed out. After feed out is operated and ratchet is rotated so that the next adrance of feed paw! will terminate feed out operation. there should be some clearance - not more than . 020° between the adjusting plate and latch arm.

TO ADJUST: Reposition adjusting plate.
9. SELECTOR ADJUSTMENTS (See M 28 Selector section)

Figure 20
\bullet
\bullet

TELECOMMUNICATIONS ENGINEERING DEPARTMENT

PLANT MANUAL BK2.6.6 ISSUE 1
AUGUST, 1964

MODEL 28 PERFORATOR TRANSMITTER (LPE)

ADJUSTMENTS

CONTENTS		PAGE
1.	SPRING TENSIONS	1
2.	KEYBOARD ADJUSTMENTS	2
3.	CLUTCH RELEASE AND RESET ADJUSTMENTS	2
4.	PERFORATOR ADJUSTMENTS	7
5.	FEED ADJUSTMENTS	10
6. BACKSPACE ADJUSTMENTS	12	
7.	CHARACTER COUNTER ADJUSTMENTS	14

1. SPRING TENSIONS

* Place Control Knob in $\mathrm{K}-\mathrm{T}$ position, unless otherwise indicated.

Clutch shoe lever	16 to 22 oz.
Clutch shoe	3 to 5 oz.
Clutch trip bar link return	3 to 4 oz.
Code bar extension	4 to 5 oz.
Code bar extension bail	7 to 10 oz.
Detent lever	7 to 10 oz.
Feed pawl	3 to $4-12 \mathrm{oz}$.
Function clutch latch lever	12 to 15 oz.
Function clutch release	5 to 8 oz.
Keyboard control cam detent	4 to 5 lbs.
Keyboard control cam follower	3 to 5 oz.
Keyboard control contacts	1 to 2 oz.
Keyboard control reset lever	3 to 5 oz.
Maintrip lever	$1-12$ to 3 oz.
Punch pin retractor	4 to 5 lbs.

1.	Punch slide Punch slide latch Reset follower lever Reset cam follower Tape chute guide Tape shoe torsion Tape depressor slide	$\begin{aligned} & 2-14 \text { to } 3-14 \mathrm{oz} . \\ & 34 \text { to } 2 \mathrm{oz} . \\ & 12 \text { to } 18 \mathrm{oz} . \\ & 3 \text { to } 5 \mathrm{oz} . \\ & 12 \text { to } 1 \mathrm{oz} . \\ & 13 \text { to } 18 \mathrm{oz} . \\ & 1-12 \text { to } 2-12 \mathrm{oz} . \end{aligned}$
2.	KEYBOARD ADJUSTMENTS (see M28 Keyboard section BK2.6.2)	
3.	CLUTCH RELEASE AND RESET ADJUSTMENTS	
3.1	Clutch Shoe Lever	
	REQUIREMENT: With the clutch engaged, the clearance between the shoe lever and stop lug should be $.050^{\circ}$ to 080° greater than when the clutch is engaged.	
	TO ADJUST: \quad Red	Reposition clutch disk with its clamp screws loosened.
3.2	Clutch Drum End Play	
	REQUIREMENT: Th	The cam sleeve should have some end play not more than $.010^{\prime \prime}$, with the clutch fully disengaged.
	TO ADJUST: R	Reposition collar with its mounting screw loosened.
3.3	$\underline{\text { Rocker Bail Lower Roller }}$	
	REQUIREMENT: W	With the rocker bail in its extreme left position, the function cam should have some play not more than $.003^{\prime \prime}$ between the upper and lower rollers.
	TO ADJUST: \quad R	Reposition the lower roller in its elongated hole with its lock nut loosened.
3.4	$\underline{\text { Rocker Bail Guide Bracket }}$	
	REQUIREMENT: Th	The clearance between the following should be at least. 010":

BK2.6.6
ISSUE 1
AUGUSI, 1964
3.4 REQUIREMENT: (1) Upper roller and reset pins.
(2) Lower roller screw head and front cam.
(3) Rocker bail and rear rocker cam.

TO ADJUST: Reposition rocker bail with its mounting screws loosened.
3.5 Function Clutch Trip Lever

REQUIREMENT: The trip lever should have some end play, not more than .006" and should engage the full thickness of shoe lever when clutch is disengaged.

TO ADJUST: Reposition trip lever with its clamp screw loosened.

3.6 Reset Arm

REQUIREMENT: With the reset arm in its highest position there should be a $.005^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the clutch release and the main trip lever and should have some end play, not more than . 010'.

TO ADJUST: Reposition reset arm with its clamp screw loosened.

REQUREMENT: When the reset arm reaches its lowest travel, it should just touch the felt oiler on the shaft.

TO ADJUST: Reposition the release downstop bracket with its mounting screw loosened.
3.8 Perforator Alignment
(1) REQUIREMENT: There should be a $.010^{\circ}$ to $.020^{\circ}$ clearance between the punch slide latches and the code bar extensions which should be centrally located with all clutches aisengaged.
(2) REQUIREMENT: The cam follower roller should extend approximately $.030^{\prime \prime}$ beyond the rear edge of the reset cam.

TO ADJUST: Reposition the alignment bracket with the couplings disengaged and two alignment and four perforator mounting screws loosened. If necessary, refine code bar extension line-up by adjusting the code bar extension guide bracket mounting screw to its mid-point.

Figure 2
3.9 Code Bar Extension and Punch Slide Latch

REQUIREMENT: Place control knob to tape, with letters selected

BK2.6.6
ISSUE 1
AUGUST, 1964
3.9

REQUIREMENT: all punch slides should release; with blank selected there should be some clearance, not more than $.006^{\prime \prime}$ between code bar extensions and closest punch slide latch.

Figure 4

3.10	Reset Lever	
	REQUIREMENT:	Place control knob in the T position, select any keylever and rotate shaft until the code bar bail is in the extreme left position; there should be some clearance not more than . 010" between the code bar bail roller and its latch.
	TO ADJUST:	Reposition the reset lever eccentric stud with its clamp screw loosened.
3.11	Main Trip Lever	(Figure 1)
	REQUIREMENT:	Clutch disengaged, punch reset bail in its highest position, the left surface of the trip lever should be flush with the left end of the clutch release.
	TO ADJUST:	Reposition the trip lever with its clamp screw loosened and the main trip latch lever positioned away.
3.12	Perforator Clutch	Release Trip (Figure 1)
	REQUIREMENT:	Perforator clutch should not fail to operate when a repeated blank is selected, while the control knob is in the T and K - T position. There should also be a clearance of $.015^{\prime \prime}$ to $.025^{\circ}$ between the main trip lever and clutch release when the clutch is just tripped.

Figure 5

BK2.6.6
LSSUE 1
AUGUST, 1964

3.12	TO ADJUST:	Move the main trip lever latch to the extreme left with its clamp screws loosened, select the blank keylever and move stop bracket with its clamp screws loosened to the extreme right. Move clutch trip bar link to the right until it latches. Position main trip lever latch to the right to obtain the above clearance. Recheck requirement.
3.13	Code Bar Extension Blocking Assembly	
	REQUIREMENT:	Place control knob to K. There should be some clearance, not more than $.025^{\prime \prime}$ between the ends of the code bars and the code bar extensions and there should be some clearances, not more than $.010^{\prime \prime}$. between the blocking lever and the left side of the notch in the character counter code bars.
	TO ADJUST:	Select letters, rotate shaft until code bars are in their extreme left hand position. Reposition the extension bail by its pry points with its adjusting screw loos ened to meet the code bar extension clearance and reposition the blocking lever to meet the latter requirement.
4.	PERFORATOR ADJUSTMENTS	
4.1	Punch Position	
	REQUIREMENT:	The punch mounting screws should be centrally located in their elongated holes and the punch slide latches shall be horizontal when engaged by the punch slides.
	TO ADJUST:	All clutch disengaged, remove the rear plate mounting screw of the punch mechanism, and reposition punch mechanism with remaining mounting screws loosened.
4.2	Rocker Arm	
	REQUIREMENT:	With rocker bail upper roller on the peak of its cam. place a 159926 gauge on the toggle shaft as shown in Figue 6. there should be the following

Figure 6
4.2 REQUIREMENT: clearances:
(1) $.002^{\prime \prime}$ to $.005^{\prime \prime}$ between the upper surface of 159926 gauge and the feed pawl stud.
(2) at least. $002^{\prime \prime}$ end play in rocker arm shaft.
(3) at least . $015^{\prime \prime}$ clearance between the rocker arm and bearing hub.

TO ADJUST: Select blank, remove punch slide guide and loosen downstop studs (s ee Figure 7). Rotate shaft until rocker bail upper roller is on peak of its cam. reposition rocker arm with its clamp screw loosened. Readjust the punch slide guide and downstop studs as described in the succeeding adjustments.

* Any change in this adjustment will require the rechecking all perforating and feeding adjustments that follow.
4.3 Punch Slide Downstop Position

REQUIREMENT: Function clutch fully disengaged, punch slides positioned upwards until blocked; there should be some clearance, not more than . 008'. between the

BK2.6.6
ISSUE 1
AUGUST, 1964

4.3 REQUIREMENT: punch slides and their downstop.
 TO ADJUST: Loosen the punch slide guide mounting screws and downstop plate mounting studs and reposition the downstop.

Figure 7
4.4 Punch Slide Guide Position

REQUIREMENT: With letters selected and the function clutch engaged.the punch slides should engage and align with its punch pins.

TO ADJUST: Repos ition the punch slide guide with its mounting nuts.
4.5 Punch Pin Penetration

REQUIREMENT: With letters selected and shaft rotated until punch pins reach their highest travel, there should be a $.060^{\prime \prime}$ to $.070^{\prime \prime}$ clearance between the punch retractor bail and the upper surface of the guide plate.
4.5 TO ADJUST:

Reposition the toggle bail eccentric shaft with its lock nut loosened (keep eccentric to its left extremity).
4. $6 \quad$ Punch Slide Reset Bail

REQUIREMENT: Blank selected and shaft rotated until all clutches disengaged, there should be a $.015^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the punch slides and the closest latch.

TO ADJUST: Reposition the reset bail eccentric shaft with its lock nut loosened (keep eccentric to its left extremity).
5. FEED ADJUSTMENTS

5.1 Feed Pawl

REQUIREMENT: All clutches disengaged and detent roller in contact with the ratchet wheel, the feed pawl should engage the first tooth below the horizontal centre of the ratchet with no perceptible clearance.

TO ADJUST: Reposition the feed pawl eccentric with its clamp screw loosened (keep eccentric to its right extremity).

Figure 8

BK2.6.6
ISSUE 1
AUGUST, 1964
5.2 Feed Hole Spacing

REQUIREMENT: With the tape removed, there should be a . 002.* to $.004^{\prime \prime}$ clearance between the feed wheel and die wheel. The tape should conform to 10 holes to the inch, check same with a 2215 or 156011 tape gauge.

TO ADJUST: Reposition the die wheel eccentric with its lock nut loosened (keep eccentric to its lower extremity).

Detent Lever
REQUIREMENT: The feed hole should align centrally to the code holes. Check with a 156011 tape gauge if available.

TO ADJUST: Reposition the detent eccentric with its clamp screw loosened, keep indentation approximately perpendicular to feed pawl.
5.4 Feed Hole Lateral Alignment

REQUIREMENT: Letters combinations should be centrally perforated on the tape.

Figure 9
5.4 TO ADJUST: Reposition the feed wheel adjusting screw with its lock nut loosened. If a 156011 tape gauge is available, the tape should conform to the gauge.
5.5 Tape Guide

REQUIREMENT: With the tape guide adjusting plate resting against its backstop there should be a $.002^{\prime \prime}$ to . 006" clearance between the tape guide and the tape in the tape chute.

TO ADJUST: Reposition adjusting plate with its clamp screw loosened.

6. BACKSPACE ADJUSTMENTS

6.1 Rake

REQUIREMENT: With the rake held in the operated position there should be a . $008^{\prime \prime}$ to $.010^{\prime \prime}$ clearance between the rake teeth and tape slot in the punch block.

TO ADJUST: With the bell crank fully operated, reposition the rake's front and rear plates with their four mounting screws loosened.
6.2 Backspacing Feed Pawl Adjusting Plate

REQUREMENT: When bell crank is operated, the feed pawl should clear the first tooth of the feed wheel by .004" to . 020".

TO ADJUST: Reposition the adjusting plate with its mounting screws loosened.

6.3 Return Latch

REQUIREMENT: With the backspace unoperated, there should be a.004" to . $020^{\prime \prime}$ clearance between the return latch and backspacing feed pawl extension.

TO ADJUST: Reposition the return laich eccentric with its clamp screw loosened.

Figure 10
6.4 Bell Crank Handle Eccentric

REQUIREMENT: With the backspacing feed pawl in the fully operated position, there should be s ome clearance not more than . 003". vetween the feed pawl and a ratchet tooth.

TO ADJUST: Reposition the eccentric with its lock nut loosened.
6. 5 Armature Hinge

REQUIREMENT: The armature should be flush on the pole piece when operated.

TO ADJUST: Reposition armature hinge with its mounting screws loosened.

* Check the above only after disassembly.

6. 6 Armature Upstop

REQUIREMENT: With the armature unoperated, there should be a $.025^{\prime \prime}$ to $.030^{\prime \prime}$ clearance between the armature and the pole piece at the point of minimum clear ance.

6.6	TO ADJUST:	Reposition the upstop eccentric with its lock nut loosened (keep eccentric to its left extremity).
6.7	Drive Link Latch	
	REQUIREMENT:	With the armature unoperated and the drive link latch against the end of the armature bail extension, there should be a . $005^{\prime \prime}$ to $.025^{\prime \prime}$ clearance between the drive link latch and the eccentric arm at the point of minimum clearance.
	TO ADJUST:	Reposition latch with its clamp screw loosened.
6.8	Non-Repeat Arm	
	REQUIREMENT:	Backspace mechanism unoperated, there should be a .002 " to $.010^{\prime \prime}$ clearance between the top surface of the non-repeat arm and the lowest point of the drive link latch.
	TO ADJUST:	Reposition the non-repeat adjusting arm with its clamp screw loosened.
		SPRING TENSION (in ounces)
	Armature bail	10 to 16
	Backspacing feed	pawl $\quad 1-3$ to 3-3 4
	Non-repeat arm	3. 4 to 1-1 4
	Return Latch	2-1 2 to 3-1.2
7.	CHARACTER COU	UNTER ADJUSTMENTS
7.1	Character Counter	End-of-Line Switch
	REQUIREMENT:	The contact gap should be $.012^{\prime \prime}$ to $.025^{\prime \prime}$ when the contacts are on the low part of its cam. The contacts should close on the sixty fifth combin ation.
	TO ADJUST:	Reposition the contact bracket with its mounting screws loosened for the contact gap. Reposition the cam with its clamp screws loosened for the

BK2.6.6
ISSUE 1
AUGUST, 1964
7.1 TO ADJUST: correct contact closure.
7. 2 Character Counter Scale Bracket

REQUIREMENT: Indicator should rest lightly on the bracket for its full travel.

TO ADJUST: Reposition bracket with its clamp screws loosened.
7.3 Character Counter Idler Pulley

REQUIREMENT: The pulley should be adjusted so that the indicator cord does not sag.
7.4

Stop Lever
REQUIREMENT: With the counter returned, there should be a . 002° to $.010^{\prime \prime}$ clearance between the latch lever and the face of the fourth tooth on the ratchet.

TO ADJUST: Reposition the stop lever eccentric with the feed lever held away from the ratchet.

Figure 11

7.5 Character Counter

REQUIREMENT: With counter returned, the indicator should point to zero.

TO ADJUST: Reposition counter scale with its clamp screws loosened.

Figure 12
7. 6 Character Counter Stroke

REQUIREMENT: The counter should operate without failure when a character is repeated, with the control knob in T and $\mathrm{K}-\mathrm{T}$, and should restart correctly after carriage return is selected.

TO ADJUST: Reposition the character counter frame with its mounting screws loosened, until all the above conditions are met.

SPRING TENSIONS
(in ounces)

Anti-bounce latch	4 to 1-1
Drive lever	12 to 1
Latch lever	2 to 1
Ratchet drum assembly return: (indicator at zero)	1-1 2 to 2-1
(indicator at 70)	3-1 2 to 6-1
eset lever extension	34 to 1-14

BK2.6.6
ISSUE 1
AUGUST, 1964

Figure 14

PLANT MANUAL BK2.6.7 SUB-SECTION 1, ISSUE 1 MARCH, 1965

MODEL 28 RECEIVING SELECTOR SET (LRS)

CONTENTS

SUB-SECTION	ISSUE	PAGES
1. Contents	1	1
5.	Adjustments	1

- TELECOMMUNICATIONS ENGINEERING DEPARTMENT

PLANT MANUAL BK2.6.7
SUB-SECTIO: 5, ISSUE 1
MARCH, 1965

MODEL 28 RECEIVING SELECTOR SET (LRS)
ADJUSTMENTS

2.5 When the requirement calls for a clutch to be DISEDGAGED, the clutch shoe lever must be fully latched between its trip lever and latch lever so that the clutch shoes release their tension on the clutch drum. When ENGASED, the clutch shoe lever is unlatched and the clutch shoes are wedged firmly against the clutch drum.

NOTE: When rotating the main shaft by hand, the function or selector clutch may not fully disengage upon reaching its stop position. To disengage the clutch, rotate it to its stop position, apply a screwdriver to the cam disk stop lug and move the disk in the normal direction of shaft rotation until the latch lever seats in its notch in the disk.
. 6 If parts are removed, all adjustments which the removal of parts might facilitate should be made before the parts are replaced. When a part mounted on shims is removed, the number of shims at each mounting screw should be noted so that the identical shim pile-up can be made when the part is remounted. Unless stated otherwise, all nuts and screws that were loosened should be tightened after an adjustment has been made.
. 7 The cover may be removed for inspection and minor repair of the components. However, when more extensive maintenance is to be undertaken, it is recommended that the unit be removed from its operating location and the power disconnected.

All contact points should meet squarely. Contacts with the same diameter should not be out of alignment more than 25% of the contact diameter. Avoid sharp kinks or bends in the contact springs.
caution

Improperly adjusted equipment may be serioue? iamaged in a matter of secoris if operated unater power.
3.

```
BK2.6.7
SUR-SECTION 5, ISSUE I
MARCH, 1965
```

NOTE
THESE SPRITNG TENSIONS APPLY TO BOTH CLUTCHES.

note
TO FACILITATE MAKING THE FOLLOWING ADJUSTMENTS, REMOVE THE RANGE FINDER AND SELECTOR MAGNET ASSEMBLIES. TO INSURE BEITER OPERATION, PULL A PIECE OF KS BOND PAPER BETWEEN THE ARMATURE AND THE POLE PIECES TO REMOVE ANY OIL OR FOREIGN gatter that may be present. Make certain that no lint or pieces of paper remain getween the pole pleces and armature.

TO ADJUST

1. POSITION ARMATURE SPRING ADJUSTING NUT TO HOLD
2. POSITION ARMATURE AND BACKSTOP WITH MOUNTING SCREWS LOOSENED.

SELECTOR ARMATUPE DOWNSTOP BRACKE

REOUNEMENT

REAOVE OIL SHIELD. WITh MAGNET DE-ENERGIZED, LOCK LEVERS ON HIGH PART OF THEIR CAM, AND ARMATURE RESTING AG AINST ITS DOWNSTOP, CLEARANCE BETWEEN end of arniature and left edge of left pole piece.
MIN. 0.025 iNCH
MAX. 0.030 INCH
TO AD JUST
POSITION DOWNSTOP BRACKET WITH MOUNTING SCREW LOOSENED. REPLACE OIL SHIELD AND CHECK OIL SHIELD ADJUSTMENT, FIGURE 3-6.

SEE FOLLOWING PAGE FOR REQUIREMENTS (1) AND (2).

SELECTOR MAGNET BRACKET (3) REQUIREMENT

MARKING LOCK LEVER ON LOW PART OF CAM. MAGNET ENERGIZED. ARMAATURE IN CONTACT WITH POLE PIECE. CLEARANCE BETWEEN LOWER SURFACE OF ARMATURE EXTENSION AND UPPER SURFACE OF MARKING LOCK LEVER. MIN. 0.002 INCH
MAX. 0.005 INCH
TO ADJUST
POSITION UPPER END OF MAGNET
BRACKET. TIGHTEN MOUNTING SCREWS AND RECHECK (I).

MARKING LOCK LEVER

OIL SHIELD

REQUIREMENT
(1) MAGNET DE-ENERGIZED. STOP ARM BAIL FOLLOWER ON LOW PART OF ITS CAM. CLEARANCE BETWEEN START LEVER AND OIL SHIELD:
MIN. 0.020 INCH

(2) MAGNET ENERGIZED STOP ARM BAIL FOLLOWER ON HIGH PART OF ITS CAM. CLEARANCE BETWEEN END OF ARMATURE AND OIL SHIELD: MIN. O.010 INCH
TO ADJUST
POSITION SHIELD WITH MOUNTING SCREW LOOSENED. MAKE SURE OIL SHIELD MOUNTING STUD IS SECURE BEFORE MAKING ADJUSTMENT.

MARKING LOCK LEVER, SPACING LOCK LEVER, AND START LEVER ON HIGH PART OF THEIR CAMS. SCALE APPLIED AS NEARLY VERTICAL AS POSSIBLE UNDER END OF ARMATURE EXTENSION.
$30 \mathrm{M} . A$. OPERATION - $11 / 2$ OZS. TO 2 OZS.
$60 \mathrm{M} . A$. OPERATION - $21 / 2$ OZS. TO 3 OZS.
TO PULL ARMATURE TO MARKING POSITION, IT MAY BE NECESSARY TO READJUST
THIS SPRING TENSION WHEN MAKING DISTÓRTION TOLERANCE TESTS OF THE UNIT.

POSITION ADJUSTING NUT.

MARKING LOCK LEVER SPRING UIREMENT
LETTERS COMBINATION SELECTED, MAIN SHAFT ROTATED UNTIL CLUTCH IS DISENGAGED. PUSH SCALE APPLIED TO LOWER extension of lock lever. MIN. 1-1/2 OZS.
MAX. 3 OZS. TO START IEVER MOVING.

NOTE

ON 8 LEVEL UNITS, SELECT "RUB OUT" COMBINATION

PUSH LEVER IN SPACING POSITION 5 LEVEL UNITS
MIN. $3 / 4 \mathrm{OZ}$.
MAX. 1-1/2 OZS. 8 LEVEL UNITS
MIN. $1-1 / 4$ OZS. MAX. 2 OZS. TO MOVE PUSH LEVER FROM SELECTOR LEVER. CHECK ALL SPRINGS

SELECTOR LEVER SPRING REQUIREMENT

RECEIVING SELECTOR UPSIDE DOWN.
RESET BAIL ON PEAK OF ITS CAM.
MIN. $1-1 / 4$ OZS.
MAX. 2-1/2OZS.
TO START EACH LEVER MOVING.
CHECK ALL SPRINGS. IF NECESSARY, UNHOOK START LEVER SPRING TO CHECK NO. 4 SELECTOR LEVER SPRING.

SELECTOR CLUTCH DRUM END PLAY REQUIREMENT

THERE SHALL BE NO
CLEARANCE BETWEEN CLUTCH DRUM AND SHOULDER OF MAIN SHAFT.
TO ADJUST
POSITION CLUTCH DRUM
WITH ITS MOUNTING
SCREWS LOOSENED.

```
BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```


NOTE: REPLACE RANGE FINDER AND SELECTOR MAGNET ASSEMBLY.

RANGE MNDER KNOB PHASING
REOUREMENT
WIti RANGE FINDER KINOB TURNED TO EITHER END OF RACK, ZERO MARK ON SCALE FOR:
5 LEVEL UNIT SHOULD BE WITHIN + 3 POINTS OF SCRIBED LINE ON RANGE FINDER PLATE.
a LEVEL UNIT SHOULD BE IN LINE WITH SCRIBED LINE ON RANGE FINDER PLATE.
TO ADJUST
REMOVE MOUNTING NUT, DISENGAGE KNOB FROM RACK AND POSITION KNOB.
RE-ENGAGE KNOR WITH RACK AND REPLACE MOUNIING NUT.

SELECTOR RECEIVING MARGIN
WHEN A SIGNAL DISTORTION TEST SET IS USED FOR DETERMINING THE RECEIVING MARGINS OF THE SELECTOR, AND WHERE THE CONDITION OF THE COMPONENTS IS EQUIVALENT TO THAT OF NEW EQUIPMENT, THE RANGE AND DISTORTION TOLERANCES BELOW SHOULD BE MET.

SELECTOR RECEIVING MARGIN MINIMUM REQUIREMENTS

CURRENT	$\begin{gathered} \text { SPEED } \\ \text { IN } \\ \text { WPM } \end{gathered}$	$\begin{aligned} & \text { POINTS RANGE } \\ & \text { WITH ZERO } \\ & \text { DISTORTION } \\ & \hline \end{aligned}$		PERCENTAGE OF MARK ING AND SPACING BIAS tolerated		END DISTORTION TOLER ATED WITH SCALE AT BIAS OPTIMUM SETTING	
		5 LEVEL	8 LEVEL	5 LEVEL	8 LEVEL	5 LEVEL	8 LEVEL
0.060 AMP (WINDINGS parallel)	$\begin{gathered} 60 \\ 100 \end{gathered}$	$\begin{aligned} & 72 \\ & 72 \end{aligned}$	$\begin{aligned} & 65 \\ & 65 \end{aligned}$	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 35 \\ & 35 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$
0.020 AMP. (WINDINGS SERIES)	60	72	65	40	35	35	30

[^2]

BK2.6.7
SUB-SECTION 5, ISSUE 1
FOLLOWER LEVER
TO CHECK
FOLLOWER LEVER ON HIGH PART OF CAM.
(1) REQUIREMENT-

5 LEVEL UNITS
MIN. 0.010 INCH
MAX. 0.030 INCH
8 LEVEL UNITS
MIN. 0.005 INCH
MAX. 0.020 INCH
CLEARANCE BETWEEN MAIN TRIP LEVER AND DOWNSTOP BRACKET.

(2) REQUIREMENT

SOME CLEARANCE BETWEEN MAIN TRIP LEVER AND DOWNSTOP BRACKET.
TO ADJUST
BY MEANS OF PRY POINT, POSITION ADJUSTING ARM ON FOLLOWER LEVER WITH LOCK NUT LOOSENED.

DOWNSTOP BRACKET

MAIN TRIP LEVER

(A) FUNCTIO: CLUTCH RELEASE SPRING

TO CHECK
TRIP FUNCTION CLUTCH. ROTATE MAIN SHAFT UNTIL RELEASE IS RESET ON MAIN TRIP LEVER.
REQUIREMENT
MIN. 5 OZS.
MAX. 8 OZS.

(B) RELEASE DOWNSTOP BRACKET

REQUIREMENT
WITH FUNCTION CLUTCH TRIPPED:
MIN. 0.002 INCH
MAX. 0.045 INCH
CLEARANCE BETWEEN TRIP LEVER AND CLUTCH SHOE LEVER AT POINT WHERE CLEARANCE IS LEAST.

TO ADJUST

POSITION DOWNSTOP BRACKET WITH MOUNTING SCREWS FRICTION TIGHT.

BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965

(B)

MAIN TPIP LEVER SPRING
TOCMECK
ROTATE SELECTOR CAM ASSEMBLY UNTIL
FOLLOWER LEVER IS ON HIGH PART OF IRIP CAM.
REGUIREMENT
MIN. $1,2 \mathrm{CZ}$.
MAX. 1-1/2 OZS.

(C)

ACTUATOR LATCH SPRING
TO CHECK
SELECT "BLANK" COMBINATION, AND
ROTATE SELECTOR CAM UNTIL ACTUATOR
LATCHES AND LATCH LEVERS ARE IN
SPACING POSITION. HOLD LATCH LEVER AWAY FROM ACTUATOR LATCH.
REQUIREMENT
MIN. $1 / 2 \mathrm{OZ}$.
MAX. 1-1/2 OZS.
TO START ACTUATOR LATCH MOVING.

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

(B)

ATCH LEVER SPRING
TO CHECK
SELECT "BLANK" COMBINATION AND ROTATE SELECTOR CAM UNTIL LATCH LEVERS ARE IN SPACING POSITION.
REQUIREMENT
MIN. 1 OZ.
MAX. 2-1/2 OZS
to start latch levers moving. hold ACTUATOR LATCHES AWAY WHEN MAKING MEASUREMENTS.
(C)

STRIPPER BAIL SPRING
TO CHECK
LATCH LEVERS IN SPACING POSITION AS OUTLINED IN ADJUSTMENT (B) ABOVE.
REQUIREMENT
MIN. $1 / 2 \mathrm{OZ}$.
MAX. 1-1/2 OZS.
IO START BAIL MOVING.

E FOLLOWNG FIVE (5) ADJUSTMENTS ARE TO BE MADE WITI THE CODE READING CONTACT ASSEMBLY di:OVEDFOOM THE URIT. OBSERV THAT THE CONTACTS ARE ARRANGED IN TWO GROUPS OF FIVE (5) CONTACTS EACH, WORK ON ONLY ONE GROUF AT A TIME USE A CONTACT SPRING BENCER IO BEND THE CONTACTS. FOR EACH ADJUSTMENT, START WITH THE CONTACT PILE-UF FARTHEST FROM THE HANDIE OF THE BENDING TOOL TO AVOID DISTURBING COMPLETED AD JUSTMENTS.

BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965
(3) SWINGER SPRING TENSION

REQUIREMENT
MIN. 30 GRAMS
MAX. 40 GRAMS
TO OPEN NORMALLY CLOSED CONTACTS.
TO ADJUST
BEND SWINGER LEAF.

(5)

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

TIMING CONTACT ASSEMBLY ADJUSTMENTS

MAKE THE FOLLOWING TIMING CONTACT ADJUSTMENTS WITH THE CONTACT ASSEMBLIES REMOVED FROM THE UNIT. the adjustments apply to both the probe ($)$ AND COMMON (X) CONTACT ASSEMBLIES.
(A) NORMALLY CLOSED CONTACT GAP REQUIREMENT

MIN. 0.020 INCH
MAX. 0.025 INCH
GAP BETWEEN CONTACTS WHEN SWINGER IS HELD AGAINST BACKSTOP.
TO ADJUST
BEND THICK (RIGHT) SPRING LEAF.
(B) NORMALLY CLOSED CONTACT PRESSURE REQUIREMENT

MIN. $41 / 2$ OZS.
MAX. 5 1/2 OZS.
TO OPEN NORMALLV CLOSED CONTACTS
TO CHECK
HOLD OPERATING BAIL AWAY FROM SWINGER.
TO ADJUST
BEND SWINGER. RECHECK ADJUSTMENT (A). AND REFINE IF NECESSARY.
(C) NORMALLY OPEN CONTACT GAP REQUIREMENT

MIN. 0.020 INCH MAX. O.025 INCH GAP BETWEEN CONTACTS WHEN SWINGER IS HELD AGAINST BACKSTOP.
TO ADJUST BEND STIFFENER
(D) NORMALLY OPEN CONTACT PRESSURE TO CHECK
SWINGER HELD AGAINST BACKSTOP BY ITS OPERATING BAIL.
REQUIREMENT
MIN. $41 / 2$ OZS.
MAX. $51 / 2$ OZS.
TO OPEN LEFT SIDE OF CONTACT.
TO ADJUST
BEND LEFT CONTACT SPRING. RECHECK ADJUSTMENTS (A) AND (C), AND REFINE IF NECESSARY.

BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965

NOTE
REPLACE TIMING CONTACT ASSEMBLY ON UNIT.

PECHECK PROBE (Y) AND COMMON (X) CONTACT
OPERATING'BAIL POSITION ADJUSTMENT
(SEE FIGURE 3-21). IF BAIL CLEARANCE
IS NOT MET, REFINE SWITCH MOUNTING BRACKET POSITION.

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

	CODE READING AND TIMING CONTACT STROBING PROCEDURE
4.1	Introduction
4.1.1	The following adjustment procedure outlines pulse length requirements for the code reading and timing contacts of the (LRS) Receiving Selector Set. In all cases, both the test set and the unit under test must be operating at the same speed for proper strobing. All pulse length requirements are made with respect to a 7.42 unit code test set scale. To strobe the code reading and timing contacts, a Signal Distortion Test Set (DXD) is used. For operation of this set, refer to Teletype Bulletin l81B.
4.2	General Testing Information
4.2 .1	Preliminary Prepartion: Perform the following tests after completing the adjustment of the code reading and timing contacts as outlined in paragraph 3.l. For all strobing tests, the DXD and LRS should be operating at 600 OPM.
. 2	DXD Zero: In order to perform the following tests, observation of a neon trace on the scale of the DXD will have to be made. Since the trace has a tendency to jump (i.e., the trace will not remain steady, but may vary as much as 10 scale divisions). the following steps should be taken to zero the DXD:
	(a) While receiving alternate $\angle E T T E R S-B L A N K$ (all markingall spacing) code combinations, connect the neon trace lamp to the \#l normally open code reading contact. Observe, and note, the point at which the trace begins. This point will jump, as mentioned above, and only the minimum reading should be noted.
	(b) Repeat the above procedure for all the contacts, and choose the trace which starts latest. Set the STARI zero mark of the DXD scale to this point.
	(c) Record the earliest end of the trace for future adjustment reference.
4.3	Code Reading Contacts - Strobing Procedure
4.3 .1.2	Zero the DXD test set as outlined in paragraph 4.2.2.
	Connect the neon trace lamp to the 5 th (5 level units) or 8 th (eight level units) normally open contact of the contact assembly.

```
BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```


FIGURE 2. COMMON (α) CONTACT

FIGURE 3. PROBE (M) CONTACI

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

4.4 .2	(a) (b)	within 5 divisions of the earliest start and latest end of a trace. To Check: Receiving Selector Set operating and receiving $L E T T E R S$ (all marking) code combinations. To Adjust: Refine timing contact adjustments and spring tensions. Requirements (See Figure 3) Connect neon trace to both contacts of the Probe (Y) contact pile-up. There shall be at least a 10 division break in the trace indicating the break-before-make contact. There shall be at least 325 to 420 division between the earliest starts of the normally open and normally closed contacts. All bounce must end within 5 divisions of the earliest start and latest end of a trace. To Adjust: Refine timing contact adjustments and spring tensions. Recheck requirements (a) and (b) if any refinements are made.
5.	DIS	BLY
5.1	Gen	Disassembly Instructions
	(a)	During the disassembly of a mechanism, take careful note of the position and order of removed parts to facilitate reassembly. Retaining rings are made of spring steel and have a tendency to release suddenly. Loss of these rings can be minimized as follows: Hold the retaining ring to prevent it from rotating. Place a screwdriver blade into one of the ring's slots. Rotate the screwdriver in a direction to increase the diameter of the retaining ring.
	(b)	When unsoldering leads from switch and connector terminals, the thermoplastic tubing over the leads might be damaged from the heat. Replace any damaged tubing. During the resoldering operation, avoid using an excessive amount of solder. Be especially careful to prevent solder from falling onto and becoming wedged between moving parts and electrical contact springs.
	(c)	After all removed parts have been replaced, and any

necessary adjustments made, the Set should be checked for proper operation before applying power to it. With the use of an armature spring clip (see Bulletin ll85B) to hold the selector armature in the attracted position, manually rotate the main shaft until the clutches latch. Operate the selector armature to allow unlatching of the clutches, and manually select various code combinations while checking operation of the set.
5.2 Cover
5.2.1 The LRS cover is removed by simply lifting it up from the base. Lift it straight up, making certain it clears the selector mechanism before moving it in a lateral direction. To replace the cover, reverse the removal procedure.
5.3 Receiving Selector (LRS)
5.3.1 Removal from Base: Disconnect the 36 point female connector from the connector brackets at the rear of the base. Remove the three mounting screws, lock washers, and flat washers which secure the Receiving Selector to the base plate. Remove the LRS from the base while guiding the cable assembly forward and up through the base plate cutout.

To remount the Receiving Selector (LRS) on the base, route the cable assembly (with connector) down through the rectangular hole in the base plate nearest the left rear corner of the 4 point terminal block. Direct the cable assembly under the base plate to the rear of the set. Secure the 36 point connector to the connector brackets using the two screws and lock washers supplied. Secure the Receiving Selector to the base using the mounting screws, lock washersand flat washers found in the muslin bag attached to the selector. Refer to paragraph 3, for adjustments and clearance requirements between the intermediate driving gear and the Receiving Selector driven gear.

Selecting Mechanism Removal:
(a) Remove the screw, lock washer, and nut from the selector clutch drum. Hold the push lever reset bail in its raised position, and the stop arm and marking lock lever to the left (see NOTE). Grasp the cam-clutch by the cam disk (not by the drum) and pull forward while rotating the cam-clutch slowly. The cam-clutch should come off easily; it should not be forced.

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965
5.3.3 NOTE:

To hold the push lever reset bail in its raised position, place the blade of a screwdriver under the forward extension of the reset bail. Apply pressure on the bail to push it toward the rear, and simultaneously lift upward on the extension with the screwdriver. The reset bail arm will engage a step in the push lever guide bracket, and hold the push levers in a raised position. To hold the marking lock lever and stop arm to the left, push the lock lever to the left until the left hole in its extension is on the left side of the guide bracket. Insert a pin (or other device) into this hole and release the lever. The pin will stop the marking lock lever from returning to the right.
(b) Unhook the spring on the function latch lever. Remove the spring post by removing its nut and lock washer (located below the forward main shaft bearing on the function cam-clutch side of the frame) which passes through the frame and selector mounting plate into the selector lever guide. Remove the oil wick, screw, lock washer, and wick holder. Remove the selecting mechanism.
(c) To replace the selecting mechanism, reverse the above procedure.

. 4 Main Shaft Removal:

(a) Remove the selector cam-clutch (refer to paragraph 5.3.3 (a).
(b) Remove the spring from the function clutch latch lever. Remove the retaining ring, spring washer and flat washers from the forward end of the main shaft.
(c) Remove the screw and lock washer from the function clutch drum. Remove the screw and lock washer from the collar. Remove the screw and lock washer which secures the rear bearing clamp.

Pull the main shaft out towards the rear, removing the function cam-clutch and collar in the process.

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

Note the location of the main shaft needle roller bearings, as shown in Bulletin 1185B. Move the main shaft toward the rear of the unit a small amount at a time. Exercise care not to drop or contaminate the 20 needle bearing rollers in each race. A spring may be stretched around the shaft and rollers, and its ends hooked together. The spring, in conjunction with the lubricant on the bearings, will hold the bearings in place.
5.3.4 (e) To replace the main shaft assembly, reverse the disassembly procedure. Make sure the rollers are clean, and lubricate them as specified in paragraph 6.

NOTE: When the main shaft is inserted into the cam-clutch assemblies, hold the latter firmly so that the drum is not pushed off the clutch. Compress the drum and cam disk together so that the holes in the drum and the clutch bearings are aligned.
5.3.5 Main Plate Assembly Removal:
(a) Place the actuator latch levers in the spacing position. Remove the spring which holds the latch lever reset bail biased against the trip lever. Remove the spring post and screw, at the bottom of the bottom of the main plate, which secure the plate to the frame. Remove the oil wick, screw, lock washer, and wick holder. Remove the main plate assembly.
(b) To replace the main plate assembly, reverse the above procedure.

5.4 Motor Unit

5.4.1 Disconnect the wiring at the 4 point terminal.
. 2 Remove the four screws and lock washers which secure the motor to the base plate. Remove the motor unit.
. 3 To remount the motor unit, proceed as follows: Assemble the motor unit on the base using the four screws, lock washers, and flat washers supplied. Position the flat washers between the motor bracket and the base plate. Refer to

```
BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```

5.4.3 paragraph 3. for adjustments and clearance requirements between the motor pinion and intermediate driven gears. Route the power cable from the motor unit, under the base plate, and up through the hole immediately to the left of the 4 point terminal block (see Figure 4). Connect the leads to terminals 3 and 4 (see wiring diagram 4705WD shipped with the Base).

6. LUBRICATION

6.1 General Lubrication Information

6.1.1 The specific points to receive lubrication are indicated by line drawings and descriptive text. These line drawings are keyed to photographs which show the general area referred to by the line drawing. The symbols in the text indicate the following directions:

0 Apply one drop of oil.
02 Apply two drops of oil.
O3 Apply three drops of oil, etc.
G Apply thin coat of grease.
SAT Saturate with oil.
. 2 The equipment should be thoroughly lubricated, but overlubrication, which might allow oil to drip or grease to be thrown on other parts, should be avoided. Exercise special care to prevent any lubricant from getting between armature and pole faces. Keep all electrical contacts free from oil or grease.
. 3 The following general instructions supplement the specific lubrication points illustrated in this section.
(a) Apply one drop of oil to all spring hooks.
(b) Apply a light film of oil to all cam surfaces.
(c) Apply a coat of grease to all gears.
(d) Saturate all felt washers, oilers, etc.
(e) Apply oil to all pivot points.
(f) Apply oil to all sliding surfaces.

BK2.6.7
SUB-SECTION 5, ISSUE 1
MARCH, 1965

CONNECTOR BRACKET
POSITIONS FOR:

Figure 4. Cable Routing and Components Layout.

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965
6.1.4 After a few weeks of service, re-lubricate the Set to make certain that all specified points have received lubricant. Thereafter, adhere to the following schedule unless otherwise specified:

OPERATING SPEED	LUBRICATION INTERVAL
60 WPM	3000 hours or l year*
75 WPM	2400 hours or 9 months*
100 WPM	1500 hours or 6 months*

* Whichever occurs first.

6.2

Function and Selector Clutch

SUB-SECTION 5, ISSUE 1 MARCH, 1965

CLUTCH SHOE
6.3 Function Cam and Clutch Trip Mechanism

6.4

SELECTOR CAM OILER

6. 6 Timing Contact Bails

OPERATING BAIL SPRINGS

OPERATING BAILS

CAM FOLLOWER ARM

CAM FOLLOWER ROLLER

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

BK2.6.7
SUB-SECTION 5, ISSUE 1 MARCH, 1965

6.10

OILERS
MOTOR BEARINGS (EACH END OF SHAFT)

NOTE
OIL MOTOR EVERY 750 HOURS OF CONTINU®US OPERATION OR EVERY 3 MONTHS, WHICHEVER OCCURS FIRST.

SHAFT
MOTOR UNIT

NOTE
IF MOTOR IS DISASSEMBLED
REPACK BEARINGS WITH KS7471 GREASE.

GEARS
MOTOR PINION INTERMEDIATE, AND UNIT GEARS
28-RSS-44

PLANT MANUAL BK2.7.2 SUB-SECTION 5, ISSUE 1 MARCH, 1965

TELETYPE MODEL 32 AND 33 SEND-RECEIVE PAGE PRINTER SETS (KSR, RO, ASR)

ADJUSTMENTS

CONTENTS PAGE
. REFERENCES 1
2. GENERAL 1
BASIC PRINTER ADJUSTMENTS
113
4. BASIC TAPE READER ADJUSTMENTS 11
5. BASIC PUNCH ADJUSTMENTS 129

1. REFERENCES
1.1 Teletype Corporation Technical Manual, Bulletin 273B.
Send-Receive Page Printer Sets (KSR) Receive-Only Page Printer Sets (RO)

Automatic Send and Receive Sets (ASR)
2. GENERAL
2.1 The sequence in which the adjustments appear is that whichshould be followed when complete readjustment of the Printeris undertaken.
Unless otherwise specified make screws or nuts friction-tightto make an adjustment, and tighten them securely once theadjustment has been made.
3 When a procedure calls for using pry points or slots to makean adjustment, place a screwdriver between the points or in theslots and pry parts in proper direction.
. 4 Read a procedure all the way through before making an adjustmentor checking a spring tension.
2.5 Stop Condition
2.5.1 All procedures should be started with the Printer in the stop
2.5.1 condition. It is in the stop condition when the selector armature is in its attracted (frontward) position (see page 28), all clutches are disengaged, and the keyboard universal lever is latched in its down position (see page 70).
. 2 To place the Printer in the stop condition, hold the selector armature in its frontward position (see page 28). Rotate the main shaft clockwise (as viewed from left) until all clutches are in stop position. Fully disengage the clutches as instructed in paragraph 2.5.4.

NOTE: The distributor clutch will not disengage unless the answer-back drum is in its home position as shown on page 84.
. 3 The keyboard is tripped when the universal lever is in its up position.
. 4 When disengaged, the clutches are latched in their stop position between a trip lever, which bears against a shoe lever, and a latch lever which seats in a clutch cam disk (see dage 26). The main shaft will then turn freely without the clutch shoes dragging. When the clutch is engaged, or tripped, the shoe lever and a stop lug on the cam disk are moved apart, and the clutch shoes are wedged against the drum so that the clutch turns in unison with the shaft (see oage 27). If the shaft is turned by hand, a clutch will not fully disengage unon reaching its stod position. Where a procedure calls for disengagement, rotate the clutch to its ston oosition, apply a screwdriver to the stop lug and turn the disk in the normal direction of shaft rotation until the latch lever seats in its notch in the disk. As a reminder, the word LATCHED follows instructions to disengage the clutches.
2.6 Manual Operation
2.6.1 To manually operate the Printer, place it in the stop condition as instructed in paragraph 2.5.2 above.Momentarily permit armature to move to its unattracted (rearward) position to trip the selector clutch. Slowly rotate the main shaft clockwise (as viewed from left) until all push levers have moved under their respective selector levers (see page 31). Using spring hook, strip the push levers from under the selector levers corresponding to the spacing elements of the code combination to be set up. Then continue to rotate the shaft until the proper condition is set up or the character is cleared through the Printer.
. 2 On Model 32 Printers, the selector levers are numbered 1 through 5 from left to right. To set up the letter Y, for

M32/33-2

BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965
2.6.2 example, whose teletypewriter code combination is l-3-5, strip
the push levers from the No. 2 and No. 4 selector levers. On
Model 33 printers, the selector levers are numbered $1,2,3$,
$4,5,7,6,8$ from left to right. To set up the letter Y,
for example, whose eight-level code combination is l- $45-78$,
strip the push levers from the No. 2,3 and 6 selector levers.
2.7 Alphabetical Index

Basic Printer - Adjustments
Page
Armature Bracket (Selector) 28
Armature Spring (Selector) 101
Bearing Alignment (Various Areas) 33
Bell Clapper (Function) 48
Belt Tension (Motor) 14
Blinding Contact Wire (Answer-Back) 90
Blocking Follower Lever (Answer-Back) 90
Blocking Levers (Selector) 38
Brush Holder (Distributor) 18
Cam-Clutch (Selector) 19
Carriage Drive Bail (Function) 47
Carriage Return Lever (Spacing) 46
Carriage Return Unlatch Lever (Spacing) 80
Casting (Function) 45
Clutch Trip Bail (Answer-Back) 85
Clutch Trip Lever (Selector) 26
Code Bar and Function Clutch Trip Levers (Main Shaft) 25
Code Bar Cam-Clutch (Main Shaft) 21
Code Bar Clutch Follower Arm (Main Shaft) 23
Code Bar Clutch Trip Lever (Main Shaft) 22
Code Bar Guide (Function) 37
Code Bar Reset Lever (Function) 36
Code Bar Reset Lever Position (Function) 35
Contact Wires (Keyboard) 83
Dashpot Orifice (Spacing) 80
Distributor Trip Linkage (Keyboard) 82
Drive Bail (Carriage) 53
Driven Gear (Main Shaft) 21
Drive Roller (Spacing) 69
Drum (Answer-Back) 84
Feed Lever (Answer-Back) 87
Feed Pawl (Answer-Back) 86
Feed Pawl (Spacing) 65
Final Printing Alignment 102
Front Rollers (Carriage) 48
(Basic Printer - Adjustments Continued) Page
Function Cam-Clutch End Play (Main Shaft) 20
Function Cam-Clutch (Main Shaft) Preliminary 20
Function Clutch Follower Lever (Main Shaft) 24
Gear Bracket (Motor) 13
Here Is Adjusting Bracket (Answer-Back) 88
Latch Levers (Main Shaft) 22
Left Bearing (Distributor) 15
Left Bearing (Main Shaft)
19
19
Left Margin Printing (Spacing) 81
Left Margin (Spacing) 78
Left Slide Guide Plate (Carriage) 58
Line Feed Drive Arm (Paper Feed) 72
Line Feed Drive Link (Paper Feed) 73
Line Feed Pawl Downstop (Paper Feed) 73
Line Feed Stripper Plate (Paper Feed) 74
Line Feed Upstop Bracket (Paper Feed) 72
Line Length (Function and Spacing) 79
Magnet Core (Selector) 28
Main Shaft Torque (Various Areas)
33
33
No. l Code Bar Guide (Function) 39
Paper Guide (Paper Feed) 77
Platen Detent (Paper Feed) 71
Platen Horizontal (Paper Feed) 70
Platen - Vertical (Paper Feed)
Platen - Vertical (Paper Feed) 70 70
Power Bail Roller (Carriage) 49
Pressure Roller (Paper Feed) 74
Print Drive Lever (Carriage)
54
54
Print Latch Arm (Carriage) 56
Print Reset Arm (Carriage) 55
Print Suppression Cam Follower (Function) 44
Print Suppression Latch (Function) 37
Print Suppression Latch Lever (Carriage) 59
Print Trip Lever (Carriage) 59
Rear Rail - Left End (Carriage) 50
Rear Rail - Right End (Carriage) 52
Rear Roller (Carriage) 48
Ribbon Guide (Carriage) 58
Ribbon Power Lever (Carriage) 63
Right Function Drive Arm (Function) 42
Right Slide Guide Plate (Carriage) 57
Rocker Drive Arm (Function)
41
41
Rocker Shaft End Play (Function) 34
Rocker Shaft Position (Function)
34
34
Rotary Racks (Carriage)
49
49
Rotary Reset Lever (Carriage) 5
Shaft (Distributor) 15

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
(Basic Printer - Adjustments Continued) Page
Single-Double Line Feed (Paper Feed) 71
Space Suppression Lever (Spacing) 66 66
Spacing Lever (Spacing) 67 67
Stop Plate (Carriage) - Preliminary 57
Stripper Bail (Function) 43
Third Pulse Lever (Carriage) 52
Trip Bail (Answer-Back) 89
Trip Lever (Distributor) 17
Trip Lever Engagement (Distributor) 83 83
Trip Shaft (Distributor) 16
Typewheel (Carriage) 63
Universal Link (Keyboard) 81
Spring Tensions
Armature Spring Tension, Bracket Position and Receiving Margin (Selector) 101
Automatic Code Bar Spring (Function) 40
Blocking Follower Lever (Answer-Back) 100
Blocking Lever Springs (Selector) 38 38
Break Keylever Spring (Keyboard) 93 93
Brush Holder Spring (Distributor) 97
Carriage Return Latch Spring (Spacing) 80
Carriage Return lever Spring (Spacing) 67
Carriage Return Spring (Spacing) 47
Clutch Latch Lever Spring (Distributor) 97
Clutch Shoe Lever Spring (Selector) 27
Clutch Shoe Spring (Selector) 27
Clutch Torque (Selector) 32
Code Bar Reset Bail Spring (Function) 32
Code Bar Springs (Function) Other than No. 3 and Automatic 40
Code Bar Spring (Shift) (Keyboard) 94
Contact Block Spring (Keyboard) 92
Contact Wire Spring (Answer-Back) 100
Contact Wire Spring (Keyboard) 92
Control Keylever Spring 93
Control Lever Spring (Answer-Back) 100
Detent Spring (Answer-Back) 100
End of Line Latch Spring 79
Feed Lever Spring (Änswer-Back) 99
Feed Pawl Spring (Answer-Back) 99
Follower Lever (Distributor) 98
Function Lever Springs (Function) 56
Function Pawl Spring (Function) 41
Here Is Keylever Spring (Keyboard) 93
Keylever Spring (Keyboard) 91
(Spring Tensions Continued) Page
Latch Lever Springs (Function and Code Bar Clutch) 25
Latch Lever Spring (Keyboard) 92
Latch Lever Spring (Selector) 29
Letters-Figures Detent Spring (Keyboard) 94
Line Feed Blocking Lever Spring (Paper Feed) 75
Line Feed Drive Link Spring - Horizontal
(Paper Feed) 75
Line Feed Drive Link Spring - Vertical (Paper
Feed) 75
Line Feed Pawl Spring (Paper Feed) 71
No. 3 Code Bar Spring (Function) 40
Non-Repeat Lever Spring (Keyboard) 92
Paper Guide Plate Springs (Paper Feed) 76
Paper Guide Springs (Paper Feed) 76
Paper-Straightener Bail Spring (Paper Feed) 76
Platen Detent Pawl Spring (Paper Feed) 73
Print Hammer Bail Spring (Carriage) 62
Print Suppression Cam Follower Spring
(Function) 44
Print Trip Lever Spring (Carriage) 62
Push Lever Springs (Selector) 31
Reset Bail Spring (Keyboard) 95
Repeat Keylever Spring (Keyboard) 93
Ribbon Drive Lever Spring (Carriage) 64
Ribbon Feed Pawl Spring (Carriage) 64
Ribbon Guide Spring (Carriage) 62
Ribbon Ratchet Spring (Carriage) 64
Ribbon Reverse Arm Spring (Carriage) 64
Rotary Drive Lever Spring (Carriage) 61
Selector Lever Springs (Selector) 30
Shift Code Bar Spring 40
Slide Guide Plate Springs (Carriage) 57
Slide Springs (Carriage) 60
Space Bar Spring (Keyboard) 91
Space Bellcrank Spring (Spacing) 55
Space Suppression Lever Spring (Spacing) 69
Spacing Belt Tension (Spacing) 77
Spacing Check Pawl Spring (Spacing) 69
Spacing Feed Pawl Spring (Spacing) 69
Spacing Lock Lever Spring (Selector) 30
Start Lever Spring (Selector) 29
Stripper Bail Spring (Selector) 31
Trip Bail Spring (Distributor) 98
Trip Lever Springs (Main Shaft) 24
Trip Lever Spring (Selector) 26

```
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```

(Spring Tensions Continued) Page
Typewheel Return Spring (Carriage) 61
Universal Lever Spring (Keyboard) 96
Universal Link Spring (Keyboard) 95
Vertical Drive Bail Spring (Carriage) 61
Adjustments
Armature Gap (Answer-Back) 104
Dial to Cover 110
Function Box Contacts (Function) 108
Low Paper Contacts (When Used) 111
Operating Arm 111
Trip Lever (Answer-Back) 105
Trip Lever (Keyboard) (Applicable to Receive Only Units) 109
Trip Lever Overtravel (Answer-Back) 103
Trip Magnet (Answer-Back) 103
Spring Tensions
Armature Spring (Answer-Back) 106
Control Lever Spring (Answer-Back) 106
Trip Lever Spring (Answer-Back) 107

Adjustments

Armature Extension (Clutch Trip) 113
Blocking Pawl (Tape Reader) 119
Contact Gap (Clutch Trip) 114
Detent Lever (Tape Reader 115
Feed Pawl (Adjustment with Gage No. 183103) (Tape Reader) 116
Feed Pawl (Adjustment without Gage No. 183173) (Final) (Tape Reader) 11.8
Feed Pawl (Adjustment without Gage NO. 183103) (Preliminary) (Tape Reader) 118
Reader Mounting Bracket (Tape Reader) 127
Reader Trip Lever Overtravel (Clutch Trip) 112
Sensing Pin (Tape Reader) 120
Start-Stop Contact Wire (Tape Reader) 121
Stop Arm (Clutch Trip) 113
Tape Lid Latch (Tape Reader) 122
Trip Magnet (Clutch Trip) 112
Spring Tensions Page
Armature Spring (Tape Reader) 125
Blocking Pawl Spring (Tape Reader) 116
Detent Lever Spring ('Tape Reader) 115
Feed Magnet Contact Spring (Clutch Trip) 123
Lid Latch Spring Tension (Tape Reader) 126
Reader Trip Lever Spring (Clutch Trip) 123
Sensing contact Wire Spring (Tape Reader 124
Sensing Pin Spring (Tape Reader) 120
Start-Stop Contact Wire Spring (Tape Reader). 121
Start-Stop Detent Spring (Tape Reader) 124
Tape Lid Spring (Tape Reader) 122
Tape Out Pin Spring (Tape Reader) 125
Tight Tape Lever Spring (Tape Reader) 124
Trip Magnet Armature Spring (Clutch Trip) 112
Upstop Spring (Tape Reader) 116
Adjustments
Arm (Tape Nudger) Post 128
Chad Chute Extension 136
Feedwheel Ratchet and Pawl (Final) 1.34
Feedwheel Ratchet and Pawl (Preliminary) 129
Post, Bracket and Plate (Final) 133
Post, Bracket and Plate (Preliminary) 128
Punch Penetration 132
Stripper Bail Upstop 130
Tape Punch Drive (Preliminary) 131
Ten Characters per Inch 135
Spring Tensions
Back Space Lever Spring 141
Code Bar Lever Springs 137
Detent Lever Spring 139
Drive Link Spring 142
Feed Pawl Spring 139
ON-OFF Control Lever Detent Spring 140
Pawl and Lever Spring 138
Punch Block Assembly (5 Level and 8 Level) 142
Punch Block Spring 136
ReI, B.S.P., ON or OFF Buttons 140
Sensing Lever Springs 137
Stripper Bail Spring 138
Tape Chute Assembly Compression Spring 140
Tape Chute Roller Spring 141

BK2. 7.2
SUB- SECTION 5, ISSUE 1
MARCH, 1965

Figure 1. Printer Assembly - Rear View.

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

Figure 2. Printer Set.

BK2 . 7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

Figure 3. Printer Assembly - Carriage and Platen Removed.

Figure 4. Printer Assembly.

```
BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965
```

GEAR BRACKET (MOTOR)- PRELIMINARY
REQUIREMENT
WITH HEAD OF MOTOR PINION MOUNTING SCREW POINTING UPWARD AND INTERMEDIATE GEAR HELD STATIONARY
MIN. SOME---MAX. 0.032 INCH
PLAY AT RIM OF FAN.
TO ADJUST
POSITION MOTOR GEAR BRACKET WITH MOUNTING SCREWS LOOSENED.
RELATED ADJUSTMENT
AFFECTS
BELT TENSION

(RIGHT SIDE VIEW)

(RIGHT SIDE VIEW)


```
BK2.7.2
SUB-SECTION 5, ISSUE I
MARCH, 1965
```

SUB-SECTION 5, ISSUE 1
MARCH, 1965
(B) LEFT BEARING (DISTRIBUTOR)

REQUIREMENT
AS GAGED BY EYE
MIN. SOME--MAX. 0.012 INCH BETWEEN LEFT BEARING
AND CLUTCH GEAR ASSEMBLY.

TO ADJUST

DISENGAGE (LAICH) CLUTCH. HOLD CLUTCH GEAR FIRMLY TO RIGHT
POSITION LEFT BEARING WITH LEFT
bearing clamp screws loosened.
RELATED ADJUSTMENTS
AFFECTED BY
SHAFT
(A) SHAFT (DISTRIBUTOR)

REQUIREMENT
AS GAGED BY EYE
MIN. 0.010 INCH --- MAX. 0.060 INCH
BETWEEN BRUSH HOLDER AND
DISTRIBUTOR DISK AT CLOSEST POINT.
TO ADJUST
POSITION SHAFT WITH THREE BEARING CLAMP SCREWS LOOSENED. TIGHTEN
RIGHT, BUT NOT LEFT, CLAMP SCREW
AND PROCEED TO LEFT BEARING ADJUSTNENT.
RELATED ADJUSTMENTS
AFFECTS
LEFT BEARING
TRIP SHAFT

RICHTBEARIN
CLAMP SCPI:
LEFT BEARITAC
CLAMPSCREMS

TRIP SHAFT (DISTRIBUTOR)
REQUIREMENT
(1) WITH DISTRIBUTOR CLUTCH IN STOP POSITION, TAKE UP AND HOLD THE PLAY OF DISTRIBUTOR Shaft toward left side of unit. TAKE UP PLAY OF CLUICH LATCH LEVER TOWARDS RIGHT SIDE OF UNIT AND RELEASE. CLUTCH Latch lever shall engage at least the FULL THICKNESS OF DISTRIBUTOR CLUTCH DISK TAKE UP PLAY OF CLUTCH SHOE LEVER TOWARDS LEFT SIDE OF UNIT AND RELEASE. TAKE UP PLAY OF CLUTCH STOP LEVER TOWARDS RIGHT SIDE OF UNIT AND RELEASE, CLUTCH STOP LEVER SHALL engage at least $2 / 3$ OF WIDTH OF FORMED END OF CLUTCH SHOE LEVER.
(2) TAKE UP PLAY OF DISTRIBUTOR SHAFT TOWARDS RIGHT SIDE OF UNIT AND RELEASE. TAKE UP PLAY OF Clutch shoe lever towards right side of UNIT AND RELEASE. TAKE UP PLAY OF CLUTCH STOP LEVER TOWARDS LEFT SIDE OF UNIT AND RELEASE. THE CLUTCH STOP LEVER SHALL engage at least $2 / 3$ OF WIDTH OF FORMED END OF CLUTCH SHOE LEVER.
(3) THE REAR EXTENSION OF THE CONTROL LEVER SHALL NOT BIND IN ITS SLOT IN THE ANSWER-BACK BLOCK.
TO ADJUST
POSITION TRIP SHAFT WITH CLAMP SCREWS LOOSENED.

RELATED ADJUSTMENTS


```
BK2.7.2
SUB-SECTION 5, ISSUE l
MARCH, }196
```

TRIP LEVER (DISTRIBUTOR)

TO CHECK

disengage (LATCH) Clutch. make SURE KEYBOARD UNIVERSAL LEVER IS IN DOWN POSITION (SEE CONTACT WIRES (KEYBOARD) ADJUSTMENT). MEASURE AND RECORD CLEARANCE BETWEEN SHOE LEVER AND STOP LUG. TRIP CLUTCH BY MOVING TRIP LEVER REARWARD. MEASURE AND RECORD SAME CLEARANCE.

REQUIREMENT

(1) WITH CLUTCH DISENGAGED (LATCHED) MIN. 0.015 INCH
BEIWEEN STOP LUG AND SHOE LEVER.
(2) CLEARANCE BETWEEN STOP LUG AND SHOE LEVER

MIN. 0.050 INCH---MAX. 0.080 INCH GREATER WHEN CLUTCH ENGAGED IHAN WHEN DISENGAGED.
TO ADJUST
USING PRY POINT, POSITION TRIP LEVER WITH CLAMP SCREW LOOSENED.

RELATED ADJUSTMENTS
AFFECTS
BRUSH HOLDER

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

(RIGHT SIDE VIEW)
M32/33-18

```
BK2.7.2
SUB-SECTION 5, ISSUE
MARCH, 1965
```

LEFT BEARING (MAIN SHAFT)
REQUIREMENT
the selector levers and start lever shall
FULLY ENGAGE THEIR CAMS WHEN SELECTOR CAM
IS IN CONTACT WITH THE BEARING AND THE
LEFT SIDE OF BEARING SHALL PROTRUDE BEYOND
SELECTOR MOUNTING PLATE
TO ADJUST
WITH BEARING CLAMP MOUNTING SCREWS
LOOSENED POSITION THE BEARING.
RELATED ADJUSTMENTS
AFFECTS
FUNCTION CAM-CLUTCH

THERE SHALL BE
MIN. 0.005 INCH --- MAX. 0.012 INCH END PLAY IN THE SELECTOR CAM ASSEMBLY.

TO ADJUST

WITH THE SELECTOR CLUTCH DRUM SCREW FRICTION TIGHT POSITION DRUM IN ITS OVERSIZED HOLE. (IF A COMPLETE READJUSTMENT OF THE MACHINE IS TO BE MADE, LOOSEN ALL SCREWS ON MAIN SHAFT EXCEPT FOR COLLAR TO RIGHT OF LEFT HAND MAIN SHAFT BEARING),

MAKE THIS ADJUSTMENT ONLY WHEN COMPLETE ADJUSTMENT OF THE PRINTER IS BEING UNDERTAKEN.

REQUIREMENT

AS GAGED BY EYE CLEARANCE BETWEEN CARRIAGE DRIVE ECCENTRIC AND THE END OF FUNCTION STRIPPER BAIL
CAM FOLLOWER ROLLER SHAFT
MIN. 0.020 INCHES --- MAX. 0.040 INCHES
WHEN ALL PLAY IS TAKEN UP TO MAKE THIS CLEARANCE A MINIMUIA
TO ADJUST
WITH FIUNCTION CASTING MOUNTING SCREWS FRICTION TIGHT (SEE FUNCTION CASTING ADJUSTMENT) POSITION LEFT SIDE OF LOWER PORTION OF FUNCTION CASTING WITH LEFT SIDE OF PROJECTION FROM CODE BAR BASKET REAR TIE BAR BY MOVING THE FUNCTION CASTING. LOOSEN SCREW IN THE COLLAR IMMEDIATELY TO LEFT OF FUNCTION CLUTCH AND FUNCTION CLUTCH DRUM MOUNTING SCREW AND POSITION CAM CLUTCH TO MEET THE REQUIREMENT.

CODE BAR CLUICH IRIP LEVER (MAIN SHAFI)
REQUIREMENT
(1) AS GAGED BY EYE, CODE BAR CLUTCH TRIP LEVER APPROXIMATELY ALIGNED WITH SHOE LEVER
WITHIN 0.020 INCH
(2) MIN. 0.005 INCH \qquad BETWEEN FUNCTION CLUTCH TRIP ROLLER'S SHAFT AND CODE BAR RESET CAM WHEN ALL PLAY IS TAKEN UP TO MAKE CLEARANCE MINIMUM.

IO ADJUST
POSITION TRIP LEVER WITH CLAMP SCREV' LOOSENED. II MAY ALSO BE NECESSARY TO LOOSEN SET SCREW IN COLLAR.

RELATED ADJUSTMENTS
AFFECIS
LATCH LEVERS
CODE BAR CLUTCH FOLLOWER ARM
AFFECTED BY
LEFT BEARING
CODE BAR CAM-CLUTCH

LATCH LEVERS (MAIN SHAFT)
REQUIREMENT
AS GAGED BY EYE

- MIN. SOME---MAX. 0.012 INCH

END PLAY IN LATCH LEVERS.

O ADJUST

POSITION COLLAR WITH SET SCREW LOOSENED.

RELATED ADJUSTMENTS

AFFECTED BY
CODE BAR CLUTCH TRIP LEVER

NOTE

MAKE THIS ADJUSTMENT FOR BOTH FUNCTION AND CODE BAR CLUTCHES.

BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

CODE BAR AND FUNCTION CLUTCH TRIP LEVERS (MAIN SHAFT)

TO CHECK
DISENGAGE (LATCH) CLUTCH. MEASURE and record clearance between shoe LEVER AND SIOP LUG ON CLUTCH DISK.
TRIP CLUTCH BY MOVING TRIP LEVER
REARWARD. MEASURE AND RECORD SAME CLEARANCE.

REQUIREMENT
(1) WITH CLUTCH DISENGAGED (LATCHED) MIN. D.OIS INCH. BETWEEN SHOE LEVER AND STOP LUG.
(2) WITH CLUTCH DISENGAGED AND LATCHED, TRIP CLUTCH BY LIFTING STOP LEVER PERMITTING

FUNCTION AND CODE BAR CLUTCH

 LATCH LEVER SPRING TENSION
REQUIREMENT

WITH LATCH LEVER RESTING ON HIGH PORTION OF CLUTCH DISC
MIN. 2 OZS. --- MAX. 3 OZSto start lever moving.

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

START LEVER AND LATCH LEVER SPRINGS ALSO INFLUENCE THIS SPRING TENSION. CHECK THEM INDIVIDUALLY IF ABOVE REQUIREMENT IS NOT MET. IF THEY MEET REQUIREMENTS, REPLACE TRIP LEVER SPRING.

NOTE

ON UNITS EQUIPPED WITH A LINE SCRIBED ON THE TRIP LEVER OR A NOTCH IN THE EDGE OF THE TRIP LEVER, THE LINE SHOULD LINE UP (AS GAGED BY EYE) WITH THE EDGE OF THE CLUTCH SHOE LEVER FURTHEST FROM THE CLUTCH DISK STOP LUG.

CLUTCH TRIP LEVER (SELECTOR)

TO CHECK
DISENGAGE (LATCH) SELECTOR CLUTCH.
CHECK ENGAGEMENT BETWEEN SHOE LEVER AND TRIP LEVER (SEE REQUIREMENT (I) BELOW). MEASURE AND RECORD CLEARANCE BETWEEN SHOE LEVER AND STOP LUG ON CLUTCH DISK. TRIP CLUTCH BY MOVING SELECTOR ARMATURE REARWARD. MAKE SURE CLUTCH DISK IS AGAINST LATCH LEVER. MEASURE AND RECORD SAME CLEARANCE.
REQUIREMENT
THE SELECTOR CLUTCH TRIP LEVER SHOULD
(1) ENGAGE CLUTCH SHOE LEVER BY APPROXIMATELY THE FULL THICKNESS OF CLUTCH SHOE LEVER.
(2) WITH CLUTCH DISENGAGED (LATCHED) MIN. 0.015 INCH
BETWEEN SHOE LEVER AND STOP LUG.
(3) WITH CLUTCH IN STOP POSITION (DISENGAGED) AND LATCHED, TRIP CLUTCH BY LIFTING. TRIP LEVER PERMITTING TRIP LEVER TO COME TO REST ON CLUTCH SHOE RELEASE LEVER.
MIN. 0.055 INCH --- MAX. 0.085 INCH
BETWEEN THE EDGE OF THE TRIP LEVER AND THE EDGE OF THE ClUTCH SHOE RELEASE LEVER CLOSEST TO THE DISK STOP LUG.
TO ADJUST:
USING REAR PRY POINTS, POSITION TRIP LEVER, CHANGING THE CLOSED GAP. USING THE FRONT PRY POINTS, VARY THE CLUTCH "BITE."

RELATED ADJUSTMENTS
AFFECTS
MAGNET CORE
ARMATURE BRACKET
M32/33-26

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

IN ORDER TO CHECK THIS SPRING TENSION, IT IS NECESSARY IO REMOVE THE CLUTCH FROM THE MAIN SHAFT. THEREFORE IT SHOULD NOT BE CHECKED UNLESS

THERE IS REASON TO BELIEVE IT WILL NOT MEET ITS REQUIREMENTS.

IO CHECK

REMOVE DRUM.

REQUIREMENT

MIN. 3 OZS. ---MAX. 5 OZS.
TO START PRIMARY SHOE MOVING.
(LEFT SIDE VIEW)

CLUTCH SHOE SPRING

BK2.7.2

BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

(LEFT SIDE VIEW)

LATCH LEVER SPRING (SELECTOR)
REQUIREMENT
WITH LATCH LEVER RESTING ON HIGH PART OF CLUTCH DISK MIN. 2 OZS. ---MAX. 3 OZS. to start lever moving.

BK2.7.2
SUB-SECTION 5, ISSUE I MARCH, 1965

SELECTOR LEVER SPRINGS (SELECIOR)

IO CHECK

SET up blank (all spacing) code
COMBINATION IN SELECTOR. ROTATE MAIN
SHAFT UNTIL PRINTER IS IN STOP CONDITION.
REQUIREMENT
MIN. 1-I/2 OZS. ---MAX. 3-1/4 OZS
TO START SELECTOR LEVER MOVING.
NOTE

SPACING LOCK LEVER SPRING (SELECTOR)
TO CHECK
SET UP BLANK (ALL SPACING) CODE
COMBINATION IN SELECTOR. ROTATE MAIN SHAFT UNTIL PRINTER IS IN STOP POSITION.

REQUIREMENT

MIN. 1-1/2 OZS. ---MAX. 3 OZs.
TO START LEVER MOVING.

M32/33-30

BK2. 7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

STRIPPER BAIL SPRING (SELECTOR)

TO CHECK
SET RANGE FINDER AT 60. SET UP BLANK CODE COMBINATION (ALL SPACING) IN SELECTOR. ROTATE MAIN SHAFT UNTIL PRINTER IS IN STOP CONDITION.

REQUIREMENT

MIN. $1 / 4$ OZ. --MAX. 1 OZ. TO START BAIL MOVING.

(LEFT SIDE VIEW)
to measure this tension, SELECTOR MUST BE REMOVED FROM PRINTER. THEREFORE, DO NOT CHECK IT UNLESS THERE IS CAUSE TO SUSPECT IT WILL NOT MEET REQUIREMENT.

CAUIION

BEFOPE REMOVING SELECTOR, MAKE SURE ARMATURE IS LOCKED IN SPACING POSITION.

PEQUIREMENT
IIITH BLOC.KING LEVER HELD AWAY
FPOM PUSH LEVER
MIN. 1-1 2 OZS. ...PMAX. 3 OZS.

TO START LEVEP NOVIHGG.
NOTE
CHECK. EACH PUSH LEVER SPRING.
(LEFT SIDE VIEW)

BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

MAIN SHAFT TORQUE (VARIOUS AREAS)

NOTE
THIS ADJUSTMENT REQUIRES USE OF
torque wrench. It need not be
CHECKED UNLESS COMPLETE READJUST-
MENT IS BEING UNDERTAKEN OR ADJUST-
MENTS AFFECTING DRIVE SYSTEM HAVE beEn Changed.

REQUIREMENT

(1) WITH MOIOR BELT OFF AND ALL CLUTCHES

DISENGAGED (LATCHED)
MAX. 35 IN. -OZS.
TO START MAIN SHAFT ROTATING.
(2) WITH MOTOR BELT IN PLACE AND ALL CLUTCHES DISENGAGED (LATCHED)

MAX. 45 IN. -OZS.
TO START MAIN SHAFT ROTAIING (CHECK IN AT
LEAST EIGHT DIFFERENT POSITIONS ON SHAFT).
TO ADJUST
IF REQUIREMENTS ARE NOT MET, CHECK FOLLOWING
ADJUSTMENTS:
(1) GEAR BRACKET (MOIOR)
(2) BELT TENSION (MOTOR)
(3) CAM-CLUTCH (SELECTOR)
(4) LEFT BEARING (MAIN SHAFT)
(5) BEARING ALIGNMENT (VARIOUS AREAS)
(6) FUNCTION CAM-CLUTCH END PLAY (MAIN SHAFT)
(7 CODE BAR CAM-CLUTCH (MAIN SHAFT)
(8) DRIVEN GEAR (MAIN SHAFT)
(9) CLUTCH TRIP LEVER (SELECTOR)

IF ANY OF ABOVE ADJUSTMENTS ARE CHANGED,
RECHECK BEARING ALIGNMENT (VARIOUS AREAS).
BEARING ALIGNMENT (VARIOUS AREAS)
NOTE
THIS ADJUSTMENT APPLIES TO MAIN SHAFT beArings (PAGE 19 AND 21) DISTRIBUTOR SHAFT BEARINGS (PAGE 15), FUNCTION ROCKER SHAFT BEARINGS (PAGE 34), AND CODE BAR RESET BAIL BEARINGS (PAGE 35). IT SHOULD ONLY BE MADE IF BEARING CLAMPS HAVE LOOSENED, OR IF A BIND IS DETECTED IN ASSOCIATED SHAFT.

REQUIREMENT

BEARINGS ALIGNED WITH THEIR RESPECTIVE SHAFTS.

TO ADJUST
WITH BEARING CLAMP SCREWS TIGHT, TAP SHAFT WITH SCREWDRIVER HANDIE, PIECE OF WOOD, OR SOFT MALLET IN AREA ADJACENT TO BEARING. WHEN ALIGNING MAIN SHAFT BEARINGS, LOOSEN SELECTOR MOUNTING SCREWS.

AS GAGED BY EYE
MIN. SOME-N-NAX. 0.010 INCH
END PLAY IN FUNCTION ROCKER SHAFT.
IO ADJUST
POSITION TWO COLLARS WITH SET SCREWS LOOSENED.

RELATED ADJUSTMENT
AFFECTS

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

IC: ADJUST
POSIIION TWO COLLARS WITH SET SCREWS LoOSETVED
PELAIED ADJUSTMENIS AFIECL:

CODE BAR REEET LEVE:
AFFECTID Br

ROCIERSHATITHOA

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

NOTE
FOLLOWING.ADJUSTMENTS CAN BE MADE MOST EASILY BY REMOVING PLATEN AND DASHPOT CYLINDER.
(LEFT REAR VIEW)

AFFECTS
PRINT SUPPRESSION LATCH PRINT SUPPRESSION CAM FOLLOWER
AFFECTED BY
CODE BAR RESET LEVER POSITION
CODE BAR RESET LEVER (FUNCTION) REQUIREMENT

WITH PRINTER IN STOP CONDITION (ALL CLUTCHES
LATCHED)
MIN. 0.012 INCHES - - MAX. 0.030 INCHES
CLEARANCE BETWEEN CODE BAR CLOSEST TO FRONT
OF UNIT AND ITS SELECTING BLOCKING LEVER
WHEN ALL PARTS ARE POSITIONED TO MAKE THIS CLEARANCE A MINIMUM.
TO ADJUST
USING PRY POINT, ADJUST CODE BAR RESET
LEVER WITH CLAMP NUT LOOSENED.
(1) TO CHECK

PUSH ALL CODE BARS DOWN. IF NO MOVEMENT IS NOTED BETWEEN CODE BARS AND
THEIR GUIDE POSTS, REFINE ADJUSTMENT ABOVE.
(2) TO CHECK

IF INTERFERENCE IS NOTED BETWEEN THE
CARRIAGE DRIVE LINK AND CODE BARS
DURING THE NORMAL OPERATING CYCLE
AND/OR IF IT ADDS TO THE PRINTERS IN-
HERENT NOISE, REFINE REQUIREMENT
ABOVE.

CODE BAR GUIDE (FUNCTION)

[^3]TO ADJUST
USING PRY POINT, POSITION CODE BAR GUIDE WITH CLAMP SC.REW LOOSENED.

Witi the "rub-out" code combination set
UP IN SELECTOR, SELECTOR LEVERS ON PEAK
Of Their respective cams, and code bar ends appaoximately flush with the left (OUTER) edge of the BLOCKING LEVERS,
MIN. 0.006 INCH --- MAX. 0.060 INCH BETWEEN THE bLOCKING LEVERS AND THE CODE bARS.
TO CHECK
(ON 8 level units only set the range scale INDICATOR BETWEEN 70 AND 80) ENERGIZE THE SELECTOR MAGNET AND SET UP "RUB-OUT" CODE COMBINATION IN SELECTOR, WITH SELECTOR CLUTCH LATCHED IN ITS "STOP" POSITION, MANUALLY TRIP CODE BAR CLUTCH AND ROTATE MAINSHAFT, ALLOWING CODE BARS TO RISE UNTIL THEIR ENDS ARE APPROXIMATELY FLUSH WITH LEFT (OUTER) EDGE OF BLOCKING LEVERS.
TO ADJUST
LOOSEN PIVOT CLAMP NUT AND ADJUST USING HEX WRENCH, KEEPING THE HIGH PART OF ECCENTRIC TO REAR OF PRINTER,

(LEFT FRONT VIEW)

BLOCKING LEVER SPRINGS (SELECTOR)

TO CHECK
SET UP BLANK (ALL SPACING) CODE COMBINATION IN SELECTOR. ROTATE MAIN SHAFT UNTIL PRINTER IS IN STOP CONDITION.

REQUIREMENT
MIN. 1/2 OZ. ---MAX. 1-1/4 OZS.
TO START LEVER MOVING.

NOTE
CHECK FOR EACH BLOCKING LEVER SPRING.

BK2.7.2

SUB-SECTION 5, ISSUE 1
MARCH, 1965

NO. I CODE BAR GUIDE (FUNCTION) - MODEL 33 ONLY
REQUIREMENT
WITH PRINTER IN STOP CONDITION

WIth Carriage at left margin
MIN. 1/2 OZ. ---MAX. 1-3/4 OZS.
TO START AUTOMATIC CODE BAR
MOVING.

NO. 3 CODE BAR SPRING (FUNCTION)*

REQUIREMENT

WITH PRINTER IN STOP CONDITION
AND NO. 3 CODE BAR'S FOLLOWER *
on Carriage lifted
MIN. 12 OZS. ---MAX. 14 OZS.
TO START CODE BAR MOVING.


```
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```

FUNCTION PAWL SPRING (FUNCTION) REQUIREMENT

WITH PRINTER IN STOP POSITION, AND ALL EXTERNAL LOADS WHICH WOULD INFLUENCE THE REQUIREMENT REMOVED
-MIN. 1-1/4 OZS. --- MAX. 2-1/2 OZS. TO START PAWL MOVING

MIN. 9 OZS. --- MAX. 13 OZS. ON PAWLS FOR "BELL" AND WHERE FUNCTION CONTACTS ARE USED.

MIN. 6 OZS. --- MAX. 8-1/2 OZS. FOR ANSWER-BACK FUNCTION PAWL.

(LEFT FRONT VIEW)

EFT ROCKER DRIVE ARM (FUNCTION)
TO CHECK
SET UP CARRIAGE RETURN CODE COMBINATION
(---4-) or ($1-34---8$) IN SELECTOR. ROTATE
MAIN SHAFT UNTIL FUNCTION BAIL IS AT HIGHEST POINT OF TRAVEL.

REQUIREMENT
MIN O. 020 INCH---MAX, 0.040 INCH between carria ge-return function lever AND ITS FUNCTION PAWL.
TO ADJUST
USING PRY POINT, ADJUST ROCKER DRIVE ARM
(ON FUNCTION ROCKER SHAFT) WITH CLAMP SCREW LOOSENED.

RELATED ADJUSTMENTS AFFECTS

RIGHT FUNCTION DRIVE ARM
CARRIAGE RETURN LEVER (SPACING)
SPACING LEVER (SPACING)
LINE FEED DRIVE ARM (PAPER FEED)
AFFECTED BY
RIGHT FUNCTION DRIVE ARM

```
:%2.7.2
SUB-SECTIO: 5, ISSUE 1
AAPC:1, 1955
```

IO CHECK
SET UP ANSWER-BACK CHARACTER (WRU) IN SELECTOR. ROTATE MAIN SHAFT UNTIL FUNCTION BAIL IS AT ITS HIGHEST POINT. MAKE SURE THAT DISTRIBUTOR CLUTCH HAS NOT BEEN TRIPPED.

REQUIREMENT
MIN. 0.020 INCH---MAX. 0.040 INCH
BETWEEN ANSWER-BACK FUNCTION LEVER AND
ITS FUNCTION PAWL. RECHECK ROCKER DRIVE
ARM.
TO ADJUST
USING PRY POINT, ADJUST RIGHT FUNCTION
DRIVE ARM (ON FUNCTION ROCKER SHAFT)
WITH CLAMP SCREW LOOSENED.
RELATED ADJUSTMENTS
AFFECTS
ARRIAGE RETURN LEVER (SPACING)
SPACING LEVER (SPACING)
LINE FEED DRIVE ARM (PAPER FEED)
AFFECTED BY
ROCKER DRIVE ARM


```
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```


(LEFT FRONT VIEW)

STRIPPER BAIL (FUNCTION)

REQUIREMENT
WITH PRINTER IN STOP CONDITION MIN. 0.015 INCH---MAX. 0.025 INCH BETWEEN FUNCTION STRIPPER BAIL AND EDGE OF STRIPPED FUNCTION PAWL.

TO ADJUST
USING PRY POINT, ADJUST STRIPPER
BAIL'S DRIVE ARM WITH CLAMP SCREW
LOOSENED. CHECK AT MARGIN BELL PAWL.

RELATED ADJUSTMENT

AFFECTS
LINE FEED STRIPPER PLATE (PAPER FEED)

PRINT SUPPRESSION CAM FOLLOWER SPRING (FUNCTION)

REQUIREMENT
WITH PRINTER IN STOP CONDITION
MIN. 5-3/4 OZS. ---MAX. 7-1/4 OZ
TO START CAM FOLLOWER MOVING.

TO ADJUST

USING PRY POINT, POSITION CAM FOLLOWER
WITH CLAMP NUT LOOSENED.

RELATED ADJUSTMENTS

AFFECTED BY
CODE BAR RESET LEVER

BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965
CASTING (FUNCTION)
TO CHECK
SET UP BLANK (ALL SPACING) CODE
COMBINATION IN SELECTOR. ROTATE
MAIN SHAFT UNTIL FUNCTION BAIL
APPROACHES HIGH PART OF TRAVEL,
BUT PRINT SUPPRESSION CAM FOLLOWER
HAS NOT REACHED HIGH PART OF ITS CAM.

NOTE
(1) MODEL 32 PRINTER HAS BLANK FUNCTION LEVER IN THE NO. 6 SLOT.
(2) MODEL 33 DOES NOT HAVE A BLANK FUNCTION LEVER. WHENEVER THE NO. 6 AND 7 CODE ELEMENTS ARE SPACING THE FUNCTION LEVER IN THE NO. 6

ETWEEN BLOCKING PROIECTION ON PRINT SUPpression code bar and blank function lever.
-(2) MIN. 0.005 INCH
BETWEEN CARRIAGE DRIVE ECCENTRIC AND ROLLER'S SHAFT ON STRIPPER BAIL'S CAM FOLLOWER.
TO ADJUST
POSITION FUNCTION CASIING WITH CLAMP SCREWS LOOSENED.
(3) THE FUNCTION SHAFT SHALL BE IN CONTACT WITH, OR NOT MORE THAN

MAX. 0.003 INCH
AWAY FROM THE VERTICAL SURFACE AT THE CENTER OF THE CASTING.

TO ADJUST
LOOSEN CENTER CLAMP MOUNTING SCREW, POSITION SHAFT AND CLAMP.

RELATED ADJUSTMENTS
AFFECTS
FUNCTION CAM CLUTCH (MAIN SHAFT)
AFFECTED BY
PRINT SUPPRESSION LATCH

```
E!2.7.2
SUS-SECTIO:: 5, ISSUE
M&PCH, 295シ
```

SET UP CARRIAGE RETURN COMBINATION $(---4-)$ or ($1-34--8$) IN SELECTOR. ROTATE MAIN SHAFT UNTIL FUNCTION BAIL REACHES LOWEST POINT OF TRAVEL.
(1) EARLY DESIGN. CARRIAGE RETURN LEVER FLUSH WITH CARRIAGE RETURN LATCH WITHIN O.OO5 INCH.
(2) LATE DESIGN.

MIN. SOME---MAX, 0.030 INCH BETWEEN CARRIAGE RETURN LEVER AND CARRIAGE RETURN LATCH.
(LATE DESIGN)

CARRIAGE DRIVE BAIL (FUNCTION)

REQUIREMENT
AS GAGED BY EYE

- MIN. SOME---MAX. 0.015 INCH END PLAY IN CARRIAGE DRIVE BAIL.

TC ADJUST

POSITION BAIL'S LEFT PIVOT WITH CLAMP SCREW LOOSENED.
MIN. SOME---MAX. 0.015 INCH
END PLAY IN CARRIAGE DRIVE BAIL.
TO ADJUST
POSITION BAIL'S LEFT PIVOT WITH CLAMP

```
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```


CARRIAGE RETURN SPRING (SPACING)

REQUIREMENT

WITH PRINTER IN STOP CONDITION AND CARRIAGE AT RIGHT MARGIN,
-MIN. 48 OZS. ---MAX. 52 OZS.
TO PULL SPRING TO INSTALLED LENGTH.

FRONT ROLLERS (CARRIAGE)

REQUIREMENT
WITH PRINTER IN STOP CONDITION,
CARRIAGE FRONT ROLLERS (2) SHALL SPIN FREELY WITH
MAX. CLEARANCE OF 0.004 INCH .
TO ADJUST
BY MEANS OF ECCENTRIC SHAFT,
POSITION EACH ROLLER TIGHT AGAINST
RAIL WITH MOUNTING NUT LOOSENED. SLOWLY BACK OFF ECCENTRIC TO MEET REQUIREMENT

REAR ROLLER (CARRIAGE)
O CHECK
POSITION CARRIA GE NEAR RIGHT MARGIN.
TRIP SELECTOR CLUTCH. ROTATE MAIN SHAFT UNTIL CARRIAGE DRIVE BAIL IS IN REARMOST POSITION.

REQUIREMENT
MIN. SOME---MAX. 0.005 INCH
BETWEEN CARRIAGE REAR RAIL AND
UPPER CARRIAGE REAR ROLLER
TO ADJUST
USING HEXAGON WRENCH, POSITION ROLLER'S
ECCENTRIC SHAFT WITH CLAMP NUT
LOOSENED.

BELL CLAPPER (FUNCTION)
REQUIREMENT
WITH PRINTER IN STOP CONDITION
MIN. 0.030 INCH --- MAX. 0.070 INCH
between Clapper and bell.
TO ADJUST
USING PLIERS, BEND CLAPPER SPRING.

REQUIREMENT (FINAL)

the bell must be audible WHEN TH
SELECTION IS MADE.

BK2.7. 2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

NOTE

REMOVE RIBBON MECHANISMS AT THIS POINT IN COMPLETE READJUSTMENT PROCEDURE

POWER BAIL ROLLER (CARRIAGE)
TO CHECK
TRIP FUNCTION CLUTCH AND ROTATE MAIN SHAFT UNTIL CARRIAGE DRIVE BAIL REACHES APPROXIMATE VERTICAL POSITION.

REQUIREMENT

FRONT ROLLER SHALL SPIN FREELY WITH
MIN. SOME --- MAX. 0.005 INCH CLEARANCE
TO ADJUST
WITH MOUNTING NUT LOOSENED, POSITION
ROLLER AGAINST DRIVE BAIL BY MEANS OF
ECCENTRIC SHAFT. BACK OFF SHAFT TO
MEET REQUIREMENT.

ROTARY RACKS (CARRIAGE)
REQUIREMENT
0.004 INCH BACKLASH

BETVEEN PINION AND EACH RACK.
TO ADJUST
LOOSEN ADJUSTING AND MOUNTING PLATES' CLAMP SCREWS. PLACE 0.004 INCH FEELER GAGE BETWEEN ONE OF RACKS AND ADJUSTING PLATE. USING PRY POINT, POSITION ADJUSTING PLATE FOR NO PLAY BETWEEN RACK AND PINION. MAKE ADJUSTMENT FOR OTHER RACK. TIGHTEN ADJUSTING PLATE CLAMP SCREWS. REMOVE FEELER gage. position lock plate tight AGAINST ADJUSTING PLATE AND TIGHTEN ITS CLAMP SCREW'S.

RELATED ADJUSTMENT
(TOP VIEW)
AFFECTS
STOP PLATE

REAR RAIL - LEFT END (CARRIAGE)
REQUIREMENT
PLACE PRINTER IN FIGURES POSITION ("O" SELECTED) (*). ROTATE MAIN SHAFT UNTIL CODE BARS HAVE RISEN FULLY, POSITION CARRIAGE SO CENTER LINE OF TYPEWHEEL IS APPROXIMATELY 2-7/8 INCHES FROM LEFT END OF PLATEN (DASHPOT PLUNGER ALMOST COMPLETELY WITHDRAWN FROM DASHPOT). CLEARANCE BETWEEN BOTTOM EDGE OF NUMBER "O" SHIFT SLIDE (*) AND TOP EDGE OF STOP PLATE

MIN. 0.030 INCH - - MAX. 0.040 INCH
EY2.7.2
SVE-SECTIO: ラ, ISSUE 1
MAPCH, 1965

O ADJUST
BY MEANS OF PRY POINT, POSITION LEFT END
OF CARRIA GE REAR RAIL WITH MOUNTING
OF CARRIA GE REAR RAIL W
SCREWS FRICTION TIGHT.

* NO. 1 ON MODEL 33 PRINTER

RELATED ADJUSTMENTS
AFFECTS
REAR ROLLER
ROTARY RESET LEVER
THIRD PULSE LINK
REAR RAIL - RIGHT END
DRIVE BAIL
PRINT RESET ARM
PRINT DRIVE LEVER
PLATEN - VERTICAL (PAPER FEED)
AFFECTED BY
REAR RAIL - RIGHT END


```
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
```

ROTARY RESET LEVER (CARRIAGE)
REQUIREMENT
WHEN PRINTER RETURNS TO STOP
CONDITION, RACKS SHALL BE COM-
PLETELY RESET.

RESET LEVER WITH CLAMP SCREW
LOOSENED. WIGGLE TYPEWHEEL.
ONLY SMALL AMOUNT OF ROTATIONAL
PLAY SHOULD BE PRESENT.
reLated adjustments
AFFECTS
DRIVE BAIL
RIBBON POWER LEVER
Affected by
REAR RAIL - LEFT END


```
42.7.2
SUE-SEOTIO: =, ISSUE 1
4ARC:O, 1955
```


THIRD PULSE LEVER (CAKRIAGE)

TO CHECK
place carriage at left margin. set UP ALL MARKING CODE COMBINATION IN SELECTOR. ROTATE MAIN SHAFT UNTIL FUNCTION CLUICH JUST TRIPS.

REQUIREMENT
AS GAGED BY EYE
MIN. 0.010 INCH---MAX. 0.030 INCH BETWEEN ROTARY DRIVE ARM AND LEFT RACK WHEN PLAY IN RACK IS TAKEN UP IN DOWNWARD DIRECTION.
TO ADJUST
USING PRY POINTS, BEND THIRD PULSE LEVER.
RELATED ADJUSTMENTS
AFFECTED BY
REAR RAIL - LEFT END
REAR RAIL - RIGHT END

rotary DRIVE ARM

EAR RAIL - RIGHT END (CARRIAGE) (I) REQUIREMENT - PRELIMINARY
pLACE CARRIAGE AT RIGHT HAND MARGIN. ROTATE MAIN SHAFT UNTIL FUNCTION CLUTCH JUST TRIPS. MIN. 0.010 INCH --- MAX. 0.030 INCH CLEARANCE BETWEEN LEFT RACK AND UNDER SIDE OF DOWN STOP ON THIRD PULSE LEVER, AS GAGED BY EYE.
(2) REQUIREMENT - FINAL

WHEN UNIT IS OPERATED UNDER POWER, TYPE WHEEL SHOULD SHIFT FROM RIGHT TO LEFT OR LEFT TO RIGHT SIDE AND PRINT PROPER CHARACTER UNIFORMALY.

O ADJUST
BY MEANS OF PRY POINT, POSITION REAR
RAIL'S RIGHT END WITH THE TWO MOUNTING
SCREWS LOOSENED. TAKE CARE NOT TO MOVE RAIL'S LEFT EN'D.

RELATED ADJUSTMENTS

AFFECTS
REAR RAIL - LEFT END
ROTARY RESET LEVER
THIRD PULSE LEVER
DRIVE BAIL
PRINT RESET ARM
PLATEN-VERTICAL (PAPER FEED)
AFFECTED BY
REAR RAIL - LEFT END

REQUIREMENT
place carriage approximately 1/2 INCH from LEFT-HAND MARGIN. SET UP BLANK CODE COM-
BINATION IN SELECTOR. ROTATE MAIN SHAFT UNTIL
CARRIAGE DRIVE BAIL REACHES ITS REARMOST POSITION.
THERE SHALL BE APPROXIMATELY
0.030 INCH

CLEARANCE BETWEEN PRINT HAMMER BAIL AND PRINT
HAMMER TRIP LEVER.
(2) THIS CLEARANCE SHALL BE EQUAL WITHIN 0.020 INCH

APPROXIMATELY $1 / 2$ INCH OF THE RIGHT-HAND MARGIN.

TO ADJUST
(1) REQUIREMENT

LOOSEN DRIVE BRACKET MOUNTING SCREWS USING PRY POINT, POSITION PRINT TRIP LEVER WITH CLAMP SCREW LOOSENED. REQUIREMENT

WITH MOUNTING SCREWS LOOSENED. POSITION CARRIAGE DRIVE BAIL'S RIGHT PIVOT. MAKE SURE CARRIAGE DRIVE LINK IS NOT BIASED IN EITHER DIRECTION.

RELATED ADJUSTMENTS
AFFECTS
PRINT TRIP LEVER
PRINT RESET ARM
PRINT DRIVE LEVER ROTARY RESET LEVER
AFFECTED BY
REAR RAIL - LEFT END REAR RAIL-RIGHT END ROTARY RESET LEVER


```
%%%.7.2
SvE-SEOMIO: シ, IESUE 1
17.PC:%, 19E5
```

PRINT DRIVE LEVER (CARRIAGE)
REQUIREMENT
WITH PRINTER IN STOP CONDITION.
TELETYPE TOOL NO. 180588 SHALL FIT
BETWEEN VERTICAL DRIVE BAIL AND
COMMAON VERTICAL STOP ARM
WITHIN 0.005 INCH
(CLEARANCE IS NOMINAL 0.234 INCH.)
TO ADJUST
USING PRY POINTS, POSITION PRINT DRIVE
LEVER ON POWER BAIL WITH CLAMP SCREW
LOOSENED.
RELATED ADJUSTMENTS
AFFECTS
PRINT TRIP LEVER
PLATEN - VERTICAL (PAPER FEED)
PRINT RESET ARM
AFFECTED BY
REAR RAIL - LEFT END
REAR RAIL - RIGHT END
DRIVE BAIL


```
3:2.7.2
```



```
M&PC:!, ここちこ
```



```
%%.7.2
SこS-SECTIO:# シ, ISSUE 1
M&PC:!, 19E5
```

THE PRINT HAMMER SUPPRESSION LATCH SHALL HAVE A MINIMUM OF FULL BITE WITH THE PRINT HAMMER RESETT BAIL WITH NO BINDS. TAKE UP PLAY IN PRINTT HAMMER SUPPRESSION LATCH TOWARD CARRIAGE CASTING WHEN CHECKING THIS MINIMUM REQUIREMENT

TO ADJUST
USING HEX WRENCH, LOOSEN SET SCREW AND POSITION COLLAR.

UNCTION LEVER SPRINGS (FUNCTION)
REQUIREMENT
WITH PRINTER IN STOP CONDITION
MIN. 19 OZS. ---MAX. 24 OZS.
(RIGHT REAR VIEW)
FOR LINE-FEED AND AUTOMATIC
LINE FEED FUNCTION LEVERS WHEN
LINE FEED BLOCKING LEVER IS HELD UP.
MIN. 3-1/2 OZS. ---MAX. 5-1/2 OZS.
FOR CARRIAGE RETURN FUNCTION LEVER
WHEN CARRIAGE RETURN LEVER IS HELD
IN FRONTWARD POSITION.
MIN. 3-1/2 OZS. ---MAX. 5-1/2 OZS.
FOR ALL OTHER FUNCTION LEVERS.

CHECK RIGHT AND LEFT SPRING.

STOP PLATE (CARRIAGE) - PRELIMINARY

TO CHECK
SET UP CODE COMBINATION OF A CHARACTER IN COUNTERCLOCKWISE FIELD OF TYPEWHEEL. ROTATE MAIN SHAFT UNTIL CARRIAGE DRIVE BAIL IS IN REARMOST POSITION. CHECK TO SEE IF VERTICAL ROW CONTAINING CHARACTER IS PROPERLY SELECTED. REPEAT FOR CHARACTER in CLOCKWISE FIELD.
REQUIREMENT
TYPEWHEEL POSITIONING CORRECT IN BOTH CLOCKWISE AND COUNTERCLOCKWISE

TO ADJUST
PLACE PRINTER IN STOP CONDITION. BACK OFF LEFT AND RIGHT SLIDE GUIDE PLATE ADJUSTMENTS. (SEE BELOW.) MAKE TWO CLAMP SCREWS FRICTION IIGHI. PLACE O.028 INCH GAGE OR ADJUSIING TOOL NO. 180587 ACROSS END OF RACKS. HOLD ROTARY POSITIONING BAIL SO THAT IT DOES NOT YIELD, AND POSITION STOP PLATE SO THAT ENTIRE SLIDE ASSEMBLY IS TIGHT AGAINST RACK AND TOOL.

RELATED ADJUSTMENTS
AFFECTS
RIGHT SLIDE GUIDE PLATE
LEFT SLIDE GUIDE PLATE
AFFECTED BY
ROTARY RACKS

RIGHT SLIDE GUIDE PLATE (CARRIAGE)

REQUIREMENT

WITH PRINTER IN STOP POSITION
MIN. SOME---MAX. 0.015 INCH
CLEARANCE BETWEEN RIGHT SLIDE GUIDE
PLATE AND THE RESEI ARM WHEN CLEAR-
ANCE IS TAKEN UP FOR MAXIMUM (BOTH
GIJIDE PLATES HELD TOWARD FRONT).
TO ADJUST
USING HEX WRENCH, ROTATE ECCENTRIC
STUD WITH ITS LOCK NUT LOOSENED.
reLated adjustments
AFFECTS
LEFT SLIDE GUIDE PLATE
PRINT TRIP LEVER
AFFECTED BY
PRINT DRIVE LEVER

LEFT SLIDE GUIDE PLATE (CARRIAGE)

REQUIREMENT
WITH PRINTER IN STOP CONDITION MIN. SOME---MAX. 0.015 INCH
CLEARANCE BETWEEN LEFT SLIDE GUIDE
plate and left ribbon lifter arm WHEN CLEARANCE IS TAKEN UP FOR MAXIMUM (BOTH GUIDE PLATES HELD TOWARD FRONT).

TO ADJUST

USING PRY POINTS, POSITION LEFT RIBBON LIFTER ARM WITH CLAMP NUT LOOSENED.

RELATED ADJUSTMENTS
AFFECTS
RIBBON GUIDE
AFFECTED BY
RIGHT SLIDE GUIDE PLATE
RIBBON GUIDE (CARRIAGE)
TO CHECK
TRIP SELECTOR CLUTCH AND ROTATE
MAIN SHAFT UNTIL RIGHT RIBBON LINK
SEPARATES FROM RIBBON GUIDE MIN. $0.010 \mathrm{INCH}---M A X, 0.015 \mathrm{INCH}$

CLEARANCE AT LEFT LINK.
MAX. 0.010 INCH
GREATER AND NOT LESS THAN AT RIGHT LINK.
TO ADJUST
USING HEXAGON WRENCH, POSITION ECCENTRIC STUD WITH CLAMP NUT LOOSENED.
RELATED ADJUSTMENT
AFFECTED BY
LEFT SLIDE GUIDE PLATE

(LEFT SIDE VIEW)
LEFT RIBBON LIN


```
BK2.7.2
SUB-SECTION 5, ISSUE
MARCH, 1965

VERTICAL DRIVE BAIL SPRING (CARRIAGE) PEQUIREMENT

WITH PRINTER IN STOP CONDITION - MIN. 13 OZS. ---MAX. 18 OZS. TO START TYPEWHEEL MOVING.


REQUIREMENT
WITH PRINTER IN STOP CONDITION MIN. 3 OZS. .-- MAX. 4-1/2 OZS TO START HAMMER MOVING.


TO CHECK
REMOVE RIBBON FROM GUIDE. TRIP SELECTOR CLUTCH AND ROTATE MAIN SHAFT UNTIL CARRIAGE DRIVE BAIL IS IN REARMOST POSITION.

REQUIREMENT
- MIN. 6 OZS. -- MAX. 9 OZS.
to start guide moving.

RIBBON GUIDE
SPRING (LEFT SIDE VIEW)

PRINT TRIP LEVER SPRING (CARRIAGE)
REQUIREMENT
WITH PRINTER IN STOP CONDITION MIN. 1 OZ. ---MAX. 2-1/2 OZS.
TO START LATCH MOVING



REPLACE PLATEN AND RIBBON MECHANISM AND DASHPOT CYLINDER.

RIBBON POWER LEVER (CARRIAGE) (1) REQUIREMENT

WITH CARRIAGE DRIVE BAIL IN REARMOST POSITION AND RIBBON RATCHET SEATED AGAINST FEED PAWL, CLEARANCE BETWEE FACE OF A RATCHET TOOTH AND THE CORNER TIP OF CHECK PAWL ON BOTH RIGHT AND LEFT RIBBON RATCHETS
AS GAGED BY EYE
MIN. SOME --- MAX. 0.045 INCH (2) REQUIREMENT

WITH UNIT OPERATING UNDER POWER THE FEED PAWL SHALL ADVANCE RIBBON RATCHET ONE TOOTH ON EACH OPERATION FOR BOTH LEFT AND RIGHT RIBBON RATCHETS TO ADJUST

WITH LOCK NUT FRICTION TIGHT ROTATE
ECCENTRIC STUD BY MEANS OF AN
ALLEN WRENCH
RELATED ADJUSTMENT
AFFECTED BY


\section*{TYPEWHEEL (CARRIAGE)}

TO CHECK
PLACE PAPER IN PRINTER. SELECT BLANK (ALL SPACING) CODE COMBINATION. ROTATE MAIN SHAFT UNTIL CARRIAGE DRIVE BAIL IS IN REARMOST POSITION. HOLD ROTARY DRIVE LEVER ALL THE WAY REARWARD TO RESET BOTH RACKS. MANUALLY TRIP PRINT HAMMER BY MOVING PRINT SUPPRESSION LATCH LEVER FRONTWARD.

REQUIREMENT
DENSITY OF LEFT AND RIGHT LINE OF PRINTED IMPRESSION APPROXIMATELY EQUAL. (DENSITY AT TOP AND BOTTOM MAY BE UNEQUAL BECAUSE OF MISADJUSTMENT OF PLATEN-VERTICAL (PAPER FEED).

TO ADJUST
POSITION TYPEWHEEL WITH CLANP NUT LOOSENED. HOLD TYPEWHEEL WITH 180588 TOOL WHEN TIGHTENING NUT.
```

!%2.7.2
S'%-SECTIO: 5, ISSUE 1
MARC:S, 1965

```

RIBBON RATCHET SPRING (CARRIAGE)
REQUIREMENT
WITH FEED AND CHECK PAWLS DISENGAGED FROM RATCHET
- MIN. 1-1/2 OZS. ---MAX. 3-1/2 OZ TO START RATCHET MOVING.

RIBBON REVERSE ARM SPRING (CARRIAGE)
REQUIREMENT
WITH PRINTER IN STOP CONDITION AND RIBBON REMOVED
MIN. 1-1/2 OZS. ---MAX. 3 OZ. TO START ARM MOVING.


RIBBON FEED PAWL SPRING (CARRIAGE)

\section*{REQUIREMENT}

WITH PRINTER IN STOP CONDITION
MIN. 2-1/2 OZS, -.-MAX 4 OZ
TO PULL SPRING TO INSTALLED LENGTH.

\section*{RIBBON DRIVE LEVER SPRING (CARRIAGE)}

REQUIREMENT
WITH PRINTER IN STOP CONDITION
- MIN. 5-1/2 OZS. ---MAX. 9 OZS.

TO START LEVER MOVING.
```

\Xi:2.7.2
SUB-SミCエエO:゚*こ, こミミ゙こミこ
\becauseAPC:, 2955

```

```

3%2.7.2
SOB-SECTIO:: こ, ISS`E
4APC!: 1.955

```

\section*{SPACE SUPPRESSION LEVER}

REQUIREMENT
(1) CLEARANCE BETWEEN RIGHT END OF SPACING FEED AWL AND TIP OF NOTCH ON SPACE SUPPRESSION LEVER
MIN. 0.005 INCH --- MAX. 0.040 INCH
(2) SOME CLEARANCE BETWEEN LEFT END OF "0" CODE BAR AND REAR EXIENSION OF SPACE SUPPRESSION LEVER.
3) THE HIGH PART OF ECCENTRIC SHALL BE PO-

SITIONED TOWARD REAR OF UNIT NOTE
F SPACING FEED PAWL IS MONED TO FAR
TO THE REAR, IT WILL BE NECESSARY YO DISENGAGE SPACING FEED PAWL FROM SPACING RATCHET.
TO ADJUST
(1) PLACE CARRIAGE IN CENTER OF UNIT. SELECT A TYPING CHARACTER ("T" \(1,2,3,4\), SPACING 5 MARKING FOR MODEL 32 PRINTERS AND "@" 1,2,3,4,5 SPACING, 6 MARKING, 7 SPACING FOR MODEL 33 PRINTERS).

NOTE
IT MAY BE NECESSARY TO TRIP THE SPACE SUPPRESSION LEVER WHEN REPAIRING UNITS WHICH HAVE BEEN MALADJUSTED.
(2) ROTATE MAINSHAFT UNTIL FRONT VERTICAL SUR FACE OF RIGHT END OF SPACING FEED PAWL IS ALIGNED, AS GAGED BY EVE, WITH NOTCH ON SPACE SUPPRESSION LEVER.
(3) WITH SPACE SUPPRESSION LEVER ECCENTRIC CLAMP SCREW FRICTION TIGHT. POSITION ECCENTRIC SO THAT WHEN THE FOLLOWING CHECKS ARE PERFORMED, REQUIREMENTS NOS. (1), (2), AND (3) ARE MET.

(TOP VIEW)

TO CHECK
(1) MOVE AND HOLD SPACE SUPPRESSION LEVER AGAINST RIGHT END OF SPACING FEED PAWL. TO DO THIS, PUSH AND HOLD PRINT SUPPRESSION CODE BAR TOWARD RIGHT SIDE OF UNIT. ROTATE SHAFT VERY SLOWLY (FORWARD OR BACKWARD AS NECESSARY UNTIL FRONT VERTICAL SURFACE OF SPACING FEED PAWL AND FRONT SURFACE OF NOTCH IN SPACE SUPPRESSION LEVER ARE ALIGNED FLUSH WITH EACH OTHER.

NOTE
IF THE SPACING FEED PAWL IS MOVED TOO FAR TO THE REAR WHILE ATEMPTING TO OBTAIN THE DESIRED ALIGNMENT, (THIS APPLIES TO THE CHECKING PROCEDURE ONLY IT WILL BE NECESSARY TO REPEAT ADJUSTMENTS NOS. 2,3, AND TO CHECK NO. 1.
(2) RELEASE PRINT SUPPRESSION CODE BAR SO that the space suppression lever moves TO RIGHT WITH A SNAP.
(3) TIGHTEN ECCENTRIC CLAMP SCREW. PERFORM TO CHECK NOS. I AND 2 AND RECHECK ALL THREE REQUIREMENTS. READJUST IF NECESSARY.
```

B%2.7.2
ミUE-SECTIO:: ミ, Iミミこここ
MFRCH: 1955

```
CARRIAGE RETURN LEVER SPRING (SPACING)
REQUIREMENT
    WITH PRINTER IN STOP CONDITION,
    CARRIAGE MANUALLY RETURNED AND
    feed pawl and check pawl held
    AWAY FROM CARRIAGE RETURN LEVER
    LMIN. 1 OZ. --MAX. 2 OZS.
    SPACING LEVER (SPACING)
    REQUIRMENT

        SUPPRESSION LEVER AS GAGED BY EYE
MIN. 0.005 INCH --- MAX. 0.040 INCH

        POSITIVELY AND WITHOUT HESITATION.
    TO ADJUST

        UNITS OR (----6-8) FOR 8 LEVEL UNITS SELECTED.
            NOTE



        PAWL IS ALIGNED (AS GAGED BY EYEl IOITH THE NOTCH ON THE SPAES S. DORESS‥
```

5K2.7.2
SUE-SECTIO:: 5, ISSUE 1
AAPCH, 1955

```

\section*{NOTE}

IF THE SPACING FEED PAWL IS MOVED TOO FAR TO THE REAR, IT WILL BE NECESSARY TO DISENGAGE THE SPACING FEED PAWL FROM THE SPACING RATCHET.
(3) POSITION SPACE SUPRRESSION TRIP LEVER BY BENDING MIDDLE PRONG OF ITS PRY POINTS SO THAT WHEN THE FOLLOWING CHECKS ARE PERFORMED, REOUIREMENTS NOS. 1, AND 2 ARE MET.

\section*{NOTE}

IF SPACE SUPPRESSION TRIP LEVER BINDS AT ITS CONNECTION TO OPERATING LINK, BEND THE FORMED EAR ON RIGHT END OF SPACE SUPPRESSION TRIP LEVER TO MAKE IT PARALLEL TO OPERATING LINK AND TO RELIEVE THE "BIND". TO ADJUST FOR REQUIREMENT NO. I, USE THE FRONT PRY POINT TO INCREASE THE GAP AND USE THE REAR PRY POINT TO DECREASE THE GAP.
TO CHECK
(1) MOVE AND HOLD SPACE SUPPRESSION LEVER AGAINST RIGHT END OF SPACING FEED PAWL. TO DO THIS, PUSH TOWARD THE REAR OF UNIT, ON RIGHT END OF SPACE SUPPRESSION TRIP LEVER, AT POINT WHERE IT IS CONNECTED TO ITS OPERATING LINK. ROTATE SHAFT VERY SLOWLY (FORWARD AND/OR BACKWARD WHEN NECESSARY) UNTIL FRONT VERTICAL SURFACE OF SPACING FEED PAWL AND FRONT SURFACE OF NOTCH IN SPACE SUPPFESSION LEVER ARE ALIGNED FLUSH WITH EACH OTHER.

\section*{NOTE}

IF SPACING FEED PAWL IS MOVED TOO FAR TO REAR WHILE ATTEMPTING TO OBTAIN DESIRED ALIGNMENT (THIS APPLIES TO THE CHECKING PROCEDURE ONLY, IT WILL BE NECESSARY TO REPEAT ADJUSTMENTS NOS. 1, AND 2, AND CHECK (1) ABOVE.
(2) RELEASE SPACE SUPPRESSION LEVER SO THAT IT MOVES TO RIGHT WITH A "SNAP".
(3) TAKE UP PLAY OF SPACING FEED PAWL AT ITS LEFT END IN AN UPWARD DIRECTION.

READJUST , IF NECESSARY.

\section*{NOTE}

SELECT "BLANK" FUNCTION (ALL SPACING), ROTATE MAIN-SHAFT, AND CHECK FOR MINIMUM . 015 INCH ENGAGEMENT (GAGE BY EYE) BETWEEN RIGHT END OF SPACING FEED PAWL AND TIP OF NOTCH ON SPACE SUPPRESSION LEVER. REFINE SPACE SUPPRESSION LEVER, AND SPACE LEVER ADJUSTMENTS WITHIN THEIR REQUIREMENTS, IF NECESSARY.

RELATED ADJUSTMENTS
AFFECTED BY
ROCKER DRIVE ARM (FUNCTION)
RIGHT FUNCTION DRVE ARM FFINCTION)


\section*{PLATEN-HORIZONTAL (PAPER FEED)}
(I) REOUIRETMENT

WITH BLANK COMBINATION SELECTED, ROTATE MAIN SHAFT UNTIL DRIVE BAIL IS IN REARMOST POSITION. ROTATE PLATEN UNTIL FLAT ON LEFT-HAND SIDE OF PLATEN IS ALIGNED hORIZONTALLY ON TOP OR THE "O" ON KNOB IS INITS UPPERMOST POSITION
MIN. \(0.042 \mathrm{INCH}--\mathrm{MAX} .0 .058 \mathrm{INCH}\) between ribbon guide and platen at BOTH MARGINS WHEN PLAY IN RIBBON GUIDE IS TAKEN UP TOWARDS PLATEN WITH A SPRING hOOK APPLIED IN THE WEDGE SHAPED PROJECTION OF RIBBON GUIDE.
(2) REQUIREMENT

WHEN PRINTED UNDER POWER, THERE SHALL NOT BE ANY RIBBON SMUDGE.
(3) REQUIREMENT

PLACE CARRIAGE AT MIDDLE OF LINE, SELECT "M" FOR THE MODEL 32 AND "X" FOR MODEL 33 PRINTERS. ROTATE MAIN SHAFT UNTIL DRIVE BAIL IS IN ITS REARMOST POSITION AND PRINT HAMMER STRIKES TYPEWHEEL. MANUALLY PUSH TYPEWHEEL REARWARD UNTIL IT JUST TOUCHES PLATEN. THE TYPEWHEEL SHALL NOT TOUCH RIBBON GUIDE OR CAUSE RIBBON GUIDE TO MOVE TOWARDS PLATEN.
NOTE: NO PAPER OR RIBBON IN THE UNIT.
TO ADJUST
LOOSEN FOUR VERTICAL POSITIONING SCREWS. PLACE BOTH ENDS OF PLATEN IN LOWEST POSITION. LOOSEN FOUR HORIZONTAL POSITIONING SCREWS. POSITION PLATEN HORIZONTALLY TO MEET REQUIREMENTS. TIGHTEN HORIZONTAL POSITION SCREWS. ADJUST RIBBON GUIDE BY BENDING IF NECESSARY,PROCEED TO PLATENVERTICAL ADJUSTMENT.

\section*{PLATEN-VERTICAL (PAPER FEED)}

REQUIREMENT
AS GAGED BY EYE, APPROXIMATE UNIFORM DENSITY AT TOP AND BOTTOM OF PRINTED CHARACTER ALONG ENTIRE LENGTH OF PRINTED LINE.

TO ADJUST
USING PRY POINTS POSITION PLATEN
VERTICALLY WITH VERTICAL POSITIONING
SCREWS LOOSENED. BE SURE TO RAISE OR
LOWER PLATEN MOUNTING PLATES AND NOT
JUST TWIST THEM.
RELATED ADJUSTMENTS
AFFECTS
LINE FEED UPSTOP BRACKET
PRESSURE ROLLER
AFFECTED BY
REAR RAIL - LEFT END (CARRIAGE)
REAR RAIL - RIGHT END (CARRIAGE)
PRINT DRIVE LEVER (CARRIAGE)
: \(\because 2.7 .2\)
SUSーSECTIO: シ, ISSUE 1
MARCH, 1955


POSITIONING SCREW

(RIGHI SIDE VIEW)

Single－double line feed（PAPER FEED）
REQUIREMENT
TO ADJUST POSITION STUD WITH CLAMP NIJT LOOSENED．

\section*{reLated ad．justments}

AFFECTS
PLATEN DETENT
NOTE
IF DOUBLE LINE FEED IS DESIRED， POSITION STUD AT UPPER END OF SLOT AFTER ALL ADJUSTMENTS HAVE BEEN MADE．
S゙ロシーSEC?IC: シ, こミミ゙ンシ
S゙ロシーSEC?IC: シ, こミミ゙ンシ
ALPC::, -9EE SLOT
ALPC::, -9EE SLOT

（LEFT SIDE VIEW）

\section*{LINE FEED PAWL SPRING（PAPER FEED）}

（RIGHT SIDE VIEW）

REQUIREMENT
WITH PRINTER IN STOP CONDITION
－MIN．3／4 OZ．－－－MAX．1－3／4 OZS．
TO START PAWL MOVING．

PLATEN DETENT（PAPER FEED）
REQUIREMENT
WHEN OPERATED BY FINGER PRESS URE，
LINE FEED PAWL SHALL FULLY SF IT IN PLATEN RATCHET WITHOUT INTERFERENCE FROM TEETH．

TO ADJUST
POSITION PLATEN DETENT FANL＇S PIVOT WITH CLAMP NUT LOCSENED．

RELATEL ADJUSTMENTS
AFFECTS
LINE FEED PAWL DCWNSTCF
AFFECTED BY
SINGLE－DOUBLE LINE FEED

```

:%2.7.2
S`:-SEOMIO:: 5, ISSUE
41PP!:, ?9651

```

LINE FEED DRIVE ARM (PAPER FEED)
REQUIREMENT
CARRIAGE IN THE CENTER OF UNIT, WITH LINE FEED CODE COMBINATION (-2---) OR (-2-4---8) SET UP IN SELECTOR AND MAIN SHAFT ROTATED UNTIL FUNCTION BAIL IS AT HIGHEST POINT

MIN. SOME --- MAX. 0.010 INCH
BETWEEN LINE FEED DRIVE ARM AND LINE feed blocking lever, When the play in THE DRIVE ARM AND BLOCKING LEVER IS TAKEN UP TO MAKE THIS CLEARANCE A MINIMUM. TO ADJUST

USING PRY POINTS, POSITION DRIVE ARM WITH CLAMP SCREW LOOSENED UNITL THERE is definite clearance. then carefully POSITION IT TO MEET REQUIREMENT.

RELATED ADJUSTMENTS
AFFECTS
LINE FEED UPSTOP BRACKET
AFFECTED BY
ROCKER DRIVE ARM (FUNCTION) RIGHT FUNCTION DRIVE ARM (FUNCTION)

\section*{NOTE}

REPLACE MOTOR ON PRINTER ASSEMBLY AND REPLACE PRINTER ASSEMBLY ON SUB-BASE AT THIS POINT.

MAKE GEAR BRACKET (MOTOR) AND BELT TENSION (MOTOR) AD JUSTMENTS.
(RIGHT SIDE VIEW)

LINE FEED BLOCKING LEVER

LINE FEED UPSTOP BRACKET (PAPER FEED) REQUIREMENT

CARRIAGE IN THE CENTER OF UNIT,
WITH LINE FEED CODE COMBINATION (-2---) OR
(-2-4---8) SET UP IN SELECTOR AND MAIN
SHAFT ROTATED UNTIL FUNCTION BAIL IS
AT HIGHEST POINT, PUSH DOWN ON LINE
FEED FUNCTION LEVER TO TRIP THE PRINT SUP-
PRESSION CODE BAR
MIN. 0.020 INCH \(---M A X .0 .040\) INCH
BETWEEN LINE FEED BLOCKING LEVER AND
LINE FEED DRIVE ARM.
TO ADJUST
POSITION LINE FEED UPSTOP BRACKET WITH
CLAMP SCREWS LOOSENED TO MEET THE
REQUIREMENT.

RELATED ADJUSTMENTS
AFFECTED BY
PLATEN-VERTICAL
LINE FEED DRIVE ARM

LINE FEED
DRIVE ARM

PLATEN DETENT PAWL SPRING (PAPER FEED)

\section*{REQUIREMENT}

MIN. 24 OZS. --MAX. 30 OZS.
TO START PAWL MOVING.

\section*{LINE FEED DRIVE LINK (PAPER FEED)}

REQUIREMENT
THE MOTION SUPPLIED BY FUNCTION BAIL SHOULD MATCH MOTION REQUIRED BY LINE FEED PAWI.
TO ADJUST (PRELIMINARY)
BACK OFF LINE FEED STRIPPER PLATE. LODSEN
BOTH LINE FEED LINK CLAMP SCRENS VERY LOOSE.
PLACE CARRIAGE IN CENTER OF UNIT, ROTATE PLATEN SO FLAT ON LEFT SIDE OF PLATEN IS ALIGNED HORIZONTALLY ON TOP. SET UP LINE FEED CODE COMBINATION ( \(-2---\) ) OR ( \(-2-4--8\) ) IN SELECTOR.
ROTATE MAIN SHAFT UNTIL FUNCTION BAIL REACHES
LOWEST POINT. USING PRY POINT, POSITION DRIVE IINK SO THAT WHEN UNE FEED LINKAGE HAS RO-
TATED PLATEN ONE TOOTH, DETENT PAWL SEATS


FULLY IN RATCHET. TIGHTEN CLAMP SCREWS.
TO CHECK
ROTATE FUNCTION MECHANISM TO ITS LOWEST
POINT, WITH LINE FEED DETENT HELD AWAY
FROM PLATEN LOWER DETENT INTO ITS NOTCH.
THE PLATEN SHOULD BARELY MOVE.
FINAL
WITH UNIT OPERATING UNDER POWER, THE
SPACING OF THE LINE FEED SHALL BE
UNIFORM AND CONSISTENT WITH NO BACKLASH.
RELATED AD JUSTMENT
AFFECTED BY LINE FEED PAWL DOWNSTOP

LINE FEED PAWL DOWNSTOP (PAPER FEED)
REQUIREMENT
CARRIAGE IN CENTER OF UNIT, ROTATE PLATEN SO FLAT LOCATED ON LEFT END i IISIBLE AFTER REMOVAL OF PLATEN KNOB) IS HORIZONTAL AND ON TOP. SET UP LINE FEED CODE CON:BINATION ( \(-2---\) ) OR ( \(-2-4---8\) ) AND ROTATE MAIN SHAFT UNTIL FEED PAWL HAS ROTATED PLATEN ONE TOOTH AND PLATEMI DEIENT HAS FULLY SEATED IN RATCHET.

REQUIREMENT
MIN. SOME---MIAX. 0.010 INCH
BETWEEN BACK OF LINE FEED PAIWL AND ITS DOWNSTOP.

TO ADJUST
POSITION DOWNSTOP WITH CLAMP NUT LOOSENED.

RELATED ADJUSTMENTS
AFFECTS
LINE FEED DRIVE LINA
AFFECTED B)
PLATEN DETENT
LINE FEED DRIVE LINK



TO ADJUST


432 3 -
```

シ\because2.7.2
ミ\becauseEーミミここここ: ミ, こミミこミ:

```


TO START LEVER MOVING．
```

:%2.7.2
SUP-SECTIO: 5, ISSUE 2
MIRC:\&, こ9ES

```

PAPER GUIDE SPRINGS（PAPER FEED）
REQUIREMENT
WITH SCALE AT ONE END OF PAPER GUIDE MIN．1－1／2 OZS．－－－MAX．3－1／2 OZS TO START GUIDE MOVING．

\section*{REQUIREMENT}

WITH PRESSURE LEVER RELEASED
MIN．3／4 OZ．－－－MAX．1－3／4 OZS．
TO START PLATE MOVING．

\section*{NOTE}

CHECK OTHER SPRING BY PLACING SCALE AT OTHER END OF GUIDE．

NOTE
CHECK EACH OF TWO SPRINGS．

```

ミック.7.2

```


\section*{PAPER GUIDE（PAPER FEED）}

（1）PEQUIREMAENT
THE VIIPE ON PAPER FINGERS SHALL FALL
SOMEWHERE BETWEEN TNO LINES OF PPINTED
COPY，NDT OBSCURING AOFE THAN• 2
THE HEIGHT OF EITHER LINE

\section*{TO ADJUST}

POSITION：PAPER GUIDE \％ITH＝OUP MOUNTING
SCREWS LOOSENED．
（2）REQUIREMENT
THE WIRE ON PAPER FINGEP SHOULD
RETURN AND REST AGAINST THE PLATEN
AT BOTH ENDS AND MIDDLE AFTER RA！SING
AND RELEASING FINGERS．
TO ADJUST
FORM EARS ON PAPER FINGER AIRE ：C FREE PAPER FINGER PIVOT．
（RIGHT SIDE JIE：）


SPACING SELT EDSICN SFACINE
REQUIREMENT


OF PRESSURE AFPLIED NEAき CENTER CFBELT
（TOP VIEW）


TO ADJLST
POSITICN マIGHT PLLLEI SRACLET W！TH
MOUNTING SCREWS LCOSENED
```

\&Y2.7.?
S"--iEOMIの: 5, ISSUE 1
UPO:%, !9f5

```

(FRONT VIEW)
```

BK2.7.?
SUB-SECTION 5, ISSUE 1
MARCH, 1955

```

(LEFT SIDE VIEW)


CARRIAGE RETURN UNLATCH LEVER (SPACING)
REQUIREMENT
WHEN THE CARRIAGE RETURNS, CARRIAGE
RETURN LEVER UNLATCHED AND
MIN. SOME --- MAX. 0.050 INCH
between the carriage return latch
AND THE CARRIAGE RETURN LEVER.
WHEN PLAY IN LATCH IS TAKEN UP TO make the clearance a minimum.

\section*{TO ADJUST}

PRELIMINARY: PLACE ADJUSTING POINT AT CENTER OF RANGE WITH MOUNTING SCREWS LOOSENED. POSITION LOBE PLATE SO AS TO SELECT LOBE THAT MOST NEARLY TOUCHES UNLATCH LEVER. CHECK FRONT ROLLERS (CARRIAGE).
FINAL: USING ADJUSTING POINT, POSITION UNLATCH LEVER WITH CLAMP SCREW LOOSENED.

RELATED ADJUSTMENT
AFFECTED BY
LEFT MARGIN

CARRIAGE RETURN LATCH SPRING (SPACING)
REQUIREMENT
WITH PRINTER IN STOP CONDITION AND
CARRIAGE RETURN LEVER UNLATCHED MIN. 1-1/2 OZS. ---MAX. 3 OZS.
TO START LATCH MOVING
!ソ2.7.2
SUR-ナECTION 5, ISSVE 1
צ \(4 \mathrm{DC:}, 1965\)

\section*{DASHPOT ORIFICE (SPACING)}

REQUIREMENT
NO PNEUMATIC OR MECHANICAL BOUNCE OF CARRIAGE UPON ITS RETURN.
TO ADJUST
POSITION ORIFICE ADJUSTING PLATE WITH CLAMP SCREW LOOSENER.


M32 33-80


LEFT MARGIN PRINTING (SPACING)


NOTE
THIS ADJUS IMENT CAN BE MADE EASIER BY REMOVING KEYBOARD.

\section*{UNIVERSAL LINK (KEYBOARD)}

REQUIREMENT
WITH PRINTER IN STOP CONDITION
MIN. 0.089 INCH---MAX. \(0: 103\) INCH
between the universal link and
KEYBOARD FRAME.
TO ADJUST
PLACE SCREWDRIVER THROUGH
OPENING AND BEND TAB ON FRAME.
NOTE
REPLACE KEYBOARD.
PRINT IWO OR MORE CHARACTERS SUCH AS RH AT LEFT MARGIN AND AT CENTER OF LINE.

REQUIREMENT
CHARACTER TO CHARACTER SPACING
APPROXIMATELY SAME AT CENTER OF
LINE AS AT LEFT MARGIN.
TO ADJUST
POSITION SPACING RATCHET WITH CLAMP

```

BK2.7.7
SUB-SECTION 5, ISSUE 1
MARCH, 19F.5

```

NOTE
REPLACE MOTOR ON PRINTER ASSEMBLY AND REPLACE KEYBOARD AND PRINTER ASSEMBLIES ON SUB-BASE AT THIS POINT.

NOTE
PRIOR TO GAGING THE REQUIRED GAP, PUSH END OF KEYBOARD UNN ERSAL LEVER that protrudes throug the front of KEYBOARD FRAME TO BOTTOM OF ITS GUIDE SLOT AND ALLOW IT TO SNAP UP.

\section*{DISTRIBUTOR TRIP LINKAGE (KEYBOARD)}

TO CHECK
WITH PRINTER IN STOP CONDITION, WITH PRINTER IN S TRIP DISTRIBUTOR DEPRESS A KEY TO TRIP DISTRIBUTOR
CLUTCH. ROTATE MAIN SHAFT UNTII KEYBOARD TRIP LEVER IS AT HIGHEST POINT OF CAM FOLLOWER'S THROW AND UNIVERSAL LEVER IS IN LOWEST POSITION.
REQUIREMENT
MIN. 0.010 INCH ---MAX. 0.035 INCH between latch lever and universal. LEVER.

TO ADJUST
USING PRY POINTS ON CASTING AND BRACKETS, POSITION TRIP LINKAGE ADJUSTING BRACKET WITH CLAMP SCREWS LOOSENED.
RELATED ADJUSTMENT AFFECTS

TRIP LEVER ENGAGEMENT (DISTRIBUTOR)


\section*{CONTACT WIRES (KEYBOARD)}
(1) REQUIREMENT

WITH PRINTER IN STOP CONDITION AND T-LEVER IN MARKING POSITION
MIN. 0.010 INCH---MAX. 0.025 INCH BETWEEN CONTACT WIRE AND TERMINAL.
TO ADJUST
BEND WIRE WITH 98055 BENDING TOOL.
(2) IO CHECK

WITH PRINTER IN STOP CONDITION, PLACE T-LEVERS IN SPACING POSITION. PLACE UNIVERSAL LEVER IN UP POSITION BY DEPRESSING UNIVERSAL CODE BAR (SEE UNIVERSAL LINK ADJUSTMENT).

\section*{REQUIREMENT}

MIN. 0.020 INCH --- MAX. 0.040 INCH BETWEEN CONTACT WIRE AND TERMINAL.

TO ADJUST
BEND WIRE WITH 98055 BENDING TOOL.
RELATED ADJUSTMENT
PART (2) OF THIS ADJUSTMENT IS AFFECTED BY PART (1).

\section*{NOTE}

CHECK REQUIREMENTS FOR EACH CONTACT WIRE.

```

3v2.7.2
SUB-SECTIO: ラ, ISSUE !
MARCH, 19F5

```

DRUM (ANSWER-BACK)
TO CHECK
DISENGAGE (LATCH) DISTRIBUTOR CLUTCH. LOOSEN NUT ON ADJUSTING SCREW SO THAT FEE PAWL IS FREE TO MOVE. POSITION DRUM SO THAT DETENT LEVER IS BETWEEN STOP (ST) AND NO 20 ROW. MAKE SURE CONTROL LEVER IS FULLY SEATED IN INDENT AND DRUM IS FULLY DETENTED. REQUIREMENT
(1) BARELY PERCEPTIBLE CLEARANCE BETWEEN DRUM AND CONTROL LEVER.
(2) THE AXIS OF THE ANSWER-BACK DRUM SHALL BE PARALLEL TO DISTRIBUTOR TRIP PIVOT SHAFT AS GAUGED BY EYE.

TO AD JUST
LOOSEN "HERE IS" ADJUSTING BRACKET AND ANSWER-BACK ADJUSTING BRACKET
SCREWS SO BOTH BRACKETS ARE FREE TO MOVE. LOOSEN ANSWER-BACK BLOCK
SCREWS (2) FRICTION TIGHT. MOVE ANSWER-BACK BLOCK TO MEET REQUIREMENTS.
RELATED ADJUSTMENTS
AFFECTS
CLUTCH TRIP BAIL, FEED PAWL, BLINDING CONTACT WIRE, FEED LEVER
NOTE: IF THE SET IS EQUIPPED WITH THE ANSWER-BACK MAGNET TRIP ( (ARIABLE FEATURE), THE ANSWER-BACK TRIP LEVER OVERTRAVEL ADJUSTMENT, SHOULD BE MADE AND, IF NECESSARY, THE TRIP LEVER ADJUSTMENT TAB SHOULD BE BENT FORWARD TO CLEAR THE CONTROL LEVER BEFORE PROCEEDING WITH THE FOLLOWING ADJUSTMENTS.


> BK2.7.2

SUB-SECTION 5, ISSUE 1
MARCH, 1965

\section*{CLUTCH TRIP BAIL (ANSWER BACK)}

REQUIREMENT
WITH CLUTCH TRIPPED AND UPPER EDGE OF SHOE LEVER IN LINE WITH UPPER EDGE OF CLUTCH STOP ARM AND ANSWERback drum rotated two character cycles, (DETENT BETWEEN NO. 1 AND NO. 2 LEVELS). CLEARANCE between the clutch shoe LEVER AND CLUTCH STOP ARM - MIN. 0.020 INCH - -- MAX. 0.040 INCH

\section*{TO AD JUST}

USING 180993 BENDING TOOL, BEND RIGHT ADJUSTING TAB ON CLUTCH TRIP BAIL. take care to keep plane of tab parallel TO AXIS OF TRIP SHAFT AS GAGED BY EYE.

RELATED ADJUSTMENT AFFECTED BY

DRUM
(RIGHT SIDE VIEW)


BK2.7.?
SUP-SECTIO: 5 , TSSUE I MARCH, 1955

FEED PAWL (ANSWERBACK)
REQUIREMENT
WITH DISTRIBUTOR CLUTCH DISENGAGED (LATCHED) MANUALLY ROTATE ANSWER-BACK DRUM ONE CHARACTER CYCLE. MANUALLY ROTATE THE DISTRIBUTOR SHAFT UNTIL THE DISTRIBUTOR SHAFT CAM ROLLER IS ON HIGH PART OF ANSWER-BACK FEED LEVER. POSITION FEED LEVER SIDEWAYS SO IT IS PERPENDICULAR TO AXIS OF DRUM AS GAGED BY EYE AND AS ENTIRE WIDTH OF FEED PAWL TOOTH RIDES ONLY IN RATCHET SECTION OF ANSWER-BACK DRUM. TAKE UP PLAY OF FEED PAWL towards rear of unit and release. clearance between feed pawl and no. 17 DRUM TOOTH MIN. SOME --- MAX. 0.010 INCH
TO ADJUST
POSITION FEED PAWL WITH NUT ON ADJUSTING SCREW FRICTION TIGHT.

RELATED ADJUSTMENTS
AFFECTS
"HERE IS" ADJUSTING BRACKET TRIP BAIL

```

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

\section*{EEED LEVER (ANSWERBACK)}

REQUIREMENT
WITH ANSWER-BACK CONTROL LEVER IN INDENT OF ANSWER-BACK DRUM. MANUALLY TRIP THE DISTRIBUTOR CLUTCH, ROTATE DISTRIBUTOR SHAFT UNTIL CAM ROLLER IS NOT IN CONTACT WITH ANSWER-BACK FEED LEVER. POSITION FEED LEVER SIDEWAYS SO IT IS PERPENDICULAR TO THE AXIS OF DRUM AS GAGED BY EYE AND SO THAT THE ENTIRE WIDTH OF FEED PAWL TOOTH RIDES
ONLY IN RATCHET SECTION OF ANSWER-BACK DRUM. TAKE UP PLAY OF FEED PAWL TOWARDS rear of unit and release. Clearance between ANSWER-BACK FEED PAWL AND NO. 16 DRUM TOOTH.

MIN. 0.006 INCH - MAX. 0.020 INCH
TO ADJUST
USING 180993 BENDING TOOL, BEND FEED
LEVER'S ADJUSTING TAB.


REQUIREMENT
WITH ANSWER-BACK CONTROL LEVER IN INDENT OF ANSWER-BACK DRUM, DISTRIBUTOR CLUTCH TRIPPED MANUALLY AND DISTRIBUTOR SHAFT ROTATED CLOCKWISE UNTIL FEED LEVER IS NOT IN CONTACT WITH CAM ROLLER (SEE FEED LEVER)
MIN. 0.015 INCH ---MAX. 0.030 INCH \(\qquad\)
OVERTRAVEL BETWEEN FEED PAWL AND TOOTH ON ANSWER-BACK DRUM WHEN "HERE IS" KEY IS FULLY DEPRESSED.
TO ADJUST
USING PRY SLOTS, POSITION "HERE-IS" ADJUSTING BRACKET WITH CLAMP SCREW LOOSENED.
RELATED ADJUSTMENT
AFFECTS
BLINDING CONTACT WIRE BLOCKING FOLLOWER
AFFECTED BY


BK2.7.2.
SUB-SECTION 5, ISSUE 1
MARCH, 1965


```

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1955
BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

NOTE
CHECK EACH KEYLEVER SPRING.
SPACE BAR SPRING (KEYBOARD)
REQUIREMENT
WITH SPACE BAR DEPRESSED AND THEN RELEASED
-MIN. 5 GRAMS---MAX. 25 GRAMS TO START BAR MOVING


KEYLEVER SPRING (KEYBOARD)
REQUIREMENT
WITH KEY DEPRESSED AND THEN
PELEASED
MIN. 5 GRAMS---MAX. 25 GRAMS
TO START KEY MOVING.


932/33-91
!\%2.7.2
SUE-SECTIO: 5, ISSUE
4ARCH, \(196=\)
NON-REPEAT LEVER SPRING (KEYBOARD)
REQUIREMENT
WITH KEYBOARD COVER REMOVED AND
PRINTER IN SIOP CONDITION
MIN. \(3 / 4\) OZS.--MAX. \(11 / 2\) OZS.
TO START NON-REPEAT LEVER MOVING

LATCH LEVER SPRING (KEYBOARD)
TO CHECK
REMOVE CALL CONTROL ASSEMBLY.
TRIP DISTRIBUTOR CLUTCH AND RO-
dill
TATE MAIN SHAFT UNTIL DISTRIBUTOR
TRIP CAM FOLLOWER IS AT HIGH POINT
OF CAM ROLLER'S THROW (SEE
DISTRIBUTOR TRIP LINKAGE).
REQUIREMENT
MIN. 1/2 OZ. ---MAX. I OZ.
TO START LATCH LEVER MOVING.
D AND


CONTACT BLOCK
SPRING



\section*{SHIFT CODE BAR SPRING（KEYBOARD）}


RESET BAIL SPRING (KEYBOARD)
TO CHECK
REMOVE KEYBCARD COVER. TRIP
KEYBOARD BY DEPRESSING LETTERS OR DELETE KEY.

REQUIREMENT
MIN. 1-1/2 OZS. ---MAX. 2 OZS.
TO START BAIL MOVING.

(RIGHT SIDE VIEW)

\section*{UNIVERSAL LEVER SPRING (KEYBOARD)}

\section*{REQUIREMENT}

WITH KEYBOARD COVER AND H PLATE REMOVED, AND PRINTER IN STOP CONDITION




FOLLOWER LEVER（DISTRIBUTOR）
REQUIREMENT
WITH H PLATE REMOVED AND
FOLLOWER LEVER NOT IN CONTACT
WITH ROLLER
MIN． 2 OZS．－－MAX． 3 OZS．
to Start lever moving．


\section*{TRIP BAIL SPRING（DISTRIBUTOR）}

TO CHECK
PLACE ANSWER－BACK DRUM IN HOME POSITION（DETENT LEVER BETVEEN NO． 20 AND STOP（ST）ROWS）．TRIP DISTRIBUTOR CLUTCH AND ROTATE NAIN SHAFT UNTIL FOLLOWER LEVER IS AT HIGHEST POINT OF CAM ROLLER＇S THROW．

REQUIREMENT
MIN． 3 OZS．－－－MAX． 5 OZS
IO START TRIP BAIL MOVING．


BK2.7.2.
SUB-SECTION 5, ISSUE 1
MARCH, 1965
FEED LEVER SPRING (ANSWER-BACK)
REQUIREMENT

(RIGHT SIDE VIEW)


(1) REQUIREMENT (PRELIMINARY)

WITH PRINTER IN STOP CONDITION, CARRIAGE NEAR RIGHT MARGIN, AND START LEVER HELD AWAY FROM ARMATURE
MIN. 3 OZS, ---MAX, 3-1/2 OZS.
TO START ARMATURE MOVING.
(2) REQUIREMENT (FINAL)

WHEN CHECKED WITH SIGNAL DISTORTION SET (DXD), MINIMUM SELECTOR RECEIVING MARGINS AS FOLLOWS:
\begin{tabular}{|c|c|c|c|c|}
\hline & SPEED & RANGE
ZERO DISTORTION & \[
\begin{gathered}
\text { OVERALL } \\
\text { BIAS } \\
\hline
\end{gathered}
\] & END DISTORTION AT BIAS OPTIMUM SETTING \\
\hline 5 AND 6 & 100 WPM & 72 PTS & 38 PER CENT & 35 PER CENT \\
\hline LEVEL & & & & \\
\hline \multicolumn{5}{|l|}{TO ADJUST} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{ROTATE ADJUSTING NUT CLOCKWISE TO INCREASE ARMATURE SPRING TENSION AND COUNTERCLOCKWISE TO DECREASEIT.}} \\
\hline & & & & \\
\hline
\end{tabular}

RELATED ADJUSTMENTS
AFFECTED BY, MAGNET CORE, ARMATURE BRACKET
ARMATURE SPRING TENSION, BRACKET POSITION AND
RECEIVING MARGIN (SELECTOR)
REQUIREMENT
A FINAL CHECK OF ARMATURE BRACKET POSITIONING ADJUSTMENT NEED NOT BE

```

BK2.7.7
SUE-SECTION 5, ISSUE 1
MARC!1, 1955

```

\section*{FINAL PRINTING ALIGNMENT}

\section*{GENERAL}

WHEN PRINTER IS ADJUSTED AS INSTRUCTED ON PREVIOUS PAGES, QUALITY OF PRINTED COPY SHOULD BE GOOD. HOWEVER, MINOR READJUSTMENTS MAY BE NECESSARY.

\section*{TO CHECK}

PRINT "TH" AT VARIOUS POINTS ALONG LENGTH OF PRINTING LINE.
REQUIREMENT
QUALITY OF PRINTED CHARACTERS GOOD.
TO ADJUST
USE THE FOLLOWING GUIDE IN MAKING READJUSTMENTS:
DENSITY OF TOP AND BOTTOM OF CHARACTERS NOT EQUAL AND/OR UNDERSCORING OR OVERSCORING OF CHARACTERS
---REFINE PLATEN - VERTICAL (PAPER FEED) ADJUSTMENT BY MOVING
PLATEN TOWARD PORTION OF LIGHT DENSITY.
LEFT CHARACTER (T) OF POOR QUALITY
---USING LEFT PRY POINTS, REFINE STOP PLATE (CARRIAGE) ADJUSTMENT.
RIGHT CHARACTER (H) OF POOR QUALITY
---USING RIGHT PRY POINTS, REFINE STOP PLATE (CARRIAGE)
ADJUSTMENT.
CHARACTERS SPREAD OUT
---REFINE STOP PLATE (CARRIAGE) ADJUSTMENT BY MOVING PLATE
FRONTWARD.
CHARACTERS RUN TOGETHER
---REFINE STOP PLATE (CARRIAGE) ADJUSTMENT BY MDVING PLATE REARWARD.

BOTH CHARACTERS LIGHT ON LEFT SIDE
---REFINE TYPEWHEEL (CARRIAGE) ADJUSTMENT BY ROTATING WHEEL CI.OCKWISE AS VIEWED FROM TOP.

BOTH CHARACTERS LIGHT ON RIGHT SIDE
---REFINE TYPEWHEEL (CARRIAGE) ADJUSTMENT BY ROTATING WHEEL
COUNTERCLOCKWISE AS VIEWED FROM TOP.

\section*{TRIP MAGNET (ANSWER-BACK}

REQUIREMENT
magnet bracket all the way to left on casting post.
TO ADJUST
POSITION MAGNET BRACKET WITH MOUNIING SCREWS (2) LOOSENED.

TRIP LEVER OVERTRAVEL (ANSWER-BACK)
REQUIREMENT
WITH ANSWER-BACK DRUM FULIY DETENTED IN STOP POSITION. ARMATURE IN ATTRACTED POSITION, WITH PLAY TAKEN UP TOWIARD THE REAR OF UNIT. ANSWER-BACK BLOCKING FOLLOWER ON HIGH PART OF BLOCKING CAM. TAKE UP AND RELEASE PLAY OF ANSWER-
back trip lever toward right pear corner of unit. TAKE UP AND HOLD play of BLOCKING CAM IN AN UPWARD DIRECTION. CLEARANCE BETWEEN END OF MAGNET ARMATURE EXIENSION AND END OF BLOCKING LATCH.

MIN. 0.006 INCH --- MAX. 0.015 INCH
TO ADJUST
POSITION ARMATURE EXTENSION WITH MOUNTING SCREW LOOSENED.


\section*{ARMAJURE GAP（ANSWER－BACK）}
（1）REQUIREMENT
WITH DISTRIBUTOR CLUTCH IN STOP POSITION．ARMATURE IN ATTRACTED POSITION．ROTATE MAINSHAFT UNTIL SHOULDER ON THE ANSWER－BACK TRIP LEVER OVERLAPS END OF
ARMATURE EXTENSION BY APPROXIMATELY
－MIN．SOME－－－MAX． 0.015 INCH AS GAGED BY EYE．
（2）REQUIREMENT
CLEARANCE BETWEEN TOP OF ARMATURE EXTENSION AND LOWER STEP OF ANSWER－BACK TRIP LEVER．
－MIN．SOME —－MAX． 0.010 INCH
TO ADJUST
POSITION ARMATURE EXTENSION BY MEANS OF AD．IUSTING SCREW
WITH LOCK NUT LOOSENED．

（RIGHT SIDE VIEW）

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965
ANSWER-BACK TRIP MAGNEI MECHANISM

(RIGHT SIDE VIEW)


```

BV7.7.7
SUB-cECNTO: 5, ISSME 1
\#S:C11, 1465

```

\section*{FUNCIION BOX CONTACTS (FUNCTION)}

REQUIREMENT
WITH CODE COMBINAIION THAT OPERATES CONTACTS SET UP IN SELECTOR AND MAIN SHAFT ROTATED UNTIL FUNCTION BAIL IS IN HIGHEST POSITION
- MIN. SOME---MAX. 0.010 INCH

BETWEEN CONTACT FUNCTION PAWL AND
CONTACT SWINGER WHEN PLAY IS TAKEN
UP TO MAKE CLEARANCE MINIMUM
TO ADJUST
POSITION CONTACT WITH CLAMP SCREWS LOOSENED.


BK2.7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1955

```

8サ2.7.?
SUS-SECNOM %, ISSUE 子
UZRC!, 19F=

```


DIAL TO COVER
REQUIREMENT
the numbered face of dial shall be flush
TO OUTSIDE SURFACE OF COVER WITHIN
\(1 / 16\) INCH BELOW TO \(3 / 32\) INCH ABOVE
and parallel to outside surface of cover WITHIN \(1 / 16\) INCH AS GAGED BY EYE.
TO ADJUST
WITH DIAL MOUNTING BRACKET SCREWS FRICTION
TIGHT POSITION DIAL.

BK2.7.2.
SUB-SECTION 5, ISSUE 1
MARCH, 1965

LOW PAPER CONTACTS (WHEN USED)

\section*{OPERATING ARM}

REQUIREMENT
WITH PAPER SPINDLE IN PLACE, CLEARANCE BETWEEN DPERATING ARM AND SPINDLE
MIN. 0.25 INCH --- MAX. 0.30

\section*{TO ADJUST}

BEND THE WIRE OPERATING ARM. IF
CONTACT OPERATES WHEN ROLL DIAMETER
IS TOO LARGE, BEND ARM CLOSER TO
ROLL. IF CONTACT OPERATES WHEN
ROLL DIAMETER IS TOO SMALL, BEND
ARM AWAY FROM ROLL.


BASE CASTIRG POST AS FAR TO THE
ART OF
part of reader trip lever cam．take up and release
PLAY IN ARMATURE PIVOT TO REAR OF UNIT．POSITION
the reader trip lever in the center of armature EXTENSION．CLEARANCE BETWEEN END OF ARMATURE EX－ TENSION AND LATCHING SURFACE OF READER TRIP LEVER MOUNTING SCRE：／PERMITS． TO ADJUST

WITH AUXILIARY BRACKET MOUNTING SCREWS AND MAGNET BRACKET MOUNTING SCREW FRICTION TIGHT， POSITION MAGNET BPACKET．


REOUIREMENTS SPECIFYING THE ARMATURE IN THE ATTRACTED POSITION REFERS TO THE ARMATURE BEING MAGNETICALLY ATTRACTED TO THE MASNET CORE．THE MAG：JET CORE SHOULD BE ASSEMBLED TO THE MAGNET BRACKET SUCH THAT THE MAGNE CORE SLOT IS PERPENDICULAR TO THE MAGNET BRACKET PIVOT SURFACE AS GAGED BY EYE． （SEE CONTACT GAPS ADJUSTAENTI．
\[
\because 3233-122
\]

THE READER FEED MAGNET OPERATES UNDER HIGH VOLTAGE．PRECAUTIONARY MEASURES SHOULD BE TAKEN WHENEVER POWER TO THE READER IS TURNED ON．HIGH VOLTAGE WILL PERSIST FROM THE POWER PACK UNTIL APPROXI－ MATELY 10 SECONDS AFTER DISCONNECT．



BK2.7.2
SUB-SECTIDN 5, ISSUE 1
MARCH, 1965


DETENT LEVER SPRING (TAPE READER) REQUIREMENT

MIN. 3-1/2 OZS. --- MAX. 5-1/2 OZS.
TO START DETENT MOVING.

ARMATURE IN UNATTRACTED POSITION，SOME
CLEARANCE MUST EXIST，BETWEEN BLOCKING
PAWL AND RATCHET TOOTH．（SEE BLOCKING
PAWL ADJUSTMENT FOR PROCEDURE IN OB－
TAINING CLEARANCE．）THERE SHALL BE：
MIN．SOME－－－MAX． 0.008 INCH
CLEARANCE BETWEEN FEED PAWL AND RATCHET
TOOTH AND A TOTAL OF FIVE RATCHET TEETH
BETWEEN DETENT AND FEED PAYVL．
UPSTOP SPRING（TAPE（CONTINUED ON
REQUIREMENT READER）FOLLOWING PAGE）
WITH ARMATURE SPRING POST
REMOVED FROM ITS SLOT IN
MAGNET BRACKET

```

BK2.7.2
SUB-SECTION 5, ISS`E 1

```

```

\#`.7.?
%inall,
\because\&:口!!

```

FEED PAWL - ADJUSTMENT WITHOUT GAGE HC. 182102 TAPE READEP;
REQUIREMENT (PRELIMINARY)
(1) ARMATURE IN ATTRACTED POSITION. LOOSEN! T:IO UPSTOP

BRACKET MOUNTING SCREWS SO THE UPSTOP BPACKET OOES
NOT LIMIT FEED PAWL MOTION. CLEARANC: BET: IFF:,
FFED PAWL AND RATCHET TOOTH:
MIN. 0.035 INCH --- MAX. 0.045 INCH
A TOTAL OF SIX RATCHET TEETH ARE BET:/EEN
THE DETENT AND FEED PA:NL
TO ADJUST
WITH THREE MAGNET BRACKET MOUNTING SCRE: \(\because S\)
FRICTION TIGHT. POSITION MAGNET BRACKET
BY MEANS OF PRY POINTS.

\section*{- MOUNTING SCREW}

UPSTOP BRACKET


REQUIREMENT (SEE FEED PA IL ADJJSTMENT :/ITH GAGE NO. 182103 ) (2) ARMATURE IN UNATTRACTED PCSITION. SOH. CLEAPANCE MUST EXIST BET:.EEN BLOCKING PA: L AND RATCHET TOOTH. ISEE BLOCKING PA:IL ADJUSTMENT FOR PROCEDURE IN OBTAINING CLEARANCE: THE UPSTOP BRACKET SHALL LIE FLAT AGAINST THE DO N STOP BUFFER. CLEARAIICE BET:/EEN FEED PA:/LL AND

MIN. SONE -. MAX. O.OCE INCH
\%ITH TWO UPSTOP BPACKET \(\because\) OUNTING SCPE:.
FRICTION TIGHT. POSITION USSTOP BRACKET BY MEANS OF PPY POINTS.
(3) ARMATURE IN ATTPACTED POSITION: CLEADANCE BET:/EEN FEED PA \(\because\) AND RATCHET TOOTH. MN O.025 MCH -- MAX. 0.035 NHCH
 WDJUST WITH THREE MAGNET BRACKET : OUNTING SCRE \(\because\) FRICTION TIGHT. POSITION MAGNET BRACKET BY MEANS OF FRY POINTS. RECHECK REQUIREMENT NO. 2 IF NECESSARY.

RELATED ADJUSTMENT
AFFECTS
BLOCKING PA: IL
SENSING PIN
AFFECTED BY

\[
\because 32 \quad 2:-2
\]

BK. 7.2
SUB-SECTION 5, ISSUE 1 MARCH, 1965

BLOCKING PAWL (TAPE READER) REQUIREMENT

ARMATURE IN UNATTRACTED POSITION. SOME CLEARANCE MUST EXIST BETWEEN BOTTOM SURFACE OF FEED PAWL AND RATCHET TOOTH. CLEARANCE BETWEEN END OF BLOCKING PAWL AND RATCHET TOOTH
MIN. SOME --- MAX. 0.010 INCH
(the Clearance shall be some to
0.003 INCH WHEN USING A TELETYPE TAPE-WINDER).
TO ADJUST
WITH BLOCKING PAWL BRACKET MOUNTING SCREW FRICTION TIGHT. POSITION BLOCKING PAWL BRACKET BY MEANS OF PRY POINT.

RELATED ADJUSTMENT
AFFECTED BY
READER TRIP LEVER
\(\frac{\text { OVERTRAVEL }}{\text { FEED PAWL }}\)

ret ant

ARMATURE IN ITS ATTRACTED POSITION
TO MIN. I-1/2 OZS. -- MAX. \(2-3 / 4\) OZS.

SENSING PIN (TAPE READER)
REQUIREMENT
ARMATURE IN UNATTRACTED POSITION. TIP OF ALL SENSING PINS SHALL BE - FLUSH ․- MAX. 0.015 INCH BELOW THE TOP PLATE.
TO ADJUST
WITH TWO SENSING PIN GUIDE MOUNTING SCREWS FRICTION TIGHT. POSITION SENSING PIN GUIDE BY MEANS OF PRY POINTS.

RELATED ADJUSTMENT
AFFECTED BY
FEED PAWL


NOTE

THIS ADJUSTMENT MAY BE MADE BY USING THE THIN-SLOTTED END OF GAGE NO. 183102. TO CHECK THE "FLUSH TO TOP PLATE" CONDITION, THE GAGE IS HELD FLAT AGAINST THE TOP PLATE IN BACK OF THE SENSIN FINS AND MCVED FCRWARD AGAINST THE SENSING PINS. IF ANY SENSING PINS ARE DEFLECTED BY THE GAGE, THEN THE "FLUSH TO TOP PLATE" CONDITION HAS NOT BEEN MET AND THE SENSING PIN GIJIDE MUST BE LOWERED. TO CHECK THE ". \(015^{\prime \prime}\) BELOW THE PLATE" CONDITION, THE GAGE IS HELD DIRECTLY ABOVE THE SENSINF PINS. A CLEARANCE OF. . 0 ! \(5^{\prime \prime}\) OR LeSS MUST BE PRESENT.
```

BK2.7.2
SUB-SECTION 5, ISSUE I
MARCH, 1965

```




BK2.7. .
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

BK2.7.7.
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

TAPE OUT PIN SPRING (TAPE READER) REQUIREMENT

WITH START-STOP LEVER IN STOP POSITION.
MIN. I OZ. --- MAX. 3 OZS.
TO START TAPE OUT PIN MOVING.


ARMATURE SPRING (TAPE READER) REQUIREMENT

WITH ARMATURE IN ITS UNATTRACTED POSITION



BK2.7.?
SUB-SECTION 5, ISSUE 1
MARCH, 1965


\section*{POST, BRACKET AND PLATE}

RECUIREMENT (PRELIMINARY)
AT THE TIME OF ASSEMBLY OR REASSEMBLY THE
POST, BRACKET AND PLATE ASSEMBLY SHALL BE assembled so that the plate shall be vertical OR WITHIN 2 DE GREES FROM VERTICAL IN A CLOCKWISE DIRECTION (AS GAGED BY EYE)-
TO ADJUST
ASSEMBLE POST, BRACKET AND PLATE ASSEMBLY TO MEET REQUIREMENT.


ARM (TAPE NUDGER) POST
NOTE
THIS ADJUSTMENT APPLIES ONLY TO UNITS WHICH have an elongated hole in the casting.

REQUIREMENT
AT THE TIME OF ASSEMBLY OR REASSEMBLY THE POST SHALL BE IN ITS MOST REARWARD POSITION TO ADJUST

ASSEMBLE POST TO MEET REQUIREMENT.


BK2.7.7.
SUB-SECTION 5, ISSUE 1 MARCH, 1965
FEEDWHEEL RATCHET AND PAWL (PRELIMINARY) REQUIREMENT

THE PLAIE SHALL BE IN MIDDLE OF sLOT LOCATED IN PLATE W/BUSHING (AS GAGED BY EYE).
TO AD JUST
WITH SCREW FRICTION TIGHT ADJUST PLATE.
-PLATE W/BUSHING W/POSTS


WITH PERFORATOR UNIT REMOVED FROM PRINTER
AND WITH ALL PAWLS IN THEIR UPPERMOST PO-
SITION THE STRIPPER BAIL SHALL CLEAR THE
BOTTOM CORNER OF THE STRIPPING SURFACE OF LOWER MOST PAWL BY
- MIN. SOME --- MAX. 0.010 INCH AS CAGED BY EYE.
TO ADJUST
STRIP ALL PAWLS TO THEIR UPPERMOST
POSITION. MANUALLY OPERATE POWER BAIL
SO THE STRIPPER BAIL LINES UP DIRECTLY
UNDER BOTTOM CORNER OF STRIPPING SURFACE
OF LOWER MOST PAWL. LOOSEN SCREW AND
ROTATE BRACKET TO MEET REQUIREMENT.
CHECK ADJUSTMENT BY OSCILLATING
POWER BAIL SO STRIPPER BAIL MOVES SLIGHTLY TO
LEFT AND TO RIGHT OF BOTTOM CORNER OF STRIPPING
SURFACE OF LOWER MOST PAWL. READJUST IF NECESSARY.


LINK PLATE W/BUSHING

```

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

SEE NOTE BELOW
TAPE PUNCH DRIVE (PRELIMINARY) REQUIREMENT
(1) THE SCREW HEAD THAT SECURES THE ARM

TO FUNCTION SHAFT SHALL BE IN MIDDLE OF
OPENING IN PLATE W/BUSHING W/POST
(AS GAGED BYEYE).
TO ADJUST
LOOSEN ADJUSTING SCREW AND POSITION PLATE W/BUSHING W/POST.
REQUIREMENT
(2) WITHOUT TAPE IN TAPE PUNCH UNIT.

ROTATE PRINTER MAIN SHAFT UNTIL
THE FUNCTION SHAFT AND POWER BAIL
ARE IN MOST FORWARD POSITION.
MIN. \(0.070 \mathrm{INCH}-\mathrm{MAX} . \quad 0.090 \mathrm{INCH} \longrightarrow\)
CLEARANCE BETWEEN THE REAR ROLLER OF
TAPE CHUTE ASSEMBLY AND HIGHEST POINT
ON ARM. (WITH ROLLER PLAY TAKEN
UP TOWARD REAR AND ARM PLAY TAKEN
UP IN CLOCKWISE DIRECTION).
TO ADJUST
WITH SCREW FRICTION TIGHT POSITION
PLATE W/BUSHING W/POST USING
SCPEWDRIVER PRY POINTS TO MEET
REQUIREMENT.


PLATE W/BUSHING


NOTE
TAPE PUNCH DRIVE, PUNCH PIN PENETRATION, POST BRACKET AND PLATE, AND FEED WHEEL RATCHET AND PAWL ADJUSTMENT MUST BE MADE IN SEQUENCE. PRIOR TO MAKING THESE ADJUSTMENTS CHECK, POST BRACKET AND PLATE, ARM (TAPE NUDGER) POST, FEED WHEEL RATCHET AND PAWL, AND STRIPPER BAIL UPSTOP ADJUSTMENTS.

REQUIREMENT: UNDER THE FOLLOWING CONDITIONS:
(1) MOUNTED TAPE PUNCH UNIT (WITHOUT TAPE) IN THE "ON" POSITION
(2) 5 LEVEL UNIT - WITH EITHER THE FIGS. "D" OR THE RUB-OUT COMBINATION IN THF TAPE PUNCH UNIT.
8 LEVEL UNIT - WITH THE RUB-OUT COMBINATION IN THE TAPE PUNCH UNIT.
(3) WITH THE PRINIER FUNCTION SHAFT AND THE FOWER BAIL IN THE MOST FORWARD POSITION.

MIN. 0.032 INCH --- MAX. 0.037 INCH
CLEARANCE BETWEEN TOP SURFACE OF FURTHEST LEVER AND BOTTOM SURFACE OF PUNCH BLOCK HOLDER. THERE SHALL BE NO LESS THAN 0.017 INCH CLEARANCE between the closest lever and the bottom surface of the punch block holder.


TO ADJUST
5 LEVEL UNIT: MOVE CODE LEVER MOUNTING POST TO ITS LOWER MOST POSITION AND TIGHTEN SCREW FRICTION TIGHT. WITH RUB-OUT COMBINATION IN TAPE PUNCH UNIT AND POWER BAIL IN MOST FORWARD POSITION MEASURE THE GAP BETWEEN TOP SURFACE O. FURTHEST LEVER AND BOTTOM SURFACE OF PUNCH BL.OCK HOLDER. REPEAT OPERATION WITH FIGS. "D" COMBINATION. WITH COMBINATION THAT MEASURES LARGEST GAP OF THE TWO COMBINATIONS IN TAPE PUNCH UNIT MANUALLY ROTATE PRINTER MAIN SHAFT SO EUNCTION SHAFT AND POWER BAIL ARE IN MOST FORWARD POSITION. WITH A
0.037 INCH GAGE PLACED TO RIGHT OF PUNCH PIN AND BETWEEN FURTHEST CODE LEVER AND IN CONTACT WITH BOTTOM SURFACE OF PUNCH BLOCK HOLDER MOVE POST UPWARD SO THAT TOP SURFACE OF LEVER JUST TOUCHES THE GAGE. RECYCLE AND CHECK THE GAP AT THE FURTHEST LEVER. THE GAP SHALL BE BETWEEN 0.032 INCH TO 0.037 INCH. THE GAP BETWEEN TOP SURFACE OF CLOSEST LEVER AND BOTTOM SURFACE OF PUNCH BLOCK HOLDER SHALL NOT BE LESS THAN 0.017 INCH (WITH GAGE PLACED TO THE RIGHT OF THE PUNCH PIN). REFINE ADJUSTMENT TO MEET REQUIREMENT.
8 LEVEL UNIT: MOVE CODE LEVER MOUNTING POST TO ITS LOWER MOST POSITION AND
IIGHTEN SCREW FRICTION TIGHT. WITH RUB-OUT COMBINATION IN TAPE PUNCH UNIT
MANUALLY ROTATE PRINTER MAIN SHAFI SO THAT FUNCTION SHAFT AND POWER BAIL ARE IN MOST FORWARD POSITION. WITH A 0.037 INCH GAGE PLACED TO RIGHT OF
PUNCH PIN AND BETWEEN FURTHEST CODE LEVER AND IN CONTACT WITH BOTTOM SURFACE OF PUNCH BLOCK HOLDER MOVE POST UPWARD SO THAT TOP SURFACE OF LEVER JUST
TOUCHES GAGE. RECYCLE AND CHECK GAP AT FURTHEST LEVER. THE GAP SHALL BE BETWEEN 0.032 INCH TO 0.037 INCH. THE GAP BETWEEN TOP SURFACE OF CLOSEST LEVER AND BOTTOM SURFACE OF PUNCH BLOCK HOLDER SHALL NOT BE LESS THAN 0.017 INCH (WITH GAGE PLACED TO RIGHT OF PUNCH PIN). REFINE ADJUSTMENT TO MEET REQUIREMENT.

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

\section*{POST, BRACKET AND PLATE}

REQUREMENT: (FINAL)
5 LEVEL UNIT: WITH FIGS. "D" COMBINATION IN TAPE PUNCH UNIT AND WITH PRINTER
FUNCTION SHAFT AND POWER BAIL IN REAR MOST POSITON THERE SHALL BE
MIN. 0.005 INCH --- MAX. 0.015 INCH
CLEARANCE between the "A-O" SENSING LE/ER AND PAWL. THERE SHALL bE SOME
CLEARANCE BETWEEN THE "A-8" SENSING LE/ER AND ITS PAWL. WITH RUB-OUT
CCMBINATION IN TAPE PUNCH UNIT AND WITH PRINTER FUNCTION SHAFT AND POWER BAIL in rear most position there shall be some clearance between the feed sensing léer AND ITS PAWL AND CODE SENSING LEVERS AND THEIR PAWLS.
8 LEVEL UNIT: WITH RUB-OUT COMBINATION IN TAPE PUNCH UNIT AND WITH FUNCTION SHAFT
AND POWER BAIL IN REAR MOST POSITION THERE SHALL BE
MIN. 0.005 INCH --- MAX. 0.015 INCH
CLEARANCE BETWEEN " 0 " SENSING LeVER AND PAWL. THERE SHALL be some CLEARANCE between the feed sensing lever and its pawl and code sensing levers and their pawls.
CAUTION: EXERCISE CARE SO THAT THE GUIDE ALWAYS GUIDES THE PAWL AND LEVER
SIMULTANEOUSLY. AVOID ROTATING GUIDE IN THE COUNTER-CLOCKWISE DIRECTION FROM ITS MOST VERTICAL POSITION.

\section*{TO ADJUST}

5 LEVEL UNIT: WITH FIGS. "D" COMBINATION IN TAPE PUNCH UNIT AND WITH PRINTER FUNCTION SHAFT AND POWER BAIL IN REAR MOST POSITION CHECK THE GAP BETWEEN THE A-O SENSING LEVER AND ITS PAWL. LOOSEN SCREW AND ROTATE POST BRACKET AND PLATE ASSEMBLY ONLY IF THE GAP IS NOT PER REQUIREMENT. (DO NOT POSITION POST, BRACKET AND PLATE ASSEMBLY JUST TO BIAS THE LOW OR HIGH SIDE OF THE CLEARANCE.) WHILE MANUALLY BIASING THE AUXILIARY BAIL (JUST BELOW THE TABS IN NO. 2 AND 5 CODE LEVERS) DOWNWARD, PRESS DOWN LIGHTLY ON THE MOST REARWARD PORTION OF THE A-8 sensing lever. the a-8 Sensing lever shall have SOME MOVEMENT BEFORE MOTION IS TRANSFERRED TO ITS PAWL. IF NO MOVEMENT IS PRESENT INCREASE THE GAP SLIGHTLY BETWEEN THE A-O SENSING LEVER


AND ITS PAWL WITHIN ITS 0.005 INCH TO 0.015 INCH LIMITS UNTIL SOME MOVEMENT IS PRESENT. WITH RUB-OUT COMBINATION IN TAPE PUNCH UNIT AND WITH PRINTER FUNCTION SHAFT AND POWER BAIL IN REAR MOST POSITION MANUALLY BIAS CODE LEVERS IN FRONT OF PUNCH PINS DOWNWARD AND CHECK THE \(1,2, F, 3,4\), AND 5 SENSING LEVERS FOR MOVEMENT BEFORE MOTION IS TRANSFERRED TO THEIR PAWLS. READJUST THE POST, BRACKET AND PLATE ASSEMBLY UNTIL SOME MOVEMENT IS PRESENT BETWEEN EACH SENSING LEVER AND ITS PAWLS. RECHECK THE 0.005 INCH TO 0.015 INCH GAP REQUIREMENT BETWEEN THE A O SENSING LEVER AND ITS PAWL.

8 LEVEL UNIT: WITH RUB-OUT COMBINATION IN TAPE PUNCH UNIT AND WITH PRINTER FUNCTION SHAFT AND POWER BAIL IN REAR MOST POSITION CHECK THE GAP BETWEEN THE NO. " " " SENSING LEVER AND ITS PAWL. LOOSEN SCREW AND ROTATE POST, BRACKET AND PLATE ASSEMBLY ONLY IF GAP IS NOT PER REQUIREMENT. (DO NOT POSITION POST, BRACKET AND PLATE ASSEMBLY JUST TO BIAS THE LOW OR HIGH SIDE OF THE CLEARANCE.) WHILE MANUALLY BIASING CODE LEVERS IN FRONT OF THE PUNCH PINS DOWNWARD PRESS DOWN LIGHTLY ON THE MOST REARWARD PORTION OF EACH SENSING LEVER. EACH SENSING LEVER SHALL HAVE SOME MOVEMENT BEFORE MOTION IS TRANSFERRED TO ITS PAWL. READJUST THE POST, BRACKET AND PLATE ASSEMBLY UNTIL THE REQUIREMENT IS MET. RECHECK THE 0.005 INCH --0.015 INCH GAP REQUIREMENT.

NOTE: REMAKE STRIPPER BAIL UPSTOP ADJUSTMENT ONLY IF POST, BRACKET AND PLATE ASSEMBLY IS ROTATED TO MEET THIS REQUIREMENT.


BK2.7.2.
SUB-SECTION 5, ISSUE 1
MARCH, 1965


WITH A PIECE OF TAPE PERFORATED WITH A SERIES OF "R AND Y" COMBINATIONS FOR FIVE LEVEL UNITS OR "R AND - HYPHEN" COMBINATIONS FOR EIGHT LEVEL UNITS PLACED OVER THE SMOOTH SIDE OF THE 156011 TAPE GAUGE SO THAT THE CIRCULAR PORTION OF THE FIRST NUMBER 2 CODE HOLE IN THE TAPE IS CONCENTRIC WITH THE FIRST HOLE OF the tape gauge, the next four holes in the tape gauge should be visible through the number 2 CODE hOLES IN THE TAPE AND the CIRCULAR PORTION OF THE LAST. (SIXTH) NUMBER 2 CODE HOLE IN THE TAPE SHALL BE ENTIRELY WITHIN THE 0.086 INCH DIAMETER HOLE OF THE TAPE GAUGE. OPERATE THE TAPE PUNCH MECHANISM UNDER POWER AND CHECK PERFORATIONS TO MEET REQUIREMENT.
TO ADJUST
POSITION SPRING UPWARDS IN GROOVES UNTIL REQUIREMENT IS MET.


WITH TAPE REMOVED FROM THE MECHANISM THE BIASING SPRING SHALL REST AGAINST SIDE OF the Clearance stot in block and shall be SYMMETRICAL (AS GAGED BY EYE) ABOUT THE TAPE OPENING OF THE BLOCK.
TO ADJUST
WITH SCREW FRICTION TIGHT POSITION SPRING SO THAT IT JUST RESTS AGAINST THE SIDE OF CLEARANCE AND IS SYMMETRICAL ABOUT THE TAPE OPENING.

```

BK2.7.2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

```

CODE BAR LEVER SPRINGS
REQUIREMENT
WITH THE PRINTER IN STOP POSITION AND
TAPE PUNCH UNIT MOUNTED TO PRINTER
MIN. 3/4 OZ. -- MAX. \(1-3 / 4\) OZS.
TO PULL SPRING TO ITS INSTALLED LENGTH.


SENSING LEVERS SPRINGS
REQUREMENT
WITH TAPE PUNCH IN STOP POSITION
- MIN. 15 GRAMS---MAX. 32 GRAMS

TO START LEVER MOVING.


WITH A SPRING SCALE LOCATED ON STEP BELOW
SPRING HOOK AND WITH SENSING LEVER SPRING
REMOVED
UPPER SPRING
MIN. \(7 / 8 \mathrm{OZ}\).
MAX. 1 1/2 OZs.
TO START PAWL MOVING
LOWER SPRING
\(\begin{aligned} & \text { MIN. } 11 / 2 O Z S \\ & M A X .21 / 8 O Z S .\end{aligned}\)


BK2.7. 2
SUB-SECTION 5, ISSUE 1
MARCH, 1965

\section*{FEED PAWL SPRING \\ REQUIREMENT}

WITH TAPE PUNCH IN STOP POSITION
MIN. 1/2 OZ. --- MAX. \(10 Z\)
TO START PAWL MOVING.


DETENT LEVER SPRING
REQUIREMENT
WITH TAPE PUNCH IN STOP POSITION
MIN. 10 OZS. ---MAX. 13 OZS.
TO START DETENT LEVER MOVING.


TAPE CHUTE ASSEMBLY COMPRESSION SPRING
REQUIREMENT
WITH TENSION SPRING REMOVED AND THE PRESSURE
ROLLER SIIGHTLY ABOVE THE FEED WHEEL, PUSH AXIALL)
OV THE FRONT PLATE OF TAPE CHUTE ASSEMBLY
-MIN. 24 OZS. ---MAX. 34 OZS.
to start tape chute assembly moving.


ON-OFF CONTROL LEVER DETENT SPRING
REQUIREMENT
WITH THE LEVER WITH BUSHING AND POST HELD IN THE "OFF" POSITION (TAPE PUNCH UNIT OFF) HOOK SCALE IN GROOVE AND PULL

"REL.", "B.S.P.", "ON" OR "OFF" BUTTONS REQUIREMENT

PUSH DOWN \(1 / 8\) INCH (AS GAGED BY EYE)
WHILE THE OTHER BUTTONS REMAIN IN THE
NORMAL UPWARD POSITION.
MIN. \(1 / 2 \mathrm{OZ}\). ---MAX. 1 i/2 OZS.


BK2.7.2.
SUB-SECTION 5, ISSUE 1 MARCH, 1965

BACK SPACE LEVER SPRING REQUIREMENT

WITH TAPE PUNCH IN STOP POSITION
MIN. \(3 / 4 \mathrm{OZ}\). --MAX. \(11 / 2 \mathrm{OZS}\). TO PULL SPRING TO ITS INSTALLED LENGTH.

TAPE CHUTE ROLLER SPRING REQUIREMENT

PULL UP ON THE SHAFT JUST TO THE LEFT OF THE ROLLER

(1) WITH SPRING IN UPPER MOST GROOVE

MIN. 40 OZS. --- MAX. 48 OZS.
(2) WITH SPRING IN LOWER MOST GROOVE

MIN. 22 OZS. ---MAX. 28 OZS.
TO START LIFTING TAPE CHUTE ROLLER.


\section*{DRIVE LINK SPRING}

REQUIREMENT
WITH TAPE PUNCH IN STOP POSITION
MIN. 7 OZS.---MAX. 9 OZS.
TO START DRIVE LINK MOVING.


PUNCH BLOCK ASSEMBLY (5 LEVEL \& 8 LEVEL) REQUIREMENT

REMOVE PUNCH BLOCK ASSEMBLY FROM TAPE PUNCH UNIT TO PERFORM THIS CHECK.
WITH THE PUNCH PIN SLOTS FACING THE GUIDE PIN
-MIN. SOME--MAX. 4 OZS.
TO START EACH PUNCH MOVING. THIS REQUIREMENT
MUST BE MET ANYWHERE ALONG THE PUNCHES
travel in the tape punch unit.


\section*{TELEX ROTARY DIAL ASSEMBLY}

\section*{SERVICING}
CONTENTS ..... PAGE
1 General ..... 2
Requirements ..... 2
Procedure ..... 3
\begin{tabular}{|c|c|}
\hline 1. & GENERAL \\
\hline 1.1 & This section outlines for Equipment Technicians the procedure for checking and servicing rotary dial assemblies. \\
\hline 1.2 & The procedure applies to all teleprinter equipment using a rotary dial assembly. \\
\hline 2. & REQUIREMENTS \\
\hline 2.1 & The dial assembly shall operate smoothly without slipping or skipping pulses. \\
\hline 2.2 & Dial pulses are produced at the rate of ten per second with the contacts open for \(0.061 \pm 0.003\) second during each pulse interval. \\
\hline 2.3 & The off-normal contacts are normally open, and close when the dial wheel is rotated from its idle position. These contacts are used to blind the printer selector when dialling is in process. \\
\hline 3. & PROCEDURES \\
\hline 3.1 & All rotary dial assemblies are to be checked during service calls and when telex units are being set up in Service Centres. \\
\hline 3.2 & The dial assembly shall not require excessive windup force nor stall on slow return. Check by operating the dial several times. If the dial fails these requirements or is suspected of giving wrong numbers, replace the dial assembly. \\
\hline 3.3 & Inspect dial assembly for grease, grit, or other foreign matter that may impair its operation. If any of these conditions prevail, replace the dial assembly. \\
\hline 3.4 & Inspect the wiring. The wires should be arranged so that they will not interfere with any moving parts. \\
\hline 3.5 & Inspect the contact springs for sharp kinks, bends, or pitting of the contacts. Replace dial assembly if kinks bends or pitting is excessive. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 3.6 & Remove any lubricant which may be present on co \\
\hline 3.7 & Do not lubricate any part of dial assembly. \\
\hline 3.8 & Testing and Adjustment of Pulsing Contacts \\
\hline 3.8 .1 & The dial pulsing contacts shall be checked after disconnecting dial assembly from call control unit. With ohmmeter on XI ohms scale and meter leads connected to either side of dial pulsing contacts, dial zero and note deflection of meter needle. The needle should vibrate either 40 percent of full deflection from left hand side of scale or 60 percent from right hand side. \\
\hline 3.8 .2 & To adjust, carefully bend the spring shelf that rides the pulsing cam. Increasing tension, or downward pressure on the adjustable spring shelf, will decrease contact break length. Decreasing tension, or upward pressure on spring shelf will increase the contact break length. \\
\hline 4. & PARTS REPLACEMENT \\
\hline 4.1 & Replacement dial assemblies for model 32, 33 or 35 printers are available from Teletype Corpn. by ordering part number 181645 dial assemblies. \\
\hline
\end{tabular}

PLANT MANUAL BK2.13 ISSUE 1
A UG UST, 1964

5-A TICKER
ADJUSTMENTS
CONTENTS PAGE
1. 5-A TICKER CODE ..... 3
2. ORIENTATION SCALE GUIDE ADJUSTMENT ..... 4
3. MAIN SHAFT POSITION ..... 4
4. OPERATING CAM CLUTCH RELEASE ARM POSITION ..... 4
5. FLUTTER LEVER GAP ADJUSTMENT ..... 6
6. DETENT BRACKET ADJUSTMENT ..... 6
7. DETENT SPRING TENSION ..... 6
8. SELECTOR LEVER GUIDE ADJUSTMENT ..... 6
SELECTOR LEVER GUIDE SHIMS ADJUSTMENT ..... 6
10. SELECTOR ARMATURE PIVOT SCREWS ADJUSTMENT ..... 7
11. SELECTOR ARMATURE POLE PIECES AND BUFFER SCREWS ADJUSTMENT ..... 7
12. MAGNET BASE POSITION ..... 9
13. SELECTOR DRUM RETURN LEVER SPRING TENSION ..... 10
FLUTTER LEVER STOP SCREW ADJUSTMENT ..... 10
14.
TRANSFER BAIL SHAFT POSITION ..... 10
16. OPERATING CAM AND RELEASE BAIL ROLLERS ADJUSTMENT ..... 10
17. CAM RELEASE BAIL POSITION ..... 10
18. CAM RELEASE BAIL SPRING TENSION ..... 11
19. TRANSFER LEVER BEARING-BRACKET POSITION ..... 11
20. TYPEWHEEL STOP PIN SPRING TENSION ..... 12
21. TYPEWHEEL STOP ARM LATCH SPRING TENSION ..... 12
22. TYPEWHEEL SHAFT UNIT REPLACEMENT AND TRANSFER BAIL ADJUSTMENT ..... 12
23. TYPEWHEEL SHAFT GEAR POSITION ADJUSTMENT ..... 13
24. MOTOR POSITION ADJUSTMENT ..... 13
25. FEED BAIL SPRING TENSION ..... 13
26. PRESSURE WHEEL LEVER SPRING TENSION ..... 13
27. FEED RATCHET DETENT LEVER SPRING TENSION ..... 13
28. FEED PAWL ARM AND SPACE BLOCKING ARM ADJUST MENT ..... 14
CONTENTS ..... PAGE
29. FEED PAWL SPRING TENSION ..... 14
30. PRINTING HAMMERS ADJUSTMENT ..... 14
TYPEWHEEL SHAFT ADJUSTMENT ..... 15
32. PRINTING BAIL ADJUSTMENT ..... 15 ..... 15
33. HAMMER BACKSTOP ADJUSTMENT ..... 15
35. TAPE SHIELD ADJUSTMENT
15
15
TAPE SHIELD ADJUSTMENT
SHIFT LEVER ADJUSTMENT ..... 16
TYPEWHEEL STOP ARM ADJUSTMENT ..... 16
TAPE GUIDE POSITION ..... 17
PRINTING LINK ECCENTRIC SCREW ADJUSTMENT ..... 17
SELECTOR CAM FRICTION CLUTCH TENSION ..... 17
OPERATING CAM FRICTION CLUTCH TENSION ..... 17
TYPEWHEEL SHAFT FRICTION CLUTCH TENSION ..... 17
TROUBLE CHECK ..... 18

BK2. 13
ISSUE 1
AUGUST, 1964

5-A TICKER CODE
\begin{tabular}{|c|c|c|c|}
\hline S & \[
\begin{gathered}
1 \\
\bigcirc
\end{gathered}
\] & \(s\) & \[
\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 6 \\
0
\end{array}
\] \\
\hline Pr & 0 & & \(\bigcirc 0\) \\
\hline U & 000 & 1/4 & 0000 \\
\hline I & 00 & 9 & 000 \\
\hline E & \(\bigcirc\) & 5 & \(0 \quad 0\) \\
\hline A & 00 & 1 & 000 \\
\hline . & 0 & c & 0 \\
\hline F & 000 & 6 & 0000 \\
\hline N & 00 & & \\
\hline K & 0000 & £ & 00000 \\
\hline C & 000 & 3 & 000 \\
\hline D & 0.0 & 4 & 000 \\
\hline at & 0 & 0 & \(\bigcirc 0\) \\
\hline J & 000 & & \\
\hline R & \(\bigcirc 0\) & & \\
\hline Y & 000 & 3/4 & 0000 \\
\hline H & 00 & 8 & 000 \\
\hline Q & 0000 & * & 00000 \\
\hline P & 000 & & \\
\hline Z & 00 & 7/8 & \(0 \quad 00\) \\
\hline T & 0 & 1/8 & 00 \\
\hline W & 000 & 1/2 & 0000 \\
\hline L & 0 O & & \\
\hline X & 0000 & 5/8 & 00000 \\
\hline M & 000 & \$ & 0000 \\
\hline & 00000 & rubout & 000000 \\
\hline V & 0000 & 3/8 & 00000 \\
\hline B & 000 & 2 & C 000 \\
\hline 0 & 00 & - & 000 \\
\hline \& & 0000 & b & 00000 \\
\hline G & 000 & 7 & 0000 \\
\hline
\end{tabular}
2. 1 Loosen the guide mounting screws and the orientation scale thumb nut. Set the scale at 60 and turn the thumb nut in until the scale is friction tight. Rotate the selector cam drum until the stop arm is opposite the stop Iug on the scale. Pivot the scale on the scale stud so that the top surface of the stop lug is in line with the top surface of the stop arm. Tighten thumb nut. Adjust the position of the guide by means of its mounting screws so that the front and rear of the guide touches or is within \(.010^{\prime \prime}\) of the orientation scale.
3. MAIN SHAFT POSITION (Figure 1)
3.1 With the selector armature to the spacing side, rotate the main shaft until the selector cam drum stop arm is in front of the stop lug. Loosen the four main shaft bearing bracket screws and adjust the pos ition of the main shaft so that there is \(.004^{\prime \prime}\) clearance between the selector cam drum stop arm and the stop lug, after the right hand bearing bracket screws have been tightened.


Fig. 1
4.

OPERATING CAM CLUTCH RELEASE ARM POSITION (Figure 2)
4.1 Rotate the main shaft until the operating cam is stopped by the cam release bail arm. Adjust the position of the clutch release arm by

BK2.13
ISSUE 1
AUGUST, 1964
4.1 means of its clamping screws so that the clutch teeth are separated between \(.012^{\prime \prime}\) to \(.015^{\prime \prime}\), so that there is at least . 002" between the rear of the clutch release arm and the clutch driven member. In this position the engaging edge of the clutch release arm and the high part of the driven member cam should engage \(1 / 32^{\prime \prime}\) and to the full depth of the clutch release arm. If the release arm is not safely on the high part of the driven member cam, when the operating cam is stopped by the cam release bail arm, the clutch teeth may become engaged at this time, causing damage to the printer.


Fig. 2

\section*{MAIN SHAFT JAW CLUTCH SPRING TENSION}

It should require from 12 to 18 ozs. to separate the clutch teeth.


Fig. 3
5.1 Remove flutter lever and spring. Loosen flutter lever clamping nut and set screw. Replace flutter lever and adjust the flutter lever gap so that the flutter cam will turn freely in the gap and minimum play of the flutter lever on the cam, checked for one complete revolution, is less than . 002'. Tighten set screw. Remove flutter lever, tighten clamping nut and replace the flutter lever and spring.

\section*{6. DETENT BRACKET ADJUSTMENT}
6.1 Adjust the position of the detent bracket so that the travel of the detent is equidistant from the point on the selector lever when the selector lever is moved to either marking or spacing positions. Check \#1 and \#6 detents. When making this adjustment, make certain that the centres of the detents and the centres of the selector levers are in line.
7. DETENT SPRING TENSION
7.1 It should require from 3 to 4 ozs. to start each detent moving.
8. SELECTOR LEVER GUIDE ADJUSTMENT (Figure 4)
8.1 Loosen the selector lever guide mounting screws and adjust the
position of the selector lever guide so that when the selector armature
is held to the spacing side and the main shaft rotated, the left side
of the spacing cams on the selector cam drum will line up with the
left side of the spacing arms of the selector levers. When making
this adjustment, the spacing arms should be moved toward the front
of the printer so as to take up all play of the lever in the guide.

NOTE: Due to variations, all the selector lever arms may not line up with the left side of the cams. It is, therefore, satisfactory if one or more arms line up with the left s ide of the cams, provided the other cams are fully on.
9. SELECTOR LEVER GUDE SHIMS ADJUSTMENT (Figure 4)
9.1 With the selector levers in the spacing position (up) and the selector ar mature to the spacing side, turn the main shaft and check to see

BK2. 13
ISSUE 1
A UG UST, 1964
9. 1 that the spacing cams on the selector cam drum clear the spacing arms of the selector levers by at leas t .002 " (See "A" Figure 4). Place the selector levers in the marking position (down). Turn the main shaft and at the same time move the selector cam drum by hand so that the marking cams on the drum will be in line with the marking arms of the selector levers. The marking cams should clear the marking arms by at least. 002" (See "B" Figure 4). Add or remove shims located under the selector lever guide to divide the clearance equally between the spacing and marking cams and arms.


Fig. 4

\section*{10. SELECTOR ARMATURE PIVOT SCREWS ADJUSTMENT}
10.1 Remove the permanent magnet and back off the armature buffer screws. Then adjust the up and down position of the s elector arm ature, by means of its pivot screws, so that the top surface of the armature is flush with the top surface of the left end of the pole pieces, and the selector armature is free and without play.
11. SE LECTOR ARMATURE POLE PIECES AND BUFFER SCREWS ADJUSTMENTS (Figure 5)
11.1 Back off the armature buffer screws and loosen the armature pole piece mounting screws and posts. Place a \(.020^{\prime \prime}\) gauge on each end of the front and rear pole pieces. Clamp the pole pieces together by hand and tighten the pole piece mounting screws and posts.

Before removing the gauges, adjust the buffer screws so that there is.003" clearance between each buffer screw and the side of the armature.

Remove gauges and replace the permanent magnet so that the ends of the magnet are approximately \(3 / 4^{\prime \prime}\) from the left hand end of the laminated pole pieces.


Fig. 5
After tightening the permanent magnet clamping screws, recheck the armature buffer screws adjustment as follows: Place the selector armature on the spacing side. Hook an 8 oz . scale over the armature pin and pull at right angles to the armature towards the front of the printer. Observe the tension required to pull the armature to the marking side. Now hook the scale over the pin and pull at right angles to the armature towards the rear of the printer. Observe the tension required to pull the armature to the spacing side. The two tensions should be within one ounce of veing equal. Adjust the position of the buffer screws to obtain this result. Each tension should be at least 4 ozs. After this adjustment, the armature should still be \(.006^{\prime \prime}\) travel.

NOTE: Incases where at least 4 oz . tensions cannot be obtained, it may be necessary to replace the permanent magnet with a stronger one. (This tension does not apply in cases where non-magnetic buffer screws are used.)

BK2. 13
ISSUE 1
AUGUST, 1964


Fig. 6
12. MAGNET BASE POSITION (Figure 6)
12.1 Loosen base mounting screws. With the selector armature to the spacing side, rotate the main shaft until the selector cam stop arm has just passed the stop lug. Place the selector armature on the "marking side" and the flutter lever against the end of the armature. Then adjust the position of the magnet base so that when the main shaft is turned, the right side of the marking cams on the selector cam drum line up with the right side of the marking arms of the selector lever. When making this adjustment, the marking arms should be moved toward the rear of the printer so as to take up all the play of the lever in the guide.
.2 Due to the variations, all the selector lever arms may not line up with the right side of the cams. It is, therefore, satisfactory if one or more arms line up with the right side of the cams, provided the other cams are fully on. Now pivot the magnet base on the front mounting screw so that there is \(.002^{\prime \prime}\) clearance between the side of the selector armature and the end of the flutter lever throughout its entire travel when the selector armature is in the spacing position (See "A" Fig. 6). Recheck the alignment of the marking cams and marking arms. Tighten the mounting screws.

With the selector armature held to the spacing side, rotate the main shaft until the selector cam stop has just passed the stop lug. Hold the selector armature to the marking side and rotate the main shaft. There should be at least \(.006^{\prime \prime}\) clearance between the end of the selector armature and the side of the flutter lever when the flutter lever is
\begin{tabular}{|c|c|}
\hline 12.3 & on each high part of the flutter cam and the selector cam drum is on the spacing side (See "B" Figure 6). \\
\hline . 4 & This clearance must be sufficient to prevent any bind between the selector cam and its limiting sleeve and washer (on the main shaft) for a complete revolution of the main shaft. With the selector arm ature in the marking position, re-check the engagement of the marking cams and arms and the clearance of the spacing cams and arms. With the selector armature in the spacing position, check the reverse engagements and clearances. \\
\hline 13. & SELECTOR DRUM RETURN LEVER SPRING TENSION \\
\hline 13.1 & Adjust the flutter lever backstop by means of its mounting screws so that the return lever spring tension is from 10 to 11 ozs . and the overall length of the spring is about \(1-3 / 8^{\prime \prime}\). \\
\hline 14. & FLUTTER LEVER STOP SCREW ADJUSTMENT \\
\hline 14.1 & Place the ar mature on the spacing side. Rotate the main shaft and determine which point on the flutter cam causes the flutter lever to travel "out" the farthest. Then, with the flutter lever resting on this highest point, adjust the stop screw so that there is \(.004^{\prime \prime}\) clear ance between the screw and flutter lever. \\
\hline 15. & TRANSFER BAIL SHAFT POSITION \\
\hline 15.1 & Loosen the transfer bail shaft set screw and set the shaft so that the right end of the shaft projects beyond the side of the transfer bail approximately \(1 / 32^{\prime \prime}\). \\
\hline 16. & OPERATING CAM AND RELEASE BAIL ROLLERS ADJUSTMENT \\
\hline 16.1 & Adjust the feed bail, printing bail, transfer bail and cam release bail rollers by means of their bearing screws and nuts so that the rollers turn freely and have no play. Care should be used when adjusting printers having new style studs and rollers to see that the screw slot in the stud is not burred, as this will cause the roller to bind and wear excessively. The rollers must turn freely on the studs. \\
\hline 17. & CAM RELEASE BAIL POSITION \\
\hline 17.1 & Remove the cam release bail spring and loosen the bail collar screw. \\
\hline
\end{tabular}
17.1 Set the collar so that the bail has from .002" to . \(004^{\prime \prime}\) play between the collar and casting. Replace the spring. With the selector armature on the marking side, rotate the main shaft until the operating cam lug is stopped by the cam release bail. In this position the overlap of the stop lug on the bail arm should be \(1 / 16^{\prime \prime}\).
18.1 With the cam release bail roller resting on the low part of the cam, it should require from 16 to 20 ounces to just start the bail moving.
19. TRANSFER LEVER BEARING-BRACKET POSITION (Figure 7)
19.1

Remove the four screws and clamp holding the typewheel shaft unit to the main casting and remove the unit from the printer. Loosen the transfer bail roller arm clamping screws.
(A)


Fig. 7
. 2 Loosen the transfer lever bearing bracket clamping screws. The bracket may now be moved in all directions. First set the lateral position of the bracket, as described under " A ".
A. With the transfer bail held in the "upward" position, set the transfer bracket so that both arms of the transfer levers in line with the selector levers.
B. With the selector armature on the marking side and the flutter lever against the end of the selector armature, rotate
19.2 B. the main shaft until the selector cam stop arm is resting against the stop lug. Place all selector levers in the marking position (down). Raise the transfer bracket and check the bite that the transfer levers have on the selector levers. Then set the selector levers in the spacing position (up). Raise the transfer bracket and check the bite on the spacing side. Now shift the bracket forward or backward so that the bite on the spacing side is equal to the oite on the marking side (Figure 7). Tighten bracket clamping screws. Recheck adjustment "A".
20. TYPEWHEEL STOP PIN SPRING TENSION
20.1 Hold the typewheel stop unit in a horizontal position. Hook an 8 oz . scale over the front of the unselected stop pin and pull vertically in line with the pin slot. It should require not more than 6 ozs. to start the stop pin moving.

Allow a maximum of 7 ozs . for the ' S ' and ' G ' stop pins. The tenion of selected pins should not be less than 2 ozs . With the rubout bar in the unselected position, it should require from 5 to 7 ozs. to start the bar moving.
21. TYPEWHEEL STOP ARM LATCH SPRING TENSION
21.1 It should require 3 ozs. to just start the latch moving.
22. TYPEWHEEL SHAFT UNIT REPLACEMENT AND TRANSFER BAIL ADJUSTMENT
22.1 Loosen the transfer bail arm clamping screws until they are friction tight. Move all the code discs to marking, then replace the typewheel shaft unit and allow transfer levers to line up with their respective code discs. Replace the unit clamp and screws, leave the clamping screws friction tight so that the typewheel shaft unit can be easily repositioned. Then proceed as follows:
A. Move the armature to spacing and rotate the main shaft until the transfer bail arm roller just starts to ride up the high part of its cam.
B. Move the 1, 3 and 5 selector levers to marking (down) and the 2,4 and 6 selector levers to spacing (up). Recheck the
\begin{tabular}{|c|c|}
\hline \multirow[t]{4}{*}{22.1} & B. alignment of code discs and transfer levers. \\
\hline & C. Rotate the main shaft until the transfer bail arm roller is on the peak of its cam. \\
\hline & D. Firmly press the transfer bail inward so that the code discs are completely repositioned. While holding the transfer bail, tighten the typewheel shaft clamping screws and the transfer bail arm clamping screws. \\
\hline & E. Rotate the main shaft, the typewheel stop arm should engage on the " Y " stop pin. \\
\hline 23. & TYPEWHEE L SHAFT GEAR POSITION ADJUSTMENT \\
\hline 23.1 & Shims may be used to align the centres of the typewheel shaft gear and motor pinion. The shims should be placed on the typewheel shaft between the friction clutch assembly and the bearing. \\
\hline 24. & MOTOR POSITION ADJUSTMENT \\
\hline 24.1 & By means of the motor adjusting nuts and motor mounting nut, move one end of the motor up or down so that the minimum play between the motor pinion and the main shaft gear, checked for one complete revolution of the main shaft, is .002'. \\
\hline 25. & FEED BAIL SPRING TENSION \\
\hline 25.1 & It should require from 18 to 24 ozs . to support the feed bail. \\
\hline 26. & PRESSURE WHEEL LEVER SPRING TENSION \\
\hline 26.1 & It should require from 14 to 18 ozs. to just start the lever moving. The pressure wheel should line up with the roll evenly on the feed wheel. Check this by observing that the tape passes from the printer with equal clearance between the tape guide flanges. \\
\hline 27. & FEED RATCHET DETENT LEVER SPRING TENSION \\
\hline 27.1 & It should require from 8 to 10 ozs. to just start the lever moving. \\
\hline
\end{tabular}

BK2. 13
ISSUE 1
AUGUST, 1964


Fig. 8
28. FEED PAWL ARM AND SPACE BLOCKING ARM ADJUSTMENT
28.1 With the selector armature on the spacing side, rotate the main shaft until the transfer bail roller is at the place where it just starts to ride up the cam. Move all selector levers to the marking position (down) and rotate all the code discs to the marking position (counterclockwise) so that the rub-out bar is selected. Now continue rotating the main shaft (about one-half revolution) until the feed bail roller is on the high part of its cam.
. 2 Loosen the two screws holding the feed pawl arm and the space blocking arm. Set the position of the space blocking arm so that the arm overlaps the selected rub-out bar by \(.030^{\prime \prime}\). There should also be a clearance of \(.030^{\prime \prime}\) between the blocking arm and the rub-out bar. Then, before tightening the screws and without disturbing the pos ition of the blocking arm, set the position of the feed pawl arm so that the end of the pawl overtravels the tooth that is in the horizontal centre of the feed ratchet wheel by approximately \(1 / 2\) tooth, or sufficient to prevent any movement of the feed ratchet when the feed bail roller passes over the low point of the operating cam. Tighten the screws.
29. FEED PAWL SPRING TENSION
29.1 It should require from 2 to 4 ozs. to just start the pawl moving.
30. PRINTING HAMMERS ADJUSTMENT

\section*{30.1} Remove the typewheel. Adjust the position of the printing hammers

35.1 so that the strip between the two openings in the tape shield is approximately \(.010^{\prime \prime}\) away from the section of the typewheel between the letter and figure characters. This adjustment should be such as to give clear printing with a minimum crimping of the tape.

Care should be taken when making this adjustment that the shield is in a horizontal plane and that the printing surfaces of the printing hammers pass through the middle of the openings in the tape shield.
36. SHIFT LEVER ADJUSTMENT
(For printers equipped with printing bails of \(54^{\circ}\) angle between the hammer striker stops.)
36.1 With the selector armature to the spacing side, rotate the main shaft until the printing bail roller has just passed the peak of the cam. Move the \#6 selector lever to the marking position (down). Now continue rotating the main shaft until the transfer bail roller is on the peak of the cam. Adjust the vertical position of the shift lever so that the end of the left tine of the fork of the lever is \(1 / 16^{\prime \prime}\) below the lower edge of the hammer striker arm. Also adjust the horizontal position of the shift lever so that there is at least .005" clearance between the shift transfer lever and the right arm of the selector lever when the print hammer striker arm is against the figures stop. Tighten clamping screws.

Back the transfer bail roller off the peak of the cam and place the \#6 selector lever in the spacing position (up). Turn the main shaft until the transfer bail roller is again on the peak of the cam. Then check the clearance between the shift transfer lever and the left arm of the selector lever. If necessary, adjust the shift lever so that this clearance is also at least . 005'. If it is necessary to readjust the shift lever, recheck adjustment (paragraph 36.1).
.3 When the shift lever has been properly adjusted, there will be at least. \(005^{\prime \prime}\) clearance between the shift transfer lever and the selector lever when in either the "letters" or "figures" position.
\begin{tabular}{|c|c|}
\hline 37.1 & ected stop pin and so that the stop arm clears the front guide disc by .004". Rotate the typewheel shaft until the " H " character on the typewheel is approximately opposite the stop arm. Press the "letters" printing hammer up against the tap and rotate the typewheel a small amount either way until the " A " character is printed clearly on the tape Tighten clamping screw. \\
\hline 38. & TAPE GUIDE POSITION \\
\hline 38.1 & Loosen the tape guide screws and set the tape guide so that its top surface is horizontally in line with the top of the tape pressure wheel and that the guide is in line with the tape guide flanges. \\
\hline 39. & PRINTING LINK ECCENTRIC SCREW ADJUSTMENT \\
\hline 39.1 & Loosen the eccentric screw nut just enough to allow the eccentric screw to be turned. Turn the screw until the printing just fails. Then turn the screw in slowly until the printing is legible and tighten the nut. \\
\hline . 2 & Before making this adjustment, care should be taken that the inker roller rides evenly over both letters and figures on the typewheel. \\
\hline 40. & SELECTOR CAM FRICTION CLUTCH TENSION \\
\hline 40.1 & With the motor running, hold the flutter lever against its backstop. Hook the scale over the selector cam stop arm and pull horizontally. It should require 18 to 22 ozs. to start the stop arm moving away from the stop lug. \\
\hline 41. & OPERATING CAM FRICTION CLUTCH TENSION \\
\hline 41.1 & With the motor running, hold the flutter lever against its backstop. Hook the scale over the operating cam friction clutch drive pin and pull up vertically. It should require 20 to 24 ozs . to start the operating cam stop lug moving away from the cam release arm. \\
\hline 42. & TYPEWHEEL SHAFT FRICTION CLUTCH TENSION \\
\hline 42.1 & With the motor running, stop the typewheel stop arm by holding the selector armature to spacing. Hook the scale over the end of the stop arm, then lift the selector stop pin. Pull at right angles to the stop arm, it should require from 12 to 16 ozs . to hold the stop arm against the clutch friction. \\
\hline
\end{tabular}
(1) MOTOR DOES NOT OPERATE:
1. AC plug out of receptacle.
2. Blown fuse (base, table or building).
3. Faulty vase switch.
4. Broken or loose connection in powers leads of equipment.
5. Motor control relay not functioning.
6. Pinion and gear binding.

\section*{SERIES MOTOR FAILURE:}
1. Faulty brushes.
2. Damaged rings.
3. Low brush tension.
4. Governor contacts pitted.
5. Shorted condenser.
6. Governor contact tension.
(2) PRINTING BLOTCHES:
1. Low clutch torque.
2. Bent or broken stop pin.
3. Worn stop arm.
4. Incomplete transfer.
5. Loose front guide disc.
6. High clutch torque.
7. Ball bearings binding.
8. Loose code disc posts.
9. Sticky code disc.
10. Worn transfer bail arm roller.
11. Space blocking arm maladjusted.
12. Loose typewheel shaft unit.
13. Shift lever maladjusted.
14. Typewheel rubbing on tape shield.
15. Stop arm maladjusted.
16. Typewheel lineup.
(3) ERRORS IN COPY:
1. Speed.
2. Friction clutch torque,

SELECTOR CAM . 18-22 ozs.
OPERATING CAM . \(20-24\) ozs.
TYPEWHEEL . 12-16 ozs.
Selector armature maladjusted.
43. (3) 4. Worn flutter lever or maladjusted.
5. Main shaft position.
6. Detent spring tension.
7. Selector lever and selector camalignment.
8. Selector lever and transfer lever alignment.
9. Transfer lever and code dise alignment.
10. Stop pins should drop in position when selected.
11. Stop arm engagement of stop pin.
12. Position of range finder.
13. Worn stop lug.
14. Selector magnet unit biased.
15. Selector magnet base position.
(4) SPRING TENSIONS: (in ounces)

Main shaft jaw clutch 12 to 18
Cam drum return lever \(\quad 10\) to 11
Stop pin (unselected) less than 6
Typewheel stop arm latch 3
Pressure wheel lever 14 to 18
Feed pawl 2 to 4
Detent spring 3 to 4
Cam release bail \(\quad 16\) to 20
Rubout bar 5 to 7
Feed bail 18 to 24
Feed ratchet detent 8 to 10
Hammer striker 4 to 6
SELECTOR CAM CLUTCH 18 to 22
OPERATING CAM CLUTCH 20 to 24
TYPEWHEELSHAFT CLUTCH 12 to 16


PLANT MANUAL BK2.14
ISSUE 1
AUGUST, 1964

\section*{128B2 SUBSE T}CONTENTS
1. 88D FILTER INSTALLATION ..... 1
LINE SERIES RESISTANCE STRAPPING ..... 3
3. LINE EQUALIZER STRAPPING ..... 3
4. OPTIONAL STRAPPING ARRANGEMENTS ..... 4
5. DESCRIPTION OF STRAPPING ARRANGEMENTS ..... 5

1.

88D FILTER INSTALLATION
1.1 88D Filter Installation on 255 Send Relay
(a) Move BK-O wire from pin 5 of relay to term. 1 of filter.
(b) Strap term. 3 of left-hand coil of filter to pin 5 of relay.

(c) Move BK wire from pin 4 of relay to term. 2 of filter.
(d) Strap term. 4 of right-hand coil of filter to pin 4 of relay.
(e) Strap term. 5 of filter to pin 1 of relay.
. 2 88D Filter Installation on 209 Receive Relay
(a) Move O-S wire from pin 13 of the relay to term. 1 of the filter.
(b) Strap term. 3 of the left-hand coil of the filter to pin 13 of the relay.
(c) Move R-W wire from pin 15 of the relay to term. 2 of the filter.
(d) Strap term. 4 of the right-hand coil to pin 15 of the relay.
(e) Strap term. 5 of the filter to pin 14 of the relay.


313D Capacitor Unit Installation
(a) Connect the three left-hand leads of the capacitor unit to term. 16.
(b) Connect the right-hand leads, one each to term. 21, 18 and 5.
(c) Strap term. 16 to nearest screw in the frame.

BK2. 14
ISSLE 1
AUGUST, 1964

2.

LINE SERIES RESISTANCE STRAPPING
\begin{tabular}{|c|c|c|}
\hline Line Resistance & Line Series Resistance & Strapping \\
\hline 400-800л & \(300 \Omega\) & 18-4 and 5-20 \\
\hline 800-1200ת & \(150 \Omega\) & 3-4 and 19-20 \\
\hline over - \(1200 \Omega\) & 0 & 3-18 and 19-5 \\
\hline
\end{tabular}
3.

LINE EQUALIZER STRAPPING
\begin{tabular}{ccc} 
Type of Line & Equalizer Strapping & \\
\cline { 1 - 1 } & & Strapping \\
Open wire & \(250 \Omega\) & \(24-25\) and \(11-26\) \\
& & \(27-28\) and \(14-29\) \\
Cable & \(500 \Omega\) & \(10-25\) and \(13-28\)
\end{tabular}

\section*{Type of Operation}

Options

\section*{Single Loop Operation}
(a) A polarential Tty and subset at drop
(b) A polarential Tty and subset at different locations
(c) B polarential Tty and subset at drop
(d) B polarential Tty and subset at different locations

B, Y,F.
B. Y,F.

B, X,F.
B,X,F.
Two Loop Operation without Line Relay
(a) A polarential with pulling magnet
(b) A polarential with holding magnet
(c) B polarential with pulling magnet
(d) B polarential with holding magnet

Two Loop Operation with Line Relay
(a) A polarential
S.Y.
G, S,X.
(b) B polarential

\section*{Additional Options}
(a) 60 cycle shunt
(b) 2-wire A polarential
(c) 2-wire B polarential
(d) Equalization

H
A,G,M,Y.
G, M,Y.
A. M.X.
M.X.

K, Y.
K
(e) Potential ground on 14 Tty
N. and para. 3 .
(f) Relay kick-off elimination

J
(g) To obtain parallel cts. on 92AW test key

T
(h) Line Balance for:
- composite lines over 200 miles long
- lines with entrance over 10 miles
- simplex cable over 100 miles

E
- simplex cable phantom circuits over 90 miles
- circuits with phantom coil midpoint grounded

BK2.14
ISSUE 1
AUGUST, 1964
5.

\section*{Option}

A
1. Strap on \(M\) resistance. (When \(M\) wiring is not used the

\section*{Description} M resistance the upper term. is open ended and the A strap is not used.)

B 1. Strap term. punchings 31-32
2. Strap term. punchings \(34-36\)
3. Strap \(4400 \Omega\) portion of resistor K.
4. Strap \(4400 \Omega\) portion of resistor F.
5. Strap out the E resistor.
6. Strap the E resistor to the D resistor.
7. Strap from the L capacitor to term. punching near the AR resistor.
8. Strap from the E capacitor to the D capacitor.
9. Strap from the other term. of the E capacitor to its adjacent term. punch.

E 1. Strap R-S wire on capacitor A.
2. Strap R-S wire on capacitor B.
3. If necessary strap terms. 1 to 16 to 17 for \(A\) or \(B\) polarential.
4. If A polarential is used the upper halves of \(A D\) and \(A N\) res. may be strapped.
5. If Figure B is used strap from \(H\) capacitor to \(G\) capacitor.

F 1-a Strap the \(400 \Omega\) portion of \(J\) resistor with Tty and subset at the drop.
1-b Strap the \(43.4 \Omega\) portion of G resistor, H and J resistor to obta in a loop current of 60 to 65 ma if the subset is at another location.

G 1. Strap the B res istor to the A resistor.
H 1. Strap pin 2 of 209 receive relay to adjacent term. punch.
2. Strap pin 6 of 209 receive relay to adjacent term. punch.
3. Strap 60 cycle suppressor as indicated in Figure A and connect it to terms. 38 and 41.


BK2. 14
ISSUE 1
AUGUST, 1964


Figure A.
5.

\section*{Option}

\section*{Description}

J 1. Strap 14 Tty fram to term. 24 on Tty.


Figure B.

K 1. Strap pin 4 of 255 send relay to adjacent ter m. punch.
2. Strap pin 8 of 255 send relay to adjacent term. punch.
3. Strap suppres sor as indicated on Figure B and comiect to terms. 39. 40, 42. 43 and 44.

L 1. Strap terms. 1 to 16 to 17.
M 1. Strap put all terms. of F resistor. 2 straps.
2. Strap out all terms. of k resistor. 2 straps.

M 3. Strap \(600 \Omega\) portion of J resistor
4. Strap \(100 \Omega\) portion of H resistor
5. Strap out E resistor
6. Strap out L resistor
7. Strap from B res . to adjacent term. punch.
8. Strap from AF res. to adjacent term. punch.
9. Strap from \(F\) cond. to \(E\) cond. upper terminals.
10. Strap from \(F\) cond. to \(E\) cond. lower terminals.
11. Strap from L cond. to N cond.
12. Strap from term. punch. 30 to 32.
13. Strap from term. punch. 33 to 34.
14. Strap from term. punch. 36 to 37.

N 1. Strap out \(R\) resistor by strapping terms. 24 to 10 to 25.
2. Strap out \(S\) resistor by strapping terms. 25 to 11 to 26 .
3. Strap out T resistor by strapping terms. 27 to 13 to 28.
4. Strap out U resistor by strapping terms. 28 to 14 to 29 .

The above are strapped to provide best transmission results on circuit.
1. Strap \(600 \Omega\) portion of \(F\) resistor.
2. Strap \(400 \Omega\) portion of J resistor.
3. Strap from \(M\) resistor to adjacent term. punch.
4. Strap from AF resistor to adjacent term. punching.
5. Strap from C resistor to B resis tor.
6. Strap from AA resistor to \(W\) res istor.
7. Strap from L capacitor to N capacitor.
8. Strap from term. punch 32 to 33.
9. Strap from term. punch 35 to 36.

T Strap the 92AW Line Test Key as follows: (from left to right)
1. Strap term. 5 to 7.
2. Strap term. 6 to 8 .

X 1. Strap from pin 2 of send relay to adjacent term punching.
2. Strap from pin 6 of send relay to adjacent term punching.
1. Strap from AD resistor to B capacitor.
2. Strap from pin 2 of send relay to adjacent term punching.
3. Strap from pin 6 of send relay to adjacent term punching.
4. When Figure B is us ed strap from H cond. to ANresistance.



\section*{TELETYPE TAPE PRINTER SET FOR \\ STOCK TICKER SERVICE}

\section*{ADJUSTMENTS}
\begin{tabular}{llr}
\multicolumn{2}{c}{ CONTENTS } & PAGE \\
\hline & GENERAL & 1 \\
1. & TAPE PRINTER & 2 \\
2. & BASE & 48 \\
3. & PROJECTOR TAPE PRINTER & 49 \\
4. & DISASSEMLER & 51 \\
5. & LUBRICATION AND REASSEMBLY & 53 \\
6. & 56
\end{tabular}
1.
1.1 This section provides adjusting information for the Teletype Tape

GENERAL Printer Set manufactured by Teletype Corporation for use in Stock Ticker Service.

The illustrations contained herein give the location of clearances, position of parts and point of scale application. Read the adjusting procedure through before making the adjustment or checking the spring tension. After an adjustment has been completed be sure to tighten any screws or nuts which may have been loosened.

Reference to left or right in the text indicates the viewer's left or right as he faces the front of the unit.

When disengaged, the clutches are latched in their stop position be- tween a trip lever, which bears against a shoe lever, and a latch lever which seats in a notch in a clutch cam disk. The shafts and elutch drums will then turn freely without the clutch shoes dragging. When
1.4 the clutch is engaged or tripped, the shoe lever and cam disk stop lug are moved apart, and the clutch shoes are wedged against the drum so that the clutch turns in unison with the shaft.

NOTE: When rotating the main shaft by hand, the clutches will not fully disengage upon reaching the stop position. In order to relieve the drag on the clutch and permit the main shaft to rotate freely, apply pressure on the lug of the clutch disk to permit the latch lever to fully latch. This procedure should be followed prior to applying power to the unit.
. 5 To Manually Operate the Unit: Apply current to the selector coils while the adjustments are being made to hold the armature in the marking position. To manually select rubout combination, push the armature to the rear into the spacing position momentarily to permit the selector clutch to engage. Rotate the main shaft slowly (by means of the handwheel listed in tool bulletin 1124B) until No. 6 push lever has been selected by No. 6 selector lever and No. 6 lever is on the high part of its cam. The levers are numbered 1 to 6 from right to left. Strip levers from under selector levers corresponding to the spacing elements of the code combination to be set up. Let us take, for example, the letter \(R\), which has a code combination of No. 2, 4, marking. By stripping No. 1, 3, 5 and 6 push levers we select R. Then rotate the main shaft until the required condition is set up or character has been cleared through the unit.
. 6 Where a spring does not meet its requirement, replace the spring.
. 7 Where applicable, all adjustments should be made with the related cam follower on that half of the two-cycle cam which causes the clearances to be least, unless otherwise specified.
2.

TAPE PRINTER
Range Finder Knob Phasing

\section*{TO CHECK: Turn the range finder knob to its extreme right and left positions.}

REQUIREMENT: The 0 mark and 120 mark should overtravel the scribed line on the knob mounting plate by an equal amount.

\section*{TO ADJUST: Position range scale knob with its mounting nut loosened.}


NOTE: To facilitate making the following adjustments, remove the range finder assembly and selector magnet assembly.


\section*{Selector Armature}

\section*{NOTE}

This requirement need not be made nor checked if the selector magnet bracket and receiving margin are met.
(1) Requirement (armature clamp strip) Clearance between armature clamp strip and casting.

Min. 0.015 inch
Max. 0.045 inch
(2) Requirement (armature alignment)
Outer edge of the armature should be flush within 0.015 inch wit.i. outer edge of pole pieces.

BK2. 15
ISSUE 1
AUGUST, 1964


Requirement
Min. 0.020 inch --- Max. 0.025 inch between the end of the armature and the rear edge of the upper pole piece.
To Adjust
Position the stop bracket with its mounting screw loosened.



To Adjust
Position the lubricator with its mounting screws
loosened.

NOTE: There should be some clearance between the marking lock lever spring and the oil reservoir.

BK2. 15 ISSUE 1 AUGUST, 1964


To Check
Set range scale at 60. Place armature in marking position. Disengage the clutch (latch up). Gauge by eye.

Requirement
The clutch stop arm should engage the clutch shoe lever by the full thickness of the stop arm.

To Adjust
Position the stop arm with its clamp screw loosened.

\section*{Selector Magnet Bracket}

To Check
Marking and spacing lock lever on high part of their cams. Magnets de-energized.


To Adjust
Position the magnet bracket by means of the adjusting link with magnet bracket mounting screws loosened. Tighten link clamp screw only.


To Adjust
Position forward end of magnet bracket with mounting screws loosened.

To Recheck
Rotate selector cam and check for smooth operation oi start lever over armature extension. Refine if necessary.


BK2. 15
ISSUE 1
AJJGUST, 1964 ROLLER

Code Bar Shift Lever Drive Arm
To Check
Rotate main shaft until code bar shift lever link is in its forwardmost position. Play in shift lever and link taken up toward rear.

Requirement
Min. 0.010 inch--Max. 0.020 inch between forward surface of the rollers and the rear surface of the cam slot in the shift levers which provides the minimum clearance.

\section*{To Adjust}

Position the cam follower arm on its drive shaft with its clamp screw loosened. Provide up to 0.006 inch end piay.


BK2. 15
ISSUE 1
AUGUST, 1964




Note: After making this adjustment, disengage the clutch, remove the drum screw and rotate the drum in the normal direction. There should be no drag on the drum. If necessary, refine the adjustment toward the maximum clearance.

BK2. 15
ISSUE 1
AUGUST, 1964


BK2. 15
ISSUE 1
AUGUST, 1964

Code Bar Clutch and Function Clutch Trip Levers
To Check

Code Bar Clutch and Function Clutch Latch Lever Spring
Latch each clutch in stop position.
Requirement The clutch trip levers should engage their respective clutch shoe lever by the full thickness of the shoe lever, when checked at the stop position with the least bite.


\section*{Code Bar Detent}

\section*{To Check}

Select blank, trip code bar clutch and rotate main shaft until all clutches stop. Manually latch all clutches. Apply 32 oz . push scale to \(\# 4\) code bar. Note pressure required to detent code bar. Rotate shaft until \#4 aggregate motion clutch stops. Manually latch \(\# 4\) clutch. Pull \#4 code bar over detent. Note pull required.

\section*{Requirement}

The code bars should detent
in each direction equally within 3 ozs. of pressure applied with push scale.

To Adjust
Equalize the detenting by adding or removing shims between the detent casting and the code bar bracket.


CODE BAR GUIDE BRACKET


\section*{Requirement}

Min. 4 ozs. ---Max. 6 ozs.
to start depressing a ball. Check
each ball.


\section*{Typebox Clutch Shoe Lever}

To Check
Disengage and latch typebox clutch. Measure gap between shoe lever and stop lug. Trip clutch and again measure the gap while pulling with 32 ozs. pressure against the trip lever to make the gap maximum.

\section*{Requirement}

There should be Min. 0.055 to 0.070 inch greater gap when clutch is engaged (released) than when the clutch is disengaged (latched).

To Adjust
Rotate the adjusting plate by means of a screwdriver or wrench with the plate clamp screws loosened.

BK2. 15
ISSUE 1
AUGUST, 1964


Print Hammer Mechanism Selector Slide
To Check
Sclect rubout combination, rotate shaft to stop position, and have selector slide roller fully detented.

Requirement
Min. 0.002 --- Max. 0.008 inch
clearance between the left edge of the selector
lever fork and \#6 code bar extension roller.
Tu Adjust
Position the selectur lever by means of its pry point with its clamp screw loosened.


\section*{Requirement}

Min. 2-1/2 ozs. -- Max. 3-1/4 ozs
to start lever moving.

BK2. 15
ISSUE 1
AUGUST, 1964


\section*{Function Cam Follower Spring}

To Check
Place function clutch in stop position. Unhook spring.

Requirement
Min. 20 ozs. --- Max. 25 ozs. to pull spring to position length.


BK2. 15
ISSUE 1
AUGUST, 1964

Print Hammer Trip Lever
To Check
Place unit in stop position and manually raise the accelerator lever so that its latch extension lines up with the latching surface of the latch lever.

Requirement
Min. 0.005 --- Max. 0.015 inch
clearance between latch lever and accelerator extension. This applies to both latches.

To Adjust
Rotate the adjusting screw in the adjusting plate with its




To Check
Select No. 5 and No. 6 marking and place unit in stop position. Push Figures print hammer down against type pallet stem.

Requirement
Print hammer head should be centered (front to rear) on the extreme outer left hand pallet stem as gauged by eye.

To Adjust


Position the typebox rail with two clamp screws on the eccentric follower lever of the typebox rail positioning clutch.

Print Hammer Head Spring

To Check
Place unit in stop position.
Requirement
Min. 2 ozs. ---Max. 3 ozs.
to start hammer head moving.


BK2. 15
ISSUE 1
AUGUST, 1964

\section*{Typebox Alignment (Transverse)}

To Check
Select No. 5 and No. 6 marking and rotate mainshaft until Figures print hammer trips. Push Figures print hammer down against type pallet stem.

\section*{Requirement}

Print hammer head should be centered right to left on the extreme left hand pallet stem.

To Adjust
Position the typebox by rotating the typebox drive eccentric.

AGGREGATE MOTION OUTPUT LINK


\section*{Character Alignment}

To Check
Select two character combinations \(\mathrm{E} \mathbf{Z}\).


\section*{Requirement}

Characters should be in line within 0.006 inch maximum.

\section*{To Adjust}

Position the eccentric on the typebox rail drive arm so that the slot is aligned vertically and the large chamfer on its head is facing upward. Under power, select E (1 marking) and Z (1-5 marking). If the \(E\) is higher than \(Z\), turn eccentric screw clockwise. If Z is higher than E, turn eccentric screw counterclockwise. Recheck typebox alignment (front to rear).


Turn adjusting screw clockwise.


Turn adjusting eccentric counterclockwise.

BK2. 15
ISSUE 1
AUGUST, 1964

\section*{Tape Margin}

To Check
Hold the tape against the rear edge of the tape guide.
Requirement
The margin between the top edge of the tape and the top edge of the letter \(T\)

Min. 0.170 inch---Max. 0.210 inch
To Adjust
Position the mounting bracket by means of the eccentric with the bracket mounting screws loosened.


To Check
Place unit in stop position with
typebox rail toward rear (\#5 Marking).
Requirement
Min. 2 ozs.---Max. 3 ozs.
to start leyer moving.


\section*{Tape Feed Wheel Detent}

To Check
Trip code bar clutch, rotate main shaft until feed pawl just contacts ratchet tooth. Step feed shaft to detented position Rotate main shaft until feed pawl is in lowest position.
Requirement
Feed pawl should advance feed ratchet one full tooth with minimum perceptible overtravel beyond fully detentea position.
To Adjust
Position detent by rotating the detent eccentric. Note: If necessary, loosen clamp screw on feed arm hub and take up play in hole to favor adjustment.

BK2. 15
ISSUE 1
AUGUST, 1964

\section*{Typebox Alignment}

Requirement
The impression printed by a type pallet should be equal at the top and bottom of the characters.
Gauged by eye.


BK2.15
LSSUE 1

\section*{Tape Feed Wheel Centering}

Requirement
The tape feed wheel should be centered within the tape chute opening as gauged by eye.

To Adjust
Position the feed wheel on its shaft with its clamp screw loosened.
EQUAL CLEARANCE


BK2. 15
ISSUE 1
AUGUST, 1964


Rotate shaft until push lever reset bail is latched up on lever guide, and selector levers on high part of their cams.

Requirement
Min. 1-1/2 ozs.--Max. 2-1/2 ozs. to start each lever moving.


- Spacing Lock Lever Spring

To Check
Energize selector magnets. Disengage selector clutch.

Requirement
Min. 19 ozs. ---Max. 26 ozs.
to start the spacing lock lever moving.


\section*{Selector Armature Spring}

To Check (No distortion test set available)
Place marking lock lever, spacing lock lever and start lever on high part of their cams.
1) Requirement

Min. 4-1/2 ozs. ---
Max. 5-1/2 ozs.

(2) Requirement (using distortion test set) The selector should be relatively free from internal bias when checked as specified in the instructions furnished with the set.

\section*{To Adjust}
Rotate the adjusting nut.

> to start marking lock lever moving.



BK2. 15
ISSUE 1
AUGUST, 1964

Tape Feed - Ribbon Feed Cam Follower Spring

\section*{To Check}

Unhook the function cam follower spring from its bracket.

\section*{Requirement}

Min. 11 ozs. --- Max. 14 ozs. to pull spring to installed length.



\section*{Aggregate Motion Spring}

To Check
Select E and rotate unit to stop position, unhook the spring.

\section*{Requirement}

Min. 22 ozs. ---Max. 26 ozs. to pull spring to installed length. Check both springs.

50240S-42

BK2. 15
ISSUE 1
AUGUST, 1264


Requirement
Min. 9 ozs. ---Max. 11 ozs. to move shoe lever into contact with the stop lug.


To Check
Place unit in stop position.
Requirement
Min. 3 ozs. ---Max. 5 ozs.
to start lever moving away from the accelerator.

BK2. 15
ISSUE 1
AUGUST, 1964

Print Hammer Lever Spring
To Check
Place unit in stop position.
Requirement
Min. 1 oz. ---Max. 2 ozs.
to move lever away from accelerator.


\section*{Accelerator Drive Spring}

To Check Place unit in stop position.

Requirement
Min. 10 ozs. ---Max. 13 ozs.
to start the lever moving.


BK2. 15
ISSUE 1
AUGUST, 1964



Requirement
Barely perceptible amount of backlash between motor pinion and intermediate gear at closest point.
To Adjust
Raise or lower the intermediate gear assembly with the adjusting screw on the
front post. Refine the intermediate shaft assembly position if necessary to obtain quiet operation.

\section*{Overload Release Mechanism Spring}

To Check
Hold plate of overload release mechanism stationary Min. 40 ozs.---Max. 64 ozs.
to start lever moving.



BK2. 15
ISSUE 1
AUGUST, 1964



To Check
Pressure bail in unlatched position.

\section*{Requirement}

Min. 9-1/2 ozs. ---Max. 14 ozs.
to start the pressure roller moving upward when the force is applied in the center of the roller.

BK2. 15
ISSUE 1
AUG UST, 1964

\section*{Latch Bail Spring}

To Check
Unlatch the bail.

\section*{Requirement}

Min. 9 ozs. ---Max. 13 ozs.
to start latch bail moving away from its stop.

6.1 The disassembly outlined in this paragraph will break the Tape Printer down into major assemblies and mechanisms. For further disassembly refer to Teletype Parts Bullet in 1194B. To reassemble the mechanisms, reverse the procedure used in disassembly.
. 2
Retaining rings are made of spring steel and have a tendency to release suddenly. To avoid loss of these rings when removing them proceed as follows:

Hold the retaining ring to prevent its rotation. Place blade of screwdriver in one of ring's slots. Rotate screwdriver in direction to increase diameter. Ring will then come off easily in fingers without flying.

\subsection*{6.3 Disassembly}
6.3.1 Typebox - To remove, trip latch and pull typebox out.
. 2 To remove double print hammer:
(a) Remove locknut, lockwasher, feltwasher, spacer and screw from print hammer drive link at rear connection.
(b) Remove the three mounting screws.
(c) Remove double print hammer assembly.
. 3 To remove top plate assembly:
(a) Remove retaining ring from function cam follower shaft.
(b) Remove function cam follower arm spring.
(c) Slide the function cam follower shaft until it clears the bearing on casting of top plate assembly.
(d) Remove four mounting screws on top plate.
(e) Remove top plate assembly.

NOTE: The ball bearings in the top plate assembly have been assembled
6.3.3 NOTE: and locked in place on the ir respective links and eccentrics at the factory. Serious damage to the bearings may result from an attempt to remove them.
. 4 To remove selector assembly:
(a) Remove the selector cover plate.
(b) Remove locknut, lockwashers and screw from selector clutch drum.
(c) Place stripper bail on its shoulder.
(d) Hold the mark-lock lever up and remove clutch and cam assembly.
(e) Remove electrical leads.
(f) Remove the four mourting screws.
(g) Remove selector assembly.
. 5 To remove ribbon feed assembly:
(a) Remove ribbon.
(b) Remove ring retainer and felt washer from ribbon feed drive link.
(c) Remove ribbon feed mechanism.
. 6 To remove code bar assembly:
(a) Remove code bar extension retaining bracket.
(b) Remove code bar extensions.
(c) Remove the four mounting screws (two in each side plate).
(d) Remove code bar assembly.
. 7 To remove transfer lever assembly:
(a) Remove the two remaining mounting screws.
6.3.7 (b) Remove the ring retainer from the code bar shift lever drive arm.
(c) Remove the transfer lever assembly.
. 8 To remove main shaft assembly:
(a) Unhook the code bar cam follower arm spring.
(b) Remove bearing clamp screws and remove bearing clamps.
(c) Remove locknut, lockwasher and eccentric shoulder screw from the typebox rail positioning clutch arm.
(d) Remove the locknut, lockwashers and screws from the typebox rail positioning clutch drum and collar and slide the clutch assembly to the left.
(e) Remove the main shaft assembly.
. 9 To remove typebox rail positioning shaft:
(a) Remove the gear on each end of the shaft.
(b) Remove the bearing clamp brackets on each end of the shaft.
(c) Remove the typebox rail positioning shaft.
(d) Remove the typebox rail by removing its four mounting screws.

To remove tape chute and platen assembly:
(a) Remove the two screws and lockwashers on the platen mounting bracket on the left side plate.
(b) Remove the tape chute mounting screw washer and lockwasher from the front plate.
(c) Remove the tape chute and platen assembly.
. 11 To remove the front plate assembly:
(a) Disconnect the tape and ribbon feed drive link by remoring the xing retainer.

50240S-56

BK2. 15
ISSUE 1
AUGUST, 1964
6.3.11 (b) Remove the four shoulder mounting screws.
(c) Remove front plate assembly.
. 12 To remove the clutch trip mechanism assembly:
(a) Remove the two screws mounting the bearing bracket to the rectangular bar.
(b) Remove the two screws mounting trip mechanism casting to the rectangular bar.
(c) Remove the one screw and one post mounting the trip mechanism casting to the left side frame.
(d) Remove the clutch trip mechanism assembly.

To remove the side frame assemblies:
(a) Remove the two mounting screws for the hexangle tie bar and remove bar.
(b) Remove the four mounting screws for the rectangular tie bar and remove bar.
6.4 Reassembly
6.4.1 To assemble unit, reverse the steps given above taking the following precautions:
(a) Typebox rail positioning rack and pinion: Align hole in rack with \(V\) notch in gear flange.
(b) Top Plate Assembly: Take up play to the rear of the unit when assembling top plate in order to make gear clearance maximum.
(c) Completely readjust unit in accordance with the instructions given in paragraphs 1 to 5 .

\section*{7. LUBRIC ATION}

\subsection*{7.1 General}
7.1.1 Lubricate the typing unit before storing or placing it in service. After
7.1.1 100 hours of operation, relubricate freely to make certain that all points receive ample lubrication.
. 2 Readjust the unit.
. 3 Relubricate thereafter every 500 hours of operation or every three months, whichever comes first.
. 4 Use Teletype KS7470 oil and KS7471 grease.
. 5 General Lubrication.
(a) All pivot points - one or two drops of oil.
(b) All coil springs - one drop of oil.
(c) All felt oilers - saturate with oil.
(d) All gear teeth - light film of grease.
(e) All cams - two drops of oil (not grease).
(f) All sliding surfaces - two drops of oil.
(g) Keep all surfaces between magnet pole piece and armature free from oil. To remove any oil or foreign matter that may be present and insure better operation, pull a piece of paper between the armature and pole pieces ( energize the magnet). Make certain that no lint or pieces of paper remain between the pole pieces and armature.
7.2 Specific Lubrication Points
7.2.1 Clutches: Oil
(a) Internal mechanism Oil
(b) Disk camming surfaces Oil
(c) Felt wick Oil
. 2 Selector Assembly
(a) Push lever guide bearing (6 slots) Oil

BK2. 15
ISSUE 1
AUGUST, 1964

\section*{7.2 .2 \\ (b) \\ Push levers; engaging surfaces \\ Oil}
(c) Lock levers; guide slots Oil
(d) Selector and push lever guide slots Oil
(e) Lever guide bearing slots Oil
(f) Cam lubricator assembly Oil - fill
(g) Cam sleeve bearings (2 oil holes) Oil
(h) All felt washers or lubricators Oil
(i) Selector cams - each cam Oil
(j) Spring hooks - each end Oil
(k) Tip of armature extension Oil

NOTE: Care should be taken so that oil does not get between, or will not be thrown between the armature and magnet pole piece.

Teeth of range scale knob assembly (knob, gear and internal detent)

Thin film of grease

\section*{. 4 Transfer Lever Assembly}
(a) Transfer levers - bearings and working surfaces.

Oil
(b) Intermediate levers - bearings. guides and working surfaces.

Oil
(c) Scissors levers - bearings. guides and working surfaces.

Oil
(d) Code bar shift lever - bearings. rollers, guide, felt oilers (3).

Oil
(e) Code bar shift lever drive arm shaft - 3 drops oil in oil hole.

\subsection*{7.2.5 Code Bar Clutch Stop Lever Shaft}
(a) Bearing - felt oilers - saturate with oil.
(b) Clutch trip lever - felt oilers - saturate with oil.
. 6 Code Bar Assembly
(a) Guides Oil
(b) Detents Oil
(c) Connecting extensions Oil
. 7 Main Shaft Assembly
(a) Code bar cam surface Oil
(b) Function cam surface Oil
(c) Function clutch trip cam surface Oil
(d) Gears Grease
(e) Typebox rail positioning eccentric Oil
. 8 Clutch Trip Mechanism
\begin{tabular}{lll} 
(a) Spring ends & Oil \\
(b) & Trip lever & Oil \\
(c) & Latch levers & Oil \\
(d) & Function clutch trip cam follower roller & Oil \\
(e) & Function clutch trip cam follower pivot & Oil \\
(f) & Function cam follower roller (2) & Oil \\
(g) & Function cam follower pirot & Oil \\
(h) & Tape ribbon feed drive arm pivots & Oil
\end{tabular}

BK2. 15
ISSUE 1
AUGUST, 1964
7.2.8 (i) Typebox rail positioning clutch stop slide - sliding surfaces

Oil
(j) Type rail positioning clutch trip linkage - working surfaces

Oil
. 9 Typebox Rail Positioning Mechanism
(a) Drive arm pivot Oil
(b) Cross shaft ball bearings Oil
(c) Rack and pinion (2) Grease
(d) Rack guide (2) Oil
. 10 Tape Feed Mechanism
(a) Drive shaft bearings (2) Oil
(b) Drive arm pivots Oil
(c) Tape feed pawl and ratchet Oil
(d) Tape feed wheel detent Oil
(e) Tape feed wheel shaft Oil
(f) Pressure roller bearing surface Grease
(g) Pressure roller arm pirot Oil
(h) Spring ends Oil
. 11 Ribbon Feed Mechanism
(a) Spring hook ends Oil
(b) Ribbon rollers Oil
(c) Feed pawl pirot Oil
(d) Reversing arms Oil
7.2.11 (e) Drive link working surfaces
(f) Reversing lever retaining pawl
(g) Ratchet shafts
.12 Double Print Hammer Assembly
(a) Spring hook ends Oil
(b) Drive link pivots Oil
(c) Drive shaft bearings Oil
(d) Latch lever contact surfaces Grease
(e) Latch lever latch surfaces Oil
(f) Felt washer inside drive block Oil (Saturate)
(g) Accelerator and print lever pivot shaft Oil
(h) Print hammer plunger pivot Oil Print hammer plunger guide Oil
(i) Accelerator lever cam surfaces Grease
(j) Selecting tee guide Oil
(k) Selector slide guide Oil
(1) Detent lever surfaces Oil
(m) Detent roller Oil
(n) Selector lever pivot Oil
(o) Selector lever fork Oil
(p) \#6 code bar extension roller Oil

BK2. 15
ISSUE 1
AUG UST, 1964

\subsection*{7.2.13 Top Plate Assembly}
\begin{tabular}{|c|c|c|}
\hline (a) & Aggregate motion clutches (4) & Oil \\
\hline & 1. Disk camming surfaces & Oil \\
\hline & 2. Internal mechanism & Oil \\
\hline & 3. Felt wick & Oil \\
\hline (b) & Clutch trip slides (4) & \\
\hline & Sliding surfaces & Oil \\
\hline (c) & Clutch trip lever pivots and working surfaces & Oil \\
\hline (d) & Latch lever pivots & Oil \\
\hline (e) & Eccentric shafts (at gears) & Oil \\
\hline (f) & Gears & Grease \\
\hline (g) & Drive shaft bearing felt wick (in casting) & Oil \\
\hline (h) & Top thrust bearing & Oil \\
\hline (i) & Oilite pivot on aggregate motion linkage & Oil \\
\hline (j) & Aggregate motion guide block surfaces & Oil \\
\hline (k) & Spring anchors & Oil \\
\hline (1) & Bail bearings are lubricated by the manura expected to require relubricating during & cturer and are not life of the unit. \\
\hline NOTE: & On no account may the unit be washed in destroy the lubrication of the bearings. remaining in the bearings will make rel & greaser as this will d traces of degreaser ication ineffective. \\
\hline
\end{tabular}

PLANT MANUAL BK2. 16
SUB-SECTION 5, ISSUE 1 JULY, 1966

\section*{HIGH SPEED TAPE FUNCH SET (BRPE)}

ADJUSTMENTS
\begin{tabular}{llr} 
CONTENTS & PAGE \\
\hline & GENERAL & 1 \\
1. & GENFRAL ADJUSTING INFORMATION & 3 \\
2. & LATE DESIGN PUNCH UNIT & 4 \\
3. & EARLY DESIGN PUNCH UNIT & 24
\end{tabular}
1. GENERAL
1.1 The information given in this section applies to late-design punches. The manufacture of late-design equipment began in 1959 and includes the following coded units: Punch Units BRPE7 and up; Bases BRPEB6 and up; and Covers BRPEC200 and up. Early-design equipment consists of BPPEl through 5 and \(B R P E B 1\) through 5. Information on early- ciesign equipment is given in paragraph 4 .
. 2 References in the text to left or right indicates the viewers left or right as he faces the front of the equipment. He is facing the front when the tape reel and tape rollers are or. his right and the tape cutter is on his left (see Figure 2). Pivot noints are shown in the drawings by circies or ellipses which are solid black to indicate fixed points and crosshatched to indicate floating points.
. 3 Refer to Teletype Bulletin \(215 B\) for installatio: instruc:ions, equipment description and principles of operation. Fcr parts information refer to Teletype suiletin 1145 B .
. 4 The Punch will require less maintenance and provide more satisfactcry service if it is used properly. Although it will perforate tape at speeds less than the operating speed to increase operating life, the lovest suitable 0 : arating speed shoulc. be used. For example, if perforation is not to occur at a rate over 60 characters per second, drive parts providing 63.3 ops should be employed rathar than those providing 110 ops. The punch will accommodate nost page tapes. However, standard teletypewriter paper tape is recommended because it is impregnated with oil which lubricates the punch pins. The equipment is subject to more wear when it is idling, i.e., running but not perforating tape. Therefore it should be turned off during period of idleness either manually or by the control circuits.
```

3H2.16
SUB-SECIIO: 5, ISSUE 1
JULY, 1966

```


FIGURE 1. HIGH SPEED TAPE PUNCH
BRPE-2

\footnotetext{
BK2. 16
SUB-SECTION 5, ISSUE 1 JULY, 1966
}
1.5 The Punch should be cleaned periodically, but care should ie taken to avoid damaging or cistorting delicate springs and thus reducing their tension. Inspect the equipment at intervals for conditions that micht cause trouble later. Check the tightness of all wiring connections at terminal boards and connectors. Make sure that the nuts and screws that lock the adjustments are tight. Oxicized (red) metal dust near bearing surfaces may indicate insufficient clearance, a condition tha: should be rectified immediately. Manual operation is outlined in paragraph 2.6 below, should accompany inspection. Maintenance may require that the Punch be disassembled, as instructed in Section 3, to make certain adjustments and to replace parts. It is very important that the equipment be thoroughly lubricated at reçular intervals in accordance with Section 6 .

\section*{2. GENERAL ADJUSTING INFORMATION}
2.1 Paragraph 3 (pages 3 through 23) covers adjustments and spring tensions for late-design Punches (BRPE7 and up), while paragraph 4 (pages 24 through. 33) covers this material for early-design equipment (BRPE5 and lover).
. 2 In the adjustments and spring tensions covered in this sectior. locating of clearances, position of parts and point and anyle of scale applications are illustrated by cirawings. Requirements and procedures are set forth in the texts that accompany the drawings. The sequence of the adjustments is that whici. shoul. be followed when complete readjustment of the Set is uniertaner. The letters of the alphabet in parenthesis which precene the texts indicate the sequence to be followed on the inciviauapages. A procedure should be read all the way through before making the adjustment or testing the spring tension. If any adjustment is changed, related adjustments should be checse

Tools required to make the adjustments and test the spring tensions are not supplied with the equipment, but are listed in Teletype Bulletin ll24B. If parts are removed, all adjustments which the removal of these parts might facilitate shoula be mace before the parts are replacel. When a part mounted on stims is removed, the number of shims at each mounting screw shoula be noted so that identical pile ups can be made when the part is replaced. Unless it is specifically stated to the contrary, after an adjustment has been made, all nuts and screvs that were loosened should be tightened.
```

%2.16
SUE-SECTION 5, ISSUE 1
JULY, 1966

```
2.4 The spring tensions given in this bulletin are indications, not exact values, anc should be check with Teletype scales in the positions shown in the drawings. Springs which do not meet the requirements anc for which there are no adjusting procedures should be discarded anc replaced by new springs.
.5 All contact points should meet squarely. Smaller points should fall wholly within the circamference of larger mating points. points that are the same size should not be out of alignment more than 25 per cent of the point diameter. Avoid sharp kinks or bends in the contact springs.
. 6 Before proceeding with the adjustments, remove the Cover, (if present) by simply lifting it from the Base, and take off the punch Unit cover by removing its four mounting screws. Rotate the main shaft slowly in its normal direction (clockwise as viewed from the front) and activate all movable elements. Check for freedom of movement and eliminate any binds. The shaft should be rotated to set up the conditions required in the adjusting procedures.

\section*{CAUTION}

Improperly adjusted equipment may be seriously damaged in a matter of seconds if operated under power.
3. LATE DESIGN PUNCH UNIT
3.1 Synchronization Pulse Orientation
3.1.1 The Flywheel may be oriented in 60 -degree steps with respect to main shaft. This provides an option of six initial positions from which various combinations of operating speeds, magnets, and control-circuit delays may be accommodateci.
3.2 Determining O'clock Position
3.2.1 Combine attract time of magnets and delay time of control circuits to obtain time (T) in milliseconds (MS) at which armatures are fully attracted after pickup fires when set at range 30.
. 2 Locate \(T\) on time scale at lower left of Eigure 2. Extena a line horizontally to right antil it intersects line representing operating speed of punch Unit in operations per seconc (ODS).
. 3 Extend a line vertically upvard from tins point until it intersects one of the o'clock lizes.
```

BK2． 16
SEB－SECTION 5，ISSUE 1
JULY， 1966

```


FIGU1PE 2.

3．2．4 Extend a line from this point horizontallv to left unti＝i＝ intersects scale at upper eft．This point represents position of toggle linkages in degrees when armatures reach full attracteえ position．It should fall vithin selection interval．Use o＇clock position represented by intersected ine in positionine flywheel as instructed below．

\section*{3．3 Positioning Flywheel}

3．3．1 View unit from front．Rotate flywieel until set scren is i： 12 o＇clock position．If magnetic insert is not at o＇cloc： position deterimined above，loosen flywheel nut and remove set screw．
． 2 Position shaft so that keyvay is in 12 o＇clock position． shaft in this position and rotate flywheel so that marneこic insert is at \(o^{\prime}\) clock position determined above．
． 3 Insert set screw in hole in hui at 12 o＇clock position and tighten just enough to hold flywheel in position．Zighten nut．Tighten set screw securely．
```

2%2.16
SUS-SECIIO:: 今, ISSUE
JULY, 1965

```

\section*{3．3．3 EXAMPLE：}
（A）Assume that Punch Unit is to operate at speed of 110 ops that attract time of magnets is 2 ms and delay of control circuits is 1 ms ．Corbined time（ T ）is thus 3 ms ．
（B）Locate 3 on time scale in Figure 2．Extend a line from 3 to right until it intersects 110 ops line．
（C）Extend a line verticaily upward from this point．As can be seen in Figure 2 ，line intersects \(9^{\prime} 0^{\prime} c l o c: ~ l i n e . ~\)
（D）When a line is extended to left from this point，it intersects scale at \(3: 9^{\circ}\) ．Thus toggle linkages are in selection interval when magnets reach fully attracted position．
（E）Position flywheel at \(\subseteq o^{\prime}\) clock as instructed uncier positioning flywheel cbove．


```

\2.\!
SUL-SLCTMO!: E, ISSUE 2
JCLY, 136E

```


LONG TOGGLE ARM SPRINGS
PEQUIREMENT (EACH SPRINGI
WITH armaiure in attracted POSITION AND PUNCH BAIL IN OWES: POSI:ION

TO BUCKLE TOGGLE LINKAGE.
(A)

ADJUSTING PLATE
IO CHECK
HOLD BLOCKING PAWLS AWAY FROM TOGGLE
ARMS AGAINST ADJUSTING PLATES. ROTAIE MAIN SHAFT UNTIL LONG IOGGLE ARMS ARE
BELOW ENGAGING SURFACES OF BLOCKING PAWLS

\section*{REQUIREMENT}

MIN, 0.002 INCH --- MAX 0.008 INCH BETWEEN LONG TOG GLE ARMS AND THEIR BLOCKING PAWLS.

\section*{TO ADJUST}

POSITION ADJUSTING PI-ATES WITH MCLNTING SCREWS LOOSENED.

FIGURE 4.

BK2. 16
SUB-SECTION 5, ISSUE 1
JULY, 1966

(A)

\section*{MAGNET PLATE}

REQUIREMENT (EACH MAGNET)
WITH ARMATURE IN ATIRACIED POSITION (BLOCKING
PAWL AWAY FROM IOGGLE ARM AGAINST ADJUSTING PLATE):
MIN. J JJ3 INCH --- MAX. 0.006 INCH
BETWEEN ARMATURE AND POLE FACE AI POINT
WHERE CLEARANCE IS LEAST.
TO ADJUST
MAKE CERTAIN THAT TAPPED HOLES IN MOUNTING
BARS MATCH HOLES IN PUNCH UNIT COVIR. IF NOT,
POSITION BARS BY LOOSENING IWO MOUNTING SCRE WS
AT REAR. HOLD ARMATURE IN ATTRACIED POSITION
AND POSITION MAGNET PLATE WITH MOUNTIN
SCREWS LOOSENED. RECHECK RE QUIREMENT.

FIGURE 5


\footnotetext{
NOIE:

IF PUNCH BLOCK IS REMOVED FROM UNIT FOR ANY REASON, MAKE PUNCH PIN AD JUSTMENT BEFORE REPLACING IT.
}

RETAINING PLATE

(A) PUNCH PIN

REQUIREMENT
PUNCH PINS SHOULD MOVE FREELY IN PUNCH BLOCK WITH MINIMUM CLEARANCE BETWEEN PUNCH PINS AND RETAINING PLATE.

\section*{IO ADJUST}

POSITION RETAINING PLAIE WITH MOUINIING SCREWS LOOSENED.

CAUTION: DO NOT AIIEMPT TO ADJUST PUNCH BLOCK DIE PLATE.

(B) PUNCH BLOCK

REQUIREMENT
- PERCEPTIBLE CLEARANCE (MAX, 0.003 INCH) gETWEEN DRAG LINKS AND PUNCH PINS

IO ADJUST
POSITION MOUNTING PLATE WITH MOUNIING SCREWS LOOSENED
TO REFINE ADJUSTMENT, LOOSEN PUNCH BLOCK MOUNTING SCREWS
AND POSITION PUNCH BLOCK LOCATING ECCENIRIC WITH ITS SCREWS LOCK SCREW LOOSENED. GHECK EACHPIN TO SEE THAT IT IS fREE FROM BINDS.

FIGURE 6.
```

BK2.16
SUB-SECTION 5, ISSUE 1
JUZY, 1966

```


\section*{TO ADJUST}

LOOSEN WEDGE BLOCK MOUNTING SCREW. LOOSEN WEDGE BLOCK ECCENTRIC LCCK NUT MOVE BLOCK TO ITS LOWEST POSIIION. LOOSEN FEED PAWL GUIDE MOUNTING SCREWS. LOOSEN GUIDE ECCENTRIC LOCK NUT SO THAT GUIDE IS FREE TO MOVE. LOOSEN DETENT ECCENIRIC LOCK NUT. PLACE DETENT IN LCWEST POSITION (AS SHOWN). TIGHTEN DETENT LOCK NUT. LOOSEN FEED PAWL PLATE MOUNTING SCREWS. LOOSEN LOEK NUT ON PLATE ECCENTRIC. POSITION PLATE TO MEET REGJIREMENT BY ROIATING PLAIE ECCENTRIC. TIGHTEN PLATE ECCENTRIC LOCK NUT AND PLATE MOUINTING SCREWS. RECHECK REQUIREMENTS.

NOTE
IF THIS ADJUSTMENT IS CHANGED. CHECA FEED PAWL GUIDÉ (FIGUREE 8), WEDGE BLOCS (FIGURE 9), AND FEED RATCHET DETENT (FIGUREII) ADJUSTMENIS

FIGURE 7.
```

\#12.15
SUB-SECTIO:. 5, ISSUE 1
JULY, 1966

```

(A)

FEED PAWL GUIDE
IO CHECK
HOLD FEED MAGNET ARMATURE IN ATTRACIED POSITION. ROTATE MAIN SHAFT UNTIL FEED PAWL IS AT BOTTOM OF DOWNSTROKE.

\section*{REQUIREMENT}
(1) SURFACE OF FEED PAWL SHOULD APPROXIMATELY CONFORM TO INDENTATION BETWEEN RATCHET TEETH
(2) PERCEPTIBLE CLEARANCE BETWEEN PAWL AND FOLLOWING TOOTH,

\section*{TO ADJUST}

LOOSEN FEED PAWL GUIDE MOUNTING SCREWS AND GUIDE ECCENTRIC LOCK NUT. POSITION GUIDE BY MEANS OF ECCENIRIC. TIGHTEN SCREWS AND LOこK NUT AND RECHECK REQUIREMENIS.

NOTE
If THIS ADJUSTMENT IS CHANGED, CHECK FEED PAWL PLATE (FIGUÃE 7 ). WEDGE BLOCK (FIGURE 9) AND FEED RATCHET DETENT (FIGURE II)

EIGURE 8.



\section*{TAPE GUIDE}

REQUIREMENT
-WIIH PUNCH BAIL IN HIGHEST POSIIION TAPE SHOULD PASS FREELY FROM TAPE GUIDE THROUGH PUNCH BLOCK.

IO ADJUST
POSIIION TAPE GUIDE WITH MOUNTING SCREWS FRICTION TIGHT.


IAPE BIASING SPRING
ALL 6-TO 8-LEVEL PUNCHES ARE AD JUSTED AT FACIORY FOR I-INCH WIDIH TAPE. IF ITS MOUNIING SCREWS.LEVEL) IS TO BE USED, REMOVE BIASING SPRING BY REMOK INSERT SCREWS IN REAR MOUNTING HOLES AND MAKE FRICTION TIGHT.

REQUIREMENT
TAPE BIASING SPRING SHOULD HOLD TAPE AGAINST REAK OF PUNCH BLOCK WITHOUT CRIMPING OR CURLING FRONT EDGE.

\section*{TO ADJUST}

POSITION SPRING WITH MOUNTING SCREWS FRICTION IIGHT.
NOTE: WHEN ADJUSTING
COMPLETE PUNCH SET, MAKE
IIMING BELT AD JUSTMENT
(FIGURE IS) AT THIS POINT
IN PROCEDURE.


FEED RATCHET DETENT

TO CHECK
WITH PUNCH UNIT UNDER POWER, FEED OUT A SMORT LENGTH OF BL ANK T APE PLACE TAPE ON 95960 T APE GUAGE.

\section*{REGUIREMENT}

SPACING OF fEid holes Should bi 10 TO inch, i.E. EVERY TENTH fEED hOLE ShOULO CONFORM IO A HOLE IN GAUGE.

\section*{TO AD JUST}

BY MEANS CF ITS ECCENTRIC, POSITION DETENT VIITH LOCR. NUT LOOSENED
NOIE
IF IHIS ADJUSTIAENT CHANGES, CHECh FEED PANL PLATE FIGURE 7 ), FELDPAVIL GUIDE FIGURE 8) ANO WiDGE BLOCA ,FIGURE 9) ADJUSTMENIS

FIGURE li.
```

BK2.16
SUB-SEC'ION 5, ISSUE 1
JULY, 1965

```


IO ADJUST
POSITION DRAG LINK BRACKET WITH MOUNIING SCREWS LOOSENLD. IF holes are not Clean cut, move bracket up. If spaces between holis ARE MARKED, MOVE BRACKET DOWN. IIGHTEN SCREWS AND RECHECK REQUIREMENTS.

FIGURE 12.
```

BK2. 16
SUB-SECTION 5, ISSUE 1
JULY, 1966

```


\section*{RANGE}

TO CHECK
OPERATE PUNCH FROM CONTROL CIRCUITS.
LOOSEN BRACKET LOCK NUT TO DETERMINE
OPERATING RANGE ROTATE PICK-UP BRACNET IN
OPERATING RANGE, ROTAIE PICK-UP GRACAET IN
OPPOSITE INDICAIING LINE WHEN ERRORS BEGIN
OPPOSITE INDICAIING LINE WHEN ERR ROTAIE BRACKET IN OTHER DIRECTION
AND RECORD NUMBER WHERE ERRORS OCCUR
REQUIREMENT
MAGNETIC PICK-UP AT CENTER OF OPERATING RANGE.

TO ADJUS:
POSITION BRACKET SO THAT INDICATING LNE IS OPPOSITE NUMBER ON SCALE AT CENTER OF OPERAIING RANGE

FIGURE 13.
```

BK2.16
SUB-SECTION 5, ISSUUE 2
JULY, 1966

```

(B)

FEED MAGNEI ARMATURE SPRING

\section*{REGUIREMENT}

With feed drive lever in highest position:
MIN. 14 OZS. -. MAX. 17 OZS. TO
START ARMATURE MOVING
IO ADJUST
POSITION SPRING ANCHOR WITH
LOCK NUTS LOOSENED

FIGURE 14.

BK2. 16
SUB-SECTION 5, ISSUE 1
JULY, 1966

- MIN. 2-1/2 OZS. ---MAX. 3 OZS.

TO START TAPE LID MOVING.
(B)

FEED PAWL SPRING
REQUIREMENT
WIth feed out lever
DEPRESSED AND FEED PAWL


FIGURE 15.


FIGURE 16.
```

BK2.16
SUB-SECTION 5, ISSUE 1
JULY, }195

```


LOW IAPE CONTACT BRACKET
REQUIREMENT
WHEN THERE IS 12 INCH OF IAPE LEFT ON ROLL
REAR CONTACT SHOULD BE JUST CLOSED.
TO ADJUST
POSIIION CONTACI BRACAET WITH MOUNTING
SCREVIS FRICTION IIGHT

```

BK2.16
SUB-SECTION 5, ISSUE i
JULY, 1966

```

\section*{c. MOTOR-MOUNTING \\ AND DRIVE PARTS}


CAUTION
IF MOIOR BECOMES BLOCKED FOR SEVERAL IF MOIOR BECOMES BLOT-OUT SWIICH WILL SECONDS, THERMAL CUT-OUT SWIICH WILL BREAK CIRCUIT. SHOULD THIS HAP?EN, ALLOW MOIOR TO COOL AT LEAST 5 MINUTES BEF ORE DEPRESSING RED RESET BUTTON.

TIMING BELT
REQUIREMENT
ONE POUND PRESSURE AT CENTER OF TIMING BELT SPAN SHOULD DEFLECT BELT APPROXIMATELY 1.16 INCH FOR 110 OPS OPERATION

3 I6 INCH FOR 63.3 OPS OPERATICN
IO ADJUST
REMOVE FOUR MOIOR MOUNIING SGREWS WITH LOCK WASHERS, FLAT WASHERS AND SPARE SHIMS LIFT MOTOR UNIT FROM SUPPORTING SPACERS. ADD SHIMS TO, OR REMOVE THEM FROM, SUPPORTING LIFT MOTOR UNIT FROM SUPPORTING SPACERS. ADD SHIMS IO, WR TE THEIRHARDW ARE ©AND MAKE FRICIION TIGHI. REFINE ADJUSIAENIT BY SHIFIING MOTOR HORIZONIALLY. TIGHIEN MOUNIING SCREWS AND RECHECK REQUIREMENT

RETAIN SPARE SHIMS BY PLACING THEM ON MOUNT!NG SCREW
ABOVE MCUNTING BRACDET AS SHCWVIN JRAWING

(B) PUNCH BAIL ECCENTRIC STUD


FIGURE 20.


FIGURE 2〕.

(A) \(\frac{\text { PUNCH MAGNET ARMATURE }}{\text { SPRING }}\) SPRING
REQUIREMENT
PUNCH BAIL DRIVF LINK ASSEMBLY IN TOP CENTER POSITICN.
MIN. 13 OZ .
MAX. 15 OZ .
to move armature.


FIGURE 22.


FIGURE 23.
```

B:2.15
SUB-SLOTIO:, 5, ISSUE I
JUIY, 1966

```

REC MJIREMENT


MIN. 4.1/20Z.
IMAX. S-1/20Z.
TO START LEVER MOVING
AWAY FROM FEED WHEEL.
JUST
TAPE TENSION LEVER STUD
WITH LOCK NUT LOOSENED.

TAPE FEED OUT LEVER SPRING TENSION

RECUIREMENT
MIN. 2-1/2 OZ.
MAX. 3-1/2OZ.
PULLED TO POSITION LENGTH.

C) FEED PAWL AND RATCHET ALIGNMENT (SEE FIGURE 23)

REQUIREMENT - FEED PAWL FULLY ALIGNED WITH FEED WHEEL RATCHET.
TO ADJUST - SHIM THE DETENT ARM ECCENTRIC STUD THAT IS FASTENED TO the
MOUNTING PLATE. USE 71074 WASHERS FOR SHIMS.
NOTE: THE FOLLOWING ADJUSTMENTS ARE ARRANGED TO PROVIDE CONTACTOR OPERATION.
the opening or closure of the contacts (OR CONTACT IN Case of single-
CONTACT UNIT) MAY BE ADVANCED OR RETARDED IN THE PUNCHING CYCLE BY
ROTATING THE CONTACTOR MOUNTING PLATES ABOUT THE MAIN SHAFT. ROTATING THE CONTACTORS IN THE DIRECTION OF SHAFT ROTATION WILL DELAY THE TIME AT WHICH THEY ARE ACTIVATED. ROTATING THE CONTACTORS AGAINST THE DIRECTION OF SHAFT ROTATION WILL ADVANCE THE TIME AT WHICH they are activated. the CONTACTORS (DOUBLE-CONTACT UNITS ONLY) MAY BE MOVED INDIVIDUALLY OR
TOGETHER IN EITHER DIRECTION TO FACILITATE COUPLING OF THE PUNCH MECHANISM
TO AUXILIARY CONTROL EQUIPMENT (REFER TO TIMING DIAGRAM, FIGURE IO).
(D)


FIGURE 24.


BK2. 16
SUB-SECTION 5, ISSUE 1
JULY, 1956
(C) NUMBER 2 Cr,:ifiACTOA
(A) IHDICAIOR PLATE

\section*{REGUIRE
MIN.
MAX.
CLEAR
AND
ADJUST}

scribed line opposite "O" line on
NUMBER 2 CONTACTOR MOUNTING PLATE.
ADJST
THE PLATE VITH ITS MOUNTING SCREW LOOSENED.
\[
\text { FIGURE } 25 .
\]

```

BK2.15
SUB-SECTION 5, ISSUE i
JULY, }196

```

SINGLE UNIT BASE ADJUSTMENTS NOTE：
TO MOUNT THE PUNCH UNIT ON ITS BASE，REMOVE THE FLEXIBLE COUPLING LOCK SGREWS AND SLIDE THE COUPLING BACK ON THE MOTOR SHAFT．MOUNT THE PUNCH SCREWS AND SLIDE THE COUPLING BACK ON THE MOTOR SHAFT．MCUNT THE PUN THE BASE，REMOVE THE PLATE THAT CONTAINS PROVISIONS FOR．THE CONNECTORS AND ON THIS PLATE MOUNT THE PUNCH CABLE CONNECTOR PLUG WITH FOUR？ SCREWS AND LOCKWASHERS．DIRECT THE PUNCH CABLE THROUGH ITS OPENING IN THE BASE PLATE AND REPLACE THE GONNECTOR PLATE．PASS THE CABLE THROUGH THE CABLE CLAMPS．


FIGURE 27.
A) MULTIPLE UNIT BASE MAINSHAFT DRIVE CHAIN

REQUIREMENT
motor Shaft parallel with BASE MAINSHAFT. DRIVING SPROCKET ALIGNED WITH DRIVEN SPRICKET. DRIVE Chain taut. without NOTICEABLE SLACK, BETWEEN SPROCKETS

ADJUST
MOTOR WITH ITS MOUNTING SCREWS LODSENED.

5 MULTIPLE UNIT PUNCH MAINSHAFT GEARS

\section*{REQUIREMENT}

JuST PERCEPTIBLE BACK. LASH BET WEEN EACH PUNCH MAINSHAFT GEAR AND ITS ASSOCIATED BASE MAIN. Shaft gear throughout COMPLETE REVOLUTION OF GEARS.

\section*{ADJUST}

EACH PUNCH UNIT UP OR DOWN WITH GEAR GUARDS REMOVED AND ITS MOUNTING SCREWS LOOSENED FRICTION TIGHT.
\(\square\)
\(H\)


EN

ASE MAINSHAFT GEAR
\(\qquad\) \(\square\)




TO MOUNI PUNCH UNITS ON A MULTIPLE BASE, REMOVE GEAR GLIARD́S AND PLACE EACH PUNEH UNIT SO SCRIBED LINE ON ITS GEAR MATES WITH SCRIBED LINE ON ITS ASSOCIATED BASE MAINSHAFT GEAR IN ORDER TO MAINTAIN SAME RELATIVE POSITION FOR ALL PUNCHES, MOUNT EACH PUNCH ON THE BASE, FRICTION TIGHT, AND ADJUST AS DIRECTED BELOW, AT LEFT.

PUNCH MAINSHAFT GEAR

DRIVE GEARS (SETS WITH GEAR-DRIVE ONLY:
BASE MAINSHAFT GEAR
REQUIREMENT
GEARS ALIGNED, WITH
MINIMUM BACKLASH AND
NO BIND
ADJUST
MCTOR ON MOUNTING POSTS
WITH MOUNTING SCPE AS LOOSENED

FIGURE 28.

(B)


PLANT MANUAL BK2．16
SUB－SECTIO： 6 ，ISSUE 1 SEPTEMBER， 1966

\section*{HIGH SPEED TPPE PUNCH SET}

\section*{LUBRICATION}

CONTENTS PACE

1．GENERAL
1
2．PUNCH UNIT（LATE DESIGN） 2
3．BASE AND MOTOR UNIT7

4．PUNCH UNIT（EARLY DESIGN）9

\section*{1．GENERAL}

1．1 The Punch should be thoroughly lubricated，but over－lubrication which might allow oil to drip or grease to be thrown on other parts should be avoided．Teletype KS7470 oil，KS7471 छrease， or Mobilgrease No． 2 should be used as indicated in the specific instructions in this section．
． 2 Lubricate the equipment before putting it in service or prior to storage．After a short period of service，repeat tiee procedure to make sure that all specified points have received lubricant．Thereafter，lubnicate at regular intervais as neeえ̃ え． The lubrication interval should not be more than lob iours or one month of service，whichever occurs first．
． 3 Make certain that no oil or grease accumulates between the armatures and magnet pole faces or between contast points． off the excess lubricant from the armatures anc yoie pivot points．
.4
General lubricating areas are shown by photographs．Speciگi＝ areas to receive lubricant are indicated by line drawings with text．The drawincs are keyed to tiee photographs by paragraph numbers．
.5
The symbols in the text indicate the follcring：
```

O Apply one drcp of kS7470 oil.
O2 Apply two drops of KST+70 oil, etc.
SAT Saturate with <s7470 dil (felt washers, silite
bearings, etc.)
FILL Fill with Ǩ7470 oil (oil {cles, cil cups otこ.!
\therefore!

```


BK2. 16
SUB-SECTION 6, ISSUE 1 SEPTEMBER, 1966
2.2 Feed and Code Magnets

2.3 Ferforating Mechanism



BRPE-4

BK． 16
SUB－SECTION 5，ISSUE 1
SEPTE：HBER， 1956

\section*{2．5 Perforating Mechanism}


LONG TOGGLE LPNS －BLOCVII．G PAINS

LONG TOGGLE
ARNE \＆PUNCH BAIL

TOGGLE ARM SHAT
bracket

SPRINGS

SPRINGS

LONG \＆SHORT
TOGGLE ARMS

\section*{2．6 Feed Mechanism}

```

E%2.15
SUB-SECTION 6, ISSUE I
SEPTEMBER, 1965

```

\subsection*{2.7 Feed Mechanism}


\subsection*{2.8 Drive Mechanism}


3RDE-6


\subsection*{3.2 Tape Reel and Brake Mechanism}

3. 3 Motor Unit

- APPLY OIL EVERY FOUR MONTHS. IF MOTOR IS DISASSEMBLED AT

ANY TIME, REP ACK BE ARINGS WITH KS747I GRE ASE. DO NOT REP ACK BE ARINGS CTHERWISE.
```

BK2.l6
SUB-SECTION 6, ISSUE 1
SEPTEMBER, 1966

```
4. PUNCH UNIT - EARLY DESIGN

\subsection*{4.1 General}
4.1.1 Paragraphs 1.1 through 1.3 apply to the early-design Punch. \(1 / 32\) inch coating of Mobilgrease should be applied to the places listed below unless other instructions are given. Oil both loops of all helical springs that exert a nominal tension of less than \(21 / 2\) pounds. Grease bcth loops of all helical springs that exert a nominal tension of \(21 / 2\) pounds or more.
4.2 Punch Unit

MAIN SHAFT - grease all unshielded ball bearings.
FEED LINK \& LONG TOGGLE ARM JOINT.
TOGGLE JOINT OF LONG TOGGLE \(P\) RM FEED PAWL EXTENSION.
BLOCKING PAWL PIVOTS - 1 drop of oil.
TOGGLE ARM SHAFT - saturate felt washers with oil.
PUNCH BAIL SHAFT - saturate felt washers with oil.
TOGGLE JOINT OF LONG AND SHOFT TOGGLE ARMS.
SOCKET JOIN'T OF SHORT TOGGLE ARMS AND DRAG LINKS.
DRAG LINK PIVOT PUINTS - 1 drop of oil.
DRAG LINK AND PUNCH PIN JOINTS.
PUNCH AND FEED PIN HOLES.
DETENT ARM ROLLER.
DETENT ARM PIVOT - 2 drops of oil.
FEED LINK BEARING - fill oil holes with oil.
FEED PAWL PIVOT - 1 drop of cil.
FEED WHEEL BEARING - fill oil cup with oil.
FEED PAWL RATCIET.
4.2 BLOCKING PAWL - point of contact between blocking pawl anci armature - wipe off excess Mobilgrease.

CONTACTOR MOUNTING PLATES - light film of Mobilgrease between plates and bearing housing.
4.3 Sincle Unit Rase

MOTOR - two drops of oil at infrequent intervals in oilers at each end of motor.

TAPE REEL SHAFT - light film of grease at both bearings.
BRAKE SHAFT.
4.4 Multiple Unit Base

MOTOR - five to ten drops of oil at infrequent intervals in the oilers at each end of the motor housing

DRIVE CHAIN - oil frequently and adequately to provide a noticeable film of oil on the chain links at all times.

GFARS - medium film of grease, visible at all times.
MAIN SHAFT BEARINGS - grease center bearing.
4.5 Base with Gear Drive

GEARS - light coat of grease visible at all times.

PLANT MANUAL BK2.20.1 SUBSECTION 1 ISSUE 1 APRI工 1973

TI SILENT 700 DATATERMINAL
MODEL 720C
CONTENTS
\begin{tabular}{llrr}
\multicolumn{2}{l}{ SUBSECTION } & ISSUE & PAGES \\
& CONTENTS & 1 & 1 \\
1. & REFERENCES & 1 & 1 \\
3. & TECHNICAL DESCRIPTION & 1 & 13 \\
5. & INSTALLATION AND TESTS & 1 & 2 \\
7. & TEST FORMS & 1 & 8
\end{tabular}

PLANT MANUAL BK2.20.1 SUBSECTION 2 ISSUE 1 APRIL 1973

\section*{TI SILENT 700 DATA TERMINAL}

MODEL 720C
REFERENCES

CNT SYSTE: 1 TRAINING TECHNICIANS MANUAL
\begin{tabular}{lllrl} 
BOOK 7 & VOLUME I & ISSUE 1 & DATED JUNE 1972 \\
& VOLUME II & ISSUE 1 & DATED JUNE 1972 \\
& & \\
NIB-003 & Network & Description: & RC:AP & CPIC Network
\end{tabular}

\section*{TECHNICAL DESCRIPTION}
CONTENTS PAGE
1. GENERAL ..... 2
.1 General Description ..... z
1.2 Physical Specifications ..... 5
1.3 Power Requirements ..... ;1.4 Environmental Specifications
2. FUNCTIONAL OPERATION ..... 6 ..... 6
2.1 Modes
2.1 Modes
6
6
2.2 Keyboard
9
9
Control Characters
Control Characters
9
9
Indicator Lamps
Indicator Lamps
10
10
Power Switch
10
10
Parity
11
11
Printer Mechanism
Printer Mechanism ..... 11 ..... 11
. 8
12
3. INTERFACE
12
12
3.1 Internal Modem Interface (Optional)
3.1 Internal Modem Interface (Optional)
13
13
3.3 EIA Line Interface (Optional) ..... 13


Figure 1. 720C Data Terminal
1.1.3 In general, the Model 720C consists of an enclosure, power
supply, printer control electronics, keyboard, terminal
control electronics, a moving \(5 \times 7\) matrix printhead, and a
friction - feed paper drive assembly.
a) Frequency modulated internal modem
b) EIA voltage level
c) TTY (DC neutral keying)
1.1.5 Terminals equipped with modem interface will operate at 300 band whereas terminals equipped with D.C. interface will operate at 150 bauds. Normally, the DC terminals will operate on a \(+60 \mathrm{~V}, 20 \mathrm{~mA}\) loop but there are locations where the terminal will operate on a \(\pm 130 \mathrm{v}, 60 \mathrm{~mA}\) loop.
1.1.6 The terminal has an answer-back memory, an audible alarm device to indicate end of line, as switch to select operating speeds of 10,15 , or 30 characters per second, and a print contrast adjustment control. Circuitry is included parity checking and keyboard lockout functions.
1.1.7 The terminal provides and accepts serial data (serial by bit and character) at a maximum rate of 30 characters per second. By switch control, the terminal operates in a fullor half-duplex mode. Auxiliary connections are used to transfer data in parallel form to-and-from the terminal.
1.1.8 The information exchange code is seven level plus even parity, one start bit, one stop bit (two bits at 10 characters per second, 110 baud). The character set and coding are a modified 102 character subset of the USACII (Ref. Figure 2) Auxiliary input and output may be manually selected or controlled with the device control characters of the ASCII code. All alphabetic characters are printed as capitals.

Characters are printed on thermal paper by activating appropriate elements of a \(5 \times 7\) dot matrix on the moving printhead. The printhead does not obscure any previously printed character.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(b_{4} b_{3} b_{2} b_{1}\) &  & \[
\longrightarrow 0
\] & \({ }^{0} 1\) & 0
1
0 & 0
1

1 & \({ }^{1} 0\) & \({ }^{1} 0\) & \({ }^{1} 1\) & \({ }^{1} 1\) \\
\hline 00000 & 0 & NUL. & DLE & SP & 0 & ® & P & , & P \\
\hline \(\begin{array}{lllll}0 & 0 & 0 & 1\end{array}\) & 1 & SOH &  & ! & 1 & A & Q & A & 0 \\
\hline \(\begin{array}{lllll}0 & 0 & 1 & 0\end{array}\) & 2 & STX & V170c2/ld & " & 2 & B & R & B & R \\
\hline \(\begin{array}{lllll}0 & 0 & 1 & 1\end{array}\) & 3 & TETX & V\%oc3 & \# & 3 & C & S & C & S \\
\hline \begin{tabular}{lllll|}
0 & 1 & 0 & 0
\end{tabular} & 4 & \[
\begin{aligned}
& \text { AHOT } \\
& \hline \text { EOOT }
\end{aligned}
\] & H/10C4/ll & \$ & 4 & D & \(T\) & D & T \\
\hline \begin{tabular}{lllll|}
0 & 1 & 0 & 1
\end{tabular} & 5 & HENG & NAK & \% & 5 & E & U & E & U \\
\hline \begin{tabular}{lllll|}
\hline 0 & 1 & 1 & 1 & 0 \\
\hline 0 &
\end{tabular} & 6 & ACK & SYN & \& & 6 & F & \(v\) & F & V \\
\hline \begin{tabular}{lllll|}
0 & 1 & 1 & 1
\end{tabular} & 7 & BEL & ETB & - & 7 & G & W & G & W \\
\hline \(1 \begin{array}{llll}1 & 0 & 0 & 0\end{array}\) & 8 & BS & CAN & 1 & 8 & H & X & H & X \\
\hline \(\begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & 9 & HT & EM & 1 & 9 & I & \(Y\) & 1 & Y \\
\hline \begin{tabular}{lllll|}
1 & 0 & 1 & 0
\end{tabular} & 10 & LF & SUB & - & : & J & 2 & J & Z \\
\hline \(\begin{array}{lllll}1 & 0 & 1 & 1\end{array}\) & 11 & VT & ESC & + & ; & K & 1 & K & ! \\
\hline \begin{tabular}{|lllll|}
\hline 1 & 1 & 0 & 0
\end{tabular} & 12 & FF & FS & , & < & L & 1 & L & ! \\
\hline \(\begin{array}{lllll}1 & 1 & 0 & 1\end{array}\) & 13 & CR & GS & - & = & M & 1 & M & \} \\
\hline \(\begin{array}{lllll}1 & 1 & 1 & 0\end{array}\) & 14 & SO & RS & - & \(>\) & N & \(\dagger\) & N & \(\sim\) \\
\hline \(\begin{array}{lllll}1 & 1 & 1 & 1\end{array}\) & 15 & SI & US & 1 & ? & 0 & + & 0 & DEL \\
\hline
\end{tabular}


Figure 2. Code System and Character Set

PLANT MANUAL BK2.20.1 SUBSECTION 3 ISSUE 1 APRIL 1973

\subsection*{1.2 Physical Specifications}

The unit may sit directly on any desk or table top. Special tables have been designed but are provided only when ordered by CPIC for a particular location.
\[
\begin{gathered}
\text { Dimensions: } \quad 6.0 \text { in high }(15.24 \mathrm{~cm}) \\
\\
\\
\\
\\
\\
20.0 \text { in wide }(45.07 \mathrm{~cm}) \\
\text { Weight: } \quad 38 \text { pounds }(17.24 \mathrm{kg.})
\end{gathered}
\]

\subsection*{1.3 Power Requirements}

The terminal requires \(120 \mathrm{VAC}( \pm 10 \%)\), 50 or 60 Hz power at 35 Watts average, 240 maximum. Power connection is a sixfoot three-wire cord and a three-prong \(U\)-ground plug.
1.4 Environmental Specifications

See Table 1.
Table 1. Environmental Specifications
\begin{tabular}{|c|c|}
\hline SPECIFICATION & VALUE \\
\hline Ambient Temperature & Operating: \(50^{\circ}\) to \(100^{\circ} \mathrm{F}\) Storage: \(-40^{\circ}\) to \(150^{\circ} \mathrm{F}\) (not including paper) \\
\hline Shock and Vibrations & Vibration: 10 to \(60 \mathrm{~Hz}, 0.1 \mathrm{~g}\) Storage and Handling: 10 g \\
\hline Humidity & Operating and storage humidity from 10 to 95 percent except that condensation must not be allowed to form. \\
\hline Dissipation & Not more than 1000 BTU per hour. \\
\hline
\end{tabular}
2.1.1 Local Operating Mode. The terminal does not receive or transmit data or answer back over the serial data line when in the Local mode. The data line is held in a mark condition. Data operation allowed is data transfer from keyboard to printed page. When the local mode is selected, the LOCAL lamp is illuminated, the PARITY lamp latch is reset, and parity checking circuitry is disabled. The keyboard lockout function is also reset and disabled.
2.1.2 On-Line Operating Mode. The terminal is enabled to transmit and receive serial data in this mode. The parity checking and keyboard lockout functions are enabled and the on-line lamp is illuminated.

The terminal has two sources of data: keyboard and answerback memory. When the answer-back memory is started, keyboard data is inhibited.
2.2 Keyboard. The keyboard, consisting of 60 keys (Figure 3), has three modes of operation:
1. Unshifted character set shown in Figure 4.
2. Upper case (shift key depressed) character set shown in Figure 5.
3. Control (blue CONTROL key depressed) character set shown in Figure 6.

Corresponding control keys have nomenclature in blue except DEL and ESC which are in white.

The specific codes generated by the keyboard are shown in Figure 3.

The EOM, ESC and DEL keys are enabled in all three modes of keyboard operation. In the control mode, the key marked "J" transmits the linefeed (LF) code.
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{ll}
\(-7-\) & PLANT MANUAL \\
& SK2. 20.1 \\
& APRSECTION 3 ISSUE 1973
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Special function keys on the keyboard are:} \\
\hline ATN & Starts transmission of the answer-back memory after a \(35(+10)\) ms delay when in the on-line mode. This key, which is red with white print, is not disabled when the keyboard is locked out. \\
\hline EOM & Generates the ETX code and is colored red with white print. \\
\hline REPEAT & By holding REPEAT key down and then depressing any other key, the other-key character will be printed repeatedly until the REPEAT key is released. \\
\hline ON LINE & Controls "local" and "on line" modes and indicators and is a yellow key with green print. \\
\hline PAPER ADVANCE & Causes a carriage return and a repeated line feed until released. No characters are transmitted. \\
\hline
\end{tabular} line feed until released. No charact ers are transmitted.


Figure 3. Keyboard Arrangement


Figure 4．Keyboard Codes Generated when Shift and Control Keys are not Depressed


Figure 5．Keyboard Codes Generated when Shift Key is Depressed
ツロロロロロロロロロロロロロロジツ



NOTE：COHYTOL KEY IS EL UE CCRRESIO：ODANG CONTROL FUICTION KEYS HAVE NOMENCLATURE PRINTED ：N BLUE EXCEPT DLE AMD ESC VHICH ARE PFINTED IN WHITE．

Figure 6．Keyboard Codes Generated when Control Key is Depressed


Table 2. Control Characters
\begin{tabular}{|l|l|}
\hline Character & Response When Received \\
\hline BEL & The bell sounds. \\
LF & \begin{tabular}{l} 
The printhead is returned to character \\
column one.
\end{tabular} \\
BS & \begin{tabular}{l} 
The paper is advanced one character line.
\end{tabular} \\
DCl \begin{tabular}{l} 
The printhead is stepped to the left one \\
charter column.
\end{tabular} \\
& \begin{tabular}{l} 
Generated auxiliary input-device start \\
pulse (AISTP Jll-E) (loo ps minimum posi- \\
tive pulse to turn on input device.)
\end{tabular}
\end{tabular}

DLANT MANUAL BK2.20.1 SUBSECTION 3 ISSUE 1 APRIL 1973
Table 2 (continued)
\begin{tabular}{|c|c|}
\hline Character & Response When Received \\
\hline DC2 & Generates auxiliary input stop pulse (AOSTP Jl2-C) ( \(100 \mu \mathrm{~s}\) minimum positive pulse to turn on output device). \\
\hline DC3 & Generates auxiliary input stop pulse AISPp Jll-A) (l00 \(\mu \mathrm{s}\) minimum positive pulse to turn off input device.) \\
\hline DC4 & Generates auxiliary output stop pulse (AOSPP J-12-E) (100 \(\mu \mathrm{s}\) minimum positive pulse to turn off output device). \\
\hline ENQ & When received on the serial data line, the answer-back memory is transmitted after a 35 ( \(\pm 10\) ) ms delay (see paragraph 2.7). \\
\hline ETX & When received on the serial input data line, all keyboard functions except "ATN" (see paragraph 2.7) and paper advance are locked out. The auxiliary input data is also locked out. When in the half-duplex mode only, the ETX character from the answer-back memory, keyboard, or auxiliary input will also lock out the keyboard. \\
\hline EOT & When received on the serial data line, the keyboard and auxiliary input data is enabled. In the half duplex mode, the lockout will be unlatched if the EOT code is transmitted from the answer-back memory. \\
\hline
\end{tabular}
2.5 Power Switch. A master reset for the terminal is generated in the terminal when the power switch is set to ON. To reset the terminal, turn off the power switch for one second and then turn on.
2.6 Parity. The terminal operates with even parity, and the keyboard always generates even parity. Data which is transmitted from the answer-back memory or the auxiliary input will have the parity that has been programmed. Data which is to be printed is checked for even parity, If a parity error occurs, the data character is blocked out and the "?" character is inserted on the data lines, a latch is set which illiminates the parity lamp. This lamp display may be reset by switching to Local mode and returning to
```

PLANT MANUAL BK2.20.1
SUBSECTION 3 ISSUE 1
APRIL 1973

```
"On Line", or by cycling AC power. The parity checking circuit is disabled when in the local mode, or when "On Line" in Half-Duplex and the answer-back memory is transmitting.

\subsection*{2.7 Answer-Back Memory}
2.7.1 The answer-back memory is a variable length (up to 20 characters) sequence that is transmitted by the "ATN" key or receipt of "ENQ" from the serial data line. The transmission of the answer-back memory is delayed a fixed \(35(+10)\) ms from the time ATN or ENQ is initiated.
2.7.2 The response is programmed as desired by the user (eight bits per character, seven bits plus parity). Programming the response is done by removing factory installed diodes from the matrix on the answer-back card. (Ref. E.T. Training Manual 7 Volume I Paragraph 9.2.7 et seq. for Answerback programming procedure). The presence of a diode corresponds to a "mark" condition in the character. The absence of a diode generates a "space" in the character. The "DEL" (all diodes present) character terminates the response and is not transmitted. For an "N" character response, the \(N+1\) character must be "DEL". To allow a 20character response, the memory actually contains 21 characters (character 21 must be the "DEL" character).
2.7.3 The characters generated by the Answer-Back Memory shall not be printed.
Note: If the Answer-Back Memory does not have at least one character programmed, the terminal will not print or transmit.
2.8 Printer Mechanism
2.8.1 The printer mechanism moves the head and paper in proper relation and speed to achieve serial line printing operation. The mechanism mounts to the inside base of the enclosure. See Table 3.
2.8.2 An 80-character (full line) carriage return requires 200 ms which compares to six character-times at 30 characters per second, three-character-times at 15 characters per second, or two character-times at 10 characters per second. While the carriage is returning, the "LF" character may be received and the paper advanced. The carriage is stepped from right to left one column on receipt of "BS" (backspace)

PLANT MANUAL BK2.20.1 SUBSECTION 3 ISSUE 1 ADRIL 1973
2.8.3 A bell is provided to give an audible alarm upon receipt of the "BEL" character. The bell sounds automatically after column 65 is printed.
2.8.4 To limit printhead travel, an automatic carriage return and line feed function is performed after the 80 th character is printed on one line. Neither "CR" nor "LF" is transmitted by the terminal when this automatic function is performed.

Table 3 Printer Mechanism Specifications
\begin{tabular}{|c|c|}
\hline Specification & Value \\
\hline \multicolumn{2}{|l|}{\multirow[t]{9}{*}{\begin{tabular}{l}
Maximum Printing Speed \\
Character Spacing \\
Line Length \\
Paper Drive Type \\
Line Spacing \\
Paper Width \\
Paper Length \\
Maximum Paper Supply Roll Diameter \\
Maximum Paper Line Advance Rate \\
30 characters per sec. \\
10 per inch \\
8.0 inches ( 80 charact.) \\
Friction feed \\
6 lines per inch \\
\(8.47(-0.00,+0.05)\) inches \\
300 ft nominal, 280 ft min. \\
3.625 inches \\
30 lines per second
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

\section*{3. INTERFACE}
3.1 Internal Modem Interface (Optional)
3.1.1 The Modem terminals will operate on a 2-wire loop which has no DC voltage applied to it. A bell Model l03F compatible modem may be provided within the terminal enclosure. This modem operates asynchronously up to a maximum speed of 300 baud in a fully or half-duplex mode over a two-wire unconditioned voice-grade telephone line. The internal modem uses frequency shift keying modulation with transmit carrier frequencies of 1270 Hz (mark) and 1070 Hz (space) and with receive carrier frequencies of 2225 Hz (mark) and 2025 Hz (space).
3.1.2 The modem transmission level is adjustable over the range from -15 dBm to 0 dBm .

The modem receiver is operational for input signal levels in the range from -35 dBm to +5 dBm .

- TELECOMMUNICAT

TELECOMMUNICAT
ENGINEERING DEPARTi:.

PLANT MANUAL BK2.20.1 SUBSECTION 5 ISSUE 1 APRIL 1973
CONTENTS PAGE
1. GENERAL ..... 2
2. INSTALLATION ..... 2
3. TESTS ..... 2
4. MAINTENANCE ..... 2
\begin{tabular}{ll}
1.0 & GENERAL \\
1.1 & \begin{tabular}{l} 
This subsection covers an outline of the preliminary check- \\
out, installation, outline tests, as well as corrective and \\
preventative maintenance and adjustment procedures of the
\end{tabular} \\
Texas Instrument 720C Data Terminal for the RCMP Canadian \\
Police Information Centre (CDIC) Communcations Network \\
across Canada.
\end{tabular}

TERMINAL \(\qquad\)
MODEL \(\qquad\)
SERIAL NO. \(\qquad\)
INTERFACE \(\qquad\)

\section*{Test Equipment}

For Terminals equipped with DC Interface
a) Generator - CDC TMG 301 or equivalent.
b) Analyser - CDC SDA 101 or equivalent.
c) Model 35 ASR Teletype teleprinter.
d) Spare Answerback card J3.

For Terminals equipped with Modem Interface
a) Transmission and Noise Measuring Set - Hewlett Packard Model 3555B.
b) Frequency counter - Hewlett Packard 521 A .
c) Frequency generator - Hewlett Packard 200 CD.
d) Spare answerback card J3 (same as above).

\section*{TI720C TEST RECORD FORM}

KEYBOARD REQUIREMENTS
a) Keyboard layout (per Figure 1)
b) Codes generated (per Figure 2)
c) All keytops grey with matt finish and white legends except:
\begin{tabular}{llll} 
KEY & SHELL COLOUR & & LEGEND COLOUR \\
ATN & Red & & \\
EOM & Red & & White \\
Control & Blue Grey & & White \\
On Line & Yellow & & Green
\end{tabular}
d) The following characters have a blue grey lenend colour:
\begin{tabular}{llll} 
DC-1 & HT & ACK & ETX \\
ETB & SI & BEL & SYN \\
ENQ & DLE & BS & STX \\
DC-2 & NUL & VT & SO \\
DC-4 & DC-3 & SUB & GS \\
NAK & EOT & CAN & \\
EM & SOH & FF &
\end{tabular}
e) The EOM ESC and DEL keys shall be enabled in all three modes and have white legends.
f) In control mode, the key marked \(J\) shall transmit the line feed code.
g) Special functions -

ATN - starts answerback when in on line mode.
EOM - transmits ETX code
REPEAT
ON-LINE
PAPER ADVANCE
h) Keyboard unlocks on operation of power switch.
j) Keyboard unlocks on operation of on line/off line switch.

CNT BK2.20.1/7.2
PAGE 3 of 8
ISSUE \(14 / 73\)
7720 SILENT 700 DATA TERMINAL
TEST RECORD FORM
CONTROL CHARACTERS
\begin{tabular}{lllll|} 
a) & BEL & CR & LF & BS \\
b) & ETX - locks keyboard \\
c) EOT - unlocks keyboard \\
d) ENQ - trips answerback when received
\end{tabular}

\section*{DARITY}
a) Keyboard transmits even parity
b) Answerback (as coded)
c) Incoming traffic checked for even parity
d) Odd parity - "?" printed
- parity lamp on
e) Reset parity lamp by operating
- line/local switch
- AC switch

\section*{INDICATOR LAMPS}
a) Parity lamp (red) latched on parity error
b) Open line (red) (on receive line only) lights when carrier detect not received or receive data line on space. Resets when normal conditions restored.
c) Local (yellow)
d) One line (green)
e) Power (green)


PRINTER MECHANISM
a) speed 10,15 and 30 CPS
b) line length - 80 columns
c) back space
d) audible alarm on BEL
e) audible alarm at end of line ( 65 columns)
f) automatic CR/LF after 80 th column
g) Buffer characters
- 6 char at 30 CDS
- 3 char at 15 CPS
- 2 char at 10 CPS

\section*{TI70 SILENT 700 DATA TERMINAL PLANT MANUAL BK2.20.1 SUBSECTION 5}

\section*{LOCAL MODE}
a) Local light on
b) Data line in mark condition
c) Parity checking disabled
d) Keyboard lockout disabled

\section*{ON LINE :IODE}
a) On line light lit
b) Parity light off

PRINTER CHECKS
a) Printing contrast adjustment
b) Cooling fan operating satisfactorily
\(\square\)
c) 35 dots printed using
- K backspace
- B backspace
\(->\)
d) CSA approval tag
e) Aux output and input ports

\section*{MODE: 1 INTERFACE}
a) Transmit frequencies 1070 Hz (space) \& 1270 Hz (mark)
b) Feceive frequencies 2025 Hz \& 2225 Hz
c) Input/output impedance ( 600 ohms)
d) Sensitivity of Receiver ( -35 dbm )
e) Variation of output level of transmitter (0-15 dbm)

DC INTERFACE
a) Loop remains closed when AC power off.
b) Receive signal - local battery
\(\pm 60 \mathrm{~V} \quad 20 \mathrm{~mA} \quad 10 \mathrm{CPS}\) Dist \& BIAS
\(\qquad\)

15 CPS


30CPS
c) Send signal - local battery
\(+60 \mathrm{~V} \quad 20 \mathrm{~mA} \quad 10 \mathrm{CPS}\)
15 CPS
30 CPS
```

T|720C Ref: SILENt 700 DATA TERMINAL % SECTION 5
PLANT MANUAL BK2.20.1 SUBSECTION 5 FORM

```

\title{
NDICATCR \(\quad\) AMPS \\  \\ POWER SWITCH \\ OFF \(\bigodot O\)
}




(SPACE BAR)

FIGURE 1
(Y) Indicates Red Jewel
(G) Indicates Green Jewel


FIGURE 2```


[^0]:    REQUIREMENT: Place the start-stop lever in the run position and the feed pawl in its lowest position: there shouid be some clearance not more than $.002^{"}$ between the feed pawl and a tooth on the ratchet wheel when the play is taken to make the clearance a maximum.

    TO ADJUST: Reposition the feed lever by its pry points with its lock nut loosened.

[^1]:    7.2 Gear Shift Guide Plate

    REQUIREMENT: With speed selector lever set at 100 wpm . the 100 wpm driving gear shouid mesh and fully engage its driven gear.

    TO ADJUST: Reposition guide plate. with mounting screws loosened.

    * Note: Shift gears only while motor is off.

[^2]:    TO ADJUST: REFINE THE SELECTOR ARMATURE SPRING

[^3]:    TO CHECK
    position carriage at left side of printer. push and pull code bars at spring hook end REQUIREMENT

    - NO EXCESSIVE DEFLECTION IN EITHER DIRECTION OF CODE BARS NEAR THEIR CENTER.

