INSTRUCTION BOOK

for

RADIO TRANSMITTING SETS

AN/SRT.14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title page A to C i to $x v i$ $1-\mathrm{i}$ to $1-\mathrm{ii}$ 1-1 to 1-24 2-i to $2-\mathrm{vi}$ 2-1 to 2-136 3-i to $3-\mathrm{ii}$ 3-1 to 3-74 4-i to $4-\mathrm{ii}$ 4-1 to 4-22	Original Original	5-i 5-1 to 5-20 6-i to 6-ii 6-1 to 6-40 7-i to 7-viii 7-1 to 7-286 8-1 to 8-282 $\mathrm{i}-1$ to $\mathrm{i}-18$	Original Original

nief, Bureau of ships with the
chief, bivities Concerion and Main-
To: All Anstallation, Operation and pment tenance of for Radio Trans-
Instruction Book for Radio \sin SRT-14A
Subj: Insting Sets AN/SRT-14, AN/SRT-16
AN/SRT-15, AN/S
and $A N / S R T-16 A$ book for the

1. This is the instruction in effect upon subject equipment and
receipt.
2. When superseded by a later edition
3. When supersion shall be destroyed.

Extracts from this publication may
3. Extracts frilitate the preparatications. other Department of De for NAVSHIPS Elec4. All Navy requests should be directed tronics pubilcations sict Pubilcations and to the nearest When changes or will be into inting office ibuted, notice wion Printing are distributronics Infornd in the books are the Electron cluded in $02(\mathrm{~A})$ and in ElecBulletin, NAVSHIPS Ships Geners 250-020. Index of Bureau of Nications, NAVSHIP tronics
A. G. MUNMA

Chief of Bureau

RECORD OF CORRECTIONS MADE

CHANGE NO.	DATE	SigNATURE OF OFFICER MAKING CORRECTION

TABLE OF SECTIONS

\author{

1. General Description
 5. Operator's Maintenance
 2. Theory of Operation
 6. Preventive Maintenance
 3. Installation
 7. Corrective Maintenance
 4. Operation
 8. Parts Lists
}

INDEX OF ILLUSTRATIONS

SubjectA
Actuating arm (RFA)—lubrication 6-14
Actuator motor-lubrication 6-33
Adjustments-control-indicator for r-f tuner control 6-2
Alternate method of bridging transformer windings 7-111
Antenna bypass switch S-3512-simplified schematic 2-123
Antenna Coupler CU-372/SRT (antenna coupler)-
antenna bypass switch S-3512, simplified schematíc 2-123
antenna coupler loading (AD) switch S-404, control circuit, simplified schematic 2-44
control circuits, simplified schematic2-128, 7-116
grounding cam circuit, simplified schematic 2-125
housing 7-97
junction box assembly 7-99
less housing 7-100
loading section 7-102
loading switch S-3511, simplified schematic 2-124
lubrication 6-34
mechanical drives 7-98
outline drawing 3-28
primary power distribution diagram 3-36
schematic diagram 7-170
shock mounts 7-97
side view, cover off 1-20
side view, cover on 1-19
unpacking procedure 3-7
wiring diagram 7-171
with housing and shock mounts 7-103
Antenna coupler and r-f tuner control circuits-simplified schematic 2-128, 7-116
Antenna switching relay K-1306 (RFA)-simplified schematic 2-104
Antenna transfer ${ }^{(46}$ switch S-402, control circuit-simplified schematic 2-43
Assembly of adapter (CBTL No. A2011254) on RG-17/U first extrusion cable 3-16
Assembly of UG-21B/U or UG-23B/U connector on RG-8/U coaxial cable 3-12
Assembly of UG-154/U connector on RG-18/U coaxial cable 3-15
Assembly of UG-167A/U connector on RG-18/U coaxial cable 3-14
ATU bypass transfer circuit (LLRM)-simplified schematic 2-91
Audio amplifiers V-1001 and V-1002A, cathode follower V-1002B, and AGC rec- tifier V-1013A (LLRM)-simplified schematic 2-70
Audio amplifiers V-1004A and V-1003A (LLRM)-simplified schematic 2-72
Audio amplifiers $\mathrm{V}-1601$ and $\mathrm{V}-1602$ (HLRM)-simplified schematic 2-92
Audio input circuit (LLRM)-simplified schematic 2-69
Audio oscillator V-1020 (LLRM)-simplified schematic 2-86
Bandswitch-
lubrication 6-16
mechanical linkages 2-105

Subject

Cables—installing E-702 .. 3-13
Cabling, interconnecting diagrams-
AN/SRT-14 3-30
AN/SRT-15 3-31
AN/SRT-16 3-32
Cathode follower V-1015A, keying control V-1016, and keying multivibrator V-1017B-simplified schematic 2-81
Clipper V-1014-simplified schematic 2-71
Control circuits operation from -24 volts after time delay for 100 -watt operation, simplified functional block diagram 2-114
Control circuits operation from - 24 volts after time delay for 500 -watt operation- simplified functional block diagram 2-115
Control circuits operation through -24 volts after time delay-simplified functional block diagram 2-113
Control functions-location of, AN/SRT-15 4-1
Control (AA)-mechanical linkages 2-53
Control (B)-mechanical linkages 2-54
Controls 10~Ⓔ), 100~(®), KC © (C)-mechanical linkages 2-48
Control \mp BAND-mechanical linkages 2-52
Control (6) MC-mechanical linkages 2-51
Control 100 KC -mechanical linkages 2-50
Control (II) 10 KC -mechanical linkages 2-49
Control-Indicator C-1352/SRT (control-indicator)- adjustments for r-f tuner control 6-3
antenna coupler loading (AD) switch S-404, control circuit, simplified schematic 2-44
antenna transfer (AA) switch S-402, control circuit, simplified schematic 2-43
front panel 7-3
inner view 7-55
position indicator circuit, simplified schematic 2-46
schematic diagram 7-151
SWR indicator circuit, simplified schematic 2-47
unpacking procedure 3-5
wiring diagram 7-152
Cover CW-341/SRT (booster cover) 1-2
Crystal matching, test setup 7-96
Curves, typical output-50-ohm load 1-23
D
Dumping cathode follower-simplified schematic 2-83
E
Electrical Equipment Cabinet CY-1571/SRT- cover removed showing terminal boards 7-91
front oblique view 1-10
front view, units removed 7-90
lubrication-
latches, nuts, rollers 6-12
tapped holes 6-11
terminal boards 7-91
terminal board and cable entrance data 3-26
wiring diagram 7-167
Electrical Equipment Cabinet CY-1572/SRT-
front oblique view 1-15
lubrication-
latches, nuts, rollers 6-12
tapped holes 6-11
terminal board and cable entrance data 3-26
top view, side covers removed 7-92
wiring diagram 7-168
Electrical Equipment Cabinet CY-1573/SRT-
front oblique view 1-16
lubrication-
latches, nuts, rollers 6-12
tapped holes 6-11
side covers removed, top view 7-93
terminal board and cable entrance data 3-26
wiring diagram 7-169
Electron tube 4-400A-unpacking procedure 3-5
Emergency repair of audio transformer 7-112
F
50 -ohm load-typical output curves 1-23
-50-volt bias supply-simplified schematic 2-93
+500 -volt d-c supply (MVPS)-simplified schematic 2-61
500 -watt operate relay K-1304 and 500 -watt disable line (RFA)-simplified schematic 2-103
Front panel controls and indicators, location of-
HLRM 4-9
HVPS 4-10
LAU $4-8$
LLRM 4-3
LVPS 4-6
MVPS 4-7
RFA 4-2
RFO 4-4
RFO frequency selection panel controls 4-5
Fuse Locations-
AN/SRT-15 5-2
HVPS 5-4
LVPS 5-3
G
Grounding cam circuit-simplifred circuit 2-125Heaters HR-701 through HR-704--simplified schematic2-112
I
Impedance characteristics--typical 35 -foot whip antenna 2-118
Impedance transformer circuit (LAU)-simplified schematic 2-117
Impedance transformer Z-301-simplified schematic 2-120
Indicating circuit, zero adjust-simplified schematic 2-41
Input circuit of HVPS-simplified schematic 2-64
Input power link arrangements (booster) 3-17

Subject

Installation material-AN/SRT-15 ..	1-22, 3-10
	3-13
Interconnecting cabling diagrams-See Radio Transmitting Sets AN/SRT-14, 15 and 16	
Interlock circuit and -24-volt d-c supply (LVPS)—simplified schematic	2-57
IPA tank circuit-simplified schematic	2-99
IPA V-1302-simplified schematic	2-98
K	
Keyer V-1019—simplified schematic ...	2-85
Keying input circuit-simplified schematic ..	2-80
L	
Limiter V-1018-simplified schermatic ..	2-84
Loading switch S-3511-simplified schematic ...	2-124
LOCAL-REM switch © S-1106-simplified schematic ...	2-88
Lubrication-	
actuator motor	6-33
air filters	6-25
antenna coupler	6-28, 6-34
antenna transfer switch S-3512 and bearings ...	6-35
chassis slide	6-27
control-indicator	6-26
electrical equipment cabinet ...	6-11, 6-12
LLRM	6-24
load selector switch S-3511 and bearings ..	6-36
RFA ..	$\begin{aligned} & 6-13,6-14,6-15 \\ & 6-16,6-17 \end{aligned}$
RFO	6-18, 6-19, 6-20,
	6-21, 6-22, 6-23
r-f tuner ...	6-28, 6-29, 6-30,
	6-31, 6-32
Lissajous patterns--typical ..	7-2

Keyer V-1019—simplified schematic .. 2-85
Keying input circuit—simplified schematic .. 2-80
L
Limiter V-1018-simplified schematic ... 2-84
Loading switch S-3511—simplified schematic ... 2-124
LOCAL-REM switch © S-1106—simplified schematic ... 2-88
Lubrication-
actuator motor ... 6-33
air filters .. 6-25
antenna coupler .. 6-28, 6-34
antenna transfer switch S-3512 and bearings ... 6-35
chassis slide ... 6-27
control-indicator ... 6-26
electrical equipment cabinet .. 6-11, 6-12
load selector switch S-3511 and bearings ... 6-36
RFA 6-13, 6-14, 6-15,
RO
for 6-31, 6-32

M
Machine keying input signals—voltage waveforms .. 2-79
Magnetic clutch O-301--cross section ... 2-122
Maintenance checks-
daily routine, AN/SRT-15 .. 6-1
monthly routine, AN/SRT-15 ... 6-5
weekly routine, AN/SRT-15 .. 6-3
Main test cable assembly-AN/SRT-14, 15, 16 .. 1-21
Main tuning coil L-302-simplified schematic ... 2-119
Major control functions, location of-AN/SRT-15 .. 4-1
Mechanical linkages-
(44) control ... 2-53
bandswitch ... 2-105
(B8) control .. 2-54
buffer-IPA tuning .. 2-106
(c) control ... 2-48
(10) control .. 2-48
(€1) control .. 2-48
(Ғf) control .. 2-52
(6) control .. 2-51
(414) control .. 2-50
(11) control ... 2-49

PA tuning (RFA) ... 2-107

Illustrations

Figure No.
Metering circuit (RFA)-simplified schematic 2-108
Metering socket E-2919 (RFO) 6-4
Mounting MT-1423/SRT (mounting)- air filters, lubrication 6-25
control circuit, simplified schematic 2-126, 7-114
front oblique view 1-12
heaters HR-701 through HR-704, simplified schematic 2-112
installing E-702 cables 3-13
schematic diagram 7-166
top view 7-89
unpacking procedure 3-6
Multiconductor connectors, cable assembly-instructions for 3-33
$+1,050 /+1,300$-volt d-c supply (MVPS) -simplified schematic 2-63
Outline drawings-
Antenna Coupler CU-372/SRT 3-28
Radio Frequency Tuner TN-229/SRT 3-29
transmitter bay-
AN/SRT-14 3-23
AN/SRT-15 3-24
AN/SRT-16 3-25
Transmitter Coupler CU-402/SRT 3-27
Phase inverter V-1003B-simplified schematic 2-76
Pictorial system diagrams-
AN/SRT-14 3-20
AN/SRT-15 3-21
AN/SRT'-16 3-22
Position indicator circuit-simplified schematic 2-46
PA harmonic filter (RFA)-complete schematic 2-101
PA tuning (RFA)-mechanical linkages 2-107
PA V-1304 (RFA)-simplified schematic 2-100
Power amplifiers V-1006 and V-1007 (LLRM)-simplified schematic 2-78
Percentage modulation patterns-typical 7-57
Power Supply PP-1094/SRT (low voltage power supply, LVPS)7-81
front oblique view 1-8
front panel 7-79
front panel controls and indicators $4-6$
input circuit of LVPS, simplified schematic 2-55
interlock circuit and -24 -volt d-c supply, simplified schematic 2-57
left side panel, fuse locations 5-3
schematic diagram 7-160
start-stop circuit, simplified schematic 2-56
-220-volt d-c supply, simplified schematic 2-60
+250 -volt d-c unregulated supply, simplified schematic 2-59
+300 -volt d-c supply, simplified schematic 2-58
top view 7-80
top view, tube locations 5-13
voltage and resistance chart 7-78
wiring diagram 7-161
Power Supply PP-1095/SRT (medium voltage power supply, MVPS) - bottom view 7-84
+500 -volt d-c supply, simplified schematic 2-61
front oblique view 1-9

NAVSHIPS 92121(A)

AN/SRT-14, 14A, 15, 15A, 16, 16A

Subject

Figure No.
front panel 7-82
front panel controls and indicators 4-7
$+1,050 /+1,300$-volt d-c supply, simplified schematic 2-63
schematic diagram 7-162
+300 -volt switch relay, simplified schematic 2-62
top view 7-83
top view, tube locations 5-5
voltage and resistance chart 7-85
wiring diagram 7-163
Power Supply PP-1096/SRT (high voltage power supply, HVPS)-
front oblique view 1-14
front panel 7-87
front panel controls and indicators 4-10
input circuit, simplified schematic 2-64
schematic diagram 7-164
top view 7-88
transformer T-1502 primary and meter connections for 440 -volt input 2-65
transformer T-1502 primary and meter connections for 220 -volt input 2-66
tube and fuse locations, top view 5-4
voltage and resistance chart 7-86
wiring diagram 7-165
Pressurization and purging setup-typical 7-109
Pressurization, typical-antenna tuning equipment 3-19
Pressurizing method-typical 5-15
Pressurizing procedure-typical 6-37
Primary power distribution diagrams-
antenna coupler and r-f tuner AN/SRT-14, 15, 16 3-36
antenna tuning equipment, AN/SRT-14, 15, 16 7-119
radio modulator-power supply, AN/SRT-14, 15, 16 3-35, 7-118
transmitter group and mounting, AN/SRT-14, 15, 16 3-34, 7-117
Push-pull cathode followers V-1005A and V-1005B (LLRM)-simplified schematic 2-77
R
Radio Frequency Amplifier AM-1008/SRT (RFA)- actuating arm, lubrication 6-14
antenna switching relay $\mathrm{K}-1306$, simplified schematic 2-104 2-104
bandswitch-
lubrication 6-16
mechanical linkages 2-105
block diagram 2-95,
bottom view 7-72
buffer-IPA tuning, mechanical linkages 2-106
buffer-tank circuit, simplified schematic 2-97
buffer V-1301, simplified schematic 2-96
500 -watt operate relay K-1304 and 500-watt disable line, simplified schematic 2-103
front oblique view 1-4
front panel 7-73
front panel controls and indicators 4-2
IPA dial assembly, lubrication 6-17
IPA mechanical drive system 7-76
IPA tank circuit, simplified schematic 2-99
IPA V-1302, simplified schematic 2-98
left side, lubrication 6-13
left view 7-71
loading spring, lubrication 6-14
metering circuits, simplified schematic 2-108
PA dial assembly, lubrication 6-15
PA harmonic filter, complete schematic 2-101

Subject

Figure No.
PA harmonic filter, simplified schematic ... 2-102
PA mechanical drive system ... 7-75
PA tuning, mechanical linkages ... 2-107
PA V-1304, simplified schematic ... 2-100
R-f line filter Z-1301 and blower motor B-1306, simplified schematic 2-109
removing PA tube V-1304 .. 5-14
right side, bandswitch lubrication .. 6-16
right view, cover removed from IPA subassembly ... 7-69
schematic diagram ... 7-158
S-1301 and S-1302 bandswitch, mechanical drive system 7-77
S-1302 bandswitch assembly, left oblique view .. 7-74
top view .. 7-68
tube locations .. 5-7
voltage and resistance chart .. 7-70
wiring diagram .. 7-159
Radio Frequency Oscillator O-275/SRT (RFO)-
block diagram ... 7-1
bottom view ... 7-9
bottom view, tube locations ... $5 \mathbf{5 0 1 2}$
bottom view, unit test jacks, voltages ... 6-9
control panel removed, idler gear lubrication ... 6-21
covers removed, left side view ... 7-6
covers removed, right side view .. 7-7
covers removed, top view ... 7-8
frequency check, test setup .. 7-13
frequency selection panel controls .. 4-5
front oblique view, covers off :.. 1-7
front oblique view, covers on .. 1-6
front panel 7-3
front panel controls and indicators .. 4-4
front panel removed, chain drives ... 7-10
front panel unit adjustments ... 6-10
functional block diagram .. 2-2
heater circuit, generalized schematic .. 2-40
left side, lubrication .. 6-19
left side, tube locations .. $5 \mathbf{5 1 1}$
left side, unit test jacks, voltages .. 6-8
metering socket E-2919 .. 6-4
producing 23.57619 mc , functional block diagram ... 2-131
right side, lubrication ... 6-22
right side, tube locations ... 5-10
right side, unit test jacks, voltages .. 6-7
simplified trouble location, block diagram ... 7-120
top view, tube locations ... 5-9
top view, unit test jacks, voltages .. 6-6
tuning chart .. 4-11
typical lubrication points .. 6-18
unit 1 (Z-2001)-
cathode followers V-2002 and V-2003, simplified schematic 2-4, 7-123
cover removed, bottom view ... 7-14
crystal oscillator V-2001, simplified schematic ... 2-3
top view .. 7-12
voltage and resistance chart ... 7-11
wiring diagram .. 7-124
unit 2 (Z-2034)-
cathode followers V-2033 and V-2034, simplified schematic 2-7
cover removed, bottom view ... 7-17
frequency doubler V-2032, simplified schematic .. 2-6

NAVSHIPS 92121(A)
FRONT MATTER

AN/SRT-14, 14A, 15, 15A, 16, 16A

Subject.
 Figure No.

frequency quintupler V-2031, simplified schematic 2-5
schematic diagram 7-125
top. view 7-16
voltage and resistance chart 7-15
wiring diagram 7-126
unit 3 ($\mathrm{Z}-2053$)-
interpolation oscillator V-2051, simplified schematic 2-10
lubrication 6-23
right side view 7-19
schematic diagram 7-127
top oblique view 7-18
tube shelf, wiring side 7-20
voltage and resistance chart 7-21
wiring diagram 7-128
unit 4 ($\mathrm{Z}-2103$)-
cover removed, bottom view 7-24
frequency doubler $V-2102$, simplified schematic 2-9
frequency quadrupler V-2101, simplified schematic 2-8
schematic diagram 7-129
top view 7-23
voltage and resistance chart 7-22
wiring diagram 7-130
unit 5 (Z-2158)-
cover removed, bottom view 7-27
1.1-mc. mixer V-2151, simplified schematic 2-12
1.19- to 1.2 -mc mixer $\mathrm{V}-2152$, simplified schematic 2-13
9.19- to 9.2 -mc mixer V-2153 and amplifier V-2154, schematic diagram 7-131
9.19- to 9.2 -mc mixer $V-2153$ and amplifier $V-2154$, simplified schematic 2-14
top view 7-26
voltage and resistance chart 7-25
wiring diagram 7-132
unit 6 (Z-2204)-
amplifiers V-2208 and V-2209, simplified schematic 2-20
cover removed, bottom view 7-29
cover removed, top view 7-28
electronic frequency converter ($10-\mathrm{kc}$ step generator), block diagram 2-15
isolating amplifier $V-2201$, shaper $V-2202 \mathrm{~B}$, and $10-\mathrm{kc}$ blocking oscillator $\mathrm{V}-2202 \mathrm{~A}$, simplified schematic 2-16
mixer $\mathrm{V}-2203$, step oscillator $\mathrm{V}-2205$, and reactance tube $\mathrm{V}-2204$, simplified schematic 2-17
mixer V-2206, simplified schematic 2-18
mixer V-2207, simplified schematic 2-19
schematic diagram 7-133
voltage and resistance chart 7-30
wiring diagram 7-134
unit 7 (Z-2305)-
cover removed, bottom view 7-33
frequency quintupler V-2301 and amplifier V-2302, simplified schematic 2-21
frequency tripler V-2303 and amplifier V-2304, simplified schematic 2-22
schematic diagram 7-135
top view 7-32
voltage and resistance chart 7-31
wiring diagram 7-136
unit 8 ($\mathrm{Z}-2330$)-
amplifiers V-2332 and V-2333, simplified schematic 2-28
clipper V-2326A and shaper V-2326B, simplified schematic 2-24

Subject

covers removed, bottom view 7-36
electronic frequency converter ($100-\mathrm{kc}$ step generator), block diagram 2-23
lubrication 6-20
mixer $V-2330$, simplified schematic 2-26
mixer V-2327, step oscillator $\mathrm{V}-2329$, reactance tube $\mathrm{V}-2328$, and cathode follower V-2334, simplified schematic 2-25
mixer V-2331, simplified schematic 2-27
schematic diagram 7-137
top view 7-35
voltage and resistance chart 7-34
wiring diagram 7-138
unit 9 (Z-2426) -
amplifiers V-2427, V-2428, and V-2429, simplified schematic 2-30
cover removed, left view 7-37
cover removed, right view 7-38
mixer V-2426, simplified schematic 2-29
schematic diagram 7-139
voltage and resistance chart 7-39
wiring diagram 7-140
unit 10 ($\mathrm{Z}-2526$)-
amplifiers V-2527 and V-2528, simplified schematic 2-32
amplifier V-2529, simplified schematic 2-33
covers removed, bottom oblique view 7-41
covers removed, right view 7-42
harmonic generator V-2526, simplified schematic 2-31
schematic diagram 7-141
voltage and resistance chart 7-40
wiring diagram 7-142
unit 11A ($\mathrm{Z}-2626$) -
amplifier V-2628 and cathode follower V-2629, simplified schematic 2-35
cover removed, bottom view 7-45
mixer V-2626 and amplifier V-2627, simplified schematic 2-34
schematic diagram 7-143
top view 7-44
voltage and resistance chart 7-43
wiring diagram 7-144
unit 11B (Z-2651) -
amplifiers V-2652, V-2653, and V-2654, simplified schematic 2-37
cover removed, right view 7-48
covers removed, top oblique view 7-47
mixer V-2651, simplified schematic 2-36
schematic diagram 7-145
voltage and resistance chart 7-46
wiring diagram 7-146
unit 11C (Z-2801)-
amplifiers V-2802, V-2803, and V-2804, simplified schematic 2-39
covers removed, left view 7-50
cover removed, right view 7-51
mixer V-2801, simplified schematic 2-38
schematic diagram 7-147
voltage and resistance chart 7-49
wiring diagram 7-148
unit 12 (Z-2127) -
bottom view 7-53
frequency shift oscillator, simplified schematic 2-11
schematic diagram 7-149
top view 7-52
voltage and resistance chart 7-54

NAVSHIPS 92121(A)

Figure No.

Subject

unit 14 (Z-2901) -
right side view, units removed ... 7-5
schematic diagram ... 7-121
yolmage and resistance chart ... 7-4
wiring diagram ... 7-122
Radio Frequency Tuner TN-229/SRT (r-f tuner)-
control circuits, simplified schematic .. 2-128, 7-116
cross section of clutch-brake assembly, lubrication ... 6-31
cross section of drive motor shaft extension, lubrication 6-30
cross section of main drive bearings, lubrication .. 6-32
drive motor control circuit, simplified schematic .. 2-42
drive section, air duct side .. 7-108
drive section, clutch side ... 7-107
gears and racks, lubrication .. 6-29
impedance transformer Z-301, simplified schematic ... 2-120
less housing .. . 7-106
magnetic clutch O-301, cross section ... 2-122
main tuning coil L-302, simplified schematic ... 2-119
mechanical drive .. 2-121
outline drawing .. 3-29
primary power distribution diagram .. 3-36
r-f tuner mechanical drives .. 7-105
r-f tuner test setup .. 7-104
schematic diagram .. 7-172
side view, cover off .. 1-18
side view, cover on ... 1-17
typical pressurization and purging setup ... 7-109
unpacking procedure .. 3-8
wiring diagram ... 7-173
Radio Modulator MD-229/SRT (low level radio modulator, LLRM)adjustments, door opened7-63
ATU bypass transfer circuit, simplified schematic 2-91
audio amplifiers $V-1001$ and $V-1002 A$, cathode follower $V-1002 B$, and
AGC rectifier V-1013A, simplified schematic 2-70
audio amplifiers $V-1004 A$ and $V-1003 A$, simplified schematic 2-72
audio input circuit, simplified schematic 2-69
audio oscillator $V-1020$, simplified schematic 2-86
bottom view 7-59
cathode follower V-1015A, keying control V-1016, and keying multivibrator
V-1017B, simplified schematic 2-81
clipper V-1014, simplified schematic 2-71
dumping cathode follower, simplified schematic 2-83
front oblique view 1-5
front panel 7-62
front panel controls and indicators 4-3
front panel switch, lubrication 6-24
functional block diagram 2-130
keyer V-1019, simplified schematic 2-85
keying input circuit, simplified schematic 2-80
keying multivibrator voltage waveforms, for hand-key and machine-key operation 2-82
limiter V-1018, simplified schematic 2-84
LOCAL-REM. switch © S-1106, simplified schematic 2-88
machine keying input signals, voltage waveforms 2-79
percentage modulation patterns-typical 7-57
phase inverter V-1003B, simplified schematic 2-76

Subject

Figure No.
power amplifiers $\mathrm{V}-1006$ and $\mathrm{V}-1007$, simplified schematic 2-78
push-pull cathode followers V-1005A and V-1005B, simplified schematic 2--77
rectifier $\mathrm{V}-1009$, regulator $\mathrm{V}-1010$, regulator control $\mathrm{V}-1011$, and voltage regulator $\mathrm{V}-1012$, simplified schematic 2-89
schematic diagram 7-153
servicing block diagram 7-155
sidetone amplifier $\mathrm{V}-1004 \mathrm{~B}$, simplified schematic 2-75
squelch multivibrator $V-1008$, simplified schematic 2-73
squelch rectifier CR-1002 and limiter V-1013B, simplified schematic 2-74
symmetrical clipping waveform 7-60
test circuit for simulating keying signals 7-61
top view 7-58
top view, tube locations 5-6
-12-volt power supply, simplified schematic 2-90
voltage and resistance chart 7-56
Wien bridge circuit, simplified schematic 2-87
wiring diagram 7-154
Radio Modulator MD-230/SRT (high level radio modulator, HLRM)- audio amplifiers $V-1601$ and $V-1602$, simplified schematic 2-92
-50 -volt bias supply, simplified schematic 2-93
front oblique view 1-13
front panel 7-65
front panel controls and indicators 4-9
installation of electron tubes V-1601 and V-1602. 3-18
regulated +360 -volt d-c supply, simplified schematic 2-94
schematic diagram 7-156
top view 7-64
$+2.400 /+3,000$-volt rectifier input and output voltage waveforms 2-68
voltage and resistance chart 7-66
wiring diagram 7-157
Radio Modulator-Power Supply OA-685/SRT (booster)-
See also Electrical Equipment Cabinet CY-1572/SRT, Electrical Equipment Cabinet CY-1573/SRT, Radio Modulator MD-230/SRT, and Power Supply PP-1096/SRT 2-127
control circuits, simplified schematic 7-115
input power link arrangements 3-17
primary power distribution diagram 3-35
unpacking procedure 3-9
Radio Transmitting Set AN/SRT-14-functional block diagram2-1
interconnecting cabling diagram 3-30
main test cable assembly 1-21
relationship of units 1-1
simplified pictorial view 3-1
Radio Transmitting Set AN/SRT-15-
functional block diagram 2-1
installation material 1-22, 3-10
interconnecting cabling diagram 3-31
main test cable assembly 1-21
major control functions, location of 4-1
relationship of units 1-2
routine maintenance check-
daily 6-1
monthly 6-5
we ekkly 6-3

NAVSHIPS 92121(A)
simplified pictorial view 3-2
Radio Transmitting Set AN/SRT-16-
functional block diagram 2-1
interconnecting cabling diagram 3-32
main test cable assembly 1-21
simplified pictorial view 3-3
Rectifier V-1009, regulator $\mathrm{V}-1010$, regulator control $\mathrm{V}-1011$, and voltage regulator
V-1012 (LLRM)-simplified schematic 2-89
Regulated +360 -volt d-c supply (HLRM)-simplified schematic 2-94
Relationship of units 1-1, 1-2,
1-3
Routine checks-AN/SRT-15 5-1, 6-1,6-3, 6-5
S
Sidetone amplifier V-1004B (LLRM)-simplified schematic 2-75
Squelch multivibrator V-1008 (LLRM)-simplified schematic 2-73
Squelch rectifier CR-1002 and limiter V-1013B (LLRM)-simplified schematic 2-74
Standing wave ratio monitor alignment, test setup 7-95
Standing wave ratio monitor circuit (LAU)-simplified schematic 2-116
SWR indicator circuit (sontrol indicator)-simplified schematic 2-47
Start-stop circuit (LVPS)-simplified schematic 2-56
S-3514 assembly-cross sectión 7-101
T
Terminal board and cable entrance data, AN/SRT-14, 15, 16 3-26
+300 volt d-c supply (LVPS)-simplified schematic 2-58
300 volt switch relay (MVPS)-simplified schematic 2-62
-12-volt power supply (LLRM)-simplified schematic 2-90
-220-volt d-c supply (LVPS)-simplified schematic 2-60
+250 -volt d-c unregulated supply (LVPS)-simplified schematic 2-59
$+2,400 /+3,000$-volt d-c supply (HLRM)-simplified schematic 2-67
Transformer (4c) switch S-403, control circuit-simplified schematic 2-45
Transformer T-1502, primary and meter connections for 440 -volt input (HVPS) 2-65
Transformer T-1502, primary and meter connections for 220 -volt input (HVPS) 2-66
Transformer windings-
alternate method of bridging transformer windings 7-111
bridging defective transformer windings 7-110
bypassing a defective stage 7-113
emergency repair of audio transformer 7-112
Transmitter bay, Radio Transmitting Set AN/SRT-15-simplified block diagram 2-129
Transmitter bay, typical arrangement 3-11
Transmitter Coupler CU-402/SRT (load adjusting unit, LAU)-
front oblique view 1-11
front panel controls and indicators 4-8
impedance transformer circuit, simplified schematic 2-117
outline drawing 3-27
right inner view 7-94
schematic diagram 7-174
unpacking procedure 3-5
wiring diagram 7-175
Transmitter Group OA-684/SRT-See also Electrical Equipment Cabinet CY-1571/SRT, Radio Frequency Ampli-fier AM-1008/SRT, Radio Modulator MD-229/SRT, Radio Frequency OsciI-lator O-275/SRT, Power Supply PP-1094/SRT, Power Supply PP-1095/SRT,Transmitter Coupler CU-402/SRT
control circuits, simplified schematic2-126, 7-114

Subject

Figure No.
primary power distribution diagram 3-34
unpacking procedure $3-4$
Tube locations-
AN/SRT-15, front panel 5-2
HLRM 5-8
HVPS 5-4
LLRM 5-6
LVPS 5-13
MVPS 5-5
RFA 5-7
RFO 5-9, 5-10,
Typical transmitter bay arrangements 3-11
U
Unpacking procedures 3-4, 3-5,

$$
3-6,3-7 \text {, }
$$

$$
3-8,3-9
$$

W
Wien bridge circuit (LLRM)—simplified schematic 2-87
Z
Zero adjust indicating circuit (RFO)-simplified schematic 2-41
5-11, 5-12
LIST OF TABLES
Table No. Title Page Table No. Title Page
SECTION 1 - GENERAL DESCRIPTION
1-1 Major Units 1-3
1-2 General Nomenclature 1-3
1-3 Subunits of Radio Frequency Oscillator O-275/SRT 1-9
1-4 Standard Test Equipment Required for AN/SRT-14, 15 and 16 1-15
1-5 RFO Subunit Test Cables (Power) 1-17
1-6 Equipment Supplied 1-20
1-7 Equipment Required but Not Supplied 1-21
1-8 Shipping Data 1-21
1-9 Electron Tube Complement 1-22
SECTION 2 - THEORY OF OPERATION
2-1 Fupctions of $10-\mathrm{Kc}$ Step Switch S-2201 2-21
2-2 Functions of $100-\mathrm{Kc}$ Step Switch S-2326 2-24
2-3 Unit 9 Mixer Outputs 2-26
2-4 Functions of 5-Mc Step Switch S-2426 .. 2-29
2-5 Functions of 100-Kc Step Switch S-2427 2-30
2-6 Functions of 1-Mc Step Switch S-2526 2-31
2-7 RFO Output to RFA 2-32
2-8 Functions of 1-Mc Step. Switch S-2651 2-35
2-9 Functions of 100 -Kc Step Switch S-2652 2-37
2-10 Functions of 1-Mc Step Switch S-2801 2-38
2-11 Functions of 100-Kc Step Switch S-2802 2-40
2-12 Unit 14 Test Points 2-40
2-13 Oscilloscope Test Receptacles 2-41
2-14 Functions of Antenna Coupler Loading (AD) Switch S-404 2-45
2-15 Final Output Frequencies and (AA), (BB), (\square) and (6) Control Positions 2-47
2-16 Functions of Keying Circuit Outputs 2-75
2-17 KEYING RATE Switch (S) S-1109 2-79
2-18 Functions of LOCAL-REM. Switch © S-1106 2-84
2-19 Frequency Bands 2-101
2-20 VOLTMETER-METER SELECTOR Switch (1) S-1384 2-103
2-21 IPA-METER SELECTOR Switch (G) S- 1386 2-103
2-22 PA-METER SELECTOR Switch (A) S- 1387 2-103
2-23 Functions of Loading Switch S-3511 2-120

LIST OF TABLES (Cont'd)

Table No. Title
SECTION 3 - INSTALLATIONPage
3-1 Units Comprising AN/SRT-14, 15 and 16 3-1
3-2 Shipping Data 3-2
3-3 Installation Material 3-4
3-4 Antenna Tuning Equipment Critical Cable Lengths 3-7
3-5 Antenna Tuning Equipment Connector As- semblies 3-26
3-6 Main Test Cable Assembly Drawings 3-27
3-7 Main Test Cable Assembly Cross-Refer- ence List 3-28
3-8 Typical Meter Readings at 6 Mc , Hand, Key Down 3-33
3-9 Critical Radio Frequency Oscillator Ad- justments 3-33
SECTION 4 - OPERATION
4-1 Major Control Functions 4-3
4-2 Function of Antenna Coupler Loading Switch (AD) (S-404) 4-9
4-3 Final Output Frequencies and (AA), (B), (T) and (6) Control Positions 4-15
SECTION 5 - OPERATOR'S MAINTENANCE
5-1 Short or Common Names 5-1
5-2 Preliminary Control Positions 5-3
5-3 Routine Check Chart 5-5
5-4 Symptoms of Fuse Failure, 100-Watt Oper- ation 5-8
5-5 Symptoms of Fuse Failure, 500-Watt Oper- ation 5-8
5-6 Fuse Locations 5-9
5-7 Spare Fuses 5-10
5-8 Tube Locations 5-11
5-9 Critical Tubes, Adjustment References 5-13
SECTION 6 - PREVENTIVE MAINTENANCE
6-1 Initial Checks 6-1
6-2 RFA Meter Readings, 100-Watt Operation 6-3
6-3 RFA Meter Readings, 500-Watt Operation 6-3
6-4 Routine Maintenance Check Chart 6-4
6-5 RFA Meter Readings, Weekly Record 6-10
6-6 RFO Metering Socket Voltages, Weekly Record 6-10
6-7 Front Panel Test Point Voltages, Weekly Record 6-12
6-8 LLRM Keying Voltages, Monthly Record 6-1
6-9 RFO Unit Test Jack Voltages, MonthlyRecord6-14
6-10 Unit 6 10-Kc Step Oscillator Check 6-17Table No.Title
6-11 Unit 8 100-Kc Step Oscillator Check -17
Page
6-12 Lubricating Greases 6-29

6-13 Lubricating Oils 6-29
6-14 Lubricating Tools 6-29
6-15 Record of Tube Changes 6-35
SECTION 7 - CORRECTIVE MAINTENANCE
7-1 System Trouble-Shooting Chart 7-3
7-2 Preliminary RFO Check by Means of External Oscilloscope 7-10
7-3 RFO Test Point Socket E-2919 7-11
7-4 RFO Front Panel Control Knobs and Respective Subunits 7-13
7-5 Unit 1, R-f Voltage at Test Points 7-15
7-6 Unit 2, R-f Voltage at Test Points 7-20
7-7 Unit 3, S-2053 and AN/USM-29 10Knob Positions and Adjustments 7-24
7-8 Unit 3, S-2052 and AN/USM-29 100
Knob Positions and Adjustments 7-25
7-9 Un:: 3 S-2051 and AN/USM-29 1K Knob Positions and Adjustments 7-25
7-10 Un't 5, R-f Voltage at Test Points 7-28
7-11 Unit 6, R-f Voltage at Test Points 7-31
7-12 Unit 6, 10-Kc Step Oscillator Adjust- ments 7-33
7-13 Unit 6, 10-Kc Step Filter Adjustments 7-34
7-14 Unit 7, R-f Voltage at Test Points 7-38
7-15 Unit 8, R-f Voltage at Test Points 7-41
7-16 Unit 8, 100-Kc Step Oscillator Adjust- ments 7-43
7-17 Unit 8, 100-Kc Step Filter Adjustments 7-44
7-18 Unit 9, R-f Voltage at Test Points 7-45
7-19 RFO, Final Output Frequencies and (AA), (B), (\#) and © Knob Positions 7-46
7-20 Unit 9, 100-Kc Step Filter Adjustments 7-46
7-21 Unit 9, 5-Mc Step Filter Adjustments 7-49
7-22 Unit 10, R-f Voltage at Test Points 7-49
7-23 Unit 10, 1-Mc Step Filter Adjustments 7-51
7-24 Unit 11A, R-f Voltage at Test Points 7-52
7-25 Unit 11B, R-f Voltage at Test Points 7-53
7-26 Unit 11B, 100-Kc Step Filter Adjust- ments 7-56
7-27 Unit 11B, 1-Mc Step Filter Adjustments 7-57
7-28 Unit 11C, R-f Voltage at Test Points 7-57
7-29 Unit 11C, 100-Kc Step Filter Adjust- ments 7-60
7-30 Unit 11C, 1-Mc Step Filter Adjustments .. 7-61
7-31 Indications of Failure and ProbableFaults in the LLRM Audio Circuits 7-72
7-32 Indications of Failure and ProbableFaults in the LLRM Keying Circuits 7-73
7-33 Indications of Failure and Probable Faults in the LLRM Power Supplies 7-73

LIST OF TABLES (Cont'd)

Table No. Title Page Table No. Title Page
7-34 Indications of Failure and Probable Faults in the HLRM 7-79
7-35 Typical RFA Test Meter Readings 7-81
7-36 Indications of Failure and Probable Faults in the LVPS 7-96
7-37 Indications of Failure and Probable Faults in the MVPS 7-97
7-38 MVPS Voltages Measured at the RFA Voltmeter 7-97
7-39 Indications of Failure and Probable Faults in the HVPS 7-99
7-40 Antenna Tuning Equipment Trouble- Shooting Chart 7-108
7-41 R-f Tuner Trouble Location Chart 7-121
7-42 Tube Characteristics 7-128
7-43 Winding Data 7-131
SECTION 8 - PARTS LISTS
8-1 Weights and Dimensions of Spare Parts Boxes 8-2
8-2 List of Major Units 8-3
8-3 Table of Replaceable Parts 8-4
Radio Frequency Tuner TN-229/SRT 8-5
Control Indicator C-1352/SRT 8-14
Power Supply PP-1095/SRT 8-18
Electrical Equipment Cabinet
CY-1571/SRT, CY-1571A/SRT 8-25
Mounting MT-1423/SRT 8-33
Radio Modulator MD-229/SRT 8-35
Radio Frequency Amplifier AM-1008/SRT 8-59
Electrical Equipment Cabinet
CY-1573/SRT, CY-1573A/SRT 8-92
Electrical Equipment Cabinet CY-1572A/SRT 8-95
Power Supply PP-1096/SRT 8-97
Radio Modulator MD-230/SRT 8-104
Radio Frequency Oscillator O-275/SRT 8-110
Power Supply PP-1094/SRT 8-240
Transmitter Coupler CU-402/SRT 8-249
Installation Kit MK-230/SRT-14 8-252
Installation Kit MK-231/SRT-14A 8-252
Installation Kit MK-232/SRT-15 8-255
Installation Kit MK-233/SRT-15A 8-255
Installation Kit MK-234/SRT-16 8-259
Installation Kit MK-235/SRT-16A 8-259
Antenna Coupler CU-372/SRT 8-262
Main Test Cable Accessories 8-270
8-4 Maintenance Parts Kit 8-273
8-5 Cross Reference Parts List 8-274
8-6 Color Codes and Miscellaneous Data 8-277
8-7 List of Manufacturers 8-278

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Sbips Manual or superseding instructions on the subject of radiosafety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside equipment with high voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

DON'T SERVICE OR ADJUST ALONE:

Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjụsting the equipment without the immediate presence or assistance of another person capable of rendering aid.

DON'T TAMPER WITH INTERLOCKS:

Do not depend upon door switches or interlocks. for protection but always shut down motor generators or other power equipment. Under no circumstances should any access gate, door, or safety interlock switch be removed, short-circuited, or tampered with in any way, by other than authorized maintenance personnel, nor should reliance be placed upon the interlock switches for removing voltages from the equipment.
Where 1000 VOLTS OR MORE, TAKE NOTE:
NEVER MEASURE POTENTIAL IN EXCESS OF 1000 VOLTS BY MEANS OF FLEXIBLE TEST LEADS, OR PROBES.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITA. tion by the prone pressure method shall be prominently DISLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

INSTRUCTION BOOK for

RADIO TRANSMITTING SETS

AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 1
GENERAL DESCRIPTION

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragrapb Page1. Introduction1-1
2. Basic Features 1-1
a. Purpose 1-1
b. Modes of Transmission 1-1
c. Frequency Selection 1-1
d. Tuning Procedures 1-1
e. Remote Operation 1-1
f. Primary Power Supply 1-1
3. Description of Sets 1-1
a. General 1-1
b. AN/SRT-14 1-2
c. AN/SRT-15 1-2
d. AN/SRT-16 1-2
e. Transmitter Bay 1-2
f. Antenna Tuning Equipment 1-3
g. Comparison of Sets 1-3
4. Description of Units 1-3
a. Nomenclature 1-3
b. Transmitter Group OA-684/SRT 1-3
(1) Radio Frequency Amplifier AM- 1008/SRT (Radio Frequency Amplifier, RFA) 1-7
(2) Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM) 1-8
(3) Radio Frequency Oscillator O-275/ SRT (Radio Frequency Oscilla- tor, RFO) $1-8$
(4) Power Supply PP-1094/SRT (Low Voltage Power Supply, LVPS) .. 1-10
(5) Power Supply PP-1095/SRT (Me-dium Voltage Power Supply,MVPS)1-10
Paragrapb Page
(6) Electrical Equipment Cabinet CY- 1571/SRT (Transmitter Group Cabinet) 1-10
(7) Transmitter Coupler CU-402/SRT (Load Adjusting Unit, LAU) 1-11
c. Mounting MT-1423/SRT (Mouning) 1-11
d. Radio Modulator-Power Supply OA-685/SRT (Booster)1-12
(1) Radio Modulator MD-230/SRT (High Level Radio Modulator, HLRM) 1-12
(2) Power Supply PP-1096/SRT (High Voltage Power Supply, HVPS) 1-13
(3) Electrical Equipment Cabinet CY- 1572/SRT (High Level Radio Modulator (HLRM) Cabinet) 1-13
(4) Electrical Equipment Cabinet CY- 1573/SRT (High Voltage Power Supply (HVPS) Cabinet) 1-13
e. Cover CW-341/SRT 1-13
f. Remote Control Unit 1-14
g. Radio Frequency Tuner TN-229/SRT (R-f Tuner) 1-14
b. Antenna Coupler CU-372/SRT (An- tenna Coupler) 1-15
i. Antennas 1-16
j. Standard Test Equipment 1-16
k. Special Test Equipment 1-16
l. Special Tools 1-16
m. Installation Materials 1-17
n. Spare Parts 1-17
5. Reference Data 1-17
a. General 1-17
b. Electrical Information 1-17

LIST OF ILLUSTRATIONS

Figure Title Figure Title Page
1-1 Radio Transmitting Set AN/SRT-14, Re- lationship of Units 1-2
1-2 Radio Transmitting Set AN/SRT-15, Re- lationship of Units 1-4
1-3 Radio Transmitting Set AN/SRT-16, Re-lationship of Units1-5, 1-6
1-4 Radio Frequency Amplifier AM-1008/ SRT, Front Oblique View 1-7
1-5 Radio Modulator MD-229/SRT, Front Oblique View 1-8
1-6 Radio Frequency Oscillator O-275/SRT, Front Oblique View, Covers On $1-8$
1-7 Radio Frequency Oscillator O-275/SRT, Front Oblique View, Covers Off 1-9
1-8 Power Supply PP-1094/SRT, Front Ob- lique View 1-10
1-9 Power Supply PP-1095/SRT, Front Ob-lique View1-10
1-10 Electrical Equipment Cabinet CY-1571/ SRT, Front Oblique View 1-11
1-11 Transmitter Coupler CU-402/SRT, Front Oblique View 1-11
1-12 Mounting MT-1423/SRT, Front Oblique View 1-12
1-13 Radio Modulator MD-230/SRT, Front Oblique View 1-12
1-14 Power Supply PP-1096/SRT, Front Ob- lique View 1-13
1-15 Electrical Equipment Cabinet CY-1572/ SRT, Front Oblique View 1-13
1-16 Electrical Equipment Cabinet CY-1573/ SRT, Front Oblique View 1-13
1-17 Radio Frequency Tuner TN-229/SRT, Side View, Cover On 1-14
1-18 Radio Frequency Tuner TN-229/SRT, Side View, Cover Off 1-14
1-19 Antenna Coupler CU-372/SRT, Side View, Cover On 1-15
1-20 Antenna Coupler CU-372/SRT, Side View, Cover Off 1-15
1-21 Main Test Cable Assembly, AN/SRT-14, 15 and 16 1-16
1-22 Installation Material, AN/SRT-15 1-18
1-23 50-Ohm Load, Typical Output Curves 1-19

LIST OF TABLES

Table No. Title Page
1-1 Major Units 1-3
1-2 General Nomenclature 1-3
1-3 Subunits of Radio Frequency Oscillator O-275/SRT 1-9
1-4 Standard Test Equipment Required for AN/SRT-14, 15 and 16 1-15
1-5 RFO Subunit Test Cables (Power) 1-17
1-6 Equipment Supplied 1-20
1-7 Equipment Required but Not Supplied 1-21
1-8 Shipping Data 1-21
1-9 Electron Tube Complement 1-22

SECTION 1
 GENERAL DESCRIPTION

1. INTRODUCTION.

This instruction book describes the procedure for the installation, operation, and maintenance of Radio Transmitting Sets AN/SRT-14, AN/SRT-15 and AN/SRT16. Primary attention is given to the installation, operation, and maintenance of these sets on shipboard. Other locations should consider the information, particularly that on installation, in the light of their individual conditions or requirements.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all other information on the general description of the AN/ SRT-14, 15 and 16, as set forth in the following section, applies equally as well for the AN/ SRT-14A, 15A and 16A.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.

2. BASIC FEATURES.

a. PURPOSE.-The purpose of Radio Transmitting Sets AN/SRT-14, 15 and 16 is to provide radio-frequency energy at any frequency from 0.3 to 26 mc for the transmission of voice, facsimile, and also c-w telegraph communication. All three sets are capable of covering the frequency range in steps of 10 cycles with nominal 100 -watt output level. The AN/SRT-15 and AN/SRT-16 sets can also operate at a nominal 500watt carrier level in the frequency range 2 to 26 mc .
b. MODES OF TRANSMISSION.-The AN/SRT-14 and AN/SRT-15 sets are single transmitters. The AN/ SRT-14 is limited to a single 100 -watt output while the AN/SRT-15 may transmit an r-f carrier at either a 100 -watt or a 500 -watt nominal level. The AN/SRT-16 set is a dual transmitter capable of transmitting two carriers simultaneously, one of which is limited to a $100-$ watt output while the other may be transmitted at the 500 -watt level or at the 100 -watt level. Although the carrier levels are referred to as 100 and 500 watts, the outputs vary over the frequency range according to the form of communication. Each r-f carrier may be used for any one of several forms of communication:

> Facsimile $-\quad$ amplitude modulation (A3)
> Telegraphy $-\left\{\begin{array}{c}\text { amplitude modulation (A1)- } \\ c-w \text { hand key, c-w } \\ \text { machine key } \\ \text { frequency shift (F1)- } \\ \text { FS machine key }\end{array}\right.$ Radiophone $-\quad$ frequency modulation (F4)

Over the entire frequency range, the unmodulated carrier level for radiophone communication may vary from 55 to 100 watts at the lower level and from 265 to 400 watts at the higher level, while over the same frequency range the carrier level for telegraph and facsimile transmission may vary from 80 to 150 watts for the lower output level and from 400 to 600 watts at the higher level.
c. FREQUENCY SELECTION.-Frequency selection is manually accomplished in the AN/SRT-14, 15 and 16. A set of nine frequency selection control knobs, located on the radio frequency oscillator, allow an onerator to choose, in $10-\mathrm{cps}$ steps, any frequency between $0.3-26 \mathrm{mc}$.
d. TUNING PROCEDURES.-The AN/SRT-14, 15 and 16 are manually tuned to any desired frequency within the $0.3-26-\mathrm{mc}$ range. Tuning is accomplished in three stages in the radio-frequency amplifier unit. Meters are provided to assist in the tuning operation. The antenna tuning equipment also contains several stages of manual tuning, with the controls and indicators located in the transmitter.
e. REMOTE OPERATION.-Each of the transmitting sets may be arranged for remote operation. Startstop control, keying, and radiophone may be performed from a remote location. Standard Navy six-wire radio transmitter control circuits are used for all remote control operations.
f. PRIMARY POWER SUPPLY.-For 100-watt operation, only 110 -volt, single-phase, $60-\mathrm{cps}$ power is required. For 500 -watt operation an additional source of 220 - er 440 -volt, three-phase, $60-\mathrm{cps}$ power is required.

3. DESCRIPTION OF SETS.

a. GENERAL.-Radio Transmitting Sets AN/SRT14, AN/SRT-15 and AN/SRT-16 are formed from a number of major components that are used like building blocks to assemble a set with desired features. Although the necessary differences exist in the interconnecting wiring of the transmitters, the major components forming each set are identical and interchangeable. Figures $1-1,1-2$, and 1-3 show the major components of the sets.

Figure 1-1. Radio Transmitting Set AN/SRT-14, Relationship of Units
b. AN/SRT-14. (See figure 1-1.)-Radio Transmitting Set AN/SRT-14 consists of a 100 -watt transmitter bay, antenna tuning equipment, together with spare parts. A radiophone unit and an antenna are required but are not furnished as parts of the set.
c. AN/SRT-15. (See figure 1-2.)-Radie Transmitting Set AN/SRT-15 consists of a 100 -watt transmitter bay and booster, antenna tuning equipment, together with spare parts. A radiophone unit and an antenna are required but are not furnished as parts of the set.
d. AN/SRT-16. (See figure 1-3.)-Radio Transmitting Set AN/SRT-16 consists of two 100 -watt transmitter bays and two antenna tuning equipments, together
with spare parts. Two radiophone units and two antennas are required but are not furnished as parts of the set.
e. TRANSMITTER BAY.-Each AN/SRT-14, 15 and 16 set has a basic transmitter bay having identical and interchangeable units to accomplish 100 -watt operation. The AN/SRT-15 and AN/SRT-16 transmitter bays have, in addition, identical and interchangeable modulator power units to accomplish 500 -watt operation. The AN/SRT-14 transmitter bay consists of a transmitter group, a transmitter coupler, and a mounting (figure 1-1). The AN/SRT-15 transmitter bay consists of a transmitter group, a transmitter coupler,
two mountings, and a radio modulator-power supply (booster) (figure 1-2). The AN/SRT-16 transmitter bay is made up of two transmitter groups, two transmitter couplers, two mountings, and a radio modulatorpower supply (booster) (figure 1-3).

TABLE 1-1. MAJOR UNITS

NAME OF UNIT	$\begin{aligned} & \frac{\pi}{2} \\ & \frac{1}{0} \\ & \frac{1}{2} \\ & 2 \end{aligned}$	n $\frac{1}{1}$ 0 n 2 4	0 0 0 0 0 2
Transmitter Group OA-684/SRT	1	1	2
Radio Modulator-Power Supply OA-685/ SRT (Booster)	0	1	1
Mounting MT-1423/SRT	1	2	2
Antenna Coupler CU-372/SRT	1	1	2
Radio Frequency Tuner TN-229/SRT	1	1	2
Test Cable ${ }^{1}$	1	1	1
Installation Material (including Cover CW341/SRT in AN/SRT-15)	12	12	12
Spare Parts	12	12	12
Radiophone Unit, Navy Type 23500^{3}	1	1	2
Antenna (as required) ${ }^{3}$	1	1	2

1 Material (less wires) supplied loose.
2 Items supplied vary with type of set.
3 Supplied by Navy.
f. ANTENNA TUNING EQUIPMENT.-The term "antenna tuning equipment" covers the Antenna Coupler CU-372/SRT and the Radio Frequency Tuner TN229/SRT. One of each of these units is required for an AN/SRT-14 or 15, while two are required for an AN/ SRT-16.
g. COMPARISON OF SETS.-Table 1-1 shows, for each transmitter set, the major units included, their nomenclature, and the quantity supplied.

4. DESCRIPTION OF UNITS.

a. NOMENCLATURE.-Table 1-2 shows the official nomenclature, common name, abbreviation, and reference symbol group for every major component in the AN/SRT-14, 15 and 16.
b. TRANSMITTER GROUP OA-684/SRT.-The 100 -watt transmitter group contains all circuits for generating the desired radio frequency, amplifying it to the 100-watt carrier level, and provides it either in am-plitude- or frequency-modulation communication. Modulated r-f carrier output is delivered to a $50-\mathrm{ohm}$ coaxial cable terminated in an " N " connector. The r-f carrier is then connected to an adjustable impedance transformer for matching to the output impedance of the antenna tuning system. All necessary power supplies are included to convert the primary power to the voltages

TABLE 1-2. GENERAL NOMENCLATURE

OfFICIAL NOMENCLATURE	COMMON NAME	AbBreviation	REFERENCE SYMBOL GROUP
Transmitter Group OA-684/SRT ${ }^{1}$	Transmitter Group		$\begin{aligned} & 501-699, \\ & \text { 1001-1399, } \\ & 2001-3099, \\ & 3201-3299 \end{aligned}$
Electrical Equipment Cabinet CY-1571/SRT ${ }^{1}$	Transmitter Group Cabinet		601-699
Radio Frequency Amplifier AM-1008/SRT	Radio Frequency Amplifier	RFA	1301-1399
Radio Modulator MD-229/SRT	Low Level Radio Modulator	LLRM	1001-1299
Radio Frequency Oscillator O-275/SRT	Radio Frequency Oscillator	RFO	2001-2999
Power Supply PP-1094/SRT	Low Voltage Power Supply	LVPS	3001-3099
Power Supply PP-1095/SRT	Medium Voltage Power Supply	MVPS	501-599
Transmitter Coupler CU-402/SRT	Load Adjusting Unit	LAU	3201-3299
Radio Modulator-Power Supply OA-685/SRT ${ }^{1}$	Booster		1401-1699
Electrical Equipment Cabinet CY-1572/SRT ${ }^{1}$	High Level Radio Modulator Cabinet	HLRM Cabinet	1401-1499
Electrical Equipment Cabinet CY-1573/SRT ${ }^{1}$	High Voltage Power Supply Cabinet	HVPS Cabinet	1401-1499
Radio Modulator MD-230/SRT	High Level Radio Modulator	HLRM	1601-1699
Power Supply PP-1096/SRT	High Voltage Power Supply	HVPS	1501-1599
Cover ${ }^{1}$ CW-341/SRT ${ }^{2}$	Booster Cover		-
Mounting MT-1423/SRT	Mounting		701-799
Antenna Coupler CU-372/SRT	Antenna Coupler		3501-3599
Radio Frequency Tuner TN-229/SRT	R-F Tuner		301-399
Control-Indicator C-1352/SRT	Control-Indicator		401-499
Installation Kit MK-230/SRT-14	Installation Material, AN/SRT-14		3301-3399
Installation Kit MK-231/SRT-14A	Installation Material, AN/SRT-14A		3301-3399
Installation Kit MK-232/SRT-15	Installation Material, AN/SRT-15		3301-3399
Installation Kit MK-233/SRT-15A	Installation Material, AN/SRT-15A		3301-3399
Installation Kit MK-234/SRT-16 Installation Kit MK-235/SRT-16A	Installation Material, AN/SRT-16		$3301-3399$ $3301-3399$
Installation Kit MK-235/SRT-16A	Installation Material, AN/SRT-16A		3301-3399

1 Indicates available in nonmagnetic version with nomenclature modified to show suffix "A"-e.g., OA-684A/SRT and CY-1572A/SRT for nonmagnetic versions.
2 nonmagnetic $_{\text {Cover }}$ CW-341/SRT part of Installation Kit MK-232/SRT-15 (CW-341A/SRT part of MK-233/SRT-15A).

Figure 1－2．Radio Transmitting Set AN／SRT－15，Relationship of Units

Figure 1-3. Radio Transmitting Set AN/SRT-16, Relationship of Units
required in the various circuits. However, the transmitter group must be associated with Mounting MT-1423/SRT so that the necessary forced-air ventilation and suitable mounting arrangements may be obtained.

The transmitter group consists of Electrical Equipment Cabinet CY-1571/SRT holding five pull-out drawer-type chassis and the Transmitter Coupler CU402/SRT, commonly known as load adjusting unit, which contains the impedance matching transformer and the standing-wave monitor.

From top to bottom the major components located in Electrical Equipment Cabinet CY-1571/SRT are:
(1) Radio Frequency Amplifier AM-1008/SRT (Radio Frequency Amplifier, RFA)
(2) Radio Modulator MD-229/SRT
(Low Level Radio Modulator, LLRM)
(3) Radio Frequency Oscillator O-275/SRT
(Radio Frequency Oscillator, RFO)
(4) Power Supply PP-1094/SRT
(Low Voltage Power Supply, LVPS)
(5) Power Supply PP-1095/SRT
(Medium Voltage Power Supply, MVPS)
For power, control, and r-f circuit connections, each drawer is equipped with connectors at the rear that mate with receptacles in the cabinet wiring. The front panel of each drawer is equipped with hex socket-head captive screws that secure the drawer to the cabinet. Releasing these screws with the hex key (provided on the front panel of the low voltage power supply) permits the drawers to be withdrawn on a slide and rail arrangement all the way out of the cabinet. At this point the drawer slides engage a positive stop that must be released (by removing two retaining screws and depressing two slide latches) before complete withdrawal of the drawer can be accomplished. The retractable cabinet wiring is disconnected from the drawer at this point and the retractable cable is latched in its extended position to a special latch provided for this purpose for each drawer. Two handles are provided on the front of each drawer for convenience in handling. To reinsert a drawer, the slides are engaged with the cabinet rails, and the cabinet wiring is reconnected; then, with the slide latches depressed, the drawer is run in until the slides hit the spring-loaded buttons. Depressing these buttons allows the drawer to be completely returned into the cabinet.

While maximum side and rear access is convenient during installation, it is not essential for maintenance of this equipment. Since the drawers are removable, only sufficient access space is required to permit removal of the individual drawers. Preparation of the special test cable allows operation of individual drawers when completely removed from the cabinet.
(1) RADIO FREQUENCY AMPLIFIER AM1008/SRT (RADIO FREQUENCY AMPLIFIER, RFA). (See figure l-t.)-The basic function of the radio fre-
quency amplifier (RFA) is to amplify the r-f signal received from the radio frequency oscillator to either the 100 -watt or 500 -watt nominal level.

The RFA consists of three stages of amplification: namely, the buffer, intermediate power amplifier (IPA), and power amplifier (PA). The output of the radio frequency oscillator drives the tuned buffer stage. This stage also receives keying signals from the low level radio modulator to key the output of the RFA on and off during hand-key, machine-key, and phone operation. The tuned intermediate power amplifier stage follows using a 5933 beam tetrode. The final stage is the power amplifier employing a $4-400 \mathrm{~A}$ tetrode with forced air cooling. In phone operation an audio modulating signal is received from either the low level radio modulator or the high level radio modulator, the latter in an AN/ SRT-15 or 16 only, to amplitude-modulate the output of the RFA.

The RFA is manually tuned by the adjusting of three front panel controls. Each of these stages of amplification has a tuned plate tank circuit. The first of the tuning controls is a six-position switch that connects a tank circuit to each of the three stages, in accordance with the band of frequencies in which the selected transmission frequency lies. The second control tunes the buffer and IPA stage tank circuits and the third control tunes the PA stage.

In addition to the tuning controls, there is a control for regulating the input level of the signal from the radio frequency oscillator. The RFA front panel contains four meters used for tuning indicators and as test meters for various operating voltages and currents. A set of indicator lamps is provided to indicate overload conditions and operating conditions of the carrier. For test purposes, the front panel also contains a receptacle and switch, which allows an external source of r-f energy other than the component radio frequency oscillator to energize the buffer stage. A push-button switch, which is used to place a transmitter group in the nominal 550-

Figure 1-4. Radio Frequency Amplifier AM-1008/SRT, Front Oblique View

Figure 1-5. Radio Modulator MD-229/SRT, Front Oblique View
watt level of output (in SRT-15 and 16 only), is mounted on the RFA front panel. A second push button is used to restore a transmitter group to the 100 -watt level.
(2) RADIO MODULATOR MD-229/SRT (LOW LEVEL RADIO MODULATOR, LLRM). (See figure 1-5.)-This unit is commonly called the low level radio modulator (LLRM) to distinguish it from the high level radio modulator that is used in AN/SRT-15 and AN/SRT-16 sets. The low level radio modulator accepts voice, telegraphy (hand or machine key), or facsimile signals. It contains audio amplifying and modulating circuits for amplitude modulation of the r-f carrier at the 100 -watt level. For 500 -watt carrier operation in the AN/SRT-15 and 16, the low level radio modulator feeds a high level radio modulator that boosts the audio signal to the required level. Peak limiting and noise suppression (squelch) features are provided in the audio circuits. Either carbon or dynamic microphones may be used.

An electronic keyer circuit provides the keying voltage to control the radio frequency amplifier during amplitude modulation (cw) telegraphy and the radio frequency oscillator in frequency-shift telegraphy. A waveshaping circuit provides optimum keying waveshape for the keying speed in use. The keying circuits are suitable for speeds from hand keying to 600 words per minute. Facsimile set signals are connected through the low level radio modulator to the frequency-shift circuits in the radio frequency oscillator drawer. A $200-\mathrm{cps}$ oscillator is included to phase shift modulate the transmitter signal to overcome selective fading in frequency-shift transmission; in c-w telegraphy the audio oscillator has a $1,000-\mathrm{cps}$ output used for aural monitoring of the keying signals. A regulated +250 -volt power supply and a -12 -volt power supply are provided to supply the requirements of the low level radio moniator and other circuits of the transmitter group.

The front panel of the low level radio modulator has controls for selecting a mode of transmission, receptacles for a local carbon or dynamic microphone, gain controls, and a squelch circuit control. A test key is provided for carrier control.
(3) RADIO FREQUENCY OSCILLATOR O275/SRT (RADIO FREQUENCY OSCILLATOR, RFO). (See figures $1-6$ and $1-7$.)-The radio frequency oscillator (RFO) is the source of the r-f carrier signal. The $100-\mathrm{kc}$ crystal oscillator, the interpolation oscillator, multipliers, frequency converters, and filters provide frequencies between 0.3 and 26 mc in steps of 10 cycles. A frequency-shift oscillator provides carrier frequency shift for telegraphy in accordance with keying signals received from the low level radio modulator. The radio frequency oscillator delivers a minimum output of two volts rms to the first stage of the radio frequency amplifier.

The radio frequency oscillator consists of 15 sections: 14 easily removable units holding vacuum tube circuits, and a mounting to which these units are attached. The 15 sections have official standard item name and symbol designations but are usually referred to by their common name or unit number. The output stage of the radio frequency oscillator is divided into three separate units (11a, 11b, 11c), each of which covers a portion of the total frequency range of the radio transmitter. Table 1-3 gives the official standard item name, reference symbol, common name, subunit number, and reference symbol group for RFO units.

Units 1 through 12 are equipped with multiple pintype connectors that mate with receptacles on unit 14. Radio-frequency connections are made through BNC connectors and jumper cables. On each subchassis, test

Figure 1-6. Radio Frequency Oscillator O-275/SRT, Front Oblique View, Covers On

TABLE 1-3. SUBUNITS OF RADIO FREQUENCY OSCILLATOR O-275/SRT

STANDARD ITEM NAME	REF SYMBOL	COMMON NAME	SUBUNIT	SYMBOL GROUP
Radio Frequency Oscillator	Z-2001	Crystal Oscillator	Unit 1	2001-2030
Frequency Multiplier	Z-2034	Frequency Multiplier	Unit 2	2031-2050
Radio Frequency Oscillator	Z-2053	Interpolation Oscillator	Unit 3	2051-2099
Frequency Multiplier	Z-2103	Frequency Multiplier	Unit 4	2101-2125
Electronic Frequency Converter	Z-2158	Frequency Converter	Unit 5	2151-2199
Electronic Frequency Converter	Z-2204	10 Kc Step Generator	Unit 6	2201-2299
Frequency Multiplier	Z-2305	Frequency Multiplier	Unit 7	2301-2325
Electronic Frequency Converter	Z-2330	100 Kc Step Generator	Unit 8	2336-2425
Electronic Frequency Converter	Z-2426	Frequency Converter	Unit 9	2426-2525
Frequency Multiplier	Z-2526	1 Mc Step Generator	Unit 10	2526-2600
Electronic Frequency Converter	Z-2626	Frequency Converter	Unit 11A	2626-2650
Electronic Frequency Converter	Z-2651	Frequency Converter	Unit 11B	2651-2800
Electronic Frequency Converter	Z-2801	Frequency Converter	Unit 11C	2801-2915
Radio Frequency Oscillator	Z-2127	Frequency Shift Oscillator	Unit 12	2126-2150
Electrical Equipment Rack	Z-2901	Mounting	Unit 14	2001-2999

Figure 1-7. Radio Frequency Oscillator O-275/SRT, Front Oblique View, Covers Off
points are provided at radio-frequency input or output points. Each subchassis is fastened to the frame with quick-acting fasteners. Locating pins are provided to insure precise positioning and to minimize the probability of damage to electrical and mechanical connections. The separable construction is a great convenience in maintenance operations. By using a test cable, any subunit can be examined in detail, with each part readily accessible. The front panel may be detached by removing several machine screws. All the units in the RFO are shielded.

There are three individual oscillators in the radio frequency oscillator. Unit 1 is the crystal oscillator. It generates the basic frequency of 100 kc with an accuracy
of 1.5 parts per million over the temperature range $-20^{\circ} \mathrm{C}$. $\left(-4^{\circ} \mathrm{F}\right.$.) $+50^{\circ} \mathrm{C}$. $\left(+122^{\circ} \mathrm{F}\right.$. $)$. Unit 3 is the interpolation oscillator used to obtain the $10-\mathrm{cps}$ steps. The accuracy of this oscillator is ± 20 cycles over the temperature range of $-20^{\circ} \mathrm{C} .\left(-4^{\circ} \mathrm{F}\right.$.) to $+50^{\circ} \mathrm{C}$. ($+122^{\circ} \mathrm{F}$.). Unit 12 is the frequency-shift oscillator. The 100 -kc carrier frequency of this oscillator is capable of being shifted from $+2,000$ cycles to -500 cycles about the $100-\mathrm{kc}$ value within 5 percent linearity. The frequency shift oscillator is used in the mixing sequence only when SERVICE SELECTOR control (U) on the low level radio modulator is set in one of the frequencyshift positions (FSK or FAX).

The $100-\mathrm{kc}$ signal from the crystal oscillator controls several frequency multipliers that generate a high order of frequencies for the mixing stages. Locked to the crystal oscillator are $10-\mathrm{kc}, 100-\mathrm{kc}$, and $1-\mathrm{mc}$ step generators, each of which provides 10 frequency increments used in the mixing sequence. The independent interpolation oscillator is used to obtain 10-, 100-, and 1,000cps steps. This interpolation oscillator can be checked readily against the crystal oscillator and may be adjusted to maintain its accuracy. Several frequency converters mix the signals from the crystal oscillator, interpolation oscillator, and the several step generators to provide an r-f signal in steps of 10 cycles over the frequency range 0.3 to 26 mc .

The front panel of the radio frequency oscillator has all the controls for setting up any frequency within the frequency range. Nine knobs are provided for manually setting a frequency.

An electron ray tube is provided for checking the frequency-shift oscillator or the interpolation oscillator against the standard crystal oscillator. A set of test receptacles are provided on the front panel; these bring out important signals in the RFO for monitoring with a standard test oscilloscope.

Mounted to the face of the radio frequency oscillator front panel and considered as a component of the Radio Frequency Oscillator O-275/SRT is the Control-Indica-
tor C-1352/SRT. This unit has all the controls and indicators required to accomplish the manual tuning of the two antenna tuning equipment components (antenna coupler and r-f tuner). A set of three push-button switches control the up and down movement of the shorting ring on the main tuning coil in the r-f tuner. One toggle switch is used to control the action of the bypass switch in the antenna coupler, enabling the antenna tuning equipment to be placed in the antenna line or be completely bypassed. One rotary switch controls the loading switches in the antenna coupler, selecting various values of capacitive or inductive reactance loading in conjunction with the main tuning coil. Another rotary switch controls the action of a switch in the r-f tuner, which switches an impedance transformer in or out of the transmission line. An indicator is provided to show the standing-wave ratio on the transmission line. This indicator has an associated switch which is used to set the range of the indicator. A second indicator shows the position of the shorting ring on the main tuning coil in the r-f tuner.
(4) POWER SUPPLY PP-1094/SRT (LOW VOLTAGE POWER SUPPLY, LVPS). (See figure 1-8.)-This unit is commonly called the low voltage power supply (LVPS) to distinguish it from other power supplies.
It consists of three conventional full-wave highvacuum rectifiers and filter circuits providing +300 volts, +250 volts, and $\mathbf{- 2 2 0}$ volts for the transmitter group circuits. A full-wave metallic rectifier provides a separate -24 -volt supply for control circuit functions. One platefilament transformer supplies all voltages for the rectifier circuits. Primary a-c input is 110 volts, $\mathbf{6 0}$ cps, single phase.

The two controls for turning power on and off in the 100-watt transmitter group are found on the front panel of this unit. A CABINET HEATER switch controls heaters provided to raise the equipment temperature under some conditions. The STANDBY-OPERATE switch may be used to put the equipment in a "ready"

Figure 1-8. Power Supply PP-1094/SRT, Front Oblique View

Figure 1-9. Power Supply PP-1095/SRT, Front Oblique View
or "stand-by" condition. The front panel indicator lights show the proper operation of controls and circuits of this unit.
(5) POWER SUPPLY PP-1095/SRT (MEDIUM VOLTAGE POWER SUPPLY, MVPS). (See figure 1-9.)-This unit is commonly called the medium voltage power supply (MVPS) to distinguish it from other power supplies. It contains the necessary power transformers, rectifier tubes, filter components, and miscellaneous parts to provide outputs of +500 and $+1,050 /$ 1,300 volts for the IPA and PA tubes of the radio frequency amplifier and portions of the low level radio modulator. This unit is energized by the controls on the low voltage power supply front panel. The +500 -volt supply is used when the equipment is operating at the 100 -watt and the 500 -watt levels, but the $+1,050 / 1,300-$ volt supply is used only at the 100 -watt level. The $+1,050$ volts is used with phone service only, whereas the $+1,300$ volts is used with all other modes of transmission. The elapsed-time meters on the front panel are provided for logging transmitter group tube hours (filament and plate).
(6) ELECTRICAL EQUIPMENT CABINET CY1571/SRT (TRANSMITTER GROUP CABINET). (See figure 1-10.) - The transmitter group cabinet houses the five drawer-type chassis described above. It consists of a rigid welded steel frame with thin side, rear, and top panels. Struts are provided to stiffen the structure. The bottom is arranged to bolt to Mounting MT-1423/SRT or to one of the booster cabinets. Provisions for lifting eyes are incorporated in the top. Each drawer chassis slides into the cabinet on a slide and track arrangement, which permits easy insertion and removal. Ducts in the sides of the cabinet distribute the filtered forced air from the mounting to ventilate the transmitter chassis. Provision is made at the top rear of the cabinet for attaching two side sway mounts. Seven terminal boards are provided on the bottom of the cabinet and one on the lower left rear of the cabinet to which all transmitter group external connections are made. R-f

Figure 1-10. Electrical Equipment Cabinet CY-1571/SRT, Front Oblique View
output is supplied on a 50 -ohm coaxial cable terminated in an "N" type connector. Receptacles at the rear of the drawer chassis mate with corresponding receptacles, which, in turn, are connected to the retractable cabinet wiring. The retractable cabinet wiring allows a chassis to be pulled out from the cabinet to the limits of the front rail stop without disconnecting the chassis from the cabinet wiring.
(7) TRANSMITTER COUPLER CU--402/SRT (LOAD ADJUSTING UNIT, LAU). (See figure 1-11.) -The load adjusting unit (LAU) has a mounting bracket as an integral part to permit independent mounting of this unit. It consists of an autotransformer with four taps and a standing-wave ratio monitor circuit. An input switch and an output switch, each with four positions that are connected to the four taps of the autotransformer, are also components of this unit.

The r-f output of the radio frequency amplifier is connected by interconnecting cabling to the standing-wave ratio monitor and then to the input switch and one of the taps of the autotransformer, which acts as an impedance matching device. The output from the autotransformer from the tap selected by the output switches is fed to Antenna Coupler CU-372/U. The standingwave ratio monitor circuit detects the standing-wave ratio on the r-f transmission line at this point and sends the indicating voltages to the control indicator. The r-f output is then interconnected from the standing-wave ratio monitor circuit to the antenna coupler.
c. MOUNTING MT-1423/SRT (MOUNTING). (See figure 1-12.)-The mounting supports the transmitter stack, provides forced ventilation, and is the cable entrance point for the transmitter bay.

The mounting contains the blower assembly that provides filtered forced-air ventilation through ducts on either side of the transmitter cabinet shells. There are two blowers in each unit. One rotates clockwise and the

Figure 1-11. Transmitter Coupler CU-402/SRT, Front Oblique View

Figure 1-12. Mounting MT-1423/SRT, Front Oblique View
other counterclockwise. Three cleanable oiled wire-mesh filters remove dust from the incoming air. Each mounting contains four heater strips whose function is to convection heat the Electrical Equipment Cabinet CY1571/SRT air when the transmitter bay is operated under low ambient temperature conditions. Operation of the heaters is controlled by the CABINET HEATER switch on the low voltage power supply.
The transmitter group cabinet or one of the booster cabinets may be bolted to the top of the mounting. Shock mounts of suitable load rating must be attached to the bottom of the mounting. The shock mounts tend to isolate the equipment stack from severe mechanical shocks.
Provisions for interconnecting cable entrance are at the rear and also on the bottom of the rear. For transmitter bay interstack cable passageway, a hole is provided on the side of the mounting. Two ground straps are provided at diagonally opposite points for transmitter bay grounding.

d. RADIO MODULATOR-POWER SUPPLY OA-

 685/SRT (BOOSTER).-The radio modulator-power supply (usually called the "booster") provides additional audio and plate power to increase the r-f carrier output of the Transmitter Group OA-684/SRT to 500 watts. Limitations within the transmitter and antenna tuning equipment make it impractical to obtain 500 -watt carrier on the lower frequencies, 0.3 to 2 mc . With this exception, all features of the 100 -watt transmitter are retained when high power operation is used. Transmitter and antenna tuning is performed at the 100 -watt level; high power is applied only when tuning has been completed.The booster consists of the following units:
(1) Radio Modulator MD-230/SRT
(High Level Radio Modulator, HLRM)
(2) Power Supply PP-1096/SRT
(High Voltage Power Supply, HVPS)
(3) Electrical Equipment Cabinet CY-1572/SRT (High Level Radio Modulator (HLRM) Cabinet)
(4) Electrical Equipment Cabinet CY-1573/SRT (High Voltage Power Supply (HVPS) Cabinet)
The mechanical construction of the booster components is similar to that used in the transmitter group. The high level radio modulator (HLRM) and the high voltage power supply (HVPS) are of the pull-outdrawer design and are housed in individual cabinets equipped with slide and rail arrangement. All features of the transmitter group drawers are also incorporated in the booster drawers. For reasons of ventilation and mounting, the booster components must be associated with Mounting MT-1423/SRT. The booster cabinets may be combined in various ways with a transmitter group and mounting to form a transmitter bay suitable for local conditions. The transmitter bay assembly variations are discussed in Section 3 of this instruction book.
(1) RADIO MODULATOR MD-230/SRT (HIGH LEVEL RADIO MODULATOR, HLRM). (See figure 1-13.)-This unit is commonly called the high level radio modulator (HLRM) to distinguish it from the radio modulator in the 100 -watt transmitter group. It modulates the radio frequency amplifier during phone service at the nominal 500 -watt power level. A pushpull high level audio amplifier consisting of two 4D21 tetrodes operating in class AB_{2} provides plate modulation for the final radio frequency amplifier stage. Six watts of audio power to drive the high level radio modulator are supplied from the low level radio modulator.

The control that energizes the action of the HLRM is located on the RFA front panel.
In an AN/SRT-16 the output of the HLRM is connected to one transmitter group only. The choice of which transmitter group will be able to operate at the 500 -watt level is made at installation time when the output of the HLRM is permanently interconnected with one transmitter group.

Figure 1-13. Radio Modulator MD-230/SRT, Front Oblique View

The HLRM has self-contained +50 -volt d-c and regulated +350 -volt d-c power supplied as local bias and screen supplies.
(2) POWER SUPPLY PP-1096/SRT (HIGH VOLTAGE POWER SUPPLY, HVPS). (See figure 1-14.)- This unit is called the high voltage power supply (HVPS) to distinguish it from the power supplies in the 100 -watt transmitter group.

The high voltage power supply consists of six 3B28 hot cathode gas rectifier tubes in a three-phase, fullwave rectifier circuit with a choke input filter. It provides an output of either $+2,400$-volt or $+3,000$-volt d-c power as required for the plate of the $4-400 \mathrm{~A}$ tetrode in the radio frequency amplifier. The $+2,400$ volts is used for phone service only, whereas the $+3,000$ volts is used with all other modes of transmission. By means of links, the input connections may be changed to accommodate either 220 - or 440 -volt, three-phase, $60-\mathrm{cps}$ primary power.

An emergency switch on the front panel controls the three-phase input power. Filament power is applied to the high voltage power supply (and the high level radio modulator) whenever the BOOSTER EMERGENCY SWITCH is ON. Application of plate power is controlled by a time delay element and the pushbutton switch on the RFA of the transmitter group. Indicator lamps are provided to show power on and time delay status.
(3) ELECTRICAL EQUIPMENT CABINET CY1572/SRT (HIGH LEVEL RADIO MODULATOR (HLRM) CABINET). (See figure 1-15.)-This unit provides facilities for mounting the high level radio modulator (HLRM) chassis and for booster external connections. It consists of a rigid welded frame with sheet metal side and rear panels. A slide and rail arrangement allows easy insertion and removal of the high level radio modulator drawer. Ducts in the sides of the cabinet distribute the filtered forced air from the mounting to ventilate the HLRM chassis. Receptacles connected to the retractable cabinet wiring mate with the high level radio modulator chassis connectors. At the

Figure 1-14. Power Supply PP-1096/SRT, Front Oblique View

Figure 1-15. Electrical Equipment Cabinet CY-1572/SRT, Front Oblique View
bottom two terminal boards are provided and one at the left rear to which all incoming connections to the high level radio modulator are made.
(4) ELECTRICAL EQUIPMENT CABINET CY1573/SRT (HIGH VOLTAGE POWER SUPPLY (HVPS) CABINET). (See figure 1-16.)-This unit provides facilities for mounting the high voltage power supply (HVPS) and for external power and control connections. Mechanically the cabinet is similar to the high level radio modulator cabinet described above. Three terminal boards at the bottom and one at the left rear are provided for connecting cables to the high voltage power supply cabinet.
e. COVER CW-341/SRT. (See figure 1-2.)-The booster cover is used to close the top of one of the two booster cabinets for reasons of safety and appearance. Louvers permit adequate air flow for cooling. The cover is associated only with the AN/SRT-15 booster.

Figure 1-16. Electrical Equipment Cabinet CY-1573/SRT, Front Oblique View

Figure 1-17. Radio Frequency Tuner TN-229/SRT, Side View, Cover On
f. REMOTE CONTROL UNIT. - To operate the AN/SRT-14, 15 and 16 sets from a remote location requires some form of power control and microphone or keying input arrangement at the remote location. The AN/SRT-14, 15 and 16 are designed to work with a standard Navy six-wire transmitter control circuit in accordance with Specification MIL-G-946 of September 15, 1949.

A typical remote unit is Radiophone Unit Navy Type 23500. This unit is a nonwatertight cabinet equipment to control transmitter operation. It is provided with a transmitter START-STOP push button, receptacles for a Navy head set or chest set, a jack for a hand key, and a gain control to adjust the receiver signal level. Indicator lamps are provided for TRANSMITTER ON and CARRIER ON indications.
This unit is not supplied with the AN/SRT-14, 15 or 16 but it, or an equivalent, must be supplied by the installing activity if remote operation is desired.
g. RADIO FREQUENCY TUNER TN-229/SRT (R-F TUNER). (See figures 1-17 and 1-18.)—The function of the antenna tuning equipment is to match the characteristic 50 -ohm impedance of the r-f transmission lines to the impedance presented by the antenna over the

Figure 1-18. Radio Frequency Tuner TN-229/SRT, Side View, Cover Off
entire frequency range. The principal tuning component to accomplish this is the main tuning coil found in the r-f tuner. This coil is a helically wound length of transmission line whose length can be varied by the position of a concentric sliding short. Concentric with the main coil and mounted on the sliding short is a single coupling coil. The sliding short is positioned by a drive motor and associated gear train; the drive motor is controlled from the control-indicator in the transmitter bay. Also located in the r-f tuner is an impedance transformer that can be inserted or removed from the transmission line by a motor-driven switch that, in turn, is controlled at the control-indicator. This impedance transformer is a step-up transformer required to be used at the low frequencies to bring the antenna impedance up to the 50 -ohm level.
A blower for heat dissipation is provided. A thermostatic switch, which is normally closed and a blower centrifugal switch, which is closed only when the blower is rotating, are provided as safety devices when the equipment is operated at the 500 -watt level. If either or both of these switches are open, the transmitter can function at the 100 -watt level only.

Figure 1-19. Antenna Coupler CU-372/SRT, Side View, Cover On

The r-f tuner is a sealed, moistureproof unit, equipped with valves and a pressure gauge to permit pressurizing the unit to a pressure of 20 psi with dry nitrogen gas.
b. ANTENNA COUPLER CU-372/SRT (ANTENNA COUPLER). (See figures 1-19 and 1-20.)The antenna coupler has two basic functions: (1) to switch various inductive or capacitive reactance components into the transmission line to extend the range of tuning of the main tuning coil, and (2) to provide a switch that permits the antenna to be connected through the tuning components to the transmitter r-f output or connects the antenna directly to the transmitter r-f output.

For the purpose of extending the tuning range of the main coil in the r-f tuner, there are three capacitors and two coils in the antenna coupler that can be inserted in various combinations, in series or in shunt, with the main tuning coil. A motor-driven switch selects the component desired; the switch is controlled from the con-trol-indicator in the transmitter bay. This switch also has a position in which no loading components are added, leaving the main tuning coil in the r-f tuner as the only tuning component in use.

The switch to either bypass the tuning components or insert them on the transmission line also is a motordriven switch, with two positions, that is manually controlled at the control-indicator.

Like the r-f tuner, the antenna coupler is a sealed unit with the same provisions for charging with dry nitrogen gas.

Figure 1-20. Antenna Coupler CU-372/SRT, Side View, Cover Off

TABLE 1-4. STANDARD TEST EQUIPMENT REQUIRED FOR AN/SRT-14, 15 AND 16

NOMENCLATURE	CHARACTERISTICS
Multimeter ME-25A/U	0 to 1,000 volts ac/dc in 7 ranges; 0 to $1,000 \mathrm{ma}$ in 6 ranges; 0 to 1,000 megohms in 6 ranges.
Oscilloscope OS-8A/U	Sensitivity, 0.1 v (RMS)/in.; response, $\pm 3 \mathrm{db}$ from 30 cps to 2 mc .
Frequency Meter AN/USM-29 or AN/FRM-3	15 kc to 26 mc in $10-\mathrm{cps}$ steps; accurate to within $0.0001 \%, \pm 4$ cps; ($\pm 1 \mathrm{cps}$ in one megacycle, $\pm 4 \mathrm{cps})$.
Receiver Navy type RBA	Frequency coverage: 15 kc to 500 kc .
Receiver Navy type RBB	Frequency coverage: 500 kc to 4.0 mc .
Receiver Navy type RBC	Frequency coverage: 4.0 kc to 27.0 mc .
Audio Oscillator TS-382A/U	$20 \text { to } 20,000 \mathrm{cps}, \pm 2 \% ; \text { output, } 0^{*}$ $\text { to } 100 \mathrm{mw} \text {. }$
Dummy Load DA-91/U	50 ohms, 600 watts; air cooled.
Signal Generator, RF, AN/URM-25	10 kc to 50 mc ; output, 2 v maximum.
Ammeter, DC, Navy type 60107	0 to 1,000 ua, in 5 ranges; accuracy, $\pm 2 \%$.
Resistance Bridge ZM-4/U	1-10 megohms; accuracy, $\pm 0.15 \%$.
Radio Frequency Bridge Navy type 60094	Range 400 kc to $\mathbf{6 0 \mathrm { mc }}$; resistance $0-1,000$ ohms, $\pm 1 \%$; reactance, $0-5,000$ ohms at $1 \mathrm{mc}, \pm 2 \%$.

Figure 1-21. Main Test Cable Assembly, AN/SRT-14, 15 and 16
i. ANTENNAS. - Radio Transmitting Sets AN/ SRT-14, 15 and 16 are designed to work into a 35 -foot whip antenna, Navy type C-66047, or into a 60-130-foot long single wire with a 40 -foot down lead. Suitable antennas must be furnished by the installing activity.
j. STANDARD TEST EQUIPMENT.-For the purposes of corrective and preventive maintenance and making the initial trial operation and adjustments, various pieces of Navy standard test equipment are required as outlined in table 1-4.
k. SPECIAL TEST EQUIPMENT.-In corrective maintenance, certain conditions may warrant the removal of a unit from its cabinet to be worked on at a bench. To permit the energizing of the unit while on a bench, a patch test cable that will match the connectors of the unit at one end and match the corresponding cabinet connectors at the other end will be needed. This test cable is supplied unassembled and less the wires (figure 1-21). At the time of installation, the installing activity is to supply the wires and assemble the cable. Instructions for the assembly of this test cable are found in Section 3, paragraph 6, of this instruction book.

In performing maintenance on any of the plug-in subunits of the radio frequency oscillator, it may be necessary to remove the subunit from the main radio frequency oscillator chassis. In such a case a set of test cables will be required to patch between the subunit and the main chassis. Required for this purpose are six r-f
cables and two power cables. The r-f cables each consists of a three-foot length of RG-58A/U coaxial cable terminated at one end in a UG-88/U connector and terminated at the other end with a UG-89/U connector. The make-up of the two power cables is shown in table $1-5$. Connections should be made wire for wire between corresponding terminals (i.e., pin A to pin A). These power cables also should be three feet in length.

Note

The RFO subunit test cables are not supplied with the AN/SRT-14, 15 and 16.
l. SPECIAL TOOLS.-A set of suitable hex wrenches mounted in spring clips for the hex socket head setscrews are provided mounted on the radio frequency amplifier chassis, a second set being mounted on the rack (unit 14) of the radio frequency oscillator. A hex key for securing the drawer front panel screws is located on the front of the low voltage power supply of the transmitter bay. A special screwdriver for tuning components in the radio frequency oscillator is also provided. Included with each antenna coupler and r-f tuner is a special wrench for disassembling the spring-loaded switch contacts.

The following additional tools are recommended equipment:

Relay contact burnisher.
"Tru-arc" standard pliers (external) Nos. 0012; 0015; 0018; \#2; \#4; \#6.

TABLE 1-5. RFO SUBUNIT TEST CABLES (POWER)

CONNECTORS REQUIRED	CONNECTOR TERMINAL	WIRE GAUGE	TYPICAL COLOR CODE
Winchester Electronics part Nos. MRE 14 PG and MRE14SG; also two hoods part No. MRE14H; (Cable \#1)	A B C D E F H J K L M N P R Grd Post Grd Post	$\begin{aligned} & \overline{22} \\ & - \\ & 20 \\ & 22 \\ & 20(\text { sh }) * \\ & 20(\text { sh }) * \\ & 22 \\ & 20 \\ & 20 \\ & 22 \\ & 22 \\ & 22 \\ & 22 \\ & 20 \\ & 20 \end{aligned}$	Red \qquad Grn B1 Or Gray Yel Brn Tan Lt Grn Cl Wh Mar Blk Blk
Winchester Electronics part Nos. MRE21PG and MRE21SG; also two hoods part No. MRE21H; (Cable \#2)	A B C D E F H J K L \mathbf{M} \mathbf{N} \mathbf{P} R \mathbf{S} T \mathbf{U} \mathbf{V} W \mathbf{X} Y Grd Post Grd Post	- 22 - - 20(sh)* 20(sh)* 22 22 22 22 22 - - - 22(sh)* - - 22(sh)* 22(sh)* 20 20	B1 Or - - Brn Wh Grn Gray Lt Grn Tan Mar - \qquad \qquad B1 Or \qquad _- Wh Clr Blk Blk

* Shields to be grounded on ground posts.

Tweezers- $\mathbf{1 5 0} \mathrm{mm}$ long, straight tips.
Tweezers- 150 mm long, bent tips.
Closed socket wrench set detachable socket $3 / 8$ and $1 / 2$ in. drive, SNSN G41-W-2997.
Hex key wrench and screwdriver set ratchet handle SNSN G41-H-1395-615.
Pencil-type soldering iron.
m. INSTALLATION MATERIALS.-Furnished with each AN/SRT-14, 15 and 16 is a set of installation material. Included are all the hardware items, shock mounts, connectors, etc., required to mechanically install and electrically interconnect each type of equipment. The installation material is packaged separately together with the main test cable assembly.
n. SPARE PARTS. - Equipment spare parts are furnished and packed on a major unit basis as per table $1-8$. The spare parts are shipped in consolidating cartons
that should be opened on receipt at the using ship so that these spare parts may be added to the ship's integrated electronic spare parts supply. The spare parts furnished are those parts peculiar to the AN/SRT-14, 15 and 16 that are considered most likely to require replacement in normal usage. Common electronic parts are furnished through other channels. Other replaceable parts peculiar not included in the equipment spare parts must be obtained, through authorized channels, from the nearest Navy shore supply activity.

5. REFERENCE DATA.

a. GENERAL.
(1) Nomenclature:
(2) Contract data:
(3) Contractor:
(4) Cognizant Naval Inspector:
(5) Number of packages involved per complete shipment of equipment:
(6) Number of packages involved in equipment spares:

Radio TransmittingSets AN/SRT-14, 14A, 15, 15A, 16 and 16A.
NObsr-52021, dated 1 September 1950.
NObsr-52622, dated 14 May 1951.

Federal Telephone and Radio Company, Clifton, N.J. Inspector of Naval Material, Newark, N.J.

$A N /$	$A N /$	$A N /$
$S R T-14$	$S R T-15$	$S R T-16$
7	10	14

$\begin{array}{lll}4 & 7 & 10\end{array}$
(7) Total cubical contents (including $\begin{array}{lllll}\text { spares): crated } & 76.5 & 105.9 & 173.5\end{array}$
(8) Total weight
(including

spares):	crated	1,842	2,649	4,274
	uncrated	1,315	1,990	3,124

b. ELECTRICAL INFORMATION.

(a) 0.3 to (d) 5 to
0.8 to (e) 11 to

2 mc
(f) 19 to

26 mc
) Nominal carrier $A N / \quad A N / \quad A N /$ output for each $\quad S R T-14 \quad S R T-15 \quad S R T-16$ type of emission: A1, F1 and F4 100 watts $100 / 500$ two 100 one 500 and one 100 two 67 one 333 and one 67

Figure 1-22. Installation Material, AN/SRT-15

Nominal carrier (See figure 1-23.) output over frequency range:
(4) Frequency control:

Crystal Oscillator: A 100-kc GT cut crystal with an accuracy of 1.5 parts per million over the temperature range $-20^{\circ} \mathrm{C}$. $\left(-4^{\circ} \mathrm{F}\right.$.) to $+50^{\circ} \mathrm{C} .\left(+122^{\circ} \mathrm{F}\right.$.) set in an oven regulated by a thermostat at $70^{\circ} \mathrm{C}$. ($158^{\circ} \mathrm{F}$.).

Frequency Shift Oscillator: A 100-ke oscillator capable of being shifted from $+2,000$ cycles to -500 cycles about the 100 -kc value with 5 percent linearity, with its component parts set in an oven regulated by a thermostat at $70^{\circ} \mathrm{C}$. $\left(158^{\circ} \mathrm{F}\right.$.).
(5) Types of emission and modulation capability: A1, 100 percent, A3, 100 percent, F1 ±-500 cps shift about carrier, F4, from 0 to $+2,000 \mathrm{cps}$ shift.
(6) Squelch circuit characteristics: A conventional circuit that cuts off the audio amplifier when the microphone is not receiving voice signals.
(7) Harmonic attenuation in the amplifier: 40 db below the carrier level from 0.3 to 2 mc . 50 db below the carrier level from 2 to 5 mc . 60 db below the carrier level above 5 mc .
(8) Electrical characteristics of recommended antennas:
The antenna tuning equipment is capable of tuning an antenna system consisting of a standard 35 -
foot whip antenna (Navy type 66047) or a single wire antenna between 60 - and 130 -feet long with 40 -foot height.
(9) Power supply characteristics:

$$
\begin{aligned}
& \text { AN/SRT-14 } \\
& \text { Primary Power }
\end{aligned}
$$

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, single phase, ac.
(b) Current and power factor: Start, 15 amps at 0.92 power factor; stand-by, 7.9 amps at 0.92 power factor; operate (A1), 13.4 amps at 0.90 power factor; operate (A3), 13.6 amps at 0.92 power factor.

Oven Heater Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, single-phase, ac.
(b) Current and power factor: 0.8 amp at 1.0 power factor.

$$
A N / S R T-15
$$

Primary Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent single phase, ac.
(b) Current and power factor: Start, 15 amps at 0.92 power factor; stand-by, 7.9 amps at 0.92 power factor; operate (A1), 13.4 amps at 0.90 power factor; operate (A3), 13.6 amps at 0.92 power factor.

Figure 1-23. 50-Ohm Load, Typical Output Curves

Oven Heater Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, single phase, ac.
(b) Current and power factor: 0.8 amp at 1.0 power factor.

Booster Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, three-phase ac, or 440 volts ± 10 percent, 60 cps ± 5 percent, three-phase, ac.
(b) Current and power factor (220 vinput): Start, 14.5 amps at 0.82 power factor; stand-by, 0.8 amp at 0.98 power factor; operate (A1), 14.7 amps at 0.82 power factor; operate (A3), 15.1 amps at 0.77 power factor.
(c) Current and power (440 v input): Start, 7.2 amps at 0.82 power factor; stand-by, 0.4 amp at 0.98 power factor; operate (A1), 7.4 amps at 0.82 power factor; operate (A3), 7.6 amps at 0.77 power factor.

AN/SRT-16
Primary Power
(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, single phase, ac.
(b) Current and power factor: Start, 30 amps at 0.92 power factor; stand-by, 15.8 amps at 0.92 power factor; operate (A1), 26.8 amps at 0.90 power factor; operate (A3), 27.2 amps at 0.92 power factor.

Oven Heater Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, single phase, ac.
(b) Current and power factor: 16 amperes at 1.0 power factor.

Booster Power

(a) Voltages: 110 volts ± 10 percent, $60 \mathrm{cps} \pm 5$ percent, three-phase, ac, or 440 volts ± 10 percent, 60 cps ± 5 percent, three-phase, ac.
(b) Current and power factor (220 v input): Start, 14.5 amps at 0.82 power factor; stand-by, 0.8 amp at 0.98 power factor; operate (A1), 14.7 amps at 0.82 power factor; operate (A3), 15.1 amps at 0.77 power factor.
(c) Current and power factor (440 v input): Start, 7.2 amps at 0.82 power factor; stand-by, 0.4 amp at 0.98 power factor; operate (A1), 7.4 amps at 0.82 power factor; operate (A3), 7.6 amps at 0.77 power factor.
(10) Heat Dissipation.

100-watt transmitter group
and mounting \qquad 1,600 watts max. Radio Modulator-Power

Supply (Booster) \qquad 1,900 watts max.

TABLE 1－6．EQUIPMENT SUPPLIED

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|c|}{QUANTITY PER SET} \& \multirow[b]{2}{*}{NAME OF UNIT} \& \multirow[t]{2}{*}{NAVY TYPE DESIGNATION} \& \multicolumn{3}{|c|}{OVER－ALL DIMENSIONS \({ }^{1 .}\)} \& \multirow[b]{2}{*}{VOLUME \({ }^{1}\)} \& \multirow[b]{2}{*}{WEIGHT \({ }^{1}\)} \\
\hline AN／SRT－14 \& AN／SRT－1．5 \& AN／SRT－16 \& \& \& HEIGHT \& WIDTH \& DEPTH \& \& \\
\hline 1 \& 1 \& 2 \& \begin{tabular}{l}
Transmitter Group consisting of one each： \\
Radio Frequency Amplifier \\
Radio Modulator \\
Radio Frequency Oscillator \\
Power Supply \\
Power Supply \\
Electrical Equipment Cabinet \\
Transmitter Coupler
\end{tabular} \& \begin{tabular}{l}
OA－684／SRT \\
AM－1008／SRT \\
MD－229／SRT \\
O－275／SRT \\
PP－1094／SRT \\
PP－1095／SRT \\
CY－1571／SRT \\
CU－402／SRT
\end{tabular} \& \(553 / 8^{2}\)

$97 / 16$ \& 16^{2}

$711 / 16$ \& | 262 |
| :--- |
| |
| |
| 9 |
| $1 / 4$ | \& 13.3^{2} \& 7652

11

\hline 1 \& 2 \& 2 \& Mounting \& MT－1423／SRT \& 7 \& 16 \& 24 \& 1.5 \& 100

\hline 0 \& 1 \& 1 \& | Radio Modulator－Power Supply consisting of one each： |
| :--- |
| Radio Modulator |
| Power Supply |
| Electrical Equipment Cabinet |
| Electrical Equipment Cabinet | \& \[

$$
\begin{aligned}
& \text { OA-685/SRT } \\
& \text { MD-230/SRT } \\
& \text { PP-1096/SRT } \\
& \text { CY-1572/SRT } \\
& \text { CY-1573/SRT }
\end{aligned}
$$
\] \& 18 1／4 \& 16 \& 26 \& 4.4 \& 350

\hline 1 \& 1 \& 2 \& Radio Frequency Tuner \& TN－229／SRT \& 13 3／8 \& 16 1／2 \& 50 \& 6.4 \& 135

\hline 1 \& 1 \& 2 \& Antenna Coupler \& CU－372／SRT \& 13 3／8 \& 16 1／2 \& 34 5／8 \& 4.4 \& 100

\hline 2 \& 2 \& 2 \& Instruction Books \& － \& － \& － \& － \& 0.1 \& 6

\hline 1 \& \& \& Installation Kit \& MK－230／SRT－14 \& － \& － \& － \& 1.0 \& $$
\begin{array}{r}
53 \\
2
\end{array}
$$

\hline \& 1 \& \& Installation Kit \& MK－232／SRT－15 \& － \& － \& － \& 2.8 \& 100

\hline \& \& 1 \& Installation Kit \& MK－234／SRT－16 \& － \& － \& － \& 1.8 \& 90

\hline 1 set \& 1 set \& 2 sets \& Equipment Spares for Transmitter Group OA－ 684／SRT \& －－ \& － \& － \& － \& 5.0 \& 105

\hline 1 set \& 2 sets \& 2 sets \& Equipment Spares for Mounting MT－1423／SRT \& － \& － \& － \& － \& 0.5 \& 7

\hline 1 set \& 1 set \& 2 sets \& Equipment Spares for Antenna Coupler CU－ 372／SRT \& － \& － \& － \& － \& 0.1 \& 2

\hline 1 set \& 1 set \& 2 sets \& Equipment Spares for Radio Frequency Tuner TN－229／SRT \& － \& － \& － \& － \& 0.9 \& 20

\hline － \& 1 set \& 1 set \& Equipment Spares for Radio Modulator－Power Supply OA－685／SRT（less Transformer） \& － \& － \& － \& － \& 2.0 \& 90

\hline － \& 1 \& 1 \& Equipment Spare Transformer（ T －1502） \& － \& － \& － \& － \& 1.0 \& 80

\hline
\end{tabular}

[^0]TABLE 1-7. EQUIPMENT REQUIRED BUT NOT SUPPLIED

QUANTITY PER EQUIPMENT			NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED USE	REQUIRED CHARACTERISTICS
AN/SRT-14	AN/SRT-15	AN/SRT-16				
To suit	ship's requ	ments	Remote Radiophone Unit	23500 or equivalent	Remote control and operation	Twelve-wire control system
1	1	2	Antenna		R-f radiation	Typical Navy whip antenna or a 60- to 130foot long single wire with a 40 -foot down lead
1	1	2	Handset, Carbon	H-51/U	Voice transmission	
1	1	2	Handset, Dynamic	H-52/U	Voice transmission	
1	1	2	Hand Key	26012	Telegraphy transmission	
6	6	6	R-f Test Cable	-	RFO corrective maintenance	
2	2	2	Power Test Cable	-	RFO corrective maintenance	See paragraph $4 k$

TABLE 1-8. SHIPPING DATA

SHIPPING BOX NO.	CONTENTS		OVER-ALL DIMENSIONS ${ }^{1}$			VOLuME ${ }^{1}$	WEIGHT ${ }^{1}$
	name	DESİNATION	height	WIDTH	DEPTH		
A	Transmitter Group (less Transmitter Coupler CU-402/SRT, Control-Indicator C-1352/SRT and Electron Tube 4-400A)	OA-684/SRT	34	29	67	38.2	1,086
B	Transmitter Coupler Control-Indicator Electron Tube	$\begin{aligned} & \text { CU-402/SRT } \\ & \text { C-1352/SRT } \\ & 4-400 \mathrm{~A} \end{aligned}$	13	17	20	2.5	20
C	Mounting	MT-1423/SRT	17	21	19	5.9	137
D	Antenna Coupler	CU-372/SRT	16	20	36	6.7	160
E	Radio Frequency Tuner	TN-229/SRT	16	20	55	10.1	201
F	Radio Modulator-Power Supply (less two Electron Tubes 4-125A)	OA-685/SRT	26	24	34	12.3	407
G	Electron Tube (2)	4-125A	13	17	20	2.5	12
H	Installation Kit (lot 1), Instruction Books (2)	MK-230/SRT-14 (partial)	11	16	20	2.0	60
I	Installation Kit (lot 2)	MK-230/SRT-14 (partial)	11	12	13	1.0	12
J	Installation Kit (lot 1)	MK-232/SRT-15 (partial)	10	18	27	2.8	68
K	Installation Kit (lot 2), Instruction Books (2)	MK-232/SRT-15 (partial)	13	15	25	2.8	52
L	Installation Kit (lot1)	MK-234/SRT-16 (partial)	11	16	20	2.0	65
M	Installation Kit (lot 2), Instruction Books (2)	MK-234/SRT-16 (partial)	11	16	20	2.0	45

[^1]TABLE 1－8．SHIPPING DATA（Continued）

SHIPPING BOX NO．	CONTENTS		OVER－ALL DIMENSIONS ${ }^{1}$			VOLume ${ }^{1}$	WEIGHT ${ }^{1}$
	NAME	DESIGNATION	HEIGHT	WIDTH	DEPTH		
N	Equipment Spares for Transmitter Group OA－684／SRT	－	20	23	29	7.7	130
O	Equipment Spares for Mounting MT－1423／SRT	－	11	11	13	0.9	9
P	Equipment Spares for Antenna Coupler CU－372／SRT	－	7	7	8	0.2	2.5
Q	Equipment Spares for Radio Frequency Tuner TN－229／SRT	－	11	12	17	1.3	24
R	Equipment Spares for Radio Modulator－Power Supply OA－685／ SRT（less spare transformer T－1502）	－	13	18	22	2.9	106
S	Equipment Spares Transformer（T－1502）	－	14	15	19	2.3	88

TABLE 1－9．ELECTRON TUBE COMPLEMENT

	number of tubes of trpe indicated																					
UNIT	¢	\％ิ		¢	$\overline{\text { 亏̈ }}$	会	厄⿱艹冖犬	$\begin{aligned} & \hat{0} \\ & 8 \end{aligned}$	$\stackrel{0}{4}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \end{aligned}$	¢	$\stackrel{\mathbf{N}}{\mathbf{\alpha}}$	砍	范	$\stackrel{\oplus}{6}$	ヘ̃	సĩ	$\overline{i n}$	$\stackrel{\otimes}{\mathbf{\omega}}$	罞	－	こ
TRANSMITTER GROUP	1	2	4	1	－	4	2	1	8	1	1	1	1	29	1	14	4	3	7	3	6	94
Radio Freq Osc							2		8		1	1		29	1	13			4		1	60
Unit 1														1					2			3
Unit 2														2					2			4
Unit 3									1													1
Unit 4														2								2
Unit 5														1		3						4
Unit 6									1			1		4		3						9
Unit 7														4								4
Unit 8									2					3		3					1	9
Unit 9									1					2		1						4
Unit 10														4								4
Unit 11A														2	1	1						4
Unit 11B									1					2		1						4

ORIGINAL
tABLE 1－9．ELECTRON TUBE COMPLEMENT（Continued）

Unit 11C									1					2		1						4
Unit 12							2		1													3
Unit 14											1											1
Radio Freq Amp	1			1				1												1		4
Low Level Radio Modulator		2				1				1			1			1	4	3	3	2	5	23
Low Voltage Power Supply						3																3
Medium Voltage Power Supply			4																			4
RADIO MODULATOR－POWER SUPPLY（BOOSTER）	1	2	6		2																	11
High Level Radio Modulator	1	2			2																	5
High Voltage Power Supply			6																			6
T $\sim \mid$ AN／SRT－14	1	2	4	1	0	4	2	1	8	1	1	1	1	29	1	14	4	3	7	3	6	94
岳莀 AN／SRT－15	2	4	10	1	2	4	2	1	8	1	1	1	1	29	1	14	4	3	7	3	6	105
H AN／SRT－16	3	6	14	2	2	8	4	2	16	2	2	2	2	58	2	28	8	6	14	6	12	199

INSTRUCTION BOOK
for

RADIO TRANSMITTING SETS AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 2
THEORY OF OPERATION

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS
tABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragraph Title Page Paragrapb Title Page1. Introduction
a. Function 2-1
b. Major Units 2-1(1) Radio Frequency OscillatorO-275/SRT (Radio FrequencyOscillator, RFO)2-1
(2) Power Supply PP-1094/SRT (Low Voltage Power Supply, LVPS)2-3
(3) Power Supply PP-1095/SRT (Medium Voltage Power Supply, MVPS)2-3
(4) Power Supply PP-1096/SRT (High Voltage Power Supply, HVPS)2-3
(5) Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM)2-3
(6) Radiophone Unit 2-3
(7) Radio Modulator MD-230/SRT(High Level Radio Modulator,HLRM)2-3
(8) Radio Frequency Amplifier AM1008/SRT (Radio Frequency Amplifier, RFA)
(9) Transmitter Coupler CU-402/ SRT (Load Adjusting Unit, LAU) 2-3
(10) Electrical Equipment Cabinet CY1571/SRT (Transmitter Group Cabinet)

2-3
(11) Electrical Equipment Cabinet CY1572/SRT (HLRM Cabinet) 2-4
(12) Electrical Equipment Cabinet CY1573/SRT (HVPS Cabinet) 2-4
(13) Mounting MT-1423/SRT (Mounting)

2-4
(14) Radio. Frequency Tuner TN-229/ SRT (R-f Tuner) 2-4
(15) Antenna Coupler CU-372/SRT (Antenna Coupler) 2-4
2. Radio Frequency Oscillator O-275/SRT (RFO) 2-4
a. General Theory of the RFO 2-4
b. Radio Frequency Oscillator Z-2001(Crystal Oscillator, Unit 1)2-7
(1) Crystal Oscillator V-2001 2-7
(2) Cathode Followers V-2002 and V-2003 2-7
c. Frequency Multiplier Z-2034 (Fre-quency Multiplier, Unit 2)2-8
(1) Frequency Quintupler V-2031 2-8
(2) Frequency Doubler V-2032 2-8
(3) Cathode Followers V-2033 andV-20342-8
d. Frequency Multiplier Z-2103 (Fre-quency Multiplier, Unit 4)2-8
(1) Frequency Quadrupler V-2101 2-8
(2) Frequency Doubler V-2102 2-9
e. Radio Frequency Oscillator Z-2053 (In-
terpolation Oscillator, Unit 3) 2-9
(1) Oscillator V-2051 2-9
(2) 1-Kc Steps 2-10
(3) 100-Cycle Steps 2-10
(4) 10-Cycle Steps 2-10
(5) Frequency Selection 2-10
(6) Output Circuit 2-12
(7) Heater Circuit 2-12
f. Radio Frequency Oscillator Z-2127
(Frequency Shift Oscillator, Unit 12) 2-12
(1) Oscillator V-2128 2-12
(2) Control Tube V-2127 2-13
(3) Cathode Follower V-2126 2-13
(4) Miscellaneous 2-14
g. Electronic Frequency Converter Z-2158
(Frequency Converter, Unit 5) 2-14
(1) 1.1-Mc Mixer V-2151 2-14
(2) 1.19- to 1.2 -Mc Mixer V-2152 2-14
(3) 9.19- to $9.2-\mathrm{Mc}$ Mixer V-2153 andAmplifier V-21542-14
b. Electronic Frequency Converter Z-2204 (10-Kc Step Generator, Unit 6) 2-15
(1) Isolating Amplifier V-2201 2-15
(2) Blocking Oscillator V-2202A and Shaper V-2202B 2-15
(3) Step Oscillator V-2205, Mixer $\mathbf{V}-2203$, and Reactance Tube V-2204 2-16
(4) 1.21- to $1.3-\mathrm{Mc}$ Mixer V-2206 2-20
(5) 10.4- to $10.5-\mathrm{Mc}$ Mixer V-2207 2-20
(6) Amplifiers V-2208 and V-2209. 2-20
(7) 10-Kc Step Switch S-2201 2-20
i. Frequency Multiplier Z-2305 (Fre- quency Multiplier, Unit 7) 2-20
(1) Frequency Quintupler V-2301 andAmplifier V-23022-20
(2) Frequency Tripler V-2303 and Amplifier V-2304 2-21
j. Electronic Frequency Converter Z-2330 (100-Kc Step Generator, Unit 8) 2-22
(1) Clipper V-2326A and Shaper V-2326B 2-22
(2) Oscillator V-2329, Mixer V-2327,and Reactance Tube V-2328 2-22
(3) Cathode Follower V-2334 2-24
(4) 16.6- to $\mathbf{1 7 . 5 - M c}$ Mixer V-2230 2-24
(5) 27- to 28-Mc Mixer V-2331 2-24
(6) Amplifiers V-2332 and V-2333 2-26
(7) 100-Kc Step Switch S-2326 2-26

TABLE OF CONTENTS (Cont'd)

Paragraph Title Pagek. Electronic Frequency Converter Z-2426(Frequency Converter, Unit 9) 2-26
(1) Mixer V-2426 2-27
(2) Amplifiers V-2427 and V-2428 2-29
(3) Amplifier V-2429 2-29
(4) 5-Mc-Step Switch S-2426 2-30
(5) $100-\mathrm{Kc}$ Step Switch S-2427 2-30
l. Frequency Multiplier Z-2526 (1-Mc
Step Generator, Unit 10) 2-30
(1) Harmonic Generator V-2526 2-30
(2) Amplifiers V-2527, V-2528, and V-2529 2-30
(3) 1-Mc Step Switch S-2526 2-32
m. Electronic Frequency Converter Z-2626
(Frequency Converter, Unit 11A) 2-32
(1) Mixer V-2626 2-33
(2) Amplifiers V-2626 and V-2628 2-33
(3) Cathode Follower V-2629 2-33
n. Electronic Frequency Converter Z-2651
(Frequency Converter, Unit 11B) 2-33
(1) Mixer V-2651 2-35
(2) Amplifiers V-2652, V-2653, and V-2654 2-35
(3) 1-Mc Step Switch S-2651 2-35
(4) $100-$ Kc Step Switch S-2652 2-38
o. Electronic Frequency Converter Z-2801
(Frequency Converter, Unit 11C) 2-38
(1) Mixer V-2801 2-38
(2) Amplifiers V-2802, V-2803, and V-2804 2-38
(3) 1-Mc Step Switch S-2801 2-38
(4) $100-\mathrm{Kc}$ Step Switch S-2802 2-38
p. Electrical Equipment Rack Z-2901
(Mounting, Unit 14) 2-38
(1) Heater Indicator Lights 2-40
(2) Test Points 2-40
(3) Oscilloscope Test Receptacles 2-40
(4) Zero Adjust Indicating Circuit 2-41
q. Control-Indicator C-1352/SRT (Con- trol-Indicator) 2-41
(1) Drive Motor Control Circuit 2-42
(2) ANTENNA TRANSFER 산 Switch S-402, Control Circuit .. 2-43
(3)
ANTENNA COUPLER LOAD-ING (a) Switch S-404, ControlCircuit2-44
(4) TRANSFORMER © Switch S-403, Control Circuit 2-45
(5) Position Indicator Circuit 2-46
(6) SWR Indicator Circuit 2-46
r. Control of Frequencies 2-47
(1) Mechanical Linkages 2-47
(2) Mechanical Selection of a Fre- quency 2-47
Paragraph Title Page
(3) Production of a Sample Fre- quency 2-49
(a) Manual Operation 2-49
(b) Subunit Functioning 2-49
3. Power Supplies 2-51
4. Power Supply PP-1094/SRT (Low Voltage Power Supply, LVPS) 2-51
a. General 2-51
b. Input Circuit 2-51
c. Start-Stop Circuit 2-53
d. Interlock Circuit and -24-Volt D-c Supply 2-54
e. +300 -Volt D-c Supply 2-56
$f .+250$-Volt D-c Unregulated Supply 2-56
g. $\mathbf{2 2 0}$-Volt D-c Supply 2-56
5. Power Supply PP-1095/SRT (Medium Volt- age Power Supply, MVPS) 2-58
a. General 2-58
b. +500 -Volt D-c Supply 2-58
c. 300 -Volt Switch Relay 2-59
d. $+1,050 /+1,300$-Volt D-c Supply 2-59
6. Power Supply PP-1096/SRT (High Voltage Power Supply, HVPS) 2-60
a. General 2-60
b. Input Circuit 2-61
c. $+2,400 /+3,000$-Volt Supply 2-65
7. Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM) 2-65
a. General 2-65
b. Audio Amplifier Chain 2-67
(1) Audio Input Circuit 2-67
(2) Audio Amplifiers $V-1001$ and V-1002A, Cathode Follower V-1002B and AGC Rectifier V-1013A 2-67
(a) Audio Amplifiers V-1001 and V-1002A 2-67
(b) Cathode Follower V-1002B 2-67
(c) AGC Rectifier V-1013A 2-67
(3) Clipper V-1014 2-68
(4) Audio Amplifiers V-1004A and V-1002B 2-68
(5) Squelch Circuit 2-69
(a) Squelch Multivibrator V-1008 2-69
(b) Squelch Rectifier CR-1002 and Limiter V-1013B 2-70
(6) Sidetone Amplifier V-1004B 2-71
(7) Audio Output Circuit 2-71
(a) Phase Inverter V-1003B 2-72
(b) Push-Pull Cathode Followers V-1005A and V-1005B 2-72
(c) Power Amplifiers V-1006and V-10072-73
c. Keying Circuit 2-74
(1) Keying Input Circuit 2-74

TABLE OF CONTENTS (Cont'd)

Paragraph Title Page
(2) Buffer V-1015A 2-76
(3) Keying Multivibrator V-1017 and Keying Control V-1016 2-76
(4) Keying Multivibrator Outputs 2-78
(a) Keying Signal to Dumping Circuit 2-78
(b) Keying Signal to Limiters and Keyer 2-78
(5) Dumping Cathode Follower 2-79
(6) Limiter V-1018 2-79
(7) Keyer V-1019 2-80
(8) Audio Oscillator V-1020 2-81
d. LOCAL-REM. Switch © \times, S-1106 2-83
e. +250 -Volt Regulated Power Supply 2-83
(1) Rectifier V-1009 2-84
(2) Regulator V-1010 2-84
(3) Regulator Control V-1011 and Voltage Regulator V-1012 2-85
f. - 12-Volt Power Supply 2-86
g. ATU Bypass Transfer Circuit 2-86
8. Radiophone Unit 2-87
9. Radio Modulator MD-230/SRT (High Level Radio Modulator, HLRM 2-87
a. General 2-87
b. Audio Amplifiers V-1601 and V-1602 -88
c. $\mathbf{- 5 0 - V o l t ~ B i a s ~ S u p p l y ~}$ 2-89
d. Regulated +360 -Volt D-c Supply 2-89
10. Radio Frequency Amplifier AM-1008/SRT (Radio Frequency Amplifier, RFA) 2-90
a. General 2-90
b. Buffer V-1301 2-91
(1) Buffer Input 2-91
(2) Buffer Tank Circuit 2-91
(3) Buffer Keying 2-93
c. IPA V-1302 2-93
(1) IPA Input 2-93
(2) IPA Tank Circuit 2-93
d. PA V-1304 2-93
(1) PA Input 2-93
(2) PA Screen Circuit 2-94
(3) PA Plate Circuit 2-95
(4) PA Harmonic Filter 2-97
e. RFA Control Circuits 2-97
(1) 500-Watt Operate Relay K-1304 and "500 Watt Disable" Line .. 2-98
(2) Antenna Switching Relay K-1306 -100
f. Bandswitching 2-101
g. Buffer-IPA Tuning 2-101
b. PA Tuning 2-101
i. Metering Circuits 2-103
(1) Voltmeter M-1301 2-103
(2) IPA Current Meter M-1304 and PA Current Meter M-1303 2-103
j. R-f Line Filter Z-1301 and Blower Motor B-1306 2-103
Paragraph Title Page
11. Electrical Equipment Cabinet CY-1571/SRT (Transmitter Group Cabinet) 2-104
12. Electrical Equipment Cabinet CY-1572/SRT (HLRM Cabinet) 2-105
13. Electrical Equipment Cabinet CY-1573/SRT (HVPS Cabinet) 2-105
14. Mounting MT-1423/SRT (Mounting) 2-105
a. General 2-105
b. Blowers 2-105
c. Heaters 2-106
15. Transmitter Coupler CU-402/SRT (Load Adjusting Unit, LAU) 2-107
a. General 2-107
b. Standing-Wave Ratio Monitor Circuit 2-107
c. Impedance Transformer Circuit 2-109
16. Transmitter Bay Control Circuits 2-110
a. General 2-110
b. Sequence of Operation 2-110
c. Summary of Control Circuit Operation 2-111
(1) Power Control 2-111
(2) Power Supplies 2-112
(3) Frequency Selection 2-114
(4) Bandswitching 2-114
(5) Load Adjusting Unit Tuning 2-114
(6) IPA and PA Tuning 2-114
(7) Antenna Tuning 2-114
(8) Carrier On 2-115
(a) Hand-Key Operation 2-115
(b) Machine-Key Operation 2-115
(c) Frequency-Shift Key Opera- tion 2-115
(d) Facsimile Operation 2-115
(e) Phone Operation 2-115
(f) 100-Watt Operation 2-115
(g) 500-Watt Operation 2-116
17. Antenna Tuning Equipment 2-116
a. General 2-116
b. Radio Frequency Tuner TN-229/SRT (R-f Tuner) 2-116
(1) Main Tuning Coil 2-116
(2) Impedance Transformer 2-117
(3) R-f Tuner Mechanical Drive 2-117
c. Antenna Coupler CU-372/SRT (An- tenna Coupler) 2-118
(1) Antenna Bypass Switch S-3512 2-118
(2) Loading Switch S-3511 2-119
(3) Grounding Cams 2-119
d. Antenna Tuning Equipment Control Circuit Summary 2-120
(1) Antenna Transfer Control 2-121
(2) Antenna Loading Control 2-121
(3) Grounding Cam Control 2-122
(4) Transformer Control 2-122
(5) Drive Motor Control 2-123
(6) Magnetic Clutch Control 2-123
(7) Blower Motor Control 2-124

LIST OF ILLUSTRATIONS

Figure	Title Page	Figure	Title	Page
2-1	Radio Transmitting Sets AN/SRT-14, 15 and 16, Functional Block Diagram 2-2	2-24	RFO Unit 8, Clipper V-2326A and Shaper V-2326B, Simplified Schematic	$2-24$
2-2	Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO), Functional Block Diagram 2-5	2-25	RFO Unit 8, Mixer V-2327, Step Oscillator V-2329, Reactance Tube V-2328 and Cathode Follower V-2334, Simpli-	
2-3	RFO Unit 1, Crystal Oscillator V-2001, Simplified Schematic 2-6	2-26	fied Schematic RFO Unit 8, Mixer V-2330, Simplified	2-25
2-4	RFO Unit 1, Cathode Followers V-2002 and V-2003, Simplified Schematic 2-7	2-27	Schematic RFO Unit 8, Mixer V-2331, Simplified	2-26
2-5	RFO Unit 2, Frequency Quintupler V2031, Simplified Schematic \qquad	2-28	Schematic RFO Unit 8, Amplifiers V-2332 and V-	2-26
2-6	RFO Unit 2, Frequency Doubler V-2032, Simplified Schematic 2-8	2-29	2333, Simplified Schematic RFO Unit 9, Mixer V-2426, Simplified	2-27
2-7	RFO Unit 2, Cathode Followers V-2033 and V-2034, Simplified Schematic 2-9	2-30	Schematic RFO Unit 9, Amplifiers V-2427, V-2428,	2-27
2-8	RFO Unit 4, Frequency Quadrupler V-2101, Simplified Schematic 2-9	2-31	and V-2429, Simplified Schematic RFO Unit 10, Harmonic Generator V-	2-28
2-9	RFO Unit 4, Frequency Doubler V-2102, Simplified Schematic 2-10	2-32	2526, Simplified Schematic RFO Unit 10, Amplifiers V-2527 and V-	2-29
2-10	RFO Unit 3, Interpolation Oscillator V-2051, Simplified Schematic 2-11	2-33	2528, Simplified Schematic RFO Unit 10, Amplifier V-2529, Simpli-	2-31
2-11	RFO Unit 12, Frequency Shift Oscillator, Simplified Schematic 2-12	2-34	fied Schematic RFO Unit 11A, Mixer V-2626 and Am	2-32
2-12	RFO Unit 5, 1.1-Mc Mixer V-2151, Sim- plified Schematic 2-13	2-35	plifier V-2627, Simplified Schematic RFO Unit 11A, Amplifier V-2628 and	2-33
2-13	RFO Unit 5, 1.19- to $1.2-\mathrm{Mc}$ Mixer V-2152, Simplified Schematic 2-14		Cathode Follower V-2629, Simplified Schematic	2-34
2-14	RFO Unit 5, 9.19- to 9.2-Mc Mixer V-2153 and Amplifier V-2154, Simplified Schematic 2-15	$2-36$ $2-37$	RFO Unit 11B, Mixer V-2651, Simplified Schematic RFO Unit 11B, Amplifiers V-2652, V	2-34
2-15	RFO Unit 6, Electronic Frequency Converter (10-Kc Step Generator), Block Diagram 2-16	2-38	2653 and V-2654, Simplified Schematic RFO Unit 11C, Mixer V-2801, Simplified Schematic	$2-36$ $2-37$
2-16	RFO Unit 6, Isolating Amplifier V-2201, Shaper V-2202B, and $10-\mathrm{Kc}$ Blocking Oscillator V-2202A, Simplified Schematic \qquad 2-17	$2-39$ $2-40$	RFO Unit 11C, Amplifiers V-2802, V2803, and V-2804, Simplified Schematic RFO Oscillator Heater Circuit, General	2-39
2-17	RFO Unit 6, Mixer V-2203, Step Oscillator V-2205, and Reactance Tube V-2204, Simplified Schematic 2-18	2-41	ized Schematic Zero Adjust Indicating Circuit, Simpli fied Schematic	$\begin{aligned} & 2-40 \\ & 2-41 \end{aligned}$
2-18	RFO Unit 6, Mixer V-2206, Simplified Schematic .. 2-19	2-42	R-f Tuner Drive Motor Control Circuit, Simplified Schematic	2-42
2-19	RFO Unit 6, Mixer V-2207, Simplified Schematic ... 2-20	2-43	Antenna Transfer (4AF) Switch S-402, Con trol Circuit, Simplified Schematic	2-43
2-20	RFO Unit 6, Amplifiers V-2208 and V-2209, Simplified Schematic 2-21	2-44	Antenna Coupler Loading (AD) Switch S 404, Control Circuit, Simplified Sche-	
2-21	RFO Unit 7, Frequency Quintupler V-2301 and Amplifier V-2302, Simplified Schematic $2-22$	2-45	matic Transformer (Ac) Switch S-403, Control Circuit, Simplified Schematic	$\begin{aligned} & 2-45 \\ & 2-45 \end{aligned}$
2-22	RFO Unit 7, Frequency Tripler V-2303 and Amplifier V-2304, Simplified Schematic \qquad	$2-46$ $2-47$	Position Indicator Circuit, Simplified Schematic SWR Indicator Circuit, Simplified Sche	$2-46$
2-23	RFO Unit 8, Electronic Frequency Converter ($100-\mathrm{Kc}$ Step Generator), Block Diagram	2-48	$\begin{aligned} & \text { matic ... } \\ & 10 \text { © © } 100 \text { ~ © } 10, \mathrm{KC} \text { © Controls, } \\ & \text { Mechanical Linkages } \end{aligned}$	$\begin{aligned} & 2-46 \\ & 2-47 \end{aligned}$

LIST OF ILLUSTRATIONS (Cont'd)

Figure	Title	Page	Figure	Title	Page
2-49	10 KC (1t) Control; Mechanical Linkages	2-48	2-80	Keying Input Circuit, Simplified Sche-	
2-50	$100 \mathrm{KC} \mathrm{H}+$ Control, Mechanical Linkages	2-48			2-76
2-51	MC ©6) Control, Mechanical Linkages	2-49	2-81	Cathode Follower V-1015A, Keying Con-	
2-52	BAND ¢ Control, Mechanical Linkages	2-50		trol V-1016, and Keying Multivibrator	
2-53	(4) Control, Mechanical Linkages	2-50		V-1017B, Simplified Schematic	2-77
2-54	(81) Control, Mechanical Linkages	2-51	2-82	Keying Multivibrator Voltage Wave	
2-55	Input Circuit of LVPS, Simplified Schematic	52		Forms, for Hand-Key and MachineKey Operation	2-78
2-56	Start-Stop Circuit, Simplified Schematic	2-53	2-83	Dumping Cathode Follower, Simplified	
2-57	Interlock Circuit and -24-Volt D-c Supply, Simplified Schematic	2-55	2-84	Schematic Limiter V-1018, Simplified Schematic	$\begin{aligned} & 2-79 \\ & 2-80 \end{aligned}$
2-58	+300 -Volt D-c Supply, Simplified Sche-		2-85	Keyer V-1019, Simplified Schematic Audio Oscillator V-1020, Simplified	2-81
2-59	+250 -Volt D-c Unregulated Supply, Simplified Schematic	2-57	2-87	Schematic Wien Bridge Circuit, Simplified Sche-	2-82
2-60	-220-Volt D-c Supply, Simplified Schematic	2-57	2-88	matic LOCAL-REM. Switch * S-1106, Simpli-	2-82
2-61	+500 -Volt D-c Supply, Simplified Schematic \qquad	2-58	2-89	fied Schematic Rectifier V-1009, Regulator V-1010, Reg-	2-84
2-62	300-Volt Switch Relay, Simplified Schematic	2-59		ulator Control V-1011 and Voltage Regulator V-1012, Simplified Schema-	
2-63	$+1,050 /+1,300-$ Volt D-c Supply, Simplified Schematic	2-60	2-90	tic -12-Volt Power Supply, Simplified Sche-	2-85
2-64	Input Circuit of HVPS, Simplified Schematic	2-61	2-91	matic ..	2-86
2-65	Transformer T-1502 Primary and Meter Connections for $440-$ Volt Input \qquad	2-62	2-92	Schematic \qquad udio Amplifiers V-1601 and V-1602,	2-87
2-66	Transformer T-1502 Primary and Meter Connections for 220-Volt Input	2-63	-9	Simplified Schematic -50-Volt Bias Supply, Simplified Sche-	2-88
2-67	$+2,400 /+3,000-V o l t$ D-c Supply, Simplified Schematic	2-64		matic \qquad Regulated +360 -Volt D-c Supply, Simpli-	2-89
2-68	$+2,400 /+3,000-$ Volt Rectifier Input and Output, Voltage Wave Forms	2-65	2-94	fied Schematic	2-90
2-69	Audio Input Circuit, Simplified Schematic	2-66	2-95	Radio Frequency Amplifier AM-1008/ SRT (Radio Frequency Amplifier,	
2-70	Audio Amplifiers V-1001 and V-1002A, Cathode Follower V-1002B, and AGC Rectifier V-1013A, Simplified Schematic \qquad		2-96	RFA), Block Diagram Buffer V-1301, Simplified Schematic Buffer Tank Circuit, Simplified Schematic	$\begin{aligned} & 2-90 \\ & 2-91 \\ & 2-92 \end{aligned}$
2-71	Clipper V-1014, Simplified Schematic	2-68	2-98	IPA V-1302, Simplified Schematic	2-92
2-72	Audio Amplifiers $\mathrm{V}-1004 \mathrm{~A}$ and V 1003A, Simplified Schematic	2-69	$\begin{aligned} & 2-99 \\ & 2-100 \end{aligned}$	IPA Tank Circuit, Simplified Schematic PA V-1304, Simplified Schematic	$\begin{aligned} & 2-94 \\ & 2-95 \end{aligned}$
2-73	Squelch Multivibrator V-1008, Simplified Schematic \qquad	2-70	$\begin{aligned} & 2-101 \\ & 2-102 \end{aligned}$	PA Harmonic Filter, Complete Schematic PA Harmonic Filter, Simplified Sche-	2-96
2-74	Squelch Rectifier CR-1002 and Limiter V-1013B, Simplified Schematic	2-71	2-103	matic .. 500-Watt Operate Relay K-1304 and 500-	2-97
2-75	Sidetone Amplifier V-1004B, Simplified Schematic	2-71		Watt Disable Line, Simplified Schematic	2-98
2-76	Phase Inverter V-1003B, Simplified Schematic	2-72	2-104	Antenna Switching Relay K-1306, Simplified Schematic	2-99
2-77	Push-Pull Cathode Followers V-1005A and V-1005B, Simplified Schematic	2-73	$\begin{aligned} & 2-105 \\ & 2-106 \end{aligned}$	Bandswitch, Mechanical Linkages Buffer-IPA Tuning, Mechanical Linkages	$\begin{aligned} & 2-100 \\ & 2-102 \end{aligned}$
2-78	Power Amplifiers V-1006 and V-1007, Simplified Schematic	2-74	2-107	PA Tuning, Mechanical Linkages Metering Circuits, Simplified Schematic	$\begin{aligned} & 2-102 \\ & 2-104 \end{aligned}$
2-79	Machine Keying Input Signals, Voltage Wave Forms		2-109	R-f Line Filter Z-1301 and Blower Motor B-1306, Simplified Schematic	

Figure Title Page
2-110 Blower Motors B-701 and B-702, Simpli- fied Schematic 2-106
2-111 Blower Motor Connections, Schematic 2-106
2-112 Heaters HR-701 Through HR-704, Sim- plified Schematic 2-107
2-113 Control Circuits Operation Through -24 Volts After Time Delay, Simplified Functional Block Diagram 2-108
2-114 Control Circuits Operation from -24Volts After Time Delay for $100-$ WattOperation, Simplified Functional BlockDiagram2-109
2-115 Control Circuits Operation, from -24 Volts After Time Delay for 500-Watt Operation, Simplified Functional Block Diagram 2-110
2-116 Standing-Wave Ratio Monitor Circuit, Simplified Schematic 2-113
2-117 Impedance Transformer Circuit, Simpli- fied Schematic 2-115
2-118 Impedance Characteristics, Typical 35- Foot Whip Antenna 2-117
2-119 Main Tuning Coil L-302, Simplified Schematic 2-118

LIST OF ILLUSTRATIONS (Cont'd)

Figure
Title
Page
2-120 Impedance Transformer Z-301, Simpli- fied Schematic 2-118
2-121 R-f Tuner Mechanical Drive 2-119
2-122 Magnetic Clutch O-301, Cross Section 2-120
2-123 Antenna Bypass Switch S-3512, Simpli- fied Schematic 2-121
2-124 Loading Switch S-3511, Simplified Sche- matic 2-122
2-125 Grounding Cam Circuit, Simplified Sche- matic 2-124
2-126 Transmitter Group and Mounting Con- trol Circuits, Simplified Schematic 2-125
2-127 Booster Control Circuits, Simplified Sche- matic 2-127
2-128 Antenna Coupler and R-f Tuner Control Circuits, Simplified Schematic 2-129
2-129 Transmitter Bay, Radio Transmitting Set AN/SRT-15, Simplified Block Dia- gram 2-131
2-130 Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM), Func- tional Block Diagram 2-133
2-131 RFO Producing 23.57619 Mc, Functional Block Diagram 2-135

LIST OF TABLES

Table No. Title Page
2-1 Functions of $10-\mathrm{Kc}$ Step Switch S-2201 2-21
2-2 Functions of 100-Kc Step Switch S-2326 2-24
2-3 Unit 9 Mixer Outputs 2-26
2-4 Functions of 5-Mc Step Switch S-2426. 2-29
2-5 Functions of 100-Kc Step Switch S-2427 2-30
2-6 Functions of 1-Mc Step Switch S-2526 2-31
2-7 RFO Output to RFA 2-32
2-8 Functions of 1-Mc Step Switch S-2651 2-35
2-9 Functions of $100-\mathrm{Kc}$ Step Switch S-2652 2-37
2-10 Functions of 1-Mc Step Switch S-2801 2-38
2-11 Functions of 100-Kc Step Switch S-2802 2-40
2-12 Unit 14 Test Points 2-40
2-13 Oscilloscope Test Receptacles 2-41
2-14 Functions of Antenna Coupler Loading
(AD) Switch S-404 2-45Table No.TitlePage
2-15 Final Output Frequencies and (AA), (BB), \oplus and (6) Control Positions 2-47
2-16 Functions of Keying Circuit Outputs 2-75
2-17 KEYING RATE Switch (S) S-1109 2-79
2-18 Functions of LOCAL-REM. Switch © S-1106 2-84
2-19 Frequency Bands 2-101
2-20 VOLTMETER-METER SELECTOR Switch (J) S-1384 2-103
2-21 IPA-METER SELECTOR Switch (G) S- 1386 2-103
2-22 PA-METER SELECTOR Switch © ${ }^{(}$S- 1387 2-103
2-23 Functions of Loading Switch S-3511 2-120

SECTION 2 THEORY OF OPERATION

1. INTRODUCTION.

a. FUNCTION.-Radio Transmitting Sets AN/ SRT-14, 15 and 16 are designed to transmit c-w, voice, facsimile or frequency-shift signals, with a nominal 100watt output over a $0.3-$ to $26-\mathrm{mc}$ range. In addition, the AN/SRT-15 and the AN/SRT-16 may be operated at a nominal 500 -watt output over a 2 - to $26-\mathrm{mc}$ range. Radio Transmitting Set AN/SRT-14 operates only at the 100 -watt level. The AN/SRT-14 and the AN/ SRT-15 are each limited to transmission on one frequency at. a time. The AN/SRT-16 may transmit two signals simultaneously from two transmitter bays, either with both signals at the 100 -watt level or with a 500 watt output from the one transmitter bay that is so equipped and a 100 -watt output from the other transmitter bay. Output power is a function of frequency and may vary from 80 percent to 160 percent of the nominal output levels.

Transmission of c-w signals may emanate from either hand-key or machine-key facilities, while frequency-shift signals are generated by machine-keying signals. Tuning of all three sets is manually accomplished at the site of the transmitter bay. When used with the appropriate Navy furnished equipment, the AN/SRT-14, 15 or 16 may be energized and have key or voice signals supplied to it from a remote position. These same functions can also be accomplished locally at the site of the transmitter bay.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on the theory of operation of the AN/SRT-14, 15 and 16 , as set forth in the following section, applies equally as well for the AN/SRT-14A, 15A and 16A.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.
b. MAJOR UNITS.-The major units of Radio Transmitting Sets AN/SRT-14, 15 and 16 and the number of units under each set are shown in table 1-1 of Section

1. Table 1-2 of Section 1 lists, for each major unit, the official Navy nomenclature, the common title, the abbreviations, and the numerical group assigned for circuit reference symbols. The relationship between the major units and the paths of signal flow from one to another are shown in the block diagram, figure 2-1.
Each set is comprised of two general groups of equip ment: the transmitter bay and antenna tuning equipment. The transmitter bay generates and modulates the signal, and the antenna tuning equipment matches the antenna load to the optimum output impedance level of the transmitter bay for maximum radiated energyThe major units of the transmitter bay are outlined in paragraphs $1 b(1)$ through $1 b(13)$ of this section and: are shown on the functional block diagram, figure 2-129. The antenna tuning equipment is outlined in paragraphs $1 b(14)$ and $1 b(15)$. For greater clarity, cabinets, mountings, and control circuits are not shown in the introductory block diagrams, figures 2-1 and 2-129.

Immediately following this general discussion, a detailed circuit analysis is given, beginning with paragraph 2. In this analysis, the major components are discussed individually from the radio frequency oscillator through the antenna coupler. The descriptions of most major units are accompanied by complete block diagrams and simplified schematics. Control circuit functions are discussed within the major units, as they apply, but an overall transmitter bay control circuit description (paragraph 16) follows the discussion of the load adjusting unit and an antenna tuning equipment control circuit discussion (paragraph 17d) follows the description of the antenna coupler.
(1) RADIO FREQUENCY OSCILLATOR O-275/ SRT (RADIO FREQUENCY OSCILLATOR, RFO).The radio frequency oscillator (RFO) generates an r-f signal variable in steps of 10 cps from 0.3 to 26 mc . A modulated frequency shift corresponding to the keying signals from the low level radio modulator is provided for frequency-shift keying and facsimile services. These signals are produced by a set of 14 subunits that plug into a mounting and that employ oscillators, frequency multipliers, and frequency converters. During c-w and phone operation, the RFO receives a signal from the low level radio modulator to key the output of the RFO. A nominal two-volt r-f output signal from the RFO is fed to the radio frequency amplifier. In addition, mounted on the RFO front panel and considered a component of the RFO is the Control-Indicator C-1352. The control-indicator contains the controls and indicating meters required to manually control the tuning of the antenna tuning equipment.

Figure 2-1. Radio Transmitting Sets AN/SRT-14, 15 and 16, Functional Block Diagram
(2) POWER SUPPLY PP-1094/SRT (LOW VOLTAGE POWER SUPPLY, LVPS).-The low voltage power supply (LVPS) is supplied with 110 volts ac from the ship's supply and distributes this power to other units. It contains rectifier circuits that provide $\mathrm{B}+$ voltage of +300 volts, +250 volts, -24 volts for control circuits and motor lines, and - 220 volts for bias.
(3) POWER SUPPLY PP-1095/SRT (MEDIUM VOLTAGE POWER SUPPLY, MVPS).-The medium voltage power supply (MVPS) receives 110 volts ac from the LVPS and supplies +500 volts dc to the low level radio modulator and the radio frequency amplifier and $+1,300$ volts, which is reduced to $+1,050$ volts during phone operation, to the radio frequency amplifier. In addition to the rectifier circuits, the MVPS contains a switching relay to insure that the +500 -volt supply is present before the +300 -volt supply in the LVPS comes on.
(4) POWER SUPPLY PP-1096/SRT (HIGH VOLTAGE POWER SUPPLY, HVPS).-The high voltage power supply (HVPS), used only in the AN/ SRT-15 or 16 during 500-watt operation, is provided with a separate input of 220 -volt or 440 -volt, threephase, 60 -cycle ac from the ship's supply. The HVPS has a d-c output of $+3,000$ volts that replaces the $+1,300-$ volt output of the MVPS during 500 -watt operation. During phone operation, the $+3,000$ volts is reduced to $+2,400$ volts.
(5) RADIO MODULATOR MD-229/SRT (LOW LEVEL RADIO MODULATOR, LLRM).-The low level radio modulator (LLRM) accepts audio and keying signals from external units. It amplifies and shapes them as required to modulate the carrier in a manner selected by the operator. For 100 -watt phone transmission the LLRM feeds a 50 -watt modulating audio signal directly to the radio frequency amplifier; in 500 -watt phone operation, the LLRM output is reduced to 6 watts and is fed to the high level radio modulator, which, in turn, amplifies it to 250 watts and then feeds it to the RFA. Audio signals are obtained locally from either a carbon or dynamic microphone or by way of a standard Navy remote radiophone unit, which restricts the input to a carbon microphone. Keying signals for frequency-shift and c-w transmission may be accepted from either machine-key or hand-key equipment. For c-w operation, the LLRM feeds keying signals directly to the RFA and RFO at either 100 -watt or 500 -watt levels and feeds keying signals to the unused audio amplifier chain of the LLRM, which provides a dumping action, keeping the load on the +500 -volt supply of the MVPS during $c-w$ keying. This prevents transients in the +500 -volt supply. In frequency-shift key service, the LLRM reshapes the input keying signals and feeds them to the RFO. Facsimile signals are switched through the LLRM directly to the RFO. In addition to its modulating function, the LLRM has two power supplies: one is a regulated +250 -volt supply used as a $B+$ supply for critical keying circuits in the LLRM and in the RFO, the other is a -12 -volt supply for energizing a carbon microphone or supply to the remote radiophone unit.
(6) RADIOPHONE UNIT. - The remote radiophone unit (not part of Radio Transmitting Sets AN/ SRT-14, 15 and 16), usually located at a remote position, consists of a power start-stop circuit and an audio and keying input circuit. The power start-stop circuit is connected to the control circuits of the LVPS and may be used to turn the transmitter on or off. The audio input circuit receives audio signals from a carbon microphone and transmits them to the LLRM. The keying input circuit receives signals from a hand-keying device and transmits them to the LLRM.
(7) RADIO MODULATOR MD-230/SRT (HIGH LEVEL RADIO MODULATOR, HLRM).-The high level radio modulator (HLRM) is used only in the AN/SRT-15 and 16 during 500-watt operation. It amplifies the six-watt audio signal developed in the LLRM and feeds it to the radio frequency amplifier to modulate the carrier.
(8) RADIO FREQUENCY AMPLIFIER AM1008/SRT (RADIO FREQUENCY AMPLIFIER, RFA). -The radio frequency amplifier ($R F A$) receives an r-f signal from the RFO at any frequency from 0.3 to 26 mc. Euring 100 -watt operation the RFA amplifies all signals within this frequency range to the required nominal 100 -watt level. During 500 -watt operation, only signals within the range of 2 to 26 mc are amplified to the nominal 500-watt level; selection of a frequency in the range from 0.3 to 2 mc automatically switches the output to the 100 -watt level. The three stages of amplification (buffer, intermediate power amplifier, and power amplifier) that comprise the RFA are manually tuned to the frequency selected. The RFA receives a signal from the LLRM to key the carrier during c-w and phone operation. In addition, during phone operation, an audio signal is received from either the LLRM (100 watts) or HLRM (500 watts) to amplitude-modulate the carrier. The RFA output is fed to the load adjusting unit.
(9) TRANSMITTER COUPLER CU--402/SRT (LOAD ADJUSTING UNIT, LAU).-The load adjusting unit (LAU) improves the impedance match between the characteristic 50 -ohm r-f output impedance of the RFA to the impedance presented by the antenna. The r-f output of the RFA is fed to the LAU. The output of LAU is fed to the antenna coupler of the antenna tuning equipment.
(10) ELECTRICAL EQUIPMENT CABINET CY1571/SRT (TRANSMITTER GROUP CABINET). The transmitter group cabinet houses the five chassis of the transmitter group consisting of the RFA, LLRM, RFO, LVPS, and MVPS. The cabinet is provided with retractable intercabling, mating connectors for each chassis, and terminal boards for inputs and outputs to other assemblies of the AN/SRT-14, 15 and 16. The transmitter group cabinet may rest on a Mounting MT-1423/SRT or on one of the booster cabinets. There is one transmitter group cabinet in the transmitter bay of the AN/SRT-14, another in that of the AN/SRT-15, and two in the AN/SRT-16.
(11) ELECTRICAL EQUIPMENT CABINET CY1572/SRT (HLRM CABINET).-The HLRM cabinet houses the high level radio modulator chassis in the AN/SRT-15 and AN/SRT-16. The cabinet is provided with retractable intercabling, with mating connectors for the HLRM chassis and terminal boards for inputs and outputs to other assemblies of the AN/SRT-15 ind 16.
*
(12) ELECTRICAL EQUIPMENT CABINET CY\$73/SRT (HVPS CABINET). - The HVPS cabinet similar to the HLRM cabinet and houses the HVPS Chassis in the AN/SRT-15 and AN/SRT-16. The terininal board for the $220 / 440$-volt, three-phase, 60 -cycle aput is also contained in this cabinet. The HVPS and HLRM cabinets, together with the units they house, form Radio Modulator-Power Supply OA-685/SRT (the booster).
(13) MOUNTING MT-1423/SRT (MOUNTING). - The mounting provides mechanical support for the units of the transmitter group or booster and houses the blowers and heaters that are used to provide temperature control for the transmitter bay. All input and output cables for the transmitter bay enter through the cable access areas provided in the rear and bottom of this unit.
(14) RADIO FREQUENCY TUNER TN-229/ SRT (R-F TUNER).-The r-f tuner serves as an adjustable length transmission line whose function is to sufficiently match the impedance presented by the antenna to the characteristic output impedance of the RFA so that the standing-wave ratio on the transmission line is no greater than $4: 1$. Tuning is accomplished by the moving of a shorting mechanism along the main coil, which constitutes the adjustable length transmission line. Control of the shorting mechanism is accomplished manually and remotely at the transmitter bay location by controls on the control-indicator, which is located on the RFO front panel.
(15) ANTENNA COUPLER CU-372/SRT (ANTENNA COUPLER).-The antenna coupler has two prime functions. Primarily, the antenna coupler is used to extend the range of tuning that can be accomplished with the main coil in the r-f tuner. This is done by switching inductance or capacitance into the antenna line to lengthen or shorten the apparent electrical length of the antenna. This switching is also manually controlled at the control-indicator. In addition, the antenna coupler contains a switch that makes it possible to bypass the tuning components completely, connecting the antenna directly to the load adjusting unit of the transmitter bay. The control-indicator unit also contains the manual control for the setting of the bypass switch.

Note

In all simplified schematics in Section 2, resistance values are expressed in ohms, capacitance values in micromicrofarads and induct-
ance values in microhenries, unless otherwise indicated. For example, a $10-\mathrm{ohm}$ resistor will have its value shown on a simplified schematic as " 10 ", whereas a 10 -kilohm or 10 -megohm resistor will be marked " 10 K " or " 10 M ".

2. RADIO FREQUENCY OSCILLATOR O-275/ SRT (RFO).

The radio frequency oscillator consists of 14 removable subunits containing the vacuum tube circuits, a mounting to which these units are secured, and a unit that is mounted on the front panel of the mounting. The RFO is the master frequency source for the transmitting set. The 14 subunits include: the crystal oscillator (unit 1); the interpolation oscillator (unit 3); the frequency-shift oscillator (unit 12); step generators for 10 kc (unit 6), 100 kc (unit 8), and 1 mc (unit 10); three frequency multipliers (units 2,4 , and 7); five frequency converters (units 5, 9, 11a, 11b, and 11c). The unit that mounts on the front panel of the RFO mounting, Control-Indicator C-1352/SRT, contains all controls and indicators required to manually tune the antenna tuning equipment components.

Note

In the schematics accompanying the RFO discussion, the outputs and inputs of the subunits are identified by numbers and lower-case letters. The number refers to the unit which produces the output signal, and the letter identifies which output is being referred to. For example, 2 a is one of five outputs of unit 2 , and is fed to unit 4 ; when it leaves unit 4 , it is referred to as output 4a. These output symbols are marked on the chassis for purposes of identification.
a. GENERAL THEORY OF THE RFO. (See figure 2-2.)-The crystal oscillator (unit 1) produces a $100-\mathrm{kc}$ output, accurate to within 1.5 parts per million, which is fed to: one of the frequency multipliers (unit 2), a frequency converter (unit 5), the $10-\mathrm{kc}$ step generator (unit 6), and the $100-\mathrm{kc}$ step generator (unit 8). This output synchronizes the step generators and, through frequency multipliers, provides the higher input frequencies required by other units of the RFO. Another portion of the $100-\mathrm{kc}$ output is fed to the zero adjust indicating circuit in unit 14 to enable the operator to check the output of the interpolation and frequencyshift oscillators. Another portion is fed to an oscilloscope test receptacle in unit 14 for servicing and checking.
(1) In unit 2 (frequency multiplier) the $100-\mathrm{kc}$ output of the crystal oscillator is increased to 1 mc and then fed to unit 4 (frequency multiplier), unit 5 (frequency converter), unit 6 (the $10-\mathrm{kc}$ step generator), unit 7 (frequency multiplier), and unit 10 (the $1-\mathrm{mc}$ step generator). Unit 4 multiplies the $1-\mathrm{mc}$ input from unit 2 and produces an $8-\mathrm{mc}$ output, which is fed to unit 5 (frequency converter).

Figure 2-2. Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO), Functional Block Diagram
(2) In addition to the $1-\mathrm{mc}$ input from unit 2 and the 8 -mc input from unit 4 , the frequency converter (unit 5) receives outputs from the interpolation oscillator (unit 3) and either the crystal oscillator or the fre-quency-shift oscillator. The interpolation oscillator produces an output of 90 to 100 kc , adjustable in steps of $10 \mathrm{cps}, 100 \mathrm{cps}$, and 1 kc . The major portion of this output is fed to unit 5 (frequency converter). Another portion is fed to an oscilloscope test receptacle for use in servicing and checking. The frequency-shift oscillator (unit 12) generates an output of 100 kc , frequency-
modulated in accordance with signals from the LLRM. For FSK operation this output may be shifted at a 240 cps rate (corresponding to teletype at 600 words a minute), a maximum of $\pm 1,000 \operatorname{cps}\left(\frac{\triangle f}{2}\right)$ from the knob-set frequency. For facsimile operation the output frequency shift may be adjusted from +500 to $+2,000$ cps for a positive 20 -volt signal from the facsimile equipment. See paragraph $2 f(3)$ for a detailed explanation of the frequency-shift range. In addition, a one-radian

Paragraph 2 a (2)
AN/SRT-14, 14A, 15, 15A, 16, 16A
maximum phase modulation at a $200-\mathrm{cps}$ rate may be added for reduction of fading effects. During frequencyshift keying or facsimile operation, the output of unit 12 is fed to the frequency converter (unit 5) to replace the 100 -kc signal normally supplied by the crystal oscillator (unit 1). Another portion of the frequency-shift oscillator is fed to an oscilloscope test receptacle for use in servicing and checking. Unit 5 (frequency converter), consisting of a series of conventional mixers, tuned filters and an amplifier, mixes its four input frequencies to produce an output, adjustable in steps of 10 cps , from 9.19 to 9.2 mc for cw and phone or 9.19 to $9.2 \mathrm{mc} \pm$ $\frac{\triangle f}{2}$ for frequency-shift telegraphy and 9.19 to $9.2 \mathrm{mc}+$ Δf for facsimile operation.
(3) The output of unit 5 is fed to the $10-\mathrm{kc}$ step generator (unit 6). This step generator, the major component of which is a phase-locked oscillator, receives, in addition, a $100-\mathrm{kc}$ signal from the crystal oscillator and a $1-\mathrm{mc}$ signal from unit 2. The $100-\mathrm{kc}$ input is first used to produce outputs of 10 kc and 210 to 300 kc (in $10-\mathrm{kc}$ steps) for the oscilloscope test receptacles. A portion of the last frequency is then mixed with the inputs from unit 2 and unit 5 to produce a final output of 10.4 to 10.5 mc (in steps of 10 cps), which is fed to the $100-\mathrm{kc}$ step generator (unit 8).
(4) Unit 7 (frequency multiplier) receives a $1-\mathrm{mc}$ signal from unit 2 and multiplies it to provide first a $5-\mathrm{mc}$ signal for unit 9 (frequency converter) and then a $15-\mathrm{mc}$ signal for the $100-\mathrm{kc}$ step generator (unit 8). The $100-\mathrm{kc}$ step generator has essentially the same design as unit 6 , the $10-\mathrm{kc}$ step generator. Unit 8 uses the $100-\mathrm{kc}$ input from the crystal oscillator to produce an output of 1.6 to 2.5 mc (in $100-\mathrm{kc}$ steps). A portion of this output is fed to an oscilloscope test receptacle for use in servicing and checking; the remainder is mixed with the inputs from unit 6 and unit 7 to produce an output of 27 to 28 mc (in steps of 10 cps), which is fed to the unit 9 frequency converter. Unit 9 mixes the 27 - to 28 mc input from unit 8 with the $5-\mathrm{mc}$ input from unit 7 to produce frequencies of 27 to $28 \mathrm{mc}(\pm 0, \pm 5$ or +10 mc), adjustable in 10 -cps steps. These frequencies are amplified by the remainder of unit 9 and then fed to one wafer of the bandsivitch. Unit 10 ($1-\mathrm{mc}$ step generator) receives a $1-\mathrm{mc}$ signal from unit 2 and passes it through a harmonic generator that produces frequencies of 7,8 , $13,14,16,17,18,19,20,21$, and 22 mc . These frequencies are amplified by the rest of unit 10 and then fed to the second wafer of the bandswitch.
(5) The outputs of unit 9 and unit 10 are fed to one of the three final converters (units 11a, 11b, and 11c), only one of which is used at a time. The output frequency desired determines which of the three converters will be used; the chosen unit is connected to the outputs of unit 9 and unit 10, and to the RFO mounting (unit 14) by the bandswitch. Unit 11a is used for frequencies between 0.3 and 6 mc ; unit 11 b for the $6-$ to $16-\mathrm{mc}$ range, and 11 c for outputs of 16 to 26 mc .

Figure 2-3. RFO Unit 1, Crystal Oscillator V-2001, Simplified Schematic
(6) The mounting (unit 14) serves as a rack into which the other units of the RFO are plugged. Unit 14, in turn, plugs into the transmitter group cabinet wiring. In addition to interunit cabling, unit 14 includes manual frequency controls, test points, the bandswitch for selecting the final frequency converter (unit 11a, 11b or 11c), oscilloscope test receptacles, an indicating circuit for adjusting the outputs of the interpolation and frequencyshift oscillators, a door interlock switch, heater and filament power supplies, and heater indicator lights.
(7) Control-Indicator C-1352/SRT, which mounts on the unit 14 front panel, contains the following controls and indicators for the manual tuning of the antenna tuning equipment: controls for manual setting of the effective length of the main tuning coil in the radio frequency tuner, a control for selecting a value of inductance or capacitance found in the antenna coupler to extend the range of tuning of the main coil when required, a control for bypassing the antenna tuning equipment, a control for adding an impedance transformer in the r-f transmission line in the radio frequency tuner, an indicator to record the position of the shorting ring on the main tuning coil in the radio frequency tuner, and an indicator to measure the standing-wave ratio existing on the r-f transmission line.
b. RADIO FREQUENCY OSCILLATOR \mathbb{Z}-2001 (CRYSTAL OSCILLATOR, UNIT 1).-The crystal oscillator (unit 1) is one of the basic frequency sources of the transmitter. The output of unit 1 , a crystal-controlled $100-\mathrm{kc}$ signal, is processed by other subunits in the RFO to obtain higher frequencies. Other frequency sources in the RFO, such as the $10-\mathrm{kc}$ step generator and the 100 kc step generator, are synchronized by the crystal oscillator and are thus locked to an accurate, crystal-controlled frequency standard. Two additional frequency sources, the interpolation oscillator and the frequencyshift oscillator, are provided with frequency generators that are not locked to the crystal oscillator. However, the output of these frequency converters may be compared with the output of the crystal oscillator by means of the zero adjust indicating circuit located in unit 14, employing an electron ray indicating tube. Adjustments are provided for obtaining minimum shadow angle on the electron ray tube, which indicates when the frequency of the interpolation oscillater or the frequencyshift oscillator is "in synch" with the crystal oscillator frequency. Unit 1 includes a crystal oscillator circuit and four cathode followers.
(1) CRYSTAL OSCILLATOR V-2001. - This stage (figure 2-3) is a modified electron-coupled Colpitts oscillator operating at a frequency of 100 kc with
an accuracy of 0.00015 percent. To obtain maximum stability, the quartz crystal is contained in a plug-in unit, Y-2001, which includes a heating element and a thermostat. By this means, the crystal is maintained at a constant temperature of $70^{\circ} \mathrm{C}$. $\left(158^{\circ} \mathrm{F}\right.$.). When the crystal heater is on, the XTAL HEATER ON indicator light $\mathrm{I}-2918$ on the mounting is energized by 6.3 volts applied from terminal 7 of Y-2001. As indicated on the transmitter group primary power diagram in Section 7, the oven in the crystal oscillator and those in the fre-quency-shift oscillator and the interpolation oscillator are all fed by a single, independent 110 -volt, $60-\mathrm{cps}$ primary power line. Minor tuning adjustments may be made by means of the two slugs of the permeability tuned inductor, L-2001. The bottom slug is factoryadjusted so that the top slug may be adjusted in the field for exactly 100 kc . The total range of the field adjustment is one cycle. L-2002 and C-2013 suppress parasitic oscillations. The output of V-2001, a triangular waveform having a high harmonic content, is coupled through C-2007 to the grid of cathode follower V-2002A.
(2) CATHODE FOLLOWERS V-2002 and V-2003.-The crystal oscillator output (figure 2-4) is distributed to other subunits of the RFO through a system of cathode followers. This prevents loading of the

Figure 2-4. RFO Unit 1, Cathode Followers V-2002 and V-2003, Simplified Schematic

Figure 2-5. RFO Unit 2, Frequency Quintupler V-2031, Simp!ified Schematic
crystal oscillator and helps maintain its frequency stability. Cathode follower V-2002A receives the crystal oscillator output and distributes it to cathode followers V-2002B, V-2003A, and V-2003B, which, in turn, distribute the output to other subunits of the RFO. Thus, V-2002A serves as a buffer, or isolating, stage, which isolates the crystal oscillator from the output load. The 100 -kc output of $\mathrm{V}-2002 \mathrm{~B}$ is fed through isolating resistor $\mathrm{R}-2025$ to the oscilloscope test receptacle in unit 14 (output 1e), and through isolating resistor $R-2023$ to unit 6 (output 1c). The $100-\mathrm{kc}$ output of V-2003A is fed to unit 2 through isolating resistor $R-2026$ (output 1a). The $100-\mathrm{kc}$ output of $\mathrm{V}-2003 \mathrm{~B}$ is fed to voltage divider $\mathrm{R}-2008$ and $\mathrm{R}-2027$ and to unit 8 through isolating resistor $R-2028$ (output 1d). The portion of this signal that is developed across $R-2027$ is fed to unit 5 (output 1b). In this case, $R-2008$ serves as an isolating resistor. The $1-\mathrm{mc}$ signal with which the $100-\mathrm{kc}$ signal is mixed in unit 5 is of relatively low amplitude and is applied to the suppressor grid, whereas the $100-\mathrm{kc}$ signal is applied to the control grid of the mixer. The $100-\mathrm{kc}$ output to unit 5 is therefore reduced in amplitude to match the low amplitude of the $1-\mathrm{mc}$ input to unit 5 and to compensate for the higher amplification of the 100 kc signal resulting from its application to the mixer control grid.
c. FREQUENCY MULTIPLIER Z-2034 (FREQUENCY MULTIPLIER, UNIT 2).-Unit 2 receives the $100-\mathrm{kc}$ crystal-controlled output of unit 1 , and, by means of multipliers and harmonic filters, produces a $1-\mathrm{mc}$ signal, which is delivered to units $4,5,6,7$, and 10 .
(1) FREQUENCY QUINTUPLER V-2031.-The 100 -kc output (1a) of unit 1 is applied to the grid of V-2031 (figure 2-5) through J-2031, transmission-line terminating resistor R -2031, and grid-leak network $\mathrm{R}-2032$ and $\mathrm{C}-2031$. Test point $\mathrm{J}-2038$ is provided to test the input (approximately 13 volts). Quintupler V 2031, operated class C, delivers 100 kc and harmonics to filter Z -2031. Frequencies other than the fifth harmonic, 500 kc , are attenuated by Z-2031.
(2) FREQUENCY DOUBLER V-2032. - This stage (figure 2-6), also operated class C, receives the 500 -kc output of $\mathrm{Z}-2031$ and delivers 500 kc and harmonics to a $1-\mathrm{mc}$ filter comprising $\mathrm{Z}-2032$ and $\mathrm{Z}-2033$, capacity coupled by $\mathrm{C}-2038$. Frequencies other than the second harmonic, 1 mc , are attenuated by $\mathrm{Z}-2032$ and $\mathrm{Z}-2033$. The output of $\mathrm{Z}-2033$ is impressed across capacitance voltage divider $\mathrm{C}-2033$ and $\mathrm{C}-2037$.
(3) CATHODE FOLLOWERS V-2033 AND V-2034.-These cathode followers (figure 2-7) isolate the multipliers from the units to which the $1-\mathrm{mc}$ output is fed. The $1-\mathrm{mc}$ output of $\mathrm{Z}-2033$ is applied to the cathode followers from the capacitance voltage divider, C-2033 and $\mathrm{C}-2037$. Cathode follower outputs 2 b and 2 c are fed to mixers, and are therefore reduced by the voltage divider comprising $R-2042, R-2036$, and $R-2037$ and the 1 K resistors at the inputs to units 5 and 6 . Outputs $2 \mathrm{a}, 2 \mathrm{~d}$, and 2 e are fed to multipliers and therefore require no reduction in amplitude.
d. FREQUENCY MULTIPLIERZ-2103 (FREQUENCY MULTIPLIER, UNIT 4).-Unit 4 receives the $1-\mathrm{mc}$ output of unit 2 , and by means of multipliers and harmonic filters produces an $8-\mathrm{mc}$ signal, which is delivered to unit 5 .
(1) FREQUENCY QUADRUPLER V-2101.-The 1 -mc output (2a) of unit 2 is applied to the grid of V-2101 (figure 2-8). Test point $\mathrm{J}-2104$ is provided to

Figure 2-6. RFO Unit 2, Frequency Doubler V-2032, Simplified Schematic

NAVSHIPS 92121(A)
Section 2

Figure 2-7. RFO Unit 2, Cathode Followers V-2033 and V-2034, Simplified Schematic
test this signal (approximately 8.8 volts) across terminating resistor $\mathrm{R}-2101$. Quadrupler V-2101, operated class C , produces harmonics of 1 mc that are filtered by Z-2101 to attenuate all harmonics but the fourth (4 mc). The $4-\mathrm{mc}$ output of $\mathrm{Z}-2101$ is fed to the grid of doubler V-2102.
(2) FREQUENCY DOUBLER V-2102.-Doubler $\mathrm{V}-2102$ (figure 2-9) receives the output of $\mathrm{Z}-2101$ and delivers 4 mc plus harmonics to the $8-\mathrm{mc}$ filter, $\mathrm{Z}-2102$. This filter attenuates all frequencies other than 8 mc . The final output (4a) is fed to unit 5 after being reduced by capacitance voltage divider C-2108 and C-2109 to a level of approximately 1.2 volts. Test point J-2105 is provided to test output 4 a .
e. RADIO FREQUENCY OSCILLATOR Z-2053 (INTERPOLATION OSCILLATOR, UNIT 3).-Unit 3 generates frequencies in the range of 90 to 100 kc , variable in steps of 10,100 , and 1,000 cycles. To obtain maximum stability, the main frequency-controlling elements are kept in an oven at a constant temperature of $70^{\circ} \mathrm{C}$. $\left(158^{\circ} \mathrm{F}\right.$.). The output frequency is varied by means of decade switches that place inductors and capacitors of the required size in the oscillator main tank circuit.
(1) OSCILLATOR V-2051.-The oscillator is an electron-coupled Hartley circuit (figure 2-10). The main tank circuit comprising C-2060, L-2051A and associated

NOTE: CAPACITORS SHOWN WITH DOTTED LINES ARE BUILT INTO TUBE SOCKETS AND ARE $0.001 \mu \mathrm{f}$.

Figure 2-8. RFO Unit 4, Frequency Quadrupler V-2101, Simplified Schematic
elements is located in the oven that is part of $\mathrm{Z}-2051$. Because of variations among coils used for $\mathrm{L}-2051 \mathrm{~A}$, it is necessary to have specially matched trimmer coils L-2051B to make it possible to adjust the resonant frequency of the main tank circuit to 100 kc . L-2051B and the oven assembly constitute $\mathrm{Z}-2051$. The oscillator frequency may be changed by switching additional in-

Figure 2-9. RFO Unit 4, Frequency Doubler V-2102, Simplified Schematic
ductors and capacitors in or out of the main tank circuit. This is accomplished by means of three decade switches, S-2051, S-2052, and S-2053, which are operated by controls on the RFO mounting (unit 14). For stability, V-2051 uses a regulated filament supply and a $+250-$ volt regulated plate supply. To feduce interaction with other circuits via the power supply leads, a three-section plate decoupling filter, comprising $\mathrm{R}-2054, \mathrm{R}-2055$, and C-2064, is used.
(2) 1-KC STEPS.-Inductor L-2080 or any one of the inductors, $\mathrm{L}-2052$ to $\mathrm{L}-2060$, and any one of the corresponding capacitors, $\mathrm{C}-2066$ and $\mathrm{C}-2051$ to C 2059, may be placed in the main tank circuit by means of switch S-2051 (figure 2-9). In this way, the oscillator frequency may be changed in 1-kc steps. With switch S-2052 in position 9, S-2053 in position 10, and S-2051 in position 9 , the main tank inductor, $L-2051 \mathrm{~A}$, is seriesconnected to ground through contact 9 of S-2051B, inductors L-2060 through L-2052, inductor L-2080, trimmer L-2051B, contact 9 of S-2052B, and contact 10 of S-2053B. Meanwhile, with S-2051C on contact 9, the main tank capacitor, $\mathrm{C}-2060$, is connected in parallel to C-2066 of the capacitor assembly, $\mathrm{Z}-2052$. Under these conditions, the oscillator frequency is 100 kc . If S-2051 is now placed in position 8, L-2060 is shorted out through contact 8 of $\mathrm{S}-2051 \mathrm{~B}$, thus reducing the inductance in the tank circuit. This would result in a higher oscillator frequency if it were not for the fact that, at the same time, the main tank capacitor, C-2060, is connected in parallel, through S-2051C, to capacitor $\mathrm{C}-2059$, located in capacitor assembly $\mathrm{Z}-2052$. The value of $\mathrm{C}-2059$ is so high that it more than compensates for the above-mentioned decrease in inductance. As a result of the increase in capacitance, the oscillator frequency is lowered to 99 kc . When $\mathrm{S}-2051$ is placed in position 7, L-2060 and L-2059 are shorted out, but C-2060 is connected to an even higher capacitance than formerly, which more than compensates for the decrease in inductance, resulting in a still lower frequency, 98 kc. This process is repeated each time switch S-2051 is
placed in a lower position, resulting in 1-kilocycle step decreases of the oscillator frequency until 91 kc is reached. This occurs when S-2051 is in position 0 . At this time, all of the inductors, L-2052 through L-2060, are shorted out, and the tank inductor, L-2051A, is series-connected to ground through L-2080 and trimmer L-2051B. L-2080 is the mounting front panel INT. OSC. ZERO ADJ. control. It permits adjustment of the oscillator output when this output is compared on the ZERO BEAT INDICATOR electron ray tube with the crystal-controlled output of unit 1.
(3) 100 -CYCLE STEPS.-The oscillator output may be changed in steps of 100 cycles by means of switch S-2052. With this switch in position 9, and S2053 in position 10, the output of the 1 -kc step switch, S-2051, is grounded through contact 9 of S-2052B and contact 10 of S-2053B. Under these conditions, the $100-$ cycle step switch has no effect on the oscillator frequency. However, when $\mathrm{S}-2052$ is placed in position 8, all the inductors, $\mathrm{L}-2061$ to $\mathrm{L}-2068$, inclusive, are shorted out, and the signal from the $1-\mathrm{kc}$ step switch is fed through $\mathrm{L}-2069$ to ground. The additional inductance introduced by L-2069 decreases the oscillator frequency by 100 cycles. Similarly, when S-2052 is placed in position 7, another inductor, $\mathrm{L}-2068$, is placed in the circuit, and the oscillator output is decreased by another 100 cycles. This process may be continued until S-2052 is pladed in position 0 (with S-2053 still in position 10), and a total decrease of 900 cycles is obtained in the oscillator frequency. Thus, S-2052 makes available frequency changes up to 900 cycles, in 100 -cycle steps. This range of frequency changes may be increased by 100 cycles by means of 10 -cycle step switch S-2053.
(4) 10-CYCLE STEPS.-Similarly, when the 10 cycle step switch S-2053 is in position 9, L-2079 is added to the tank circuit. The additional inductance introduced by L-2079 decreases the oscillator frequency by 10 cycles. This process may be continued until $\mathrm{S}-2053$ is in position 0 . When this position is reached, $\mathrm{S}-2053$ will have made available oscillator frequency changes up to 100 cycles, in 10 -cycle steps.
(5) FREQUENCY SELECTION.-Suppose that it is desired to tune the oscillator to 94.28 kc with the $1-\mathrm{kc}$ and 100 -cycle step switches initially set at position 9 and the 10 -cycle step switch set at position 10 . As seen in paragraph $2 e(2)$, this produces an output of 100 kc . The 1 -kc step switch is placed in position 4, which reduces the oscillator output by 5 kc to 95 kc . The 100 -cycle step switch is set to position 2 , reducing the oscillator output by 700 cycles to 94.30 kc . Finally, the 10 -cycle step switch is set to position 8 , reducing the oscillator output by 20 cycles to the desired frequency of 94.28 kc . It can be seen that the output frequency of the oscillator will be 90 kc plus the values according to the position setting of the $1-\mathrm{kc}, 100$-cycle, and 10 -cycle step switches respectively. The $1-\mathrm{kc}$ step switch is controlled by the KC control knob ©C, the 100 -cycle step switch by the $100 \sim$ control knob (10), and the 10 -cycle step switch by the $10 \sim$ control knob (E2). All three of these controls are located on the RFO front panel.

Figure 2-10. RFO Unit 3, Interpolation Oscillator V-2051, Simplified Schematic

NAVSHIPS 92121(A)
THEORY OF
AN/SRT-14, 14A, 15, 15A, 16, 16A
OPERATION

Figure 2-11. RFO Unit 12, Frequency Shift Oscillator, Simplified Schematic
(6) OUTPUT CIRCUIT.-Oscillator V-2051 is provided with a tuned output circuit comprising the tunable transformer, T-2051, and capacitors C-2062 and C-2063. Resistors R-2058, R-2059 and R-2056, R2057 are voltage dividers from which the two $90-$ to $100-\mathrm{kc}$ outputs are tapped. These resistors widen the band pass by loading the output tank circuit. Output 3b, taken from the junction of $R-2058$ and $R-2059$, is fed to the oscilloscope test receptacle for use as an aid in servicing. Output 3a, taken from the junction of R-2056 and $\mathrm{R}-2057$, is fed to unit 5 . Test point $\mathrm{J}-2054$ is provided for testing output 3a whose amplitude is approximately 0.3 volt.
(7) HEATER CIRCUIT.-The oven heater circuit includes thermostat S-2054 and the heater element located inside the oven, and R-2060, R-2061 and C-2065 located outside the oven. $R-2061$ and $C-2065$ constitute a spark-suppressor circuit. When the heater is on, the INT.-HEATER ON indicator light, I-2917, on the mounting front panel is energized via dropping resistor R-2060.
f. RADIO FREQUENCY OSCILLATOR Z-2127 (FREQUENCY SHIFT OSCILLATOR, UNIT 12).This unit (figure 2-11) makes possible frequency-shift keying and facsimile operation of the transmitter. It includes a 100 -kc oscillator that is capable of shifting its frequency $\pm 1,000 \mathrm{cps}$ from 100 kc at a $240-\mathrm{cps}$ rate (corresponding to teletype at 600 words a minute) during FSK operation, or up to $2,000 \mathrm{cps}$, as determined by the amplitude of the photo input voltage, during facsimile operation.
(1) OSCILLATOR V-2128.-This stage is an elec-tron-coupled 100 -kc Hartley oscillator. To obtain stability, the frequency controlling tank circuit, comprising capacitors C-2128, C-2137, C-2135, tunable inductor L-2126, and associated elements, is located in an oven maintained at $70^{\circ} \mathrm{C}$. ($158^{\circ} \mathrm{F}$.). Plug-in inductor L-2126 is a coarse frequency control. The tuned output tank, comprising T-2126, C-2133 and C-2134, filters the output and isolates the oscillator from the RFO subunits to which the oscillator output is connected. Load resistor R-2134 increases the band pass of the output tank.
(2) CONTROL TUBE V-2127.-The control tube circuit is essentially a part of the oscillator circuit. A portion of the oscillator output is coupled to the control grid of $\mathrm{V}-2127$ by $\mathrm{C}-2126$. This is equivalent to changing a reactive component in the tank, and will change the oscillator frequency. The frequency, however, may be adjusted to 100 kc (in the absence of frequency-shift or facsimile keying signals) by means of the coarse control, L-2126, and the fine control, F.S.O. ZERO ADJ., R-2916, which is located on the control panel and sets the cathode bias of the control tube. If the control tube grid voltage is now made more positive, the control tube delivers a larger reactive current to the tank, and the oscillator frequency increases. If the grid voltage is made less positive, the oscillator frequency decreases.
(3) CATHODE FOLLOWER V-2126.-The control tube grid circuit is connected to the output of cathode follower V-2126 via isolating resistor $\mathrm{R}-2127$. By this means the oscillator frequency may be made to vary in accordance with the voltage variations at the cathode follower grid. The grid is returned to ground through the secondary winding of T-2916, and a portion of potentiometer $\mathrm{R}-2917$. All these components through which the grid is grounded are located on the mounting front panel. The F.S. DEVIATION control ® $\ltimes 1$, R-2917, is calibrated directly in cycles per second deviation from the nominal carrier frequency. For FSK operation, control © may be set to provide an oscillator frequency deviation $\left(\frac{\triangle f}{2}\right)$ up to ± 500 cycles from the signal from V-1019 in the LLRM. The equipment FSK keying requirements specify a deviation adjustable to any value between zero and 500 cycles (minimum) on each side of
the carrier for mark-and-space telegraph signals. Thus a 1,000 -cps space-to-mark frequency shift, corresponding to a 500 -cycle deviation on either side of the carrier, is provided when control $\circledast \mathrm{R}$-2917 is set to its midposition (500). For facsimile transmission the equipment is required to have a total frequency shift ($\triangle \mathrm{f}$) adjustable to any value between 500 and 2,000 cycles for a facsimile set output keying voltage of +20 volts dc in normal operation. This maximum shift is obtained by setting the RFO front panel controls to a frequency that is $\frac{\Delta f}{2}$ below the desired carrier frequency and adjusting the F.S. DEVIATION control © until its dial reads $1 / 2$ of the desired total shift $\left(\frac{\triangle f}{2}\right)$. For example, if a 2,000 cycle shift is desired for the maximum signal from the facsimile set, the RFO output frequency should be adjusted to be 1,000 cycles lower than the nominal carrier frequency and control ®® should be adjusted to read 1000.

The F.S.O. RANGE ADJ. control, R-2919, may be set to make the deviation dial read correctly. Frequencyshift keying signals from $\mathrm{V}-1019$ in the LLRM are applied to the cathode follower grid through R-2919, R-2917, and the secondary of $\mathrm{T}-2916$. These signals, which are rectangular voltage pulses, may be phasemodulated by a 200 -cycle signal (from $\mathrm{V}-1020$ in the LLRM), which is applied across the T-2916 primary. The modulated keying pulses, impressed on the cathode follower grid, vary the reactive current in the control tube by varying its bias, and hence frequency-modulate the oscillator in accordance with the amplitude of the keying pulses at the grid of the cathode follower. The

Figure 2-12. RFO Unit 5, 1.1-Mc Mixer V-2151, Simplified Schematic

Figure 2-13. RFO Unit 5, 8.19- to 1.2-Mc Mixer V-2152, Simplified Schematic
phase-modulating signal varies the carrier phase ± 1 radian from the nominal position at a fixed $200-\mathrm{cps}$ rate. It is provided to minimize selective fading effects. The cathode follower isolates the oscillator circuit, and T-2916 isolates the cathode follower from the 200-cycle source in the LLRM.
(4) MISCELLANEOUS.-The heater is provided with a thermostat, S-2126. R-2136 and C-2139 constitute a spark suppressor circuit. $\mathrm{R}-2135$ is a dropping resistor for the F.S. HEATER ON indicator light, I2916, located on the mounting front panel. To obtain frequency stability and reduce interaction with other circuits via the power supply, a +250 -volt regulated supply and a three-section plate decoupling capacitor, C-2132, are used. V-2126, V-2127, and V-2128 also use a regulated filament supply.
The output of unit 12 ($100 \mathrm{kc} \pm \frac{\Delta \mathrm{f}}{2}$ where $\frac{\Delta \mathrm{f}}{2}$ represents frequency deviation) is fed to unit 5 and to the oscilloscope test receptacle in unit 14 . Test point J-2127 is provided to test the output (approximately 12.3 volts). The presence of the control tube across the oscillator tank circuit makes the oscillator less stable; therefore, during $\mathrm{c}-\mathrm{w}$ and phone operation, the crystal oscillator (unit 1) is used as the master frequency source in place of unit 12 .
g. ELECTRONIC FREQUENCY CONVERTER Z2158 (FREQUENCY CONVERTER, UNIT 5).-Unit 5 receives five frequencies from other subunits of the RFO, four of which are used at any given time, and mixes them to produce an output in the range of 9.19 to 9.2 mc , in 10 -cycle steps, which is delivered to unit 6 . The frequencies received are 1 mc from unit $2,100 \mathrm{kc}$ from unit $1,100 \mathrm{kc} \pm \triangle$ from unit 12,90 to 100 kc from unit 3 , and 8 mc from unit 4. The $100-\mathrm{kc}$ signal from unit 1 is used during c -w and phone operation only. During FSK and facsimile operation the $100-\mathrm{kc}$ $\pm \triangle$ signal from unit 12 is used instead of the signal
from unit 1 . See paragraph $2 f$ for a complete discussion of the output frequencies from unit 12 during FSK and facsimile operation.
(1) 1.1-MC MIXER V-2151.-Whenever SERVICE SELECTOR switch ([1) in the LLRM is in FSK or FAX position, relay $\mathrm{K}-2151$ is energized from -25 volts after time delay to the "ground for F.S." line supplied from the LLRM (paragraph 7c(8)) and input 12a (100 $\mathrm{kc} \pm \triangle$) from unit 12 is applied to the control grid of mixer V-2151 (figure 2-12) through R-2166 and the contacts of K-2151. With SERVICE SELECTOR switch (1) in any other position, relay $\mathrm{K}-2151$ is de-energized, and, as a result, input 12a is grounded through $\mathrm{R}-2166$ and input lb (100 kc from unit 1) is applied to the mixer control grid. The 1 -mc input from unit 2 (2b) is applied to the mixer suppressor grid. The mixer output is filtered by Z-2151 and Z-2152. The resulting 1.1 -mc signal is applied to the suppressor grid of the second mixer, V-2152.
(2) 1.19- TO 1.2-MC MIXER V-2152.-A 90- to $100-\mathrm{kc}$ signal (3a) is applied to the control grid of the second mixer, V-2152 (figure 2-13). The mixer output is filtered by the sextuple-tuned filter combination, Z 2153, Z-2157, and Z-2154, whose output (1.19 to 1.2 mc) is applied to the control grid of the third mixer, V-2153.
(3) 9.19- TO 9.2-MC MIXER V-2153 AND AMPLIFIER V-2154.-An 8 -mc signal (4a) from unit 4 is applied to the suppressor grid of mixer V-2153 (figure 2-14). The 9.19 - to $9.2-\mathrm{mc}$ output is filtered by Z-2155, amplified by V-2154, filtered again by Z-2156, reduced in amplitude by voltage divider C-2170 and C-2169, and fed to the output receptacle, J-2156, from which it is transmitted to unit 6 . Test points J-2158, J-2159, and J-2160 are provided for testing inputs 4a (approximately 1.2 volts), 2b (approximately 1.2 volts) and 1 bb (approximately 0.36 volt), respectively. Test point J-2161 is provided for testing the output 5a (approximately 1.3 volts) of unit 5 .

NAYSHIPS 92121(A)
Sexion 2

Figure 2-14. RFO Unit 5,9.19- so 9.2-Mc Mixer V-2153 and Amplifier V-2154, 3implisfed Schematis
b. ELECTRONIC FREQUENCY CONVERTER Z2204 (10-KC STEP GENERATOR, UNIT 6).-Unit 6 (figure 2-15) produces and feeds to unit 8 an output of 10.4 to 10.5 mc , variable in steps of 10 cps . In addition, it generates and feeds to the oscilloscope test receptacles a 10 -kc output and an output of 210 to 300 kc , variable in steps of 10 kc . The unit contains a $10-\mathrm{kc}$ step phase-locked oscillator comprising mixer V-2203, reactance tube V-2204, and oscillator V-2205. The output from these units is synchronized by the $100-\mathrm{kc}$ output from the crystal oscillator (unit 1). To insure the stability of the generated frequencies, the three tubes of the phase-locked oscillator and $\mathrm{V}-22 \mathrm{c} 2$, the blocking oscillator and shaper, use a regulated filament supply. The output of oscillator V-2205 (210 to 300 kc) is mixed with a $1-\mathrm{mc}$ signal from unit 2 by mixer V-2206. The sum, 1.21 to 1.3 mc , is fed to mixer $\mathrm{V}-2207$ and mixed with a 9.19 - to $9.2-\mathrm{mc}$ signal from unit 5 . The sum, 10.4 to 10.5 mc , is fed to amplifiers V-2208 and $\mathrm{V}-2209$ and then delivered to unit 8.
(1) ISOLATING AMPLIFIER V-2201.-The 100kc signal (1c) from unit 1 is coupled by C-2201 to the grid of isolating amplifier V-2201 (figure 2-16). Test point $\mathrm{J}-2208$ is provided for testing input $1 c$ (approximately 7.4 volts). Amplifier V-2201 isolates blocking oscillator $\mathrm{V}-2202 \mathrm{~A}$ from the crystal oscillator in unit 1 , and provides sufficient output voltage to synchronize the blocking oscillator to exactly $1 / 10$ of the crystal frequency.
(2) BLOCKING OSCILLATOR V-2202A AND SHAPER V-2202B. - When blocking oscillator V2202A (figure $2-16$) begins to conduct, plate current begins to flow through the plate winding of $\mathrm{T}-2201$. This induces a positive voltage on the grid through transformer $\mathrm{T}-2201$ and $\mathrm{C}-2204$, and, as a result, the plate current increases further, inducing a larger positive
voltage on the grid, etc. This cumulative action occurs very rapidly and continues until the tube is driven to saturation. At this point further increases in grid voltage do not affect the plate current. When there is no further change in plate current, there is no further induced positive voltage on the grid. This decreases plate current, thereby inducing a negative voltage on the grid through $\mathrm{T}-2201$, thus decreasing the plate current still further. This cumulative action occurs very rapidly, driving the grid far below the cutoff point. Then, as C-2204 discharges to ground potential through $\mathrm{R}-2207$, the grid voltage becomes less negative and, in free-running operation, returns to just above the cutoff point. Plate current begins to flow again, and the cycle repeats itself. The grid recovery time is determined by the R-C time constant on the charging network, C-2204 and R-2207.

The grid recovery time and the cutoff point are so chosen that only every tenth cycle from the isolating amplifier will arrive at the blocking oscillator plate at a time when the grid is sufficiently near the cutoff point to be raised above cutoff by the impressed signal. As a result, the blocking oscillator frequency is synchronized to exactly $1 / 10$ of the isolating amplifier output frequency, or $1 / 10$ of the crystal oscillator frequency. The blocking oscillator must be set at 10 kc or slightly lower for it to become synchronized at a $10-\mathrm{kc}$ rate. If it is set slightly higher than 10 kc (that is, if the grid recovery time is decreased) the $100-\mathrm{kc}$ pulse will come too late and the oscillator will have operated prematurely. The free-running frequency of the blocking oscillator may be varied by $\mathrm{R}-2210$, by means of which the cutoff point may be raised or lowered.

The blocking oscillator synchronizes step oscillator V-2205. To obtain more stable control of the step oscillator, the wide pulses from the blocking oscillator

Figure 2-15. RFO Unit 6, Electronic Frequency Converter (10-Kc Step Generator), Block Diagram
are delivered through the peaking network, C-2290 and R-2211, and are narrowed to approximately 1 microsecond (5 volts amplitude) by a shaping circuit consisting of $\mathrm{V}-2202 \mathrm{~B}$ and the damped-tuned circuit, $\mathrm{T}-2202$ and CR-2201. Crystal CR-2201 allows only positive pulses to appear at the output of the shaper. The shaper output is applied from the secondary of $\mathrm{T}-2202$ to the control grid of mixer V-2203. A portion of the blocking oscillator output (6 c) is coupled through J-2202 to the $10-\mathrm{kc}$ oscilloscope test receptacle in the mounting.
(3) STEP OSCILLATOR V--2205, MIXER V-2203 AND REACTANCE TUBE V-2204.-Step oscillator V2205 generates frequencies in the range of 210 to 300 kc , in steps of 10 kc (figure 2-17). The oscillator is locked in to the synchronized $10-\mathrm{kc}$ blocking oscillator, V-2202A, by means of mixer V-2203, a filter network, and reactance tube $\mathrm{V}-2204$. The reactance tube corrects the oscillator if it drifts from the frequency to which it was tuned.

NAVSHIPS 92121(A)
Section 2

Figure 2-16. RFO Unit 6, Isolating Amplifier V-2201, Shaper V-2202B and 10-Kc Blocking Oscillator V-2202A, Simplified Schematic
(a) The $10-\mathrm{kc}$ step oscillator is a modified Colpitts oscillator (figure 2-17). The tank circuit consists of Z-2201, C-2220, C-2287, and one or more of the inductors, L-2204 to L-2212, inclusive, selected according to the final output frequency desired for unit 6 . Inductors L-2204 through L-2212 are wired to contacts of section D of the $10-\mathrm{kc}$ decade step switch S-2201, which is, in turn, controlled by the 10 KC control knob (1), one of the frequency control knobs. When S-2201 (10 KC) is in position 0 , all the inductors, L-2204 through L-2212, are included in the tank circuit, and the lowest oscillator frequency, 210 kc , is obtained. When S-2201 is in position 1, L-2204 is shorted. This reduces the inductance in the tank circuit and increases the oscillator frequency to 220 kc . When switch S-2201 is in position 2, both L-2204 and L-2205 are shorted, reducing the inductance in the tank circuit still further and consequently increasing the oscillator frequency to 230 kc . Thus the oscillator frequency may be increased in steps of 10 kc until
(in position 9) inductors L-2204 to L-2212, inclusive, are all shorted. With only Z-2201 remaining in the tank circuit, the oscillator frequency is 300 kc . The oscillator frequency is thus adjustable from 210 to 300 kc , in $10-\mathrm{kc}$ steps. The oscillator frequency may be adjusted to 300 kc by means of adjustable trimmer capacitor C-2219. Output 6a $(210-300 \mathrm{kc})$ is fed to the $10-\mathrm{kc}$ step oscilloscope test receptacle in unit 14.
(b) A portion of the $210-$ to $300-\mathrm{kc}$ output is coupled by $\mathrm{C}-2216$ to the suppressor grid of mixer $\mathrm{V}-2203$. The $10-\mathrm{kc}$ output of shaper $\mathrm{V}-2202 \mathrm{~B}$, rich in harmonics and synchronized with the $100-\mathrm{kc}$ oscillator in unit 1 , is applied to the mixer control grid. The mixer output contains d-c and a-c components. If the oscillator frequency is an exact multiple of 10 kc , the components consist of 10 kc and its harmonics in addition to the oscillator frequency (210 to 300 kc). The composite a-c signal is prevented from reaching the reactance tube, V-2204, control grid by a shunting capacitor, C-2208, a
N
\mathbf{N}

Figure 2-17. RFO Unit 6, Mixer V-2203, Step Oscillator V-2205, and Reactance Tube V-2204,
Simplified Schematic
bridged-T $10-\mathrm{kc}$ rejection filter ($\mathrm{R}-2217, \mathrm{C}-2209$, $\mathrm{C}-2211, \mathrm{C}-2212, \mathrm{R}-2218, \mathrm{R}-2219$, and $\mathrm{C}-2210$) and a low-pass R-C filter (C-2213, R-2220, and C-2214). The bridged-T filter is used to insure that the strong $10-\mathrm{kc}$ signal is adequately attenuated. The d-c component is a function of the tube operating point, the amplitude of the $10-\mathrm{kc}$ and oscillator (210 to 300 kc) signals, and the phase relationship of the oscillator frequency to the 10 kc signal harmonic. Stabilized power supplies minimize changes due to the first two variables; only the phase relationship is important in determining the d-c component of the mixer output.

Resistor $\mathrm{R}-2216$ is the plate load for $\mathrm{V}-2203$. To provide direct coupling, the mixer plate and screen voltages are obtained from the reactance tube cathode current flow through $\mathrm{R}-2215$. The d-c output of the mixer is applied to the control grid of the reactance tube, V2204, where it determines the reactance tube mutual conductance operating point, and bence the magnitude of the reactance controlled by V-2204 in the oscillator circuit. The relative phase of the $10-\mathrm{kc}$ and oscillator frequency voltages shift until the required reactance is con-
tributed by V-2204 to maintain the desired frequency. If the oscillator frequency tends to increase, the phase displacement causes a change in the mixer d-c output which will increase the magnitude of the capacitive reactance contributed by $\mathrm{V}-2204$ and hence tend to decrease the oscillator frequency. By this means the step oscillator, V-2205, is locked to the 10 kc .
(c) If the oscillator has not been locked in to 10 kc , the oscillator frequency will probably not be an exact multiple of 10 kc . In this case, the mixer output will contain, in addition to the d-c and a-c signals previously mentioned, the difference frequency between the oscillator output and the nearest harmonic of 10 kc . If this difference frequency is less than approximately 1.5 kc , it will pass through the $10-\mathrm{kc}$ and low-pass filters and appear at the grid of the reactance tube. Frequencies above 1.5 kc will be reduced in amplitude by the lowpass filter and will have no effect. An a-c grid voltage, because of the difference frequency, is now superimposed symmetrically upon the d-c grid voltage, which established the locked-in frequency of the oscillator. This changes the reactive component of current de-

Figure 2-18. RFO Unit 6, Mixer V-2206, Simplified Schematic

Figure 2-19. RFO Unit 6, Mixer V-2207, Simplified Schematic
livered by reactance tube V-2204 (which is connected across the tank circuit) in accordance with the a-c voltage caused by the difference frequency. As a result, the tank reactance is varied in the same manner, and the oscillator is frequency-modulated. The oscillator output is swept through a band of frequencies that include the locked-in frequency. As the locked-in frequency is approached, the difference frequency becomes smaller. When the locked-in frequency is reached, there is no longer a difference frequency. As a result, no a-c voltage is now superimposed on the original d-c grid voltage of the reactance tube. The oscillator is now restored to the original locked-in frequency that had been established by the original d-c grid voltage of the reactance tube. If, for example, it is desired to lock in the oscillator at 300 kc , switch S-2201 is placed in position 9 and the oscillator is adjusted to 300 kc (three times the crystal oscillator frequency) by means of capacitor C-2219.

The oscillator output is coupled to the $1.21-$ to $1.3-\mathrm{mc}$ mixer V-2206 by the low-pass filter network L-2201, L-2202, C-2225, C-2226, and C-2227.
(4) 1.21- TO 1.3-MC MIXER V-2206. - This mixer (figure $2-18$) receives two signals: the oscillator output (210 to 300 kc), which is applied to the control grid, and the $1-\mathrm{mc}$ output (2c) from unit 2 , which is applied to the suppressor grid. The oscillator output signal amplitude is reduced by the voltage divider, $\mathrm{R}-2229$ and $\mathrm{R}-2230$. The $1-\mathrm{mc}$ signal is received through $\mathrm{J}-2204$, load resistor $\mathrm{R}-2231$, coupling capacitor $\mathrm{C}-2228$, and resistor $\mathrm{R}-2232$. Test point J-2209 is provided for testing output 2c (approximately 1.2 volts). Mixer V-2206 combines 1 megacycle with the oscillator output to produce frequencies in the range of 1.21 to 1.3 mc. The mixer is provided with a double-tuned output filter, consisting of Z-2202, C-2288, C-2267, Z-2203, C-2289, C-2277, and the capacitors switched in and out
by sections C and B of $10-\mathrm{kc}$ step switch S-2201, all of whose sections are ganged. Note that S-2201 is the same step switch that selects an oscillator frequency of 210 to 300 kc .

When step switch S-2201 is in position 1, capacitors $\mathrm{C}-2269, \mathrm{C}-2252, \mathrm{C}-2279$, and $\mathrm{C}-2260$ are used in the filter. Consequently, the filter is tuned to 1.22 mc (and the oscillator is tuned simultaneously to 220 kc). As the switch position step numbers are increased, the capacitance in the filter is decreased by an amount sufficient to increase the resonant frequency of the filter by 10 kc for each step. In switch position 9, the filter is tuned to 1.3 mc . This method of filtering permits the use of highQ, sharply tuned circuits, which reject spurious frequencies. Capacitors C-2288 and C-2289 are ceramic capacitors used for temperature compensation. Variable capacitors $\mathrm{C}-2268$ through $\mathrm{C}-2276$ and $\mathrm{C}-2278$ through C-2286 are trimmers for adjusting the filter to the proper frequency for each position of S-2201. Variable capacitors C-2267 and C-2277 are adjusted whenever V-2206 is replaced.
(5) 10.4- TO 10.5-MC MIXER V-2207. - The control grid of mixer V-2207 (figure 2-19) receives the 1.21 - to $1.3-\mathrm{mc}$ output of $\mathrm{V}-2206$, and the suppressor grid receives 9.19 to 9.2 mc (5a) from unit 5 through $\mathrm{J}-2205$ and load resistor $\mathrm{R}-2233$. Test point J-2210 is provided for testing input 5a (approximately 1.3 volts). These two signals are mixed by V-2207 and the output, 10.4 to 10.5 mc , is filtered by the double-tuned filter, $\mathrm{T}-2203, \mathrm{C}-2237$ and $\mathrm{C}-2238$, and is coupled through R-2242 to the control grid of amplifier V-2208.
(6) AMPLIFIERS V-2208 AND V-2209. - The filtered output of V-2207 is amplified by V-2208 (figure 2-20), filtered by double-tuned transformer T-2204, amplified again by $\mathrm{V}-2209$, and filtered again by transformer $\mathrm{T}-2205$. The final output (output $6 \mathrm{~b}, 10.4$ to 10.5 mc) is fed to unit 8 through $\mathrm{J}-2206$. Test point $\mathrm{J}-2211$ is provided for testing this output (approximately 0.8 volt).
(7) 10-KC STEP SWITCH S-2201.-Table 2-1, page $2-21$, lists the circuit elements removed from the oscillator tank circuit and selected for the $1.21-$ to $1.3-\mathrm{mc}$ filter for each position of S-2201. In this table, note that as switch $\mathrm{S}-2201$ is moved from a lower- to a higher-numbered position, an additional inductor is removed (switched out) from the circuit by wafer D. For example, in position 3, L-2206 is removed in addition to L-2205 and L-2204.
i. FREQUENCY MULTIPLIER Z-2305 (FREQUENCY MULTIPLIER, UNIT 7).-Unit 7 receives 1 mc from unit 2 and multiplies this input by 5 and 15 to produce 5 mc for unit 9 and 15 mc for unit 8 .
(1) FREQUENCY QUINTUPLER V-2301 AND AMPLIFIER V-2302.-The $1-\mathrm{mc}$ signal (2d), received through J-2301, may be tested at test point J-2305 and is approximately 8.5 volts. The $1-\mathrm{mc}$ signal is coupled by C-2301 to the grid of frequency quintupler V-2301

TABLE 2-1. FUNCTIONS OF 10-KC STEP SWITCH S-2201

POSITION	OUTPUT FROM UNIT 6 (kc)	REMOVED FROM OSCILLATOR TANK BY SECTION D	SELECTED BY	
			SECTION C	SECTION B
0	210	None	C-2268, C-2251	C-2278, C-2259
1	220	L-2204	C-2269, C-2252	C-2279, C-2260
2	230	L-2205*	C-2270, C-2253	C-2280, C-2261
3	240	L-2206*	C-2271, C-2254	C-2281, C-2262
4	250	L-2207*	C-2272, C-2255	C-2282, C-2263
5	260	L-2208*	C-2273, C-2256	C-2283, C-2264
6	270	L-2209*	C-2274, C-2257	C-2284, C-2265
7	280	L-2210*	C-2275, C-2258	C-2285, C-2266
8	290	L-2211*	C-2276	C-2286
9	300	L-2212*	None	None

* Removed in addition to preceding inductors in this column.
(figure 2-21). The quintupler distorts and amplifies the input, thus producing an output rich in harmonics. Double-tuned filter Z-2301 attenuates all frequencies in the output except the fifth harmonic, 5 mc . The $5-\mathrm{mc}$ signal is applied to the control grid of amplifier V-2302 and coupled through $\mathrm{C}-2315$ to the control grid of frequency tripler $\mathrm{V}-2303$. The $5-\mathrm{mc}$ signal is applied to the control grid of amplifier $\mathrm{V}-2302$ and coupled through C-2315 to the control grid of frequency tripler $\mathrm{V}-2303$. The $5-\mathrm{mc}$ signal is amplified by $\mathrm{V}-2302$ and filtered by the double-tuned filter, Z-2302. The $5-\mathrm{mc}$ filtered output (7 b) is reduced by divider $\mathrm{C}-2308$ and $\mathrm{C}-2309$, and fed to unit 9 through J-2302. Output 7b may be tested at J-2306 and is approximately 2.0 volts.
(2) FREQUENCY TRIPLER V-2303 AND AMPLIFIER V-2304.-Frequency tripler V-2303 (figure $2-22$) receives through $\mathrm{C}-2315$ a portion of the $5-\mathrm{mc}$ output of V-2301. The tripler distorts and amplifies the input, producing an output that is rich in harmonics. Double-tuned filter Z-2302 attenuates all frequencies except the third harmonic (15 mc). The filter output is amplified by V-2304 and filtered again by Z-2304. The final $15-\mathrm{mc}$ output (7 a), reduced in amplitude by divider $\mathrm{C}-2322$ and $\mathrm{C}-2323$, is coupled by matching resistor $\mathrm{R}-2310$ to J-2303 and fed to unit 8. Output 7a may be tested at $\mathrm{J}-2307$ and is approximately 1.4 volts.

Figure 2-20. RFO Unit 6, Amplifiers V-2208 and V-2209, Simplified Schematic

NAVSHIPS 92121(A)

Paragraph 2

Figure 2-21. RFO Unit 7, Frequency Quintupler V-2301 and Amplifier V-2302, Simplified Schematic

j. ELECTRONIC FREQUENCY CONVERTER

 Z-2330 (100-KC STEP GENERATOR, UNIT 8).Unit 8 (figure 2-23) is similar to unit 6 and includes a $1.6-$ to $2.5-\mathrm{mc}$ phase-locked oscillator that may be tuned in steps of 100 kc . This oscillator is locked in to the $100-\mathrm{kc}$ crystal-controlled oscillator in unit 1 . The $1.6-$ to $2.5-\mathrm{mc}$ oscillator output is mixed with 15 mc obtained from unit 7 , thus making available frequencies in the range of 16.6 to 17.5 mc . These frequencies are then mixed with 10.4 to 10.5 mc obtained from unit 6 . The resulting range of frequencies, 27 to 28 mc , available in steps of $100 \mathrm{kc}, 10 \mathrm{kc}$, and 10 cps , is amplified, filtered, and fed to unit 9. The regulated $B+$ supply of unit 8 is decoupled by capacitor $\mathrm{C}-2328$. For stability, $\mathrm{V}-2327, \mathrm{~V}-2328$, and $\mathrm{V}-2329$ use a regulated filament supply.(1) CLIPPER V-2326A AND .SHAPER V-2326B. -The $100-\mathrm{kc}$ output (1 d) of unit 1 is received at $\mathrm{J}-2326$, and is coupled by capacitor $\mathrm{C}-2326$ to the grid of clipper

V-2326A (figure 2-24). Test point J-2333 is provided for testing the input (approximately 8.1 volts) to J-2326. V-2326A clips the positive and negative peaks of the 100 kc to form approximately a square wave. To obtain more accurate control of the $1.6-$ to $2.5-\mathrm{mc}$ oscillator, the clipped output pulse is coupled by $\mathrm{C}-2327$ to shaper $\mathrm{V}-2326 \mathrm{~B}$, which narrows the pulse by means of the ringing coil of transformer $\mathrm{T}-2326$. The pulse is coupled by the secondary of T-2326 to the control grid of mixer $V-2327$. Rectifier CR-2326 prevents negative overshoot.
(2) OSCILLATOR V-2329, MIXER V-2327, AND REACTANCE TUBE V-2328.-Oscillator V-2329 is a modified Colpitts oscillator operating in the range of 1.6 to 2.5 mc , in steps of 100 kc (figure $2-25$). This circuit is similar to the 210- to 300 -kc oscillator, V-2205 in unit 6 (see paragraph $2 b(3)$), except that different circuit constants are used in the tank circuit to obtain a different range of frequencies (in steps of 100 kc in-

Figure 2-22. RFO Unit 7, Frequency Tripler V-2303 and Amplifier V-2304, Simplified Schematic

Figure 2-23. RFO Unit 8, Electronic Frequency Converter (100-Kc Step Generator), Block Diagram
stead of 10 kc). Inductors L-2327 to L-2335, inclusive, are selected for the tank circuit by section G of the $100-\mathrm{kc}$ step switch, S-2326, which is controlled by the 100 KC frequency selection knob $(\leftrightarrow 1)$.

The oscillator output is coupled by C-2343 to the suppressor grid of mixer V-2327. The mixer and reactance tube control the oscillator frequency in the same
way as the corresponding tubes in unit 6 (that is, V-2327 mixes 100 -kc pulses from V-2326B with the oscillator output, and V-2328 corrects the oscillator for frequency drift), except that the rejection filter is tuned to 100 kc instead of 10 kc (see paragraph $2 b(3)(a)$). The oscillator output is coupled to the control grid of mixer V-2330 by a low-pass filter consisting of L-2336, $\mathrm{L}-2337, \mathrm{C}-2347, \mathrm{C}-2348$, and $\mathrm{C}-2349$.

Figure 2-24. RFO Unit 8, Clipper V-2326A and Shaper V-2326B, Simplified Schematic
(3) CATHODE FOLLOWER V-2334.-A portion of the oscillator output is fed to cathode follower V-2334 (figure 2-25). This cathode follower isolates the oscillator, lowers the impedance level, and transmits 1.6 to 2.5 mc (output 8a) to the 100 KC STEP oscilloscope test receptacle in unit 14.
(4) 16.6- TO 17.5-MC MIXER V-2230.-The oscillator output is applied to the control grid of V-2330 (figure 2-26), and the $15-\mathrm{mc}$ signal (7a) from unit 7 is applied to the suppressor grid. The $15-\mathrm{mc}$ signal (approximately 1.3 volts) is received at $\mathrm{J}-2328$ and may be tested by means of test point J-2334. The mixer output, 16.6 to 17.5 mc , is filtered by the double-tuned
circuit comprising L-2338, C-2353, C-2405, L-2339, C-2357, C-2406 and the capacitors selected b_{j} sections E and F of S-2326, the $100-\mathrm{kc}$ step switch. The 1 of this filter is similar to that of the unit 6 filter.
(5) 27- TO 28-MC MIXER V-2331.-The filtered output of $\mathrm{V}-2330$ is applied to the suppressor grid of V-2331 (figure 2-27). The control grid receives 10.4 to 10.5 mc (6b) from unit 6 through J-2329; the magnitude of this input (approximately 0.8 volt) may be checked at test point J-2335. The mixer output, 27 to 28 mc , is filtered by the double-tuned filter, Z-2327, and then is applied to the control grid of amplifier V-2332.

TABLE 2-2. FUNCTIONS OF 100-KC STEP SWITCH S-2326

POSITION	OUTPUT FROM UNIT 8 (mc) IN 10-CPS STEPS	REMOVED FROM OSCILLATOR TANK BY SECTION G	CAPACITORS SELECTED FOR OUTPUT MIXER FILTER	
			SECTION F	SECTION E
0	27.0-27.1	None	C-2362, C-2358	C-2371, C-2360
1	27.1-27.2	L-2327	C-2363, C-2359	C-2372, C-2361
2	27.2-27.3	L-2328*	C-2364	C-2373
3	27.3-27.4	L-2329*	C-2365	C-2374
4	27.4-27.5	L-2330*	C-2366	C-2375
5	27.5-27.6	L-2331*	C-2367	C-2376
6	27.6-27.7	L-2332*	C-2368	C-2377
7	27.7-27.8	L-2333*	C-2369	C-2378
8	27.8-27.9	L-2334*	C-2370	C-2379
9	27.9-28.0	L-2335*	C-2356	C-2404

* Removed in addition to preceding inductors in this column.

Figure 2-26. RFO Unit 8, Mixer V-2330, Simplified Schematic

Figure 2-27. RFO Unit 8, Mixer V-2331, Simplified Schematic
(6) AMPLIFIERS V-2332 AND V-2333.-The filtered 27 - to $28-\mathrm{mc}$ signal is amplified by V-2332 (figure 2-28), filtered by the double-tuned filter, Z-2328, amplified by V-2333, and filtered again by Z-2329 to reject spurious frequencies. The final 27- to $28-\mathrm{mc}$ output signal (8 b), reduced by divider $\mathrm{C}-2392$ and C-2393, is fed to unit 9 through $\mathrm{J}-2330$. Output 8b
(approximately 1.2 volts) may be tested at test point J-2336.
(7) 100-KC STEP SWITCH S-2326.-The positions of S-2326, together with the corresponding final output frequencies of unit 8 and the circuit elements selected to obtain these frequencies, are given in table $2-2$, page $2-24$. As $\mathrm{S}-2326$ is switched from its lowestto its highest-numbered position, the listed inductors are removed by switch section G.

k. ELECTRONIC FREQUENCY CONVERTER

 Z-2426 (FREQUENCY CONVERTER, UNIT 9).Unit 9 receives 27 to 28 mc (in steps of 10 cps) from unit 8 and 5 megacycles from unit 7 . The second harmonic of the $5-\mathrm{mc}$ signal provides a $10-\mathrm{mc}$ frequency. These frequencies are then mixed as shown in the following table.TABLE 2-3. UNIT 9 MIXER OUTPUTS

MIXED FREQUENCIES (mc)	MIXER OUTPUT (mc)
$(27$ to 28$),-5$	22 to 23
$(27$ to 28$), \pm 0$	27 to 28
$(27$ to 28$),+5$	32 to 33
$(27$ to 28$),+10$	37 to 38

The mixer output is filtered four times and amplified three times, and then sent to unit $11 \mathrm{~A}, 11 \mathrm{~B}$, or 11 C , depending on the desired final RFO output frequency.

Figure 2-28. RFO Unit 8, Amplifiers V-2332 and V-2333, Simplified Schematic
(1) MIXER V-2426.-The 27- to 28 -mc output (8b) of unit 8 is applied through J-2426 to the suppressor grid of mixer V-2426 (figure 2-29). The $5-\mathrm{mc}$ output (7b) of unit 7, which is rich in harmonics, is applied to the control grid through $\mathrm{J}-2427$ and the front of wafer B of $5-\mathrm{mc}$ step switch S-2426. Test points J-2430 and J-2431 are provided for testing inputs 8b (approximately 1.2 volts) and 7b (approximately 1.9 volts), respectively. The $5-\mathrm{mc}$ signal is adjusted to the proper level for efficient mixing by $\mathrm{R}-2454, \mathrm{R}-2440$,
and wafer B (the gain compensation section) of S-2426, the 5 -mc step switch, which is set by the (A4) KNOB frequency selection control on the mounting front panel. When an output of 27 to 28 mc is chosen, the mixer grid is shorted to ground. In the amplifier V-2427 grid circuit, the proper components for the chosen frequency are selected by the C wafers of S-2426 and S-2427. The output of $\mathrm{V}-2426$ contains a band of frequencies 1 mc wide. Wafer C of the $5-\mathrm{mc}$ step switch, $\mathrm{S}-2426$, selects one of the four filters, each of which has a pass-

Figure 2-29. RFO Unit 9, Mixer V-2426, Simplified Schemafic

The final output (9), 27 to $28 \mathrm{mc} \pm 0, \pm 5,+10 \mathrm{mc}$, is transmitted through $\mathrm{J}-2428$ to unit $11 \mathrm{~A}, 11 \mathrm{~B}$ or 11 C , depending on the desired output frequency of the RFO, which is selected by the bandswitch S-2996 in unit 14. Test point $\mathrm{J}-2432$ is provided for testing output 9a (approximately 1.6 volts). The $B+$ supply of unit 9 is decoupled by a filter network comprising $\mathrm{L}-2446$, C-2499, C-2500, C-2501, R-2452, and R-2453.
(4) 5-MC STEP SWITCH S-2426.-Table 2-4, page 2-29, shows the positions of switch S-2426, the frequency range obtained for each position, and the components switched in or out of the filters or the amplifier dropping-resistor network, as the switch is rotated from the lowest- to the highest-numbered position.
(5) 100-KC STEP SWITCH S-2427.-The table below shows the positions of switch S-2427, the frequency obtained for each position, and the components switched in or out of the filters or the amplifier dropping-resistor network, as the switch is rotated from the lowest- to the highest-numbered position. Switch S-2426 gives a frequency range of 1 megacycle for each of its four positions. Switch S-2427 selects a $100-\mathrm{kc}$ range within the $1-\mathrm{mc}$ range selected by $\mathrm{S}-2426$.

l. FREQUENCY MULTIPLIER Z-2526 (1-MC STEP

 GENERATOR, UNIT 10).-This unit receives the $1-\mathrm{mc}$ output of unit 2 and multiplies this output to $7,8,13$, $14,16,17,18,19,20,21$, or 22 mc . It employs a harmonic generator, and a system of amplifiers with tuned filters in their plate circuits. The tuned filters are selected by the B^{B} KNOB control on the mounting front panel. The output of unit 10 is fed to unit $11 \mathrm{~A}, 11 \mathrm{~B}$, or 11 C , depending on the desired final output frequency of the RFO.(1) HARMONIC GENERATOR V-2526. - The 1-mc output (2e) of unit 2 (figure 2-3l) is received at J-2526, and applied, across $\mathrm{R}-2526$, to the harmonic generator control grid. Test point J-2529 is provided for testing input 2 e (approximately 8.6 volts). V-2526 is operated class C. Its low plate and screen voltage causes limiting of the signal input. Because of this combined action, harmonic generator V-2526 distorts the input greatly; as a result, the output is rich in harmonics. The $B+$ supply of unit 10 is decoupled by filter $C-2548$, C-2549, and R-2529 to prevent r-f voltage from leaking back to the power supply.
(2) AMPLIFIERS V-2527, V-2528, AND V-2529. -Amplifier V-2527 is similar to the harmonic generator (figure 2-32). The harmonic generator output is coupled to the amplifier grid by $\mathrm{C}-2532$. The amplifier distorts and amplifies the harmonic generator output. The amplifier output is very rich in harmonics and therefore very suitable for use in deriving the frequencies desired in the final output of unit 10 . The grid circuit of V-2528 consists of a tuned filter comprising C-2526 and any one of the inductors, $\mathrm{L}-2526$ to $\mathrm{L}-2536$, inclusive, as chosen by section F of $1-\mathrm{mc}$ step switch S-2526. This switch is controlled by the (BB) KNOB control on the mounting. Switch S-2526 may be set in any one of 11 positions, numbered from 0 to 10 . In position 0 , inductor $\mathrm{L}-2526$ is selected. Its value is such that the plate filter circuit will be tuned to the seventh harmonic of 1 megacycle, and the plate circuit of V-2527 will attenuate all frequencies other than 7 megacycles. With S-2526 in position 1, all frequencies other than 8 megacycles will be attenuated (figure $2-32$), etc. To prevent the next high-gain amplifier ($\mathrm{V}-2528$) from oscillating, load resistor $\mathrm{R}-2532$ is provided in the filter circuit and $\mathbf{R}-2534$ is provided in series with the grid of amplifier

TABLE 2-5. FUNCTIONS OF 100-KC STEP SWITCH S-2427

POSITION	frequency RANGE (kc)	RESISTORS REMOVED BY SECTION B	FILTER CIRCUIT COMPONENTS SELECTED BY			
			SECTION C	SECTION D	SECTION E	SECTION F
0	0-100	None	$\begin{aligned} & C-2506, \\ & C-2432 \end{aligned}$	$\begin{aligned} & \text { C-2507, } \\ & C-2448 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2508 \\ & \mathrm{C}-2464 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2509 \\ & \mathrm{C}-2479 \end{aligned}$
1	100-200	R-2430	C-2433	C-2449	C-2465	C-2480
2	200-300	R-2431*	C-2434	C-2450	C-2466	C-2481
3	300-400	R-2432*	C-2435	C-2451	C-2467	C-2482
4	400-500	R-2433*	C-2436	C-2452	C-2468	C-2483
5	500-600	R-2434*	C-2437	C-2453	C-2469	C-2484
6	600-700	R-2435*	C-2438	C-2454	C-2470	C-2485
7	700-800	R-2436*	C-2439	C-2455	C-2471	C-2486
8	800-900	R-2437*	C-2440	C-2456	C-2472	C-2487
9	900-1000	R-2438*	C-2441	C-2457	C-2473	C-2488

[^2]

Figure 2-32. RFO Unit 10, Amplifiers V-2527 and V-2528, Simplified Schematic
TABLE 2-6. FUNCTIONS OF 1-MC STEP SWITCH S-2526

POSITION	$\begin{aligned} & \text { OUTPUT } \\ & \text { FREQUENCY } \\ & \text { (mc) UNIT } 10 \end{aligned}$	FILTER COILS SELECTED BY				
		SECTION F	SECTION E	SECTION D	SECTION C	SECTION B
0	7	L-2526	L-2537	L-2548	L-2559	L-2570
1	8	L-2527	L-2538	L-2549	L-2560	L-2571
2	13	L-2528	L-2539	L-2550	L-2561	L-2572
3	14	L-2529	L-2540	L-2551	L-2562	L-2573
4	16	L-2530	L-2541	L-2552	L-2563	L-2574
5	17	L-2531	L-2542	L-2553	L-2564	L-2575
6	18	L-2532	L-2543	L-2554	L-2565	L-2576
7	19	L-2533	L-2544	L-2555	L-2566	L-2577
8	20	L-2534	L-2545	L-2556	L-2567	L-2578
9	21	L-2535	L-2546	L-2557	L-2568	L-2579
10	22	L-2536	L-2547	L-2558	L-2569	L-2580

Figure 2-33. RFO Unit 10, Amplifier V-2529, Simplified Schematic
$\mathrm{V}-2528$. The signal is coupled to $\mathrm{V}-2528$ by $\mathrm{C}-2534$. The output of $\mathrm{V}-2528$ is coupled to $\mathrm{V}--2529$ by $\mathrm{C}-2550$. Amplifiers V-2528 and V-2529 are similar to amplifier V-2527. Amplifier V-2529 is provided with a doubletuned input filter circuit in which inductors L-2537 through L-2547 are selected by section E of S-2526 (figure 2-32) and inductors L-2548 through L-2558 are selected by section D of S-2526 (figure 2-33). Amplifier V-2529 has, in addition, a double-tuned output filter circuit. The frequency of the input filter is controlled by sections D and E of $\mathrm{S}-2526$ and the frequency of the output filter is controlled by sections C and B of $\mathrm{S}-2526$. The final output of unit 10 is reduced in amplitude by the divider $\mathrm{C}-2542$ and $\mathrm{C}-2543$, and is applied to unit $11 \mathrm{~A}, 11 \mathrm{~B}$, or 11 C , which is selected by the bandswitch, S-2996 in unit 14, through coupling resistor $\mathrm{R}-2539$ and receptacle $\mathrm{J}-2527$. Test point $\mathrm{J}-2530$ is provided for testing output 10 (approximately 0.4 volt).
(3) 1-MC STEP SWITCH S-2526.-Table 2-6, page $2-31$, lists the positions of the ganged sections of step switch S-2526 and the corresponding filter inductors and frequencies selected by the switch.

m. ELECTRONIC FREQUENCY CONVERTER

 Z-2626 (FREQUENCY CONVERTER, UNIT 11A).Units $11 \mathrm{~A}, 11 \mathrm{~B}$, and 11 C are the final frequency converters in the RFO. When the transmitter is set to operate on a frequency in the range of 0.3 to 6 mc , the bandswitch, S-2996 in unit 14, selects unit 11A as the recipient of the output from units 9 and 10 . Unit 11 A then mixes the frequencies received from units 9 and 10 , and delivers a frequency in the range of 0.3 to 6 mc to the RFA. Similarly, when the transmitter is set to operate on a frequency in the range of 6 to 16 mc , unit 11 B is selected to receive the outputs of units. 9 and 10. When a frequency in the range of 16 to 26 mc is desired, unit 11 C is selected as the final frequency converter.TABLE 2-7. RFO OUTPUT TO RFA

FINAL FREQUENCY CONVERTER SELECTED BY S-2996	OUTPUT OF UNIT 9 (mc)	OUTPUT OF UNIT 10 (mc)	FREQUENCY CONVERTER OUTPUT TO RFA (mc)
Unit 11A	22-23 or 27-28	$18,19,20,21$, or 22	0.3-6
Unit 11B	22-23, 27-28, 32-33, or 37-38	13, 14, 16, 17, 18, 19, 20, or 22	6-16
Unit 11C	22-23, 27-28, 32-33, or 37-38	$7,8,13,14,16,17,20$, or 21	16-26

NAVSHIPS 92121(A)
Section 2

Figure 2-34. RFO Unit 11 A, Mixer V-2626 and Amplifier V-2627, Simplified Schematic

The preceding table shows the RFO frequency output bands, the corresponding outputs from units 9 and 10 , and the final frequency converter selected by S-2996. A more detailed table, including the step-switch positions in units 9 and 10 , is given in table 2-14. Unit 11 A consists of a mixer, two amplifiers, filters, and a cathode follower output stage.
(1) MIXER V-2626.-The output (10a) of unit 10 is applied from J-2627 to the control grid of mixer V--2626 (figure 2-34) through coupling capacitor $\mathrm{C}-2645$. The output (9a) of unit 9 is applied from $\mathrm{J}-$ 2626 to the mixer suppressor grid. Test points J-2630 and J-2631 are provided for testing inputs 9a (approximately 1.4 volts) and 10 a (approximately 0.3 volt), respectively. Mixer V-2626 produces an output in accordance with the frequency settings on the mounting front panel. For example, if the desired output is from zero to one megacycle, the mixer will receive 22 to 23 mc from unit 9 and 22 mc from unit 10. A low-pass filter, comprising L-2626, L-2627, L-2628, C-2631, and C-2641, extends the high-frequency response to six megacycles. R2626 and R-2627 are terminating resistors for the inputs from units 9 and 10. The output of the keying circuit of the low level radio modulator (see paragraph $7 c(7)$) is connected to the control grid of V-2626 through a decoupling filter comprising C-2644 and R-2646 and grid resistor R-2631. In FSK and facsimile operation a permanent ground is applied and V-2626 conducts as explained above. In hand-key and machinekey operation the keying signal, zero for mark and -35
volts for space, is applied to the control grid. The zero potential during mark allows V-2626 to conduct, while the -35 volts during space cuts $V-2626$ off and accordingly cuts off any output from the RFO. In phone operation, -35 volts is applied to the grid of V-2626 when the press-to-talk button is not depressed, cutting off the RFO in the same manner as the space signal. This keying function is introduced to insure that the key-up radiation of the transmitter remains below the maximum allowable level of $\mathbf{4 0 0}$ micromicrovolts.
(2) AMPLIFIERS V-2626 AND V-2628.-The mixer output is amplified by V-2627 and V-2628 (figures $2-34$ and 2-35). These amplifiers are identical and are provided with video compensation (L-2629 and $\mathrm{L}-2630$) to extend the high-frequency limit. In addition to the decoupling filter, comprising $\mathrm{C}-2632, \mathrm{R}-2645$, and R-2644, which serves all of the stages in unit 11 A , the mixer and amplifiers are further decoupled from the $B+$ power supply by capacitors $C-2626$ and $C-2629$.
(3) CATHODE FOLLOWER V-2629.-To obtain sufficient drive (approximately two volts) for the RFA, a cathode follower output stage, V-2629 (figure 2-35), working into an impedance of approximately 50 ohms, is used as the output stage. Filter L-2631 attenuates spurious frequencies. The output (11a) is coupled by $\mathrm{C}-2642$ to $\mathrm{J}-2628$ and test point $\mathrm{J}-2632$.
n. ELECTRONIC FREQUENCY CONVERTER Z-2651. (FREQUENCY CONVERTER, UNIT 11B).Receptacle J-2651 receives the 13-, 14-, 16-, 17-, 18-,

Figure 2-35. RFO Unit 11 A, Amplifier V-2628 and Cathode Follower V-2629, Simplified Schematic

Figure 2-36. RFO Unit 11 B, Mixer V-2651, Simplified Schematic

TABLE 2-8. FUNCTIONS OF 1-MC STEP SWITCH S-2651

POSITION	frequency RANGE (mc)	RESISTORS REMOVED BY SECTION B	FILTER CIRCUIt COMPONENTS SELECTED by			
			SECTION C	SECTION D	SECTION E	SECTION F
6	6-7	None	L-2657	L-2667	L-2681	L-2691
7	7-8	R-2656	$\begin{aligned} & \text { L-2658, } \\ & \text { C-2657 } \end{aligned}$	$\begin{aligned} & \text { L-2668, } \\ & \text { C-2684 } \end{aligned}$	$\begin{aligned} & \text { L-2682, } \\ & \text { C-2707 } \end{aligned}$	$\begin{aligned} & \text { L-2692, } \\ & \text { C-2734 } \end{aligned}$
8	8-9	R-2657*	$\begin{aligned} & \text { L-2659, } \\ & \text { C-2658 } \end{aligned}$	$\begin{aligned} & \text { L-2669, } \\ & \text { C-2685 } \end{aligned}$	$\begin{aligned} & \text { L-2683, } \\ & \text { C-2708 } \end{aligned}$	$\begin{aligned} & \text { L-2693, } \\ & \text { C-2735 } \end{aligned}$
9	9-10	R-2658*	$\begin{aligned} & \text { L-2660, } \\ & \text { C-2659 } \end{aligned}$	$\begin{aligned} & \text { L-2670, } \\ & \text { C-2686 } \end{aligned}$	$\begin{aligned} & \text { L-2684, } \\ & \text { C-2709 } \end{aligned}$	$\begin{aligned} & \text { L-2694, } \\ & \text { C-2736 } \end{aligned}$
0	10-11	R-2659*	$\begin{aligned} & \text { L-2651, } \\ & \text { C-2651 } \end{aligned}$	$\begin{aligned} & \text { L-2661, } \\ & \text { C-2678 } \end{aligned}$	$\begin{aligned} & \text { L-2675, } \\ & \text { C-2701, } \end{aligned}$	$\begin{aligned} & \text { L-2685, } \\ & \text { C-2728 } \end{aligned}$
1	11-12	R-2651*	$\begin{aligned} & \text { L-2652, } \\ & \text { C-2652 } \end{aligned}$	$\begin{aligned} & \text { L-2662, } \\ & \text { C-2679 } \end{aligned}$	$\begin{aligned} & \text { L-2676, } \\ & \text { C-2702 } \end{aligned}$	$\begin{aligned} & \text { L-2686, } \\ & \text { C-2729 } \end{aligned}$
2	12-13	R-2652*	$\begin{aligned} & \text { L-2653, } \\ & \text { C-2653 } \end{aligned}$	$\begin{aligned} & \text { L-2663, } \\ & \text { C-2680 } \end{aligned}$	$\begin{aligned} & \text { L-2677, } \\ & \text { C-2703 } \end{aligned}$	$\begin{aligned} & \text { L-2687, } \\ & \text { C-2730 } \end{aligned}$
3	13-14	R-2653*	$\begin{gathered} \mathrm{L}-2654, \\ \mathrm{C}-2654 \end{gathered}$	$\begin{gathered} \text { L-2664, } \\ \text { C-2681 } \end{gathered}$	$\begin{gathered} \text { L-2678, } \\ \text { C-2704 } \end{gathered}$	$\begin{aligned} & \text { L-2688, } \\ & \text { C-2731 } \end{aligned}$
4	14-15	R-2654*	$\begin{aligned} & \text { L-2655, } \\ & \text { C-2655 } \end{aligned}$	$\begin{aligned} & \text { L-2665, } \\ & \text { C-2682 } \end{aligned}$	$\begin{aligned} & \text { L-2679, } \\ & \text { C-2705 } \end{aligned}$	$\begin{aligned} & \hline \text { L-2689, } \\ & \text { C-2732 } \end{aligned}$
5	15-16	R-2655*	$\begin{aligned} & \hline \text { L-2656, } \\ & \text { C-2656 } \end{aligned}$	$\begin{aligned} & \text { L-2666, } \\ & \text { C-2683 } \end{aligned}$	$\begin{aligned} & \text { L-2680, } \\ & \text { C-2706 } \end{aligned}$	$\begin{gathered} \text { L-2690, } \\ \text { C-2733 } \end{gathered}$

* Removed in addition to preceding resistors in this column.

19-, 20 -, or $22-\mathrm{mc}$ signal (10 b) from unit 10. Test point $\mathrm{J}-2655$ is provided for testing input 10b (approximately 0.4 volt). Receptacle J-2652 receives the 22- to 23 -, 27 - to 28 -, 32 - to 33 -, or $37-$ to $38-\mathrm{mc}$ signal (9 b) from unit 9. Test point J-2656 is provided for testing input 9b (approximately 1.4 volts). These signals are mixed by V-2651, and amplified by V-2652, V-2653, and V-2654. A $1-\mathrm{mc}$ step switch, S-2651, and a $100-\mathrm{kc}$ step switch, S-2652, are provided to tune the filters for each stage as required to provide the desired bandwidth and to reject spurious frequencies.
(1) MIXER V-2651.-The inputs from units 10 and 9 are applied, respectively, to the suppressor and control grids of the mixer, V-2651 (figure 2-36). The frequencies of these inputs are determined by the settings on the mounting front panel. For example, to select 12 mc , the (A4) KNOB control is set at 2 and the (B8) KNOB control is set at 8. As a result, input 9b is 32 to 33 mc and input 10 b is 20 mc . Mixer $\mathrm{V}-2651 \mathrm{com}$ bines these inputs to produce an output of 12 to 13 mc . The $1-\mathrm{mc}$ step switch, $\mathrm{S}-2651$, selects the proper tuned filter circuit for the mixer. This switch is controlled by the MC control knob (6). For an output frequency setting of less than 10 mc , control (6) is set to the megacycle value of the frequency; for outputs of 10 mc or higher, control (66) is set to the second figure of the megacycle value. Therefore, in the case of $12-\mathrm{mc}$ value, control (GC) is set at 2 . To provide for the wide bandwidth requirements, $100-\mathrm{kc}$ step switch $\mathrm{S}-2652$ changes the capacitance in parallel with the $1-\mathrm{mc}$ step filters so that each 1 -mc filter may be tuned in 100 -kc steps. $\mathrm{R}-2676$,
shunted across the circuit, also increases bandwidth. Switch S-2652 is controlled by the 100 KC knob © (1). Paragraph $2 r(2)$ provides a complete description of the functioning of the above-mentioned frequency control knobs. The suppressor and control grids are connected through resistors $R-2661$ and $R-2662$ respectively, and the decoupling filter comprising $R-2667$ and $R-2779$ to the keying circuit output of the LLRM in the same manner as the mixer $V-2626$ in unit 11 A .
(2) AMPLIFIERS V-2652, V-2653, AND V-2654. -These amplifiers (figure 2-37) are identical except that V-2652 and V-2653 are provided with dropping resistors $R-2651$ through $R-2659$, which are wired to contacts of section B of switch S-2651. By changing the screen and plate voltage at different frequencies, the gain of these amplifiers is varied, and approximately equal output is obtained for all frequencies. The interstage filters for these amplifiers are selected and tuned by S-2651 and S-2652 in the same manner as for the mixer. The final 6 - to $16-\mathrm{mc}$ output (11b) is coupled by the voltage divider, $\mathrm{C}-2766$ and $\mathrm{C}-2767$, to $\mathrm{J}-2653$. Test point J-2657 is provided for testing output 11b (approximately 2.4 volts). The entire $B+$ supply is decoupled by a filter network composed of C-2768, C-2769, C-2770, R-2673, and R-2674.
(3) 1-MC STEP SWITCH S-2651.-The above table shows the filter networks selected by the $1-\mathrm{mc}$ step switch, S-2651, and the dropping resistors successively removed from the amplifier circuits as the switch is rotated progressively from positions 6 to 9 and then from 0 to 5.

Figure 2-37. RFO Unit 11 B, Amplifiers V-2652, V-2653 and V-2654, Simplified Schematic

TABLE 2-9. FUNCTIONS OF 100-KC STEP SWITCH S-2652

POSITION	FREQUENCY RANGE (kc)	FILTER CIRCUIT CAPACITORS SELECTED BY			
		SECTION B	SECTION C	SECTION D	SECTION E
0	0-100	$\begin{aligned} & C-2662, \\ & C-2663 \end{aligned}$	$\begin{aligned} & C-2689, \\ & C-2690 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2712, \\ & \mathrm{C}-2713 \end{aligned}$	$\begin{aligned} & \text { C-2738, } \\ & \text { C-2739 } \end{aligned}$
1	100-200	$\begin{aligned} & C-2664 \\ & C-2665 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2691, \\ & \mathrm{C}-2692 \end{aligned}$	$\begin{aligned} & C-2714, \\ & C-2715 \end{aligned}$	$\begin{aligned} & C-2740 \\ & C-2741 \end{aligned}$
2	200-300	$\begin{aligned} & \text { C-2666, } \\ & \text { C-2667 } \end{aligned}$	$\begin{aligned} & \mathrm{C}-2693 \\ & \mathrm{C}-2694 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2716, \\ & \mathrm{C}-2717 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2742, \\ & \mathrm{C}-2743 \end{aligned}$
3	300-400	$\begin{aligned} & \mathrm{C}-2668, \\ & \mathrm{C}-2669 \end{aligned}$	$\begin{aligned} & C-2695, \\ & C-2696 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2718, \\ & \mathrm{C}-2719 \end{aligned}$	$\begin{aligned} & C-2744, \\ & C-2745 \end{aligned}$
4	400-500	$\begin{aligned} & \mathrm{C}-2670 \\ & \mathrm{C}-2671 \end{aligned}$	$\begin{aligned} & C-2697 \\ & C-2698 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2720, \\ & \mathrm{C}-2721 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2746, \\ & \mathrm{C}-2747 \end{aligned}$
5	500-600	$\begin{aligned} & \text { C-2672, } \\ & \text { C-2673 } \end{aligned}$	$\begin{aligned} & \mathrm{C}-2699 \\ & \mathrm{C}-2700 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2722, \\ & \mathrm{C}-2723 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2748, \\ & \mathrm{C}-2749 \end{aligned}$
6	600-700	C-2674	C-2677	C-2724	C-2750
7	700-800	C-2675	C-2727	C-2725	C-2751
8	800-900	C-2676	C-2753	C-2726	C-2752
9	900-1000	C-2775	C-2776	C-2777	C-2778

Figure 2-38. RFO Unit IIC, Mixer V-2801, Simplified Schematic

TABLE 2-10. FUNCTIONS OF 1-MC STEP SWITCH S-2801

POSITION	FREQUENCY RANGE (mc)	RESISTORS REMOVED BY SECTION A	FILTER CIRCUIT COMPONENTS SELECTED BY			
			SECTION B	SECTION C	SECTION D	SECTION E
6	16-17	None	L-2807	L-2817	L-2827	L-2837
7	17-18	R-2806	$\begin{aligned} & \mathrm{L}-2845, \\ & \mathrm{~L}-2808, \\ & \mathrm{C}-2806 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2846, \\ & \mathrm{~L}-2818, \\ & \mathrm{C}-2829 \end{aligned}$	L-2828	L-2838
8	18-19	None*	$\begin{aligned} & \mathrm{L}-2809, \\ & \mathrm{C}-2808 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2819 \\ & \mathrm{C}-2841 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2829, \\ & \mathrm{C}-2863 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2839, \\ & \mathrm{C}-2885 \end{aligned}$
9	19-20	R-2808*	$\begin{aligned} & \text { L-2810, } \\ & \text { C-2809 } \end{aligned}$	$\begin{aligned} & \mathrm{L}-2820, \\ & \mathrm{C}-2842 \end{aligned}$	$\begin{aligned} & L-2830, \\ & C-2864 \end{aligned}$	$\begin{aligned} & \text { L-2840, } \\ & \text { C-2886 } \end{aligned}$
0	20-21	R-2809*	$\begin{aligned} & \mathrm{L}-2801, \\ & \mathrm{C}-2801 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2811, \\ & \mathrm{C}-2824 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2841, \\ & \mathrm{C}-2847 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2831, \\ & \mathrm{C}-2869 \end{aligned}$
1	21-22	R-2801*	$\begin{aligned} & \text { L-2802, } \\ & \text { C-2802 } \end{aligned}$	$\begin{aligned} & \mathrm{L}-2812, \\ & \mathrm{C}-2825 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2842, \\ & \mathrm{C}-2848 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2832, \\ & \mathrm{C}-2880 \end{aligned}$
2	22-23	R-2802*	$\begin{aligned} & \mathrm{L}-2803 \\ & \mathrm{C}-2803 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2813 \\ & \mathrm{C}-2826 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2843, \\ & \mathrm{C}-2849 \end{aligned}$	$\begin{aligned} & \text { L-2833, } \\ & \text { C-2881 } \end{aligned}$
3	23-24	R-2803*	$\begin{aligned} & \mathrm{L}-2804, \\ & \mathrm{C}-2804 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2814, \\ & \mathrm{C}-2827 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2844, \\ & \mathrm{C}-2850 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2834, \\ & \mathrm{C}-2882 \end{aligned}$
4	24-25	R-2804*	$\begin{aligned} & \mathrm{L}-2805 \\ & \mathrm{C}-2805 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2815, \\ & \mathrm{C}-2828 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2825, \\ & \mathrm{C}-28 \mathrm{G}, \end{aligned}$	$\begin{aligned} & \mathrm{L}-28.35 \\ & \mathrm{C}-2883 \end{aligned}$
5	25-26	None	$\begin{aligned} & \text { L-2806, } \\ & \text { C-2807 } \end{aligned}$	$\begin{aligned} & \mathrm{L}-2816, \\ & \mathrm{C}-2830 \end{aligned}$	$\begin{aligned} & \mathrm{L}-2826, \\ & \mathrm{C}-2862 \end{aligned}$	$\begin{aligned} & \text { L-2836, } \\ & \text { C-2884 } \end{aligned}$

* Removed in addition to preceding resistors in this column.
(4) 100-KC STEP SWITCH S-2652.-Table 2-9, page $2-37$, shows the frequency ranges and capacitors switched into the $1-\mathrm{mc}$ filter circuits by the $100-\mathrm{kc}$ step switch, S-2652. Switch S-2652 selects a 100 -kc range within the $1-\mathrm{mc}$ range selected by switch S-2651.
o. ELECTRONIC FREQUENCY CONVERTER Z-2801 (FREQUENCY CONVERTER, UNIT 11C).This unit is similar to unit 11 B . It differs in frequency range (16 to 26 mc) and components required for this range. The keying input from the LLRM is fed to both the mixer, V-2801, and the first of the amplifier stages, V-2802. The step switches, S-2801 and S-2802, are mechanically coupled to the step switches in unit 11 B .
(1) MIXER V-2801. - The suppressor of mixer V-2801 (figure $2-38$) receives from $\mathrm{J}-2801$ the $7-$, 8 -, 13-, 14-, $16-, 17-, 20-$ or $21-\mathrm{mc}$ signal (10 c) from unit 10. Test point $\mathrm{J}-2805$ is provided for testing input 10 c (approximately 0.4 volt). The control grid receives 22 to $23 \mathrm{mc}, 27$ to $28 \mathrm{mc}, 32$ to 33 mc , or 37 to 38 mc (9c) from unit 9. Test point $\mathrm{J}-2806$ is provided for testing input 9c (approximately 1.2 volts). These signals are mixed in accordance with the (AA) KNOB and (BB): KNOB controls. For example, if the (A4) KNOB and (8) KNOB controls are both set to $3(23 \mathrm{mc})$, unit 9 delivers 37 to 38 mc to unit 11 C and unit 10 delivers 14 mc . Under these circumstances, mixer V-2801 delivers an output of 23 to 24 mc . (See paragraph $2 r(2)$.) Resistors R-2811 and R 2812 connect the suppressor and screen grids to the LLRM keying circuit through the decoupling filter comprising $R-2826$ and $C-2915$.
(2) AMPLIFIERS V-2802, V-2803, AND V-2804. -These amplifiers (figure 2-39) are similar to the corresponding amplifiers in unit 11 B with the exception that LLRM keying is fed to the control grid of V-2802. The LLRM keying input is connected first through the same decoupling network employed in the input to $\mathrm{V}-2801$, then through additional decoupling components $\mathrm{R}-2827$ and $\mathrm{C}-2916$ to grid resistor $\mathrm{R}-2815$. The final 16- to $26-\mathrm{mc}$ output (11c), which has been filtered four times to reject spurious frequencies, is fed to J-2803 at a level of approximately two volts rms. Test point J-2807 is provided for testing this output. The $B+$ supply for the entire unit is decoupled by $\mathrm{C}-2904, \mathrm{C}-2905, \mathrm{C}-2906$, R-2824, and R-2825.
(3) 1-MC STEP SWITCH S-2801.-Table 2-10, above, shows the filter network components selected by the $1-\mathrm{mc}$ step switch, $\mathrm{S}-2801$, and the dropping resistor switched out of the amplifier circuits, as this switch is rotated progressively from positions 6 to 9 and then from 0 to 5.
(4) $100 \cdot \mathrm{KC}$ STEP SWITCH S-2802.-The following table shows the frequency ranges and the capacitors selected for the $1-\mathrm{mc}$ filter circuits by the $100-\mathrm{kc}$ step switch, S-2802. Switch S-2802 selects a 100 -kc range within the $1-\mathrm{mc}$ range selected by switch $\mathrm{S}-2801$.
p. ELECTRICAL EQUIPMENT RACK Z-2901 (MOUNTING, UNIT 14).-The mounting (unit 14) is the rack into which the subunits of the RFO are plugged. It contains the manual frequency controls, the

Figure 2-39. RFO Unit 11C, Amplifiers V-2802, V-2803, and V-2804, Simplified Schematic

TABLE 2-11. FUNCTIONS OF 100-KC STEP SWITCH S-2802

POSITION	FREQUENCY RANGE (kc)	FILTER CIRCUIT CAPACITORS SELECTED BY			
		SECTION A	SECTION B	SECTION C	SECTION D
0	0-100	$\begin{aligned} & \mathrm{C}-2811, \\ & \mathrm{C}-2822 \end{aligned}$	$\begin{aligned} & \text { C-2831, } \\ & \text { C-2843 } \end{aligned}$	$\begin{aligned} & C-2851, \\ & C-2867 \end{aligned}$	$\begin{aligned} & \text { C-2870, } \\ & \text { C-2888 } \end{aligned}$
1	100-200	$\begin{aligned} & C-2812, \\ & C-2823 \end{aligned}$	$\begin{aligned} & \text { C-2832, } \\ & \text { C-2844 } \end{aligned}$	$\begin{aligned} & \text { C-2852, } \\ & \text { C-2868 } \end{aligned}$	$\begin{aligned} & \text { C-2871, } \\ & \text { C-2889 } \end{aligned}$
2	200-300	$\begin{aligned} & \mathrm{C}-2911, \\ & \mathrm{C}-2813 \end{aligned}$	$\begin{aligned} & \text { C-2912, } \\ & \text { C-2833 } \end{aligned}$	$\begin{aligned} & C-2913, \\ & C-2853 \end{aligned}$	$\begin{aligned} & \mathrm{C}-2914, \\ & \mathrm{C}-2872 \end{aligned}$
3	300-400	C-2814	C-2834	C-2854	C-2873
4	400-500	C-2815	C-2835	C-2855	C-2874
5	500-600	C-2816	C-2836	C-2856	C-2875
6	600-700	C-2817	C-2837	C-2857	C-2876
7	700-800	C-2818	C-2838	C-2858	C-2877
8	800-900	C-2819	C-2839	C-2859	C-2878
9	900-1000	C-2820	C-2840	C-2860	C-2879

Figure 2-40. RFO Oscillator Heater Circuit, Generalized Schematic
bandswitch, S-2996, the filament and crystal oven heater supplies, heater indicator lights, the frequency-shift oscillator input circuits, zero adjust indication circuit, units 3 and 12 adjustment controls, door switch S-2920, test points for supply voltages, oscilloscope test receptacles, interconnecting wiring for the RFO units, and access wiring interconnecting the receptacles for the antenna tuning control indicator to the cabinet wiring. The manual frequency control and bandswitch S-2996
are discussed under selection of frequencies (paragraph $2 r$), the frequency-shift oscillator input circuit and adjustment is covered in paragraph $2 f$, unit 3 adjustment is described in paragraph $2 e$ and the door switch is a component of the " 500 W disable" circuit covered in the RFA (paragraph $10 e(1)$). The filament and oven heater are shown in the primary power distribution diagram provided in Section 7.
(1) HEATER INDICATOR LIGHTS.-The heater indicator light circuits are shown in figures 2-3, 2-10, and $2-11$. A generalized circuit is illustrated in figure 2-40.
(2). TEST POINTS.-The following table lists the test points on unit 14.

TABLE 2-12. UNIT 14 TEST POINTS

TEST PINS ON SOCKET XV-2916	VOLTAGE PRESENT
Pin 1	Ground
Pin 2	6.3 V AC, Reg, Fil
Pin 3	6.3 V AC, Unreg, Fil
Pin 4	+250 V DC, Reg
Pin 5	+250 V DC, Unreg
Pin 6	-24 V DC, after TD
Pin $\overline{7}$	Keying Voltage to unit 12
Pin 8	Keying Voltage to units $11 \mathrm{~A}, 11 \mathrm{~B}$ and 11C

(3) OSCILLOSCOPE TEST RECEPTACLES. - A set of oscilloscope test receptacles are brought out on the front of the mounting. These receptacles provide signals from certain of the subunits that can be con-
nected to a standard test oscilloscope for servicing and checking purposes. Table 2-13 lists these receptacles, the signal carried, and the subunit from which the signal is obtained.

TABLE 2-13. OSCILLOSCOPE TEST RECEPTACLES

TEST RECEPTACLE	FREQUENCY	FROM SUBUNIT
	10 kc	6
$\mathrm{~J}-2930$	$210-300 \mathrm{kc}$ in $10-\mathrm{kc}$ steps	6
$\mathrm{~J}-2931$	100 kc	1
$\mathrm{~J}-2932$	$1.6-2.5 \mathrm{mc}$ in $100-\mathrm{kc} \mathrm{steps}$	8
$\mathrm{~J}-2933$	100 kc	3 (Int Osc)
$\mathrm{J}-2934$	$100 \mathrm{kc} \pm \frac{\Delta \mathrm{F}}{2}$	(FS Osc)

(4) ZERO ADJUST INDICATING CIRCUIT.The zero adjust indicator circuit (figure 2-41) provides a means for comparing the 100 -kc output from the fre-quency-shift oscillator (unit 12) or the 100 -kc output from the interpolation oscillator (unit 3) with the standard 100 -kc signal from the crystal-controlled oscillator (unit 1). The outputs from unit 3 and unit 12 are connected to the ZERO ADJUST switch (2), S-2917. In the INT. OSC. position the signal from unit 3 is connected to the circuit. When S-2917 is set at the F.S. OSC. position, the signal from unit 12 is fed to the circuit. The signal to be compared is connected to the plate of crystal rectifier CR-2920 while the standard

100-kc signal from unit 1 is coupled through C-2927 to the cathode of CR-2920. The two frequencies are mixed with CR-2920, diode detecting the resultant sum of the two frequencies and the difference between the two frequencies (beat frequency), across the load resistor, R-2968. The network comprised of R-2967 and C-2928 is a low-pass filter which will bypass the high order frequencies, passing only the beat frequency to the triode grid of electron ray tube V-2917. V-2917 gives a visual indication of when the measured frequency is at the same frequency as the standard. As discussed above, the signal applied to V-2917 will fluctuate at the beat frequency, which means the current flowing in the triode section of V-2917 will fuctuate in a corresponding manner and therefore the triode plate voltage, which is also the voltage applied to the raycontrol electrode, will vary and the shadow angle on the target will open and close at the beat frequency. The effect of regulating the INT. OSC. ZERO ADJ. control, L-2080, or the F.S.O. ZERO ADJ. control, R-2916, can be determined by the shadow appearing on the target of V-2917, a zero beat (or constant shadow angle) indicating that an output of 100 kc has been obtained.

Note

If the beat frequency is high, the rapid fluctuations of the shadow angle on V -2917 will appear merely as a blur. Care should be taken to distinguish this from a zero beat condition.
q. CONTROL-INDICATOR C-1352/SRT (CON-TROL-INDICATOR). - The control-indicator is designed for front-panel mounting on unit 14 of the RFO and contains all controls and indicators required for remote manual tuning of the two major units comprising the antenna tuning equipment, namely, Radio Frequency Tuner TN-229/SRT and Antenna Coupler CU-372/ SRT. The control-indicator contains seven controls and

Figure 2-41. Zero Adjust Indicating Circuit, Simplified Schematic

Figure 2-42. R-F Tuner Drive Motor Control Circuit, Simplified Schematic
two indicating meters required to manually tune the antenna tuning equipment. There are two auxiliary controls that are used to calibrate one of the indicating meters.
(1) DRIVE MOTOR CONTROL CIRCUIT.-The drive motor control circuit (figure 2-42) controls the operation of the drive motor in the radio frequency tuner, which, in turn, positions the shorting ring on the main tuning coil.
(a) The drive motor, $B-301$ in the radio frequency tuner, is a split phase induction motor that can be run in either direction, depending on which phase has the phase-shifting capacitor in series with it. Depressing the DOWN (AG) switch, S-405, applies 110 -volt, 60 -cycle, single-phase power through contacts 4 and 5 of $S-405$ and contacts 1 and 3 of $S-407$ to the drive motor. This source of a-c power comes from the low voltage power supply and is available only when the transmitter bay is energized. With this connection, phase shifting capacitor $\mathrm{C}-402$ is introduced in series with the winding of the drive motor, which will provide driving torque to produce motor rotation in the direction that causes the shorting ring to move down on the main tuning coil. If the UP (Af) switch, S-406, had been depressed instead of the DOWN (AG) switch, a-c power would have been delivered to the down motor through contacts 1 and 2 of S-406. This connection would place phase shifting capacitor $C-402$ in series with the other
winding of the drive motor, causing driving torque in the opposite direction, which would move the shorting ring up on the main tuning coil.
(b) A speed governor, $\mathrm{S}-307$, is attached to the shaft of the drive motor and is set to open at approximately 500 rpm . As long as the SLOW ® $₫ 4$ switch, $\mathrm{S}-407$, is not operated, the action of the governor, S-307, is bypassed as one side of the a-c supply is fed directly to the drive motor through contacts 1 and 3 of S-407. When the SLOW © $4-1$ switch is depressed, the a-c line is connected to the drive motor through the governor, S-307. To energize the drive motor, either the UP (At) or DOWN (A6) switch must also be depressed to connect on the other side of the a-c line to the motor. As long as the motor is receiving at less than 500 rpm , the contacts of S-307 remain closed and full driving torque is applied. When motor speed reaches 500 rpm , and the governor contacts open, the network comprised of $R-302$ and $C-301$ is introduced into the a-c line in series with the motor windings. The impedance of this network is sufficiently high compared with the motor winding impedance to effectively remove power from the motor at the time of opening of the governor at 500 rpm . The SLOW (At) control is used for fine tuning control about the optimum tuning point.
(c) In the mechanical connection between the drive motor and the shorting ring in the radio frequency tuner, there is a solenoid operated clutch. When the
clutch solenoid is operated, the clutch disengages. The UP (A5) switch and DOWN (A6) switch each are doublepole switches. One pole of each switch is used for drive motor control, as described in the previous paragraph, and the other pole is used for control of the clutch. If neither the UP (AA) nor the DOWN (AH) switch is operated, -24 volts after time delay is supplied through contacts 4 and 6 of S-406 and contacts 1 and 3 of S-405, through limiting resistor $\mathrm{R}-402$ to the clutch solenoid, $\mathrm{L}-303$ in the radio frequency tuner, disengaging the drive motor from the shorting ring. As soon as either $\mathrm{S}-405$ or $\mathrm{S}-406$ is operated, this circuit is broken and the clutch re-engages.
(d) To prevent damage to the equipment by running the tuning motor until the shorting ring goes to the limit of its travel and jams at either the top or bottom of the travel, a bottom limit switch, S-304, and a top limit switch, S-303, are included in the radio frequency tuner. S-304 is operated when the shorting ring reaches the top allowable limit of its travel, and S -303 operates when the bottom allowable limit is reached. Assume that the shorting ring is being moved up on the main tuning coil by virtue of having the UP (A) switch, S-406, operated. When the top limit is reached, S-303 operates and - 24 volts after time delay is applied through contacts 1 and 2 of nonoperated S-304, contacts 1 and 3 of nonoperated S-405, through limiting resistor $\mathrm{R}-402$ to the clutch solenoid $\mathrm{L}-303$. This will disengage the clutch, stopping the upward motion of the shorting ring even though the tuning motor remains energized. Conversely, if the shorting ring is moving down because of the DOWN (Ac) switch, S-405, being operated, and the bottom limit is reached, the clutch solenoid will be energized again from -24 volts after
time delay through contacts 1 and 3 of operated bottom limit switch S-304 and contacts 1 and 2 of S-405 and limiting resistor $\mathbf{R - 4 0 2}$.
(e) Capacitor C-401, which is also located in the control indicator, is located in one side of the a-c line supplying the blower, $B-302$, in the radio frequency tuner. $\mathrm{C}-401$ acts as the phase shifting capacitor required to develop driving torque for the blower.
(2) ANTENNA TRANSFER (AE) SWITCH S-402, CONTROL CIRCUIT.-The ANTENNA TRANSFER (AL) switch S-402 (figure 2-43) is a double-pole, doublethrow toggle switch with an off position. The three positions are designated TUNER IN, BYPASS, and REMOTE. One pole of this switch provides the remote control for the positioning of an electromagnetic actuator, B-3502 in the antenna coupler. The second pole of S-402 controls the operation of relay K-401.
(a) The actuator, B-3502, operates from 110-volt, $60-c y c l e$, single-phase ac, applying a rotary motion to its drive shaft. Mounted on the shaft is a positioning cam. The actuator drives the rotor of the bypass switch in the antenna coupler. A detailed explanation of the functioning of the bypass switch is contained in the section covering the antenna coupler (paragraph 17c(1)) but for the purpose of this discussion it suffices to say that, in one position of the bypass switch, the two components of the antenna tuning equipment are in the r-f transmission line, and in the other position of the switch, they are both bypassed and the antenna is connected directly to the transmitter bay of the AN/SRT-14, 15 or 16.
(b) Actuator B-3502 receives its power from the oven heater supply of the transmitter bay, this supply being uninterrupted by any of the controls of the

Figure 2-43. Antenna Transfer (AE) Switch S-402, Control Circuit, Simplified Schematic

AN/SRT-14, 15, and 16. One side of the supply is fed directly to the actuator winding. The other side is delivered first to the contacts of relay $\mathrm{K}-3501$, and then through the contacts of either microswitch S-3509 or S-3508 to the other side of the actuator winding. The roller actuators of the two switches, S-3508 and S-3509, ride on the positioning cam.
(c) With the ANTENNA TRANGFER (AB) switch, S-402, in the TUNER IN position, -24 volts after time delay is supplied to relay $\mathrm{K}-3501$, through contacts 2 and 3 of S-402, causing it to operate. Power is supplied to actuator B-3502 through contacts 1 and 3 of $\mathrm{K}-3501$ and C of NO contacts of $\mathrm{S}-3509$. The actuator will rotate until the positioning cam reaches the point where the roller of S-3509 drops into the notch of the cam, causing S-3509 to open and disrupt the power to the actuator winding. The relative mounting positions of S-3509 and the positioning cam are such that at this position of rotation of the actuator shaft, the bypass switch is in the position where the antenna tuning components are switched into the r-f line.
(d) Figure 2-43 shows the actuator in the BYPASS position with S-3508 resting in the cam notch and S-3509 riding on the cam ring. It can be seen that if ANTENNA TRANSFER (AE) switch S-402 were now placed in the BYPASS position, a-c power for the actuator would be supplied through the contacts 1 and 4 of the now nonoperated $K-3501$ to the NO contacts of S-3508 where an open circuit exists, and the actuator would not be energized. However, if the positioning cam were in the TUNER IN position when ANTENNA TRANSFER (Ab) switch S-402 was placed in the BYPASS position, the winding of actuator B-502 would be energized, as a circuit would now be completed through contacts NO and C of S-3508. The actuator would continue to rotate until the position of the bypass switch, where the antenna tuning equipment is switched out of the r-f line, was reached. At this point the notch in the positioning cam would be at the position of switch S-3508 and contacts NO and C would open, de-energizing the actuator winding.
(e) The third position of the ANTENNA TRANSFER (AE) switch, S-402, is designated REMOTE. In this position, relay $K-3501$ is connected to the output of the ATU bypass transfer circuit located in the low level radio modulator. A complete discussion of the function of this circuit is found in paragraph 7 g . The resultant output is that when relay $K-1102$ is operated, -24 volts after time delay is supplied through contacts 3 and 4 of $K-1102$, through contacts 1 and 2 of S-402 in the REMOTE position, to relay K-3501 in the antenna coupler. This produces the same result as described in the previous paragraph when S-402 is in the TUNER IN position. When K-1102 in the low level radio modulator is not energized, the -24 volts after time delay is no longer connected to $\mathrm{K}-3501$, which is the same condition as if S-402 were in the BYPASS position.
(f) When primary power is de-energized in the transmitter bay of the AN/SRT-14, 15 and 16, the source of -24 volts after time delay is also removed. Under such a condition the actuator will drive to the bypass position regardless of the setring of ANTENNA TRANSFER (AE) switch S-402, as relay K-3501 will not be energized. However, a-c power remains, as this source is not affected by the primary power controls of the transmitter bay.
(g) Whenever - 24 volts after time delay is fed to $\mathrm{K}-3501$, which is the condition for the TUNER IN position, the TUNER IN indicator, I-401, will be illuminated by the same potential to designate that the antenna tuning equipment is in the r-f transmission line.
(b) The second pole of S-402, with S-402 either in TUNER IN or REMOVE position, closes a ground circuit to the winding of relay $\mathrm{K}-401$ through either contacts 5 and 6 or 4 and 5 of S-402. As the other side of the winding of $K-401$ is connected to -24 volts after time delay, $\mathrm{K}-401$ is operated when $\mathrm{S}-402$ is in either TUNER IN or REMOTE. In BYPASS position, S-402 breaks the ground circuit to K-401, and K-401 does not operate. In BYPASS, with K-401 not operated, a ground is forwarded to the grounding cams in the antenna coupler through contacts 1 and 4 of $K-401$. In TUNER IN and REMOTE, this ground is not present, as K-401 is operative, opening its contacts 1 and 4. The function of this ground is covered in paragraph $17 c(3)$ concerning the antenna coupler.
(3) ANTENNA COUPLER LOADING (A) SWITCH S-404 CONTROL CIRCUIT.-The ANTENNA COUPLER LOADING (AD SWITCH, S-404 (figure 2-44), is a six-position selector switch whose function is to control the positioning of another actuator, B-3501, in the antenna coupler. This actuator in turn positions the loading switch in the antenna coupler. The loading switch selects the loading component that might be needed to properly tune the antenna system. A detailed description of the functioning of the loading components is found in the section covering the antenna coupler (paragraph $17 c(2)$).

The 110 -volt, 60 -cycle, single-phase, a-c supply to energize the winding of actuator $\mathrm{B}-3501$ originates in the low voltage power supply and is present only when the transmitter bay is energized. One side of this supply is fed directly to one side of the actuator winding. The other side of the a-c supply is connected to the rotor contact 11 of the ANTENNA COUPLER LOADING (AD) switch, S-404. With S-404 in the DIRECT position, the a-c connection is fed through contact 13 of S-404, through contacts NO and C of microswitch S-3505 to the other side of the actuator winding. The actuator will rotate until the roller actuator of S-3505 falls into the notch of the positioning cam, which will open contacts NO and C of S-3505, breaking the a-c supply to the actuator. There are six positions for the actuator rotor that correspond to the six positions of the loading switch

Figure 2-44. Antenna Coupler Loading (AD) Switch S-404, Control Circuit, Simplified Schematic
that the actuator drives. For convenience of the mounting of the six positioning microswitches, S-3501 through S-3506, two positioning cams are employed. Table 2-14 shows the various positions of $\mathrm{S}-404$ and the positioning microswitch in the antenna coupler that is employed for each position of S-404.

TABLE 2-14. FUNCTIONS OF ANTENNA COUPLER LOADING (AD SWITCH S-404

POSITION OF S-404	POSITION MICROSWITCH EMPLOYED
DIRECT	S-3505
A	S-3504
B	S-3502
C	S-3503
D	S-3501
E	S-3506

(4) TRANSFORMER (AC) SWITCH S-403 CONTROL CIRCUIT.-TRANSFORMER © switch S-403 (figure 2-45) functions in the same manner as ANTENNA COUPLER LOADING (AD switch S-404, described in the previous paragraph. S-403 controls the position of actuator B-303 in the radio frequency tuner; B-303 in turn positions the transformer switch in the tuner that connects or removes an impedance transformer in series with the r-f transmission line. The requirement of the impedance transformer is discussed in paragraph $17 b$ (2).

Figure 2-45. Transformer (AC) Switch S-403, Control Circuit, Simplified Schematic

With S-403 in the DIRECT position, one side of the 110 -volt, a-c line is fed through contacts 11 and 13 of S-403, through the contacts NO and C of S-301 to one side of the winding of actuator B-303. The other side of the actuator is connected directly to the other side of the a-c line. B-303 now rotates until the roller actuator of S-301 falls into the notch of the positioning cam, at which point the NO and C contacts of S-301 open, breaking the ac. The transformer switch, S-308, which is driven by $\mathrm{B}-303$, is now in the position where the im-

Figure 2-46. Position Indicator Circuit, Simplified Schematic
pedance transformer is not in the circuit. Placing S-403 in the 1 position will again energize $\mathrm{B}-301$ through S-302, and B-303 will rotate until the actuator for S-302 falls in the notch of the positioning cam. This corresponds to the position of S-308 where the impedance transformer is in the circuit.
(5) POSITION INDICATOR CIRCUIT. - The POSITION indicator, M-402 (figure 2-46), gives an indication of the position of the shorting ring on the main tuning coil of the radio frequency tuner. To accomplish this a potentiometer, $\mathbf{R}-301$ in the tuner, is geared to the same drive mechanism in the tuner that positions the shorting ring. The gear ratio is such that full excursion of the shorting ring will produce about 70 percent of full rotation of $R-301$. $R_{-}-301$ is part of a voltage divider network from +250 volts dc to ground, comprised mainly of $\mathrm{R}-406, \mathrm{R}-407, \mathrm{R}-411$, and $\mathrm{R}-301$. The values are such that the potential at the high end of $R-301$ is about +25 volts, with the low end grounded. As R-301 only travels 70 percent of its full rotation, when the shorting ring is driven to the top limit of its travel, the arm of $R-301$, which is connected to one side of POSITION meter $\mathrm{M}-402$, will be at about +21 volts. When the ring is at the bottom limit, the arm of $\mathrm{R}-301$ will be about +4 volts. With the arm of $R-301$ at the low limit, the value of $R-411$ is adjusted so the potential at the junction of $R-407, R-411$, and $R-413$ is the same as at the arm of $R-301$ (approximately +4 volts), at which point no current will flow through M-301, and the indication will be zero. With the arm of $\mathrm{R}-301$ at the high end of the travel, there will be a potential of approximately 17 volts across the combination of limiting resistors $R-413, R-408$, and $M-301$. $R-413$ is adjusted for full-scale reading on $\mathbf{M}-301$. By making both the low-scale and high-scale adjustments, accurate positioning of the shaft of $R-301$ with respect to the traverse of the shorting ring is eliminated, it being necessary only to ensure the total traverse lies between the limit stops of the potentiometer. Both $\mathrm{R}-411$ and

R-413 are screw-driver adjustments on the front panel of the control indicator and are designated ZERO ADJ and FULL. SCALE ADJ respectively.
(6) SWR INDICATOR CIRCUIT.-TThe SWR indicator circuit (figure 2-47) is used in conjunction with voltages supplied to it from the SWR monitor circuit, which is a component of the load adjusting unit (see paragraph 15b). The input to the SWR indicator circuit from the SWR monitor consists of two voltages of opposite polarity, one proportional to the voltage of the "reflected" wave and the other proportional to the "incident" wave as measured on the r-f output line of the transmitter. Across the input there is a tapped divider consisting of $\mathrm{R}-410, \mathrm{R}-415, \mathrm{R}-414$, and $\mathrm{R}-412$. The values of these components are such that if the standing wave on the r-f line is $8: 1$, the potential at the junction of the $R-410$ and $R-415$ is zero; accordingly, the 8:1 position of the SWR CALIBRATE switch, S-408, is connected to this point and the SWR BALANCE meter, M-410, would be at the center null position. If the stand-ing-wave ratio is less than 8.1, with S-408 set at the 8:1 position, the SWR BALANCE meter $\mathrm{M}-401$ will read to the left of the null position (green area) and, conversely, if the ratio is higher than $8: 1, M-401$ will read to the right of the null position (red area). Similarly, the voltage at the junction of $\mathrm{R}-415$ and $\mathrm{R}-414$ will be zero when the standing-wave ratio is $4: 1$. With the SWR CALIBRATE switch, S-408, set at the $4: 1$ position, which is connected to the junction of $\mathrm{R}-415$ and $\mathrm{R}-414$, M-401 will again read at the center null position for a value of 4:1 SWR. A 2:1 value of standing-wave ratio will give a zero potential at the junction of $\mathrm{R}-414$ and R-412; consequently, the $2: 1$ position of $\mathrm{S}-408$ is connected to this point. $\mathrm{R}-416$ is a limiting resistor of sufficient size to limit the current flowing through M-401 to a value below its safe limit value of 5 ma when the transmitter is in 500-watt operation. R-409 is the damping resistor for M-401. S-408 has an OFF position that disconnects the SWR BALANCE meter, M-401, from the circuit.

Figure 2-47. SWR Indicator Circuit, Simplified Schematic
r. CONTROL OF FREQUENCIES.-The set-up of frequencies in the RFO can be accomplished manually by a series of nine control knobs, located behind a transparent door on the front panel of the RFO. These controls are designated as follows: (AA) KNOB control, (B8) KNOB control, BAND control knob 円, MC control knob © © , 100 KC control knob © 10 KC control knob (1), KC control knob © (C), 100~ control knob (D), and $10 \sim$ control knob (E1).
(1) MECHANICAL LINKAGES.-The control knobs are mechanically connected to shafts of the corresponding rotary switches in the RFO subunits by employing a system of chain drives. The mechanical linkages employed are shown in figures 2-48 through 2-54. The $10 \sim$ control knob (E^{2}, the $100 \sim$ control knob (DD), and the KC control knob (c) are mounted directly on the shafts of the $10 \sim$ step switch, S-2053, the $100 \sim$ step switch, S-2052, and the $1-\mathrm{kc}$ step switch, S-2051, respectively, located in unit 3 . The 10 KC control knob (IT) is connected by a chain to the shaft of the $10-\mathrm{kc}$ step switch, S-2201, located in unit 6 . The 100 KC control knob $\Theta \notin$ is connected by a chain to a shaft on which is mounted the $100-\mathrm{kc}$ step switch, S-2326 in unit 8. This shaft, in turn, mounts a continuous chain that drives two additional shafts. On the first of these shafts is mounted the $100-\mathrm{kc}$ step switch, S-2427 in unit 9; on the second, the $100-\mathrm{kc}$ step switch, S-2652 in unit 11B, and the $100-\mathrm{kc}$ step switch, $\mathrm{S}-2802$ in unit 11 C , are mounted. The MC control knob (66) is chain-connected to a shaft on which $1-\mathrm{mc}$ step switch S-2651 in unit 11B and 1-mc step switch S-2801 in unit 11C are mounted. BAND control knob \oplus chain-drives the shaft of bandswitch S-2996 located on unit 14. ®B KNOB control chain-drives the shaft of 1 -mc step switch S-2526 in unit 10. (AA) KNOB control is chain-connected to a shaft connected to unit 9, where this shaft, in turn, is chainconnected to the shaft of the $5-\mathrm{mc}$ step switch, S-2426.
(2) MECHANICAL SELECTION OF A FRE-QUENCY.-To set up a frequency, the above-mentioned control knobs permit the manual selection of any frequency in 10 -cycle steps between 0.3 mc to 26 mc . The dial reading corresponding to the 100 KC control knob (H1H) down through the $10 \sim$ control knob © (Ex) designates directly the significant figures of the frequency setting through the 100 KC setting. The selection of the correct megacycle setting requires the regulating of the (AA) KNOB control, the (BB KNOB control, the BAND control knob \oplus, and the MC control knob (6c). (AA) and (B) select the frequency of the outputs of units 9 and 10 respectively according to the megacycle setting of the frequency desired. The outputs of units 9 and 10 are fed to unit 11 A or 11 B or 11 C as determined by the proper setting of the bandswitch S-2996 controlled by BAND control ©. The MC control knob © controls the tuning in units 11 B and 11 C . The following table shows the settings of (AA), (BB), ©, and (G6) according to the megacycle value of the RFO output frequency. In all instances the positions of the control knobs correspond to the positions of switches they control.

Figure 2-48. 10~ © 100 ~ (DD, KC (C) Controls, Mechanical Linkages

TABLE 2-15. FINAL OUTPUT FREQUENCIES AND (A), B8, $®, ~ A N D ~(6) ~ C O N T R O L ~$ POSITIONS

RFO OUTPUT FREQ (mc)	(4) CONTROL POSITION	(8B) CONTROL POSITION	FFONTROL POSITION	(6) CONTROL POSITION
0.3-1	0	10	$0.3-6 \mathrm{mc}$	*
1-2	0	9		*
2-3	0	8		*
3-4	0	7		*
4-5	0	6		*
5-6	1	10		*
6-7	0	4	$6-16 \mathrm{mc}$	6
7-8	1	8		7
8-9	0	3		8
9-10	0	2		9
10-11	1	5		0
11-12	1	4		1
12-13	2	8		2
13-14	2	7		3
14-15	2	6		4
15-16	3	10		5
16-17	3	9	$16-26 \mathrm{mc}$	6
17-18	3	8		7
18-19	2	3		8
19-20	1	1		9
20-21	3	5		0
21-22	3	4		1
22-23	0	1		2
23-24	3	3		3
24-25	3	2		4
25-26	2	0		5

[^3]

Figure 2-49. 10 KC (1I) Control, Mechanical Linkages

Figure 2-50. 100 KC Control, Mechanical Linkages

Figure 2-51. MC © Control, Mechanical Linkages
(3) PRODUCTION OF A SAMPLE FRE-QUENCY.-To illustrate the operation of the subunits and the controls of the RFO, assume a sample frequency of 23.57619 mc is desired at the RFO output (figure 2-131).
(a) MANUAL OPERATION.-The first step in setting up a new frequency is to open the transparent door covering the control knobs. Opening this door also opens the door switch S-2920, which restores the transmitter output to the 100 -watt level if transmission was taking place at the 500 -watt level when the transparent door was opened (see paragraph $10 e(1)$). For the sample frequency of 23.57619 mc , the $10 \sim$ control knob (EC) is set at 9 , the $100 \sim$ control knob (D) at 1 , the KC control knob (C) at $6,10 \mathrm{KC}$ control knob (ID) at 7 , and the 100 KC control knob Θ at 5 . So far, these settings have determined the output frequency through the $100-\mathrm{kc}$ level. As described in the previous paragraph, controls (A4), (18), (7), and (6) must be set to determine the megacycle value of the output frequency. To set up 23 mc , table $2-15$ shows that (46) should be set at 3 , (86) at 3 , © (F) $16-26 \mathrm{mc}$, and (66) at 3 . The above setting of the nine controls has now completed the selection of the sample frequency of 23.57619 mc after which the transparent door is closed, restoring the door switch, S-2920.

Note

To set up the highest frequency (26 mc), the control knobs must be set for $25,999,9910$ with the $10 \sim$ control krab © © (10 the 10 position.
(b) SUBUNIT FUNCTIONING.-The crystal oscillator (unit 1) produces a $100-\mathrm{kc}$ signal that is delivered to units $2,5,6$, and 8 (figure 2-131). The frequency multiplier (unit 2) receives this $100-\mathrm{kc}$ output and produces a $1-\mathrm{mc}$ signal that is delivered to units 4 , $5,6,7$, and 10 . The frequency multiplier (unit 4) receives this $1-\mathrm{mc}$ signal and produces an $8-\mathrm{mc}$ signal that is delivered to unit 5 . The frequency converter (unit 5) contains three mixers, an amplifier, and filters. The $1-\mathrm{mc}$ signal from unit 2 and the 100 -kc signal from unit 1 (in c-w operation) are delivered to the first mixer and filter. (In frequency-shift and facsimile operation, the 100 kc delivered to the first mixer in unit 5 is taken from unit 12 rather than from unit 1 , and varies by a frequency $\left(\pm \frac{\triangle f}{2}\right.$ for FSK or $+\triangle f$ for FAX).) The $1-\mathrm{mc}$ and $100-\mathrm{kc}$ signals are added in the first mixer of unit 5 , and the $1.1-\mathrm{mc}$ sum is fed to the second mixer and filter. The output of unit 3 is also fed to the second mixer in unit 5. This output can be varied from 90 to 100 kc in $1-\mathrm{kc}, 100-\mathrm{cps}$, and $10-\mathrm{cps}$ steps by $1-\mathrm{kc}$ step switch S-2051, 100-cps step switch S-2052, and $10-\mathrm{cps}$ step switch S-2053. For a sample frequency of 23.57619 $\mathrm{mc}, \mathrm{S}-2051$ is in position $6, \mathrm{~S}-2052$ in position 1, and S-2053 in position 9, and the output of unit 3 is therefore 96.19 kc . The $1.1-\mathrm{mc}$ and $96.19-\mathrm{kc}$ signals are added in the second mixer and the sum, 1.19619 mc , is fed to the third mixer in unit 5 . The third mixer in unit 5 also receives an $8-\mathrm{mc}$ signal from unit 4 . These two signals (1.19619 mc and 8 mc) are added in the third mixer, and the sum, 9.19619 mc , is fed to the second mixer in unit 6.

Figure 2-52. BAND © Control, Mechanical Linkages

The $10-\mathrm{kc}$ step generator (unit 6) contains a divider circuit, a phase-locked oscillator, two mixers, filters, and amplifiers. Unit 1 delivers 100 kc to the divider, whose output of 10 kc is fed to the phase-locked oscillator for synchronization. The output of this oscillator can be varied from 210 to 300 kc in 10-kc steps by 10-kc step switch S-2201. For the sample frequency 23.57619 mc, S-2201 is in position 7, and the $280-\mathrm{kc}$ output of the oscillator is fed to the first mixer in unit 6 . This mixer also receives a 1 -mc signal from unit 2 , and the sum, 1.28 mc , is fed to the second mixer in unit 6 . The second mixer also receives 9.19619 mc from unit 5 and adds these two signals. The sum, 10.47619 mc , is fed to amplifiers and filters in unit 6, and then delivered to the second mixer in unit 8.
The 100 -kc step generator (unit 8) contains a phaselocked oscillator, two mixers, filters, and amplifiers. Unit 1 delivers 100 kc to the phase-locked oscillator for synchronization. The output of this oscillator can be varied from 1.6 to 2.5 mc in $100-\mathrm{kc}$ steps by $100-\mathrm{kc}$ step switch S-2326. For the sample frequency 23.57619 mc , S-2326 is in position 5 and the $2.1-\mathrm{mc}$ output of the oscillator is fed to the first mixer in unit 8 . This mixer also receives a $15-\mathrm{mc}$ signal from the frequency multiplier (unit 7) and the sum, 17.1 mc , is fed to the second mixer in unit 8 . The second mixer also receives 10.47619 mc from unit 6 , and the sum, 27.57619 mc , is fed to amplifiers and filters in unit 8 and then to the mixer in unit 9 .

The frequency converter (unit 9) contains a mixer, amplifiers, filters, and two step switches. The mixer receives $27.5 \cdot 7619 \mathrm{mc}$ from unit 8 and 5 megacycles from unit 7. Step switch S-2426, which is set by the (®1) KNOB control, determines whether the signal from unit 8 is increased or decreased by the $5-\mathrm{mc}$ output of unit 7 or increased by the second harmonic (10 mc) of this output, or remains unchanged. For the sample frequency, $23.57619 \mathrm{mc}, \mathrm{S}-2426$ is in position 3, and the second harmonic (10 mc) of the $5-\mathrm{mc}$ signal from unit 7 is added to the output of unit 8 . The sum, 37.57619 mc , is fed to amplifiers and filters in unit 9 and then to one section of the bandswitch, S-2996. It should be noted that the 100 -kc step switch, S-2427 in unit 9 , always takes the same position as the 100 -kc step switch, S-2326 in unit 8, as they are both controlled by the 100 KC control knob $\oplus \cdot$. In this case, it is in position 5.
The 1 -mc step generator (unit 10) contains a harmonic generator, amplifiers, filters, and $1-\mathrm{mc}$ step switch S-2526. The harmonic generator receives 1 megacycle from unit 2 and can produce 1 of 11 frequencies (7,8 , $13,14,16,17,18,19,20,21$, or 22 mc) as determined by the position of S-2526, which is set by the (B) KNOB control. For sample frequency 23.57619 mc , $\mathrm{S}-2526$ is in position 3 , and the $14-\mathrm{mc}$ output of the harmonic generator is delivered to the amplifiers and filters and then to another section of bandswitch S-2996.

Bandswitch S-2996 determines to which frequency converter chassis (unit 11A, 11B, or 11C) the signals from units 9 and 10 are delivered and from which chassis the final r-f output is taken. For 23.57619 mc , these signals are delivered to unit 11 C , as this frequency is in

Figure 2-53. (A) Control, Mechanical Linkages

Figure 2-54. (1B) Confrol, Mechanical Linkages
the $16-$ to $26-\mathrm{mc}$ band. The $14-\mathrm{mc}$ signal from unit 9 is subtracted from the $37.57619-\mathrm{mc}$ signal from unit 10 in the mixer in unit 11C. The difference, 23.57619 mc , is fed through amplifiers, filters, and a third section of S-2996 to the RFA. The frequency converter (unit 11C) has two step switches, S-2801 and S-2802. S-2801 is ganged to $\mathrm{S}-2651$ in unit 11B, and both are set by the MC control knob © (6), which is in position 3 for the sample frequency. S-2802 and S-2652 in unit 11B are ganged together and are set by the 100 KC control knob $\triangle \mathbb{C}$, which is in position 5 for the sample frequency. Unit 11 A is used for frequencies between 0.3 and 6 megacycles; unit 11B for frequencies between 6 and 16 mc ; and unit 11 C for frequencies between 16 and 26 mc as determined by the range of tuning of the filter circuits in the respective units.

3. POWER SUPPLIES.

The low voltage power supply (LVPS), medium voltage power supply (MVPS), and high voltage power supply (HVPS) provide a major portion of the power required to operate the transmitter bay of Radio Transmitting Sets AN/SRT-14, 15 and 16. The LVPS receives single-phase power delivered to the transmitter bay from the ship's supply. Input single-phase power must be 110 volts ac, 60 cycles. The HVPS (part of AN/ SRT-15 and 16) receives all three-phase power delivered to the transmitter bay. This input power may be either 220 or 440 volts ac, 60 cycles, three phase.

4. POWER SUPPLY PP-1094/SRT (LOW VOLTAGE POWER SUPPLY, LVPS).

a. GENERAL.-The LVPS receives 110 -volt a-c, 60 cycle, single-phase power from the ship's supply. The LVPS, in turn, delivers 110 -volt a-c, 60 -cycle, singlephase power to the MVPS, the radio frequency oscillator (RFO), the low level radio modulator (LLRM), the radio frequency amplifier (RFA), and the mounting. The LVPS also supplies the following d-c voltages: +250 volts to the RFO, +300 volts to the RFA and LLRM, $\mathbf{- 2 2 0}$ vclts to RFA and LLRM, and -24 volts for motor and control circuit functions.
b. INPUT CIRCUIT.-The input circuit of the LVPS (figure $2-55$) receives 110 -volt a-c, 60 -cycle, singlephase power through receptacle $\mathrm{J}-3003$, where five sets of contacts in parallel are used to insure adequate cur-rent-carrying capacity. EMERGENCY SWITCH $\Perp 1$ S-3001 controls all power to the LVPS. When switch $\mathrm{S}-3001$ is closed, power is applied through fuses $\mathrm{F}-3007$ and $\mathrm{F}-3008$ to the start-stop circuit and through fuses $\mathrm{F}-3005$ and $\mathrm{F}-3006$ to the main power transformer. Power is also applied through fuses F-3001 and F-3002 and CABINET HEATER switch © S-3002 to the space heaters in the mounting, the presence of voltage across the space heaters being indicated by CABINET HEATER indicator light I-3003. (In an AN/SRT-16 installation, the heaters of the two transmitter groups are individually energized by the CABINET HEATER switches in each group.) In addition, a fused 100 -volt a-c, 60 -cycle, single-phase line, through fuses $\mathrm{F}-3003$ and $\mathrm{F}-3004$, is supplied.

Figure 2-55. Input Circuit of LVPS, Simplified Schematic

Figure 2-56. Start-Stop Circuit, Simplified Schematic
c. START-STOP CIRCUIT.-The start-stop circuit (figure 2-56) in the LVPS controls power to the transmitter bay. When EMERGENCY SWITCH S-3001 is closed, power is applied throughout the transmitter bay by depressing the START push button on the MAIN POWER switch $®, \mathrm{~S}-3004$. The master control relay, $K-3001$, is connected across the line through the closed contacts of the START push button and through the

LOCAL position of the LOCAL-REM. switch © , S-1106, which is located in the LLRM. When K-3001 energizes, contacts L3 and T3 close, so that, when the START button is released, resistor $\mathrm{R}-3024$ and capacitor C-3011 are added in series with the winding of $\mathrm{K}-3001$ across the line. The combination of $\mathrm{R}-3024$ and C-3011 provides a series impedance with the winding of $\mathrm{K}-3001$, with power factor correction sufficient to in-
sure adequate holding current flowing through K-3001 during the "power on" condition. The MAIN POWER INDICATOR light, $\mathrm{I}-3001$, is also connected across the line through contacts L3 and T3 of K-3001.

Contacts L1, T1 and L2, T2 of energized relay K-3001 apply 110 volts ac to main power transformer $\mathrm{T}-3001$, RFO, LLRM, MVPS, RFA, antenna coupler, and contacts 4 L and 4 R of $\mathrm{K}-3004$. $\mathrm{T}-3001$ is protected by fuse $\mathrm{F}-3009$. $\mathrm{K}-3004$ is energized after the -24 -volt time delay (paragraph $4 d$), which applies 110 -volt a-c power through contacts $4 \mathrm{~L}, 3 \mathrm{~L}$ and $4 \mathrm{R}, 3 \mathrm{R}$ to the blower motors in the mounting. In the AN/SRT-16, it is necessary that the blowers in both mountings be energized when either the right or left transmitter group, or both, are on. In right transmitter group operation or with both groups in operation, the blowers in both groups, which are paralleled, receive power as described above. In left group operation only, $\mathrm{K}-3004$ in the right group is not energized and the blowers now receive power from the left group LVPS through contacts $4 \mathrm{~L}, 3 \mathrm{~L}$ and 4 R , $3 R$ of K-3004 in the left group and contacts 5L, 6L and 5R, 6R of K-3004 in the right group.

If a remote radiophone unit is employed, contacts L4, T4 of energized $K-3001$ connect the line across the POWER indicator. This indicates that the master control relay in the LVPS is energized, with the transmitter group either in local or remote operation. The voltagedropping resistor in series with the POWER indicator is shorted out for 110 -volt operation. For remote operation of the transmitter group, the LOCAL-REM. switch (\mathbb{X}, S-1106 in the LLRM, is placed in the REM. position, which puts the master control relay in the LVPS under control of the START-STOP switch on the radiophone unit instead of the MAIN POWER-START-STOP switch on the LVPS.

To shut down the transmitter group, the STOP button of the MAIN POWER switch $\mathbb{R}, \mathrm{S}-3004$, is depressed, which puts a short across $\mathrm{K}-3001$, de-energizing it. Depressing the STOP button does not place a short across the line because of the presence of $R-3024$ and $\mathbf{C}-3011$. De-energizing $\mathrm{K}-3001$ opens its holding contacts L3, T3; opens contacts L1, T1 and L2, T2 which removes power from T-3001, RFO, LLRM, RFA, MVPS, antenna coupler, and the blower motors, and opens contacts L4, T4, which extinguishes the POWER indicator in the radiophone unit. The opening of contacts L3, T3 also extinguishes MAIN POWER INDICATOR I-3001.
d. INTERLOCK CIRCUIT AND -24-VOLT D-C SUPPLY.-The -24 -volt d-c supply is taken from the secondary terminals 4 and 6 (48 volts rms) of $\mathrm{T}-3001$, through the full-wave metallic rectifier, $\mathrm{CR}-3001$, and is filtered by $C-3001, C-3002$, and $R-3007$. This supply is returned to ground through fuse $\mathrm{F}-3010$ and centertap terminal 5 of T-3001. (See figure 2-57.)

The output of the filtered -24 -volt supply is fed to the time delay relay, $\mathrm{K}-3003$, through the interlocks of the LVPS, MVPS, RFA, LLRM, RFO and, in the AN/ SRT-15 and AN/SRT-16, the HVPS and HLRM. All
interlocks are similar to the interlock in the LVPS shown in detail in figure 2-57. As the chassis of any major unit in the transmitter group in the AN/SRT-14, 15 and 16 may be pulled out without disconnecting the chassis from the cabinet wiring, the interlock switch, S-3006, is a drawer interlock. When the chassis is completely seated in the cabinet, this interlock is shorted. If the plug of the cabinet wiring is correctly mated to the cabinet wiring receptacle, the circuit will be advanced through all the interlocks and return to $\mathrm{K}-3003$. The drawer interlock may be shorted out when the chassis is in the "out" position by means of a push button incorporated in the interlock. As a protective measure, this push button is manually restored when the chassis is reseated in the cabinet. The INTERLOCK BATTLE SHORT (10), S-3007, bypasses the drawer interlocks when it is in the ON position by connecting the output of the filtered $\mathbf{- 2 4}$-volt supply directly to the time delay relay. When S-3007 is ON, the INTERLOCK BATTLE SHORT indicator, I-3007, is energized by 110 volts ac, through the closed contacts of S-3007. Receptacle J-3007 and J-3008, designated INT. TEST, are provided to test the continuity of the interlocks by measuring with the probes of a standard test ohmmeter.

WARNING

The INTERLOCK BATTLE SHORT (10), S-3007, should be used as an emergency measure only. Before any major unit chassis is removed from the cabinet, the INTERLOCK BATTLE SHORT (10) should be thrown to OFF. Failure to do this will mean that the normal action of the drawer interlock will be bypassed and the equipment can be energized with the chassis in the "out" position.

The filtered -24 -volt supply is delivered through the interlocks or battle shorts to the motor and clutch of the time delay relay, K-3003. After approximately 30 seconds, $\mathrm{K}-3003$ operates its contacts, which supplies the voltage described as " -24 volts after T.D." Through contacts 1 C and 1 A this supply is delivered first to the "push to turn" switch, S-1383, on the bandswitch of the RFA, from where it is fed to RFA, LLRM, MVPS and returned to the LVPS (and to HLRM and HVPS in the AN/SRT-15, 16). Operating the bandswitch while the transmitter is on will momentarily open " -24 volts after T.D.," which, in turn, de-energizes the control circuits and takes the transmitter off the air. When contacts $1 C$ and 1 B of $\mathrm{K}-3003$ open, the motor is de-energized, but the clutch remains energized, holding the motor shaft in the energized position. The "-24 volts after T.D." energizes relay $\mathrm{K}-3004$ whose contacts complete the circuits for the $+300-,+250$ - and -220 -volt supplies as well as applying 110 -volt a-c power to the blower motors in the mounting. When STANDBY-OPERATE switch (®) S-3005 is in the OPERATE position, " -24 volts

Figure 2-57. Interlock Circuit and -24-Volt D-C Supply, Simplified Schematic

Figure 2-58. +300-Voit D-C Suppiy, Simpiified Schemaric
after T.D." is applied to stand-by relay K-3005. Depending on the mode of operation (see paragraph $7 c(1)$), which is controlled in the LLRM, K-3005 will energize, providing another source of -24 -volt d-c power. This is known as " -24 V after standby" and is supplied to MVPS (and HLRM and HVPS in the AN/SRT-15, 16). TIME DELAY indicator I-3002 denotes presence of " -24 volts after T.D."
e. +300 -VOLT D-C SUPPLY.-The +300 -volt rectifier, $\mathrm{V}-3002$ (figure 2-58), is a conventional full-wave rectifier. The plate voltage is taken from terminals 14 and 18 (840 volts rms) on $\mathrm{T}-3001$. Part of this secondary winding is also used for the 250 -volt unregulated supply. The supply has a ground return through the center tap terminal 16 and contacts 2 L and 1 L of $\mathrm{K}-3004$, which is energized when the 30 -second time delay runs out. This allows time for the rectifier filaments to reach operating temperature before V-3002 begins to conduct. The rectified voltage is taken from the cathode and is fed to a single choke input filter through the contacts 5 R and 6 R of 300 V switch relay K-504, which is located in the MVPS. K-504 is energized when the 500 -volt supply in the MVPS is energized. As the 300 -volt supply is primarily a screen voltage supply and the 500 -volt supply is basically a plate voltage supply in the LLRM and RFA, the action of K-504 insures that plate voltage is present when screen voltage is applied, thus preventing damage to the screens of the respective tubes they supply. The single choke input filter of the 300 -volt supply consists of L-3001, C-3005, C3006, C-3007, and C-3008. R-3009 acts as a bleeder for the filter capacitors and also improves regulation. R 3020 is a dropping resistor for the +300 V indicator

I-3005, which denotes the presence of the +300 -volt supply. The +300 -volt output, rated at 200 ma , is delivered to the RFA and LLRM. J-3006 provides a test point for measuring this supply.
f. $+250-$ VOLT D-C UNREGULATED SUPPLY.The +250 -volt rectifier, V-3001 (figure 2-59), is a conventional full-wave rectifier. The plate voltage is taken from terminals 15 and 17 (740 volts rms) on $\mathrm{T}-3001$. This secondary winding is also used for the +300 -volt supply. The supply has a ground return through the center-tap terminal 16 and contacts 2 L and 1 L of $\mathrm{K}-3004$, as described in the previous paragraph. The rectified voltage is taken from the cathode of $\mathrm{V}-3001$ and passed through the double choke input filter comprised of $\mathrm{L}-3003, \mathrm{C}-3004 \mathrm{~A}$, and $\mathrm{C}-3004 \mathrm{~B}$. $\mathrm{R}-3008$ is a bleeder for the filter capacitors and improves regulation. $\mathrm{R}-3019$ is a dropping resistor for the +250 V indicator, I-3004, which denotes the presence of the +250 -volt unregulated supply. This supply, which is rated at 200 ma, is delivered to the RFO. J-3004 provides a test point for measuring this supply.
g. $\mathbf{- 2 2 0 - V O L T ~ D - C ~ S U P P L Y . - T h e ~}-220$-volt rectifier, V-3003 (figure 2-60), is a conventional full-wave rectifier with a negative voltage output. Plate voltage for V-3003 is taken from terminals 19 and 21 (590 volts rms) of T-3001. To obtain a negative output, the cathode is connected to ground and the rectified voltage is taken from the center-tap terminal 20 and through contacts $2 R$ and $1 R$ of $K-3004$, which closes after the time delay. The rectified voltage is filtered by a single choke input filter consisting of $\mathrm{L}-3002$ and $\mathrm{C}-3010$. The resistance network, consisting of R-3010, R-3011,

Figure 2-59. +250-Volt D-C Unregulated Supply, Simplified Schematic

Figure 2-60. -220-Volt D-C Supply, Simplified Schematic

Figure 2-61. +500-Volt D-C Supply, Simplified Schematic

R-3012 and R-3013, comprises a bleeder for the supply. This network also is a voltage divider, the center point of which is a tap for the -220 V indicator, $1-3006$, which denotes the presence of the -220 -volt supply. $\mathrm{J}-3005$ provides a test point for measuring this supply.

5. POWER SUPPLY PP-1095/SRT (MEDIUM VOLTAGE POWER SUPPLY, MVPS).

a. GENERAL.-The medium voltage power supply (MVPS) receives 110 -volt a-c, $60-\mathrm{cycle}$, single-phase power from the LVPS and supplies +500 volts dc to the LLRM and RFA, and $+1,050$ or $+1,300$ volts dc to the RFA. In addition to the rectifier circuits, the MVPS contains a switching relay to insure +500 -volt d-c supply is available before +300 volts dc is applied.
b. +500-VOLT D-C SUPPLY.-When the START button of the MAIN POWER switch $\because R$, S-3004, on the LVPS is depressed, 110 -volt a-c, 60 -cycle, singlephase power is delivered to the filament transformer, T-502 (figure 2-61), whose primary is protected by fuse $\mathrm{F}-503$. One secondary of $\mathrm{T}-502$ supplies filament voltage to the +500 -volt rectifiers, $V-501$ and $V-502$.

At the same time, a-c power is delivered through fuse F-501 to the contacts of relay $\mathrm{K}-501$, which must be energized before power is applied to the +500 -volt plate voltage tranformer, T-501. K-501 is energized from the " -24 V after standby" line and receives ground through the contacts of relay $\mathrm{K}-503$. K-503 is energized from the " -24 V after standby" line and the "ground for 100 W" line.

If the transmitter group is operating at the 100 -watt level and the STANDBY-OPERATE switch ® $®$, -3005 on the LVPS, is on OPERATE, the " -24 V after standby" line will be energized after the time delay is complete; also the "ground for 100 W " line will be connected and the "ground for 500 W " line will be opened. Therefore, $\mathrm{K}-503$ will energize and $\mathrm{K}-501$ will energize through contacts 1 L and 2 L of $\mathrm{K}-503$ to "ground for 100 W"' line. Energized K-501 supplies plate voltage for the +500 -volt d-c supply through its contacts $2 R, 3 R$ and $2 \mathrm{~L}, 3 \mathrm{~L}$ and plate transformer $\mathrm{T}-501$.

If the transmitter group is in 500 -watt operation (AN/SRT-15 and 16 only), the "ground for 100 W" line will be opened and the "ground for 500 W" line will be completed. Thus $\mathrm{K}-503$ will not be energized and $K-501$ now receives its ground through contacts 5 L and 6 L of $\mathrm{K}-503$ and the "ground for 500 W " line. In 500 -watt operation the 500 volts dc becomes primarily a screen supply and this transfer of ground, as described before, is to make sure that screen voltage will not be applied before the high voltage plate supply, which is also under control of the "ground for 500 W " line.

If the STANDBY-OPERATE switch $®$ is in STANDBY, on either 100 -watt or 500 -watt operation, the +500 -volt d-c supply will not energize as the " -24 V after standby" line will be open and $\mathrm{K}-501$ cannot be energized. This, in turn, will prevent a-c power from being applied to the plate transformer.

When 110 -volt a-c power is applied to the primary of T-501 as described above, it is indicated by the 500 V PRI indicator, I-501, which is connected across the T-501 primary. The secondary of T-501 supplies $\mathbf{6 2 0}$ volts rms to the plates of rectifier tubes V-501 and V-502, which are connected to form a full-wave rectifier. The rectified voltage, taken from the center-tap terminal 4 of filament transformer T - 502 , is filtered by a double choke input filter comprised of L-502, C-502, L-501, and C-501. Resistor R-501 acts as a bleeder for the supply. Resistor $R-514$ is a dropping resistor for the 500 V OUTPUT indicator, I-503, which denotes the presence of the +500 -volt d-c output. The output is rated at 364 ma and is supplied to the LLRM and RFA. J-504 provides a test point for measuring the +500 volt supply.

Two elapsed time indicators, TOTAL HOURS-FIL, M-501, and TOTAL HOURS-PLATE, M-502, are provided to indicate total time filament and plate power are on. M-501 is connected across the primary of the filament transformer, T-502, and M-502 is connected across the primary of the 500 -volt plate transformer, T-501. As noted in the previous paragraphs, the filament transformer receives power as soon as the START button is pushed, regardless of "stand-by" or "operate" condition. However, T-501 receives power only when in the "operate" condition. Therefore, the reading of M-502 will give total time plate power is on, and the reading of $\mathrm{M}-501$ shows the total time filament power is supplied. Both indications read to tenths of an hour.
c. 300-VOLTSWITCH RELAY.-The 300-volt switch relay, K-504 (figure 2-62), assures that +300 -volt d-c supply of the LVPS does not come on before the +500 volt d-c supply of the MVPS, as explained in paragraph $4 e$. When the +500 -volt d-c supply comes on, it is applied across the dropping resistors, $R-519, R-520$, R-521, and R-522, in series with the 300 -volt switch relay, $\mathrm{K}-504$. Capacitor $\mathrm{C}-505$ is in parallel across K-504 through its normally closed contacts $1 R$ and $2 R$, which makes K-504 slow operating. When K-504 operates, $C-505$ is removed from the circuit and resistor $\mathrm{R}-523$ is placed across $\mathrm{C}-505$ through contacts 3 R and 4 R of $\mathrm{K}-504$ to allow $\mathrm{C}-505$ to discharge without arcing at the contacts. When $K-504$ is energized, contacts $5 R$ and 6R close, completing the +300 -volt d-c supply circuit in the LVPS.
d. $+1,050 /+1,300-$ VOLT D-C SUPPLY.-The $+1,050 /+1,300$-volt rectifier (figure 2-63) is used only in 100 -watt transmission. The output to the RFA is $+1,300$ volts except during phone operation when it is reduced to $+1,050$ volts. When the START button of the MAIN POWER switch ®® S-3004 on the LVPS, is depressed, 110 -volt a-c, 60 -cycle, single-phase power is delivered to the filament transformer, T-502, whose primary is protected by fuse $F-503$. One secondary of T-502 supplies filament voltage to the $+1,050 /+1,300-$ volt rectifiers, V-503 and V-504.

Figure 2-62. 300-Volt Switch Relay, Simplified Schematic

At the same time, a-c power is delivered through fuse $\mathrm{F}-502$ to the contacts of relay $\mathrm{K}-503$. K-503 must be energized before power is applied through the contacts of relay $\mathrm{K}-502$ to the $+1,050 /+1,300$-volt plate voltage transformer, T-503. As described in paragraph 5b, $\mathrm{K}-503$ is energized only in 100 -watt operation and if the STANDBY-OPERATE switch, S-3005 on the LVPS, is in OPERATE.

If the transmitter group is in other than phone operation, the "ground for phone" line is opened and relay $\mathrm{K}-502$ cannot operate. Therefore, when $\mathrm{K}-503$ is energized, 110 -volt a-c power is applied through contacts $1 R, 2 R$ and $3 \mathrm{~L}, 4 \mathrm{~L}$ of $\mathrm{K}-503$ and contacts $1 \mathrm{~L}, 2 \mathrm{~L}$ of K-502 to terminals 1 and 2 of the plate transformer primary which produces 3,160 volts rms at the secondary terminals 4 and 6 . When rectified and filtered, this produces the $+1,300$-volt supply.

When the transmitter group is in phone operation the "ground for phone" line is prepared and relay K -502 energizes from " -24 V after TD" line. Energized K-502 now applies 110 volts ac to terminals 1 and 3 of the plate transformer primary, which increases the number of turns employed in the primary. This produces the effect of reducing the secondary to primary turns ratio, reducing the secondary voltage at terminals 4 and 6 to 2,480 volts rms. When rectified and filtered, this produces the $+1,050$-volt supply. The lesser voltage is used during phone operation because the power amplifier plate voltage is amplitude-modulated by the audio output of either the LLRM or HLRM. If the voltage were
not reduced, the peaks of the amplitude-modulated plate voltage of the power amplifier would exceed its peak voltage rating.
As relay K-502 operates only during phone operation, a circuit advances "ground for 500 W" line through the contacts $2 R$ and $3 R$ of $K-502$, when it is energized, to the HLRM for use in controlling the output of the HLRM during phone operation as described in paragraph $9 b$.
The energizing of relay $\mathrm{K}-503$ also supplies 110 volts ac to the 1300 V PRI. indicator, I-502. As this indication is not under control of relay $\mathrm{K}-502$, it indicates power applied to the plate transformer, T-503, for either the $+1,050$-volt or the $+1,300$-volt output.
Rectifier tubes V-503 and V-504 are connected as a full-wave rectifier. The rectified voltage is taken from filament, pin 4, of each tube and filtered by a double choke input filter comprised of L-504, C-504, L-503, $\mathrm{C}-503$. Resistors $\mathrm{R}-502$ and $\mathrm{R}-513$ are bleeder resistors. Resistors R-515, R-516, R-517, and R-518 form a voltage divider to which 1300 V OUTPUT indicator I-504 is connected. The output is rated at $+1,050$ volts, 150 ma , and $+1,300$ volts, 180 ma , and is supplied to the RFA.

6. POWER SUPPLY PP-1096/SRT (HIGH VOLTAGE POWER SUPPLY, HVPS).

a. GENERAL. - The high voltage power supply (HVPS) is used only in the AN/SRT-15 and 16 for 500 -watt transmission. This unit receives either 220 .

Figure 2-63. $+1,050 /+1,300$-Volt D-C Supply, Simplified Schematic

Figure 2-64. Input Circuit of HVPS, Simplified Schematic
volt or 440 -volt a-c, 60 -cycle, three-phase power from the ship's supply and has an output of either $+3,000$ volts dc or $+2,400$ volts dc, which is supplied to the HLRM.
b. INPUT CIRCUIT.-The HVPS receives from the ship's supply either 440 volts or 220 volts, three phase, at 60 cycles (figure 2-64). Power to the HVPS is controlled by BOOSTER EMERGENCY SWITCH (Ss) S-1501. The three-phase line supplies voltages to both the plate transformer, T-1502, and the filament transformer, T-1501. The filament transformer is connected across one phase of the input and is fused by $\mathrm{F}-1504$ and $F-1505$ or $F-1509$ and $F-1510$. For 440 -volt input,
3.5-amp fuses $\mathrm{F}-1504$ and $\mathrm{F}-1505$ are used, and for 220 -volt input, 6.25 -amp fuses $F-1509$ and $F-1510$ are used. Power is connected to $\mathrm{T}-1501$ through terminal board $\mathrm{E}-1504$. With 440 -volt input (figure 2-65), a link is placed between terminals 2 and 3 of $E-1504$, which places the two primaries of T-1501 in series across the line. With 220 -volt input (figure $2-66$), links are placed between terminals 1 and 3 and between 2 and 4, which places the two transformer primaries in parallel. In either case, the voltage across either one of the two primaries (terminals 1 and 2 or 3 and 4 of $T-1501$) is 220 volts.

Figure 2-65. Transformer T-1502 Primary and Meter Connections for 440-Volt Input

The motor of the time delay relay $\mathrm{K}-1504$ is connected across terminals 3 and 4 of $E-1504$, which is at 220 volts with either 220 -volt or 440 -volt input. As soon as the BOOSTER EMERGENCY SWITCH (S), S-1501, is closed, 220 volts is applied to the motor of $\mathrm{K}-1504$. After approximately 30 seconds, K-1504 closes its two sets of contacts. Contacts 5 and 7 place TIME DELAY indicator $\mathrm{I}-1504$ and dropping resistor $\mathrm{R}-1508$ across 220 volts. Contacts 2 and 8 prepare the " 500 W disable" line, which disables the 500 -watt operation controls, including application of power to the plate trans-
former, T-1502, until the filaments of the HVPS have had time to reach operating temperature. When contacts 2 and 8 of $\mathrm{K}-1504$ close and if the other conditions are met, the transmitter group can be placed in 500 watt operation (see paragraph $10 e(1))$. The "ground for 500 W" line is now completed, and if the STAND-BY-OPERATE switch $®$ P, S- 3005 in the LVPS, is in OPERATE, the " -24 V after standby" line will be energized, and high voltage plate relay $\mathrm{K}-1502$ will be energized. Contacts L1 and T1, L2 and T2, and L3 and T3 of K-1502 connect 220 -volt or 440 -volt three-phase

Figure 2-66. Transformer T-1502 Primary and Meter Connections for 220-Volt Input
power to plate transformer $\mathrm{T}-1502$ through fuses $F-1501, F-1502$, and $F-1503$ or $F-1506, F-1507$, and F -1508. These fuses are $3.5 \mathrm{amp}(\mathrm{F}-1501$ through $\mathrm{F}-1503$) for 440 -volt input, and 6.25 amp ($\mathrm{F}-1506$ through $\mathrm{F}-1508$) for 220 -volt input.

When contacts L1 and T1, L2 and T2, and L3 and T3 of K-1502 close, three-phase power is connected to indicators H.V. PRIMARY- ϕ (I-1503), H.V. PRIMARY\$2 (I-1502), and H.V. PRIMARY- $\phi 3$ (I-1501), which
are wye-connected across the phases and indicate the presence of voltage at the primary of the plate transformer, $\mathrm{T}-1502$. Resistors $\mathrm{R}-1501, \mathrm{R}-1502, \mathrm{R}-1503$, $R-1505, R-1506, R-1507$ are dropping resistors for the indicators. With 220 -volt input, $\mathrm{R}-1505, \mathrm{R}-1506$, $\mathrm{R}-1507$ are shorted by connecting links between terminals 1 and 2, 3 and 4,5 and 6 on $E-1503$. If one phase is open, the indicator for that phase will not light; if two or all three phases are open, none of the indicators will light.

Figure 2-67. +2,400/+3,000-Volt D-C Supply, Simplified Schematic

Two elapsed time indicators, TOTAL HOURS-500 W-FIL (M-1501) and TOTAL HOURS-500 W-PLATE (M-1502) (figures $2-65$ and $2-66$), are provided to indicate total time the transmitter group operates at 500 watts. M-1501 is connected across 220 volts in parallel with one primary winding of the filament transformer, $\mathrm{T}-1501$, and thus records total time power is applied to the HVPS filaments. M-1502 is connected across one of the phases of the line in parallel with primary 2 of the plate transformer, $T-1502$, and, accordingly, records total time plate power is applied to the HVPS. Resistors $R-1509, R-1510, R-1511$ are dropping resistors for M-1502 with 440 -volt input. With 220 -volt input, these resistors are shorted by connecting links between terminals 7 and 8 on $\mathrm{E}-1503$.

$$
\text { c. }+2,400 /+3,000 \text {-VOLT SUPPLY.-The }+2,400 /
$$ $+3,000$-volt rectifier circuit may have a three-phase input of either 440 volts or 220 volts. Figures 2-65 and 2-66 show the primary connections of T-1501 and T-1502 for each voltage. The primary of filament transformer T-1501 has two windings. Links on terminal board $\mathrm{E}-1504$ connect the primary windings of $\mathrm{T}-1501$, either in parallel (220-volt input) or in series (440-volt input). The primary of plate transformer $\mathrm{T}-1502$ has six windings, arranged in a delta connection with two windings in each phase. With a 440-volt input (figure 2-65), these two windings are placed in series, and with a 220 -volt input (figure 2-66) they are in parallel; therefore, there is always 220 volts across each winding. The primary connections of T-1502 are changed by means of links on a terminal board mounted on the transformer.

Relay $\mathrm{K}-1501$ is energized during phone operation and reduces the output of the supply from $+3,000$ volts at 355 ma to $+2,400$ volts at 560 ma by decreasing the turns ratio of plate transformer $T-1502$. The voltage output is reduced during phone operation because it is amplitude-modulated by the audio output of the HLRM. Therefore, the power output of the RFA is smaller during phone operation.

The secondary of $T-1502$ is delta-connected (figure 2-67). Each winding develops 2,260 volts rms when the transmitter is on cw, and 1,835 volts rms when the transmitter is on phone. Six half-wave rectifiers, V-1501 through $\mathrm{V}-1506$, are connected as a three-phase fullwave rectifier. There are always two tubes conducting.

If we assume that point $\mathrm{HV}-1$ is positive and $\mathrm{HV}-2$ is negative, rectifiers $\mathrm{V}-1506$ and $\mathrm{V}-1502$ are conducting. Electron flow is from $\mathrm{HV}-2$ through $\mathrm{V}-1502$ to ground, then through the load and back through $\mathrm{V}-1506$. When the polarity of this phase reverses (HV-1 negative, HV-2 positive), rectifiers V-1503 and V-1505 conduct. Electron flow is now from HV-1 through $\mathrm{V}-1503$ to ground, then through the load and back through V-1505. Therefore, this phase gives two current peaks for each cycle. Similarly, each of the other two phases gives two current peaks for each cycle, but at different times because of the 120° phase angle between each phase voltage (figure 2-68). This develops six

3-PHASE INPUT VOLTAGE

OUTPUT VOLTAGE
(NOT DRAWN TO SCALE)

Figure 2-68. $+2,400 /+3,000$-Volt Rectifier Input and Output, Voltage Wave Forms
current peaks through the load during the time for one cycle. The ripple frequency at the output of the rectifiers will therefore be six times the input irequency, or 360 cps. Since the ripple frequency is so high, filter capacitors $\mathrm{C}-1603$ and $\mathrm{C}-1604$ may be smaller than would be required for a single-phase, full-wave rectifier because less filtering is required.

Except for the input choke, L-1501, the filter and voltage divider resistors are located in the HLRM because of space limitations in the HVPS. The single choke input filter consists of $\mathrm{L}-1501, \mathrm{~L}-1604$, and $\mathrm{C}-1603$. Resistors $\mathrm{R}-1621$ through $\mathrm{R}-1627$ form a voltage divider from which the $3,000 \mathrm{~V}$ indicator, $\mathrm{I}-1601$, receives its operating voltage, and they also act as bleeders for the $+3,000$-volt supply.

Filament transformer T-1501 has four secondaries, of which three are 5 -ampere windings and one a 15 -ampere winding. The 15 -ampere winding (terminals 11 and 12) supplies filament power to $V-1504, V-1505$, and V -1506. Rectifiers $\mathrm{V}-1501, \mathrm{~V}-1502$, and $\mathrm{V}-1503$ each employ a separate 5 -ampere filament winding. This difference in the ratings of the secondary windings must be carefully observed when replacing transformer T-1501.

The $+3,000$-volt output is supplied to the HLRM in 500 -watt level for cw, frequency-shift, and facsimile operation, while $+2,400$ volts is supplied to the HLRM at the 500 -watt level for phone operation.

7. RADIO MODULATOR MD-229/SRT (LOW LEVEL RADIO MODULATOR, LLRM).

a. GENERAL.-The low level radio modulator (LLRM) consists of an audio amplifier chain, a keying circuit, the LOCAL-REM switch $\mathbb{X}, \mathrm{S}-1106$, a regulated +250 -volt power supply, a -12 -volt power supply and an ATU bypass transfer circuit (figure 2-130).

Figure 2-69. Audio Input Circuit, Simplified Schematic

Figure 2-70. Audio Amplifiers V-1001 and V-1002A, Cathode Follower V-1002B and AGC Rectifier V-1013A, Simplified Schematic
b. AUDIO AMPLIFIER CHAIN.-The audio amplifier chain receives a signal locally from either a carbon or dynamic microphone or remotely from a radiophone unit when the transmitter group is in phone operation. In 100 -watt operation, this signal is amplified to a level suitable for 100 percent amplitude modulation of the plate of the power amplifier in the radio frequency amplifier. In 500 -watt operation there is a secondary output of the audio amplifier chain, which is fed to the high level radio modulator for further amplification. The circuitry is designed to minimize the effects of noise, microphonics, and other interferences which tend to obscure the clarity of the audio signal.
(1) AUDIO INPUT CIRCUIT.-An audio input may be received locally through the HANDSET jack, J-1106, or the MIC. jack, J-1105 (figure 2-69). The signal is coupled to the 35 -ohm tap (terminal 2) of the input transformer, $\mathrm{T}-1003$, through capacitor $\mathrm{C}-1001$ and contacts 8 R and 10R of the LOCAL-REM switch $\star, S-1106$, in the LOCAL position. If the input is from a carbon microphone, -12 volts to energize the microphone is supplied through contacts 2 and 3 of the DYNAMIC-CARBON switch $\odot, S-1102$, and the filter network comprised of resistors $R-1001$ and $R-1002$ and capacitor $\mathrm{C}-1002$. With dynamic microphone input, the -12 volts is disconnected and the filter network is tied to ground. The impedance of the filter network is high enough to not seriously shunt the 35 -ohm termination of the microphone line. When the audio signal comes from a remote radiophone unit, it is connected across the full 600 -ohm primary of $\mathrm{T}-1003$ (terminals 1 and 3) through contacts 11 F and 12 F of switch ($(x$ S-1106 in the REM position. The output of transformer $\mathrm{T}-1003$ (terminals 4 and 5) is connected to a voltage divider network comprised of resistors $\mathrm{R}-1126, \mathrm{R}-1004$, and $R-1003$ to ground. To compensate for the fact that the signal level from a carbon microphone is higher than from a dynamic microphone, the output to the following stage for dynamic mircrophone input is taken from a higher tap on the voltage divider by means of DYNAMIC-CARBON switch S-1102. With DYNAMIC phone input, the output to the following stage is taken from the junction of $\mathrm{R}-1126$ and $\mathrm{R}-1004$, through contacts 4 and 5 of DYNAMIC-CARBON switch \uparrow Y S-1102 in the DYNAMIC position, while, for carbon microphone input, the output is taken from the junction of R-1004 and R-1003 through contacts 6 and 5 of DY-NAMIC-CARBON switch $\odot \mathcal{Y}^{-}-1102$ in the CARBON position. The comparative signal levels, as determined by the values of the voltage-divider resistors, are such that the following amplifier stage will not be overdriven, causing distortion.
(2) AUDIO AMPLIFIERS V-1001 AND V-1002A, CATHODE FOLLOWER V-1002B AND AGC RECTIFIER V-1013A.-The output from T-1003 is fed to a two-stage audio preamplifier consisting of $\mathrm{V}-1001$ and $V-1002 A$ (figure 2-70). The preamplifier feeds a cathode follower $\mathrm{V}-1002 \mathrm{~B}$, whose function is to match the high-impedance output of the preamplifier to the
low impedance of the clipper stage that follows. The cathode follower output is also fed to the AGC circuit, which is a negative feedback to the first stage of the preamplifier, $\mathrm{V}-1001$, causing $\mathrm{V}-1001$ to have a constant output level over a large range of input amplitudes.
(a) AUDIO AMPLIFIERS V-1001 AND V-1002A.-Connections between the audio amplifiers, V-1001 and V-1002A, that are mounted on the subchassis and associated components on the main LLRM chassis are made through a male connector, J-1111, mounted on the subchassis, and a mating female connector, J-1109, mounted on the main chassis. The audio output from $T-1003$ is connected to the suppressor grid, pin 7 of V-1001, through the "P" pins of J-1109 and $\mathrm{J}-1111$ and grid resistor $\mathrm{R}-1138$. The AGC control voltage is applied to the control grid, pin 1 of $V-1001$, through the " B " pins of J-1109 and J-1111 and grid resistor $R-1139$. The voltage-divider network, comprised of resistors $R-1008, R-1007$ and $R-1005$, connected from the +250 -volt regulated supply to ground, besides supplying screen grid voltage also places a cathode-biasing potential of approximately two volts on V-1001. During no-signal condition, the AGC circuit causes the control grid to draw a small amount of current so that control grid to cathode voltage is approximately zero. The total suppressor grid to cathode bias potential is approximately -4 volts, which is a sum of the power bias potential and the self-biasing caused by no-signal tube current flow. This keeps the tube operating in the linear portion of its characteristic. The effect of supplying the signal to the suppressor grid and the AGC control to the control grid is to produce a highly sensitive AGC control without requiring high input signal strength as compared to the AGC voltage, which would be needed to prevent distortion when AGC and signal voltages are both applied to the control grid. A complete description of the AGC action follows in paragraph $7 b(2)(c)$. The output of $\mathrm{V}-1001$ is fed to a high-gain triode V-1002A, which is a standard audio amplifier using degenerative feedback through cathode resistor $\mathrm{R}-1010$ for improved fidelity.
(b) CATHODE FOLLOWER V-1002B. - To match the relatively high output impedance of $\mathrm{V}-1002 \mathrm{~A}$ to the low impedance of the diode clipper stage, a cathode follower $\mathrm{V}-1003 \mathrm{~A}$ is introduced. The plate of $\mathrm{V}-1002 \mathrm{~A}$, pin 1, is directly connected to the grid, pin 7 , of $\mathrm{V}-1002 \mathrm{~B}$ to provide a large enough signal voltage swing across the cathode resistor, $R-1015$. $R-1015$ is a potentiometer, so that the amplitude of the signal coupled to the following clipper stage may be controlled. This is identified as the GAIN TO CLIP control $\left(\begin{array}{ll}(1)\end{array}\right.$ The full signal developed across $R-1015$ is also coupled to the squelch circuit and to the AGC circuit.
(c) AGC RECTIFIER V-1013A. - The signal from $V-1003 A$ is coupled to the AGC circuit through capacitor $C-1005$. A voltage-divider network consists of $R-1012, R-1017, R-1020$ from +250 volts to ground so that the junction of $R-1012$ and $R-1017$ is at +20 volts. This point is tied to the cathode, pin 1, of the AGC

Figure 2-71. Clipper V-1014, Simplified Schematic
rectifier, $V-1013 A$, and to resistor $R-1127$; then through contacts 1 and 2 of the AGC switch, $(P, S-1103$, in the ON position, resistors $\mathrm{R}-1013$ and $\mathrm{R}-1142$ through the " B " contacts of J-1109 and J-1111 to $R-1139$, and then to the control grid of the first amplifier, V-1001. This tends to make the V-1001 grid draw current, but because of the large values of $R-1127, R-1013, R-1142$, and $R-1139$, this current is so small that, effectively, the grid to cathode potential of V-1001 is zero volts. As the cathode of $\mathrm{V}-1001$ is biased at no signal to approximately +4 volts to ground, the grid to ground voltage is also +4 volts. Effectively there is a voltage-divider action at no signal across $R-1127, R-1013, R-1142$, and $R-1139$ from +20 volts to $+\mathbf{4}$ volts, so that the junction between $R-1127$ and $R-1013$, at which point the plate of the AGC rectifier, $V-1013 A$ (pin 7), is tied, is at +12 volts. Therefore, during no-signal condition, the plate of the AGC rectifier is approximately -8 volts with respect to its cathode. Whenever a positive peak of the audio exceeds 8 volts, the AGC rectifier will conduct and any additional peak signal voltage will build up a charge across capacitor $C-1005$. During the negative portions of the signal, the voltage across $\mathbf{C}-1005$ is connected through the two-section filter comprised of $R-1013, C-1003 B, R-1142$, and $C-1003 A$, through the AGC switch $\oplus, S-1103$, in the $O N$ position to the control grid of $\mathrm{V}-1001$. The polarity of this voltage across C -1005 is negative with respect to ground. As C-1005 is connected to the control grid of $\mathrm{V}-1001$, the voltage developed across it tends to increase the bias on V-1001, decreasing its gain. The higher the signal voltage appearing across the output of the cathode follower, the larger will be the negative bias built across C-1005. The bias developed by the AGC circuit, of course, cannot completely counteract its cause, which is increased signal strength. However, the gain of $\mathrm{V}-1001$ is controlled so that a $30-\mathrm{db}$ range of input will cause less than a $10-\mathrm{db}$ range of output. The AGC may be turned off by placing the AGC switch $\odot, S-1103$, in the OFF position. This removes the AGC rectifier from the circuit and connects the +20 -volt tap on the voltage divider directly to the grid of V-1001 through contacts 2 and 3 of S-1103 and resistors $R-1013$ and $R-1142$, which keeps the control grid-to-cathode potential at approximately zero volts.
(3) CLIPPER V-1014.-This stage (figure 2-71) limits the audio signal amplitude to prevent overmodulation of the carrier by excessively strong signals. The clipper, $\mathrm{V}-1014$, is a double diode. The plate of the first half, pin 7 , is connected to ground and the cathode of the second section is tied to +4 volts at the junction of $R-1017$ and $R-1020$, which is part of a voltage divider from regulated +250 volts to ground, consisting of R-1012, R-1017, and R-1020. The cathode of the first half, pin 1, and the plate of the second half, pin 2, are tied together and held at a d-c potential of between +4 volts and zero, depending on the setting of potentiometer $\mathrm{R}-1020$, which is adjustable to allow for a difference in characteristics between the two halves of V-1014. If the two halves are exactly similar, the setting of the arm of $R-1020$ is +2 volts. The audio signal from the cathode follower is coupled by capacitor C-1009 to the junction of pins 1 and 2 of $V-1014$. Effectively, the cathodes of both halves are approximately two volts more positive than their respective plates, with the signal being fed to the plate of one half and the cathode of the other half. When the positive peak of the audio signal reaches +2 volts, the plate of the second half of $\mathrm{V}-1014$ becomes positive with respect to its cathode, and the second half of $\mathrm{V}-1014$ conducts, clipping the positive swing of the signal to a maximum of two volts, the additional signal peak above two volts appearing across resistor $\mathrm{R}-1018$. The same reasoning holds when the negative swing of the audio signal reaches two volts, with the first half of V-1014 conducting in this case instead of the second half. As mentioned above, the CLIPPER SYM. potentiometer, $\mathrm{R}-1020$, is adjusted so that any difference in plate current characteristics of the two halves of $\mathrm{V}-1014$ can be regulated to make sure that the positive and negative peaks of the audio signal are clipped at the same voltage level. The clipper output is developed across resistor R -1019 and coupled to audio amplifier V-1004A.
(4) AUDIO AMPLIFIERS V-1004A AND $\mathrm{V}-1002 \mathrm{~B}$.-The output of the clipper is coupled through capacitor $\mathrm{C}-1010$ to audio amplifier V-1004A (figure 2-72), which amplifies the signal and couples it through capacitor C-1041 to band-pass filter network Z-1001, which passes frequencies in the range of 200 cps to 4,500
cps. This filter cuts out the high-frequency harmonics of the audio signal, which were introduced by the clipper action in the previous stage, as well as noise frequencies outside of the band of the filter. The output of the filter is applied across potentiometer $\mathrm{R}-1032$, which is known as the $\%$ MOD © control. In 100-watt operation, the LLRM delivers 50 watts to the RFA to modulate the carrier, while during 500 -watt operation the LLRM delivers 6 watts to the HLRM. For this reason the output of the potentiometer, $\mathrm{R}-1032$, is fed to a voltage-divider chain under control of gain change relay $K-1104$. During 100-watt operation the entire output is coupled to the following stage through contacts 7 R and 8 R of unenergized $K-1104$. In 500 -watt operation, $K-1104$ is energized and the output of $R-1032$ is applied across the network of R-1050, R-1049, and the 500 W. AUDIO LEVEL variable resistor, R-1048, to ground. The tap on the network at the junction between $\mathrm{R}-1050$ and $\mathrm{R}-1049$ is now coupled to the following stage through contacts $9 R$ and $8 R$ of energized $K-1104$. Depending on the setting of $R-1048$, the audio signal fed to amplifier $\mathrm{V}-1002 \mathrm{~B}$ in 500 -watt operation is 30 percent to 50 percent of the signal output from $\mathrm{R}-1032$. The output of $\mathrm{R}-1032$ is adjusted for 100 percent modulation of the carrier in either 100 -watt or 500 -watt operation. The setting of $R-1048$ is a fine control for adjusting for 100 percent modulation in 500 -watt operation. With SERVICE SELECTOR switch (1) S-1101 in any other posicion than PHONE, any signal output from amplifier V-1004A will be grounded through contacts of S-1101E front. In addition to being coupled to $V-1002 B$, the
signal from $\mathrm{V}-1004 \mathrm{~A}$ is under control of the keying relay, K-1101, when SERVICE SELECTOR switch S-1101 is in the PHONE position, through contacts 12 and 6 of S-1101F rear. In phone operation, keying relay $K-1101$ is energized when the press-to-talk button on the phone is depressed. The signal is grounded through contacts $1 R$ and $2 R$ of $K-1101$ when it is not energized. The signal is coupled to amplifier V-1003A through capacitor $\mathrm{C}-1015$.

In addition to the audio signal being coupled to the grid of V-1003A, there is a negative bias from the squelch circuit, $\mathrm{V}-1008$ and $\mathrm{V}-1013 \mathrm{~B}$, which is sufficient to cut off $\mathrm{V}-1003 \mathrm{~A}$ if the level of audio signal is not high enough. The output of $\mathrm{V}-1003 \mathrm{~A}$ is coupled through $\mathrm{C}-1016$ to phase inverter $\mathrm{V}-1003 \mathrm{~B}$ and sidetone amplifier $\mathrm{V}-1004 \mathrm{~B}$. The various conditions that must be met before there is an output from V-1003A are: SERV. ICE SELECTOR switch (1) S-1101 in PHONE position, press-to-talk button on phone depressed, and squelch circuit receiving an audio signal of sufficient level.
(5) SQUELCH CIRCUIT.-To prevent transmission of noise when the audio signal is not present, the squelch circuit prevents amplification by the audio chain by biasing the grid of audio amplifier $\mathrm{V}-1002 \mathrm{~B}$ below cutoff unless there is an audio signal. The squelch circuit consists of a multivibrator, V-1008, a crystal rectifier, CR-1002, and limiter V-1013B.
(a) SQUELCH MULTIVIBRATOR V-1008. The audio signal as developed at the output of the cathode follower, $\mathrm{V}-1003 \mathrm{~A}$, is coupled through capaci-

Figure 2-72. Audio Amplifiers V-1004A and V-1003A, Simplified Schematic

Figure 2-73. Squelch Mulrivibrator V-1008, Simplified Schematic
tor $\mathrm{C}-1006$ to the grid of $\mathrm{V}-1008 \mathrm{~A}$, pin 2 (figure 2-73). Resistors R-1121, R-1028, R-1014, and R-1025 form a divider network from -105 volts to ground. This produces a potential of -30 volts at the junction of $R-1121$, $\mathrm{R}-1014$, and $\mathrm{R}-1028$. $\mathrm{R}-1014$ is the SQUELCH TRIG. control (L), the arm of which is tied to the grid of $\mathrm{V}-1008 \mathrm{~A}$ through grid-leak resistor $\mathrm{R}-1128$. With control (L) turned all the way down, the grid of $V-1008 A$ is at -30 volts, but $\mathrm{V}-1008 \mathrm{~B}$, whose grid is tied to +300 volts through $R-1024$. and $R-1031$, conducts heavily, causing a positive voltage across cathode resistor $R-1025$ of about +20 volts. As $R-1025$ is a common cathode resistor for both $\mathrm{V}-1008 \mathrm{~A}$ and $\mathrm{V}-1008 \mathrm{~B}$, the voltage across it, together with the -30 volts on the grid, biases V-1008A well below cutoff. Turning the SQUELCH TRIG. control (L) up gradually reduces the grid-to-cathode bias on $V-1008 A$. The audio signal coupled to the grid of $\mathrm{V}-1008 \mathrm{~A}$ must be large enough to overcome the grid-to-cathode bias to affect the operation of the squelch multivibrator. When the positive peaks of the signal are above the minimum level established by the SQUELCH TRIG. control (L), R-1014, signal is applied to the control grid of $\mathrm{V}-1008 \mathrm{~A}$; this tube begins to conduct, causing its plate voltage to decrease. The decrease of plate voltage of $\mathrm{V}-1008 \mathrm{~A}$ is coupled through capacitor $\mathrm{C}-1011$ to the grid of $\mathrm{V}-1008 \mathrm{~B}$, pin 7 , which causes the current in $\mathrm{V}-1008 \mathrm{~B}$ to decrease, which, in turn, increases the plate voltage of $V-1008 \mathrm{~B}$, pin 6 . The decrease in plate current of $\mathrm{V}-1008 \mathrm{~B}$ also reduces the bias voltage developed across $\mathrm{R}-1025$, causing $\mathrm{V}-1008 \mathrm{~A}$ to conduct even more. The above action is rapidly accumulative until $\mathrm{V}-1008 \mathrm{~B}$ is cut off. The resultant is that a positive pulse appears at the plate of $\mathrm{V}-1008 \mathrm{~B}$ for every positive peak of
audio signal above the minimum level. These pulses are coupled to the squelch rectifier, CR-1002. Resistor $\mathrm{R}-1031$ in the grid circuit of $\mathrm{V}-1008 \mathrm{~B}$ is a parasitic suppressor.
(b) SQUELCH RECTIFIER CR-1002 AND LIMITER V-1013B.-Positive pulses from the squelch multivibrator are coupled to the squelch rectifier CR-1002 through capacitor $\mathrm{C}-1012$ (figure 2-74). Resistors R-1121 and R-1028 form a voltage divider from -105 volts to ground so that there is -30 volts present at the junction of $R-1121$ and $R-1028$. When there are no positive pulses, this negative voltage is connected to the grid of audio amplifier V-1003A, pin 2, through R -1030, the high back-resistance of the crystal rectifier CR-1002, R-1029, and R-1129, which biases V-1003A below cutoff. When there are positive pulses, they appear across $\mathrm{R}-1030$ and $C R-1002$ conducts. $C-1013$, $\mathrm{R}-1029$, and $\mathrm{C}-1052$ act as filter network to the output to the grid of $\mathrm{V}-1003 \mathrm{~A}$. The filtering action is such that voltage on the grid of $\mathrm{V}-1003 \mathrm{~A}$ becomes the value of the pulse superimposed on the d-c negative bias, which will raise the grid of V-1003A above cutoff, allowing it to amplify the audio signals being received from amplifier $\mathrm{V}-1004 \mathrm{~A}$. The time constants involved in the filter components are so large with respect to the period of even the lowest audio signal, the bias on V-1003A will be essentially constant and at the level needed to keep V-1003A operating in the linear portion of its characteristic. A further safeguard of this is given by the action of the limiter diode, V-1013B. If the positive pulses received from the multivibrator should be of high enough amplitude to raise the resultant voltage applied to $V-1002 B$ grid above ground, the plate of $\mathrm{V}-1013 \mathrm{~B}$ becomes more positive than its cathode, which

Figure 2-74. Squelch Rectifier CR-1002 and Limiter V-1013B, Simplified Schematic
is grounded. It conducts heavily, limiting the voltage applied to $\mathrm{V}-1003 \mathrm{~A}$ to a maximum of zero volts with respect to ground. Additional peak voltages above ground appear across resistor R-1029.
(6) SIDETONE AMPLIFIER V-1004B.-For monitoring purposes, the output of audio amplifier V-1003A is coupled through $\mathrm{C}-1053$ (figure $2-75$) to a voltage divider comprised of $R-1144$ and $R-1143$. A reduced portion of this signal, obtained from the junction of $R-1144$ and $R-1143$, is connected through contacts 12 and 6 of S-1101D rear, when SERVICE SELECTOR switch (U) S-1101 is in the PHONE position, to the grid of sidetone amplifier V-1004B. The output of V-1004B is coupled by an output transformer, T-1005, to three monitoring outputs: the HAND SET receptacle, J-1106, the SIDETONE jack, J-1104, and to the remote radiophone unit. The output to J-1106 and J-1104 is under control of SIDETONE attenuator (N) E-1003, which is an L-pad. Besides acting as volume control for the
sidetone output, $\mathrm{E}-1003$ also acts as an impedance matching network which presents a constant impedance to the output transformer, $\mathrm{T}-1005$, independent of the setting of $E-1003$. Full sidetone output is supplied to the radiophone unit, which is equipped with its own L-pad.

An additional audio signal is applied to $\mathrm{V}-1004 \mathrm{~B}$ during hand-key and machine-key operation through S-1101D rear contacts 8 and 6 when SERVICE SELECTOR (U) is in BAND and contacts 9 and 6 when in MACH, and is ampliffed in a similar manner. Paragraph $7 c(8)$ discusses this signal and its purpose.
(7) AUDIO OUTPUT CIRCUIT.--The audio output circuit receives the audio signal from amplifier $\mathrm{V}-1003 \mathrm{~A}$. The signals are fed to a phase inverter which produces two signals of equal amplitude, but opposite phase. These two signals are coupled to a push-pull cathode follower stage which acts as a driver for the

Figure 2-75. Sidetone Amplifier V-1004B, Simplified Schematic

Figure 2-76. Phase Inverjer V-1003B, Simplified Schematic
push-pull power amplifiers that constitute the last stage of amplification of the audio amplifier chain. In the AN/SRT-14, the final audio output is fed directly to the RFA. In the AN/SRT-15 and 16 there are audio outputs of two levels, depending on the power level at which the transmitter is working: 100 watts or 500 watts. In 500 watts, the 6 -watt audio output from the LLRM is fed to HLRM for further amplification. In 100 watts, the 50 -watt audio output from the LLRM is fed to the HLRM, where it is switched through to the RFA.
(a) PHASE INVERTER V-1003B. - The audio signal from $V-1003 A$ is fed to the grid of phase inverter $V-1003 B$ (figure 2-76). One output is taken from the cathode and one from the plate. Values of plate load resistor $\mathrm{R}-1038$ and cathode resistors $\mathrm{R}-1037$ and $R-1036$ are equal so that the two output voltages will be of equal amplitude, though opposite in phase. The amount of degenerative bias as established by connecting the grid, through $\mathrm{R}-1035$, to the junction of cathode resistors $R-1037$ and $R-1036$ is such that the amplitude of the two outputs is approximately the same as the input level of the signal to this stage. $\mathrm{R}-1140$ and C-1045 decouple this stage from the +500 -volt plate supply.
(b) PUSH - PULL CATHODE FOLLOWERS V-1005A AND V-1005B.-The push-pull cathode followers $V-1005 A$ and $V-1005 B$ (figure 2-77) act as drivers for the push-pull power amplifiers, $\mathrm{V}-1006$ and $\mathrm{V}-1007$. As the power amplifier stage acts as a class AB_{2} push-pull amplifier, the push-pull cathode follower tubes supply energy to a low impedance during the portion of the cycle that the grids of the power amplifier draw current. With the SERVICE SELECTOR switch (1), S-1101, in the PHONE position, the voltage divider action of $R-1051$ and $R-1052$ from $\mathbf{- 2 2 0}$ volts to ground puts a d-c potential of -40 volts on the grids of the push-pull cathode followers, through contacts 12 and 6
of $\mathrm{S}-1101 \mathrm{E}$ rear. As the tubes are returned to -220 volts, the cathode followers conduct during no-signal conditions so that the potentials at the cathodes are approximately -40 volts. The cathodes are tied directly to the grids of the power amplifiers, which sets the d-c bias of the power amplifiers. Signals of equal amplitude but opposite phase from the phase inverter are coupled to the grids of the push-pull cathode follower, V-1005A, pin 2, and $V-1005 B$, pin 7 , through capacitors $\mathrm{C}-1017$ and $\mathrm{C}-1018$ respectively. When the signal reaches -40 volts in amplitude, the grids of the power amplifiers go positive with respect to their cathodes and start to draw grid current, presenting an impedance to the cathode followers of approximately 1,000 ohms during the portion of the signal cycle that drives the grids of the power amplifiers positive. The cathode followers can supply the grid current to this low impedance for the maximum signal peak of +10 volts power amplifier grid-to-cathode voltage, derived from a 50 -volt peak signal impressed on a - 40 -volt bias, without requiring the grid of the cathode followers to go positive. This means that the required driving energy can be supplied to the power amplifier while maintaining a high impedance to the input audio signal by the use of the cathode followers.

The normal function of the audio amplifier chain during hand-key and machine-key operation is inoperative. Therefore, the push-pull cathode followers coupled with the power amplifiers are used for an auxiliary function during these two modes of operation. The fact that the power amplifiers use +500 volts for a plate supply is utilized to provide a dumping circuit to eliminate transient voltage variations imposed on the +500 volt power supply (see paragraph $5 b$) when the transmitter is keyed. As the input to the push-pull cathode followers is the first point at which a control of the action of the push-pull amplifiers can be introduced, the dumping control is fed to the grids of the cathode followers through SERVICE SELECTOR switch (U)

S-1001E rear when in either the HAND or MACH position. The +500 -volt supply provides plate voltage for the IPA and screen voltage for the PA (the latter in 500 watts only) in the RFA (paragraphs $10 c(2)$ and $10 d(2))$. In space condition the RFA is keyed off and the IPA plate current and PA screen current are at a minimum, while in mark they are at maximum. If these sudden changes in load current drawn from the +500 -volt supply are not modified, transient voltages will appear across the filter chokes, $\mathrm{L}-501$ and $\mathrm{L}-502$ (figure 2-61). At the start of mark condition, the polarity of the transient voltage will be such as to oppose the sudden increase in current, thus causing a dip in the power supply output voltage. Conversely, at the start of space condition, the transient voltage will be aiding, opposing the sudden decrease in current, thus increasing the supply output voltage. The function of the dumping circuit is to provide a load during space condition only, to compensate for the reduction in load current when the IPA is keyed off. Thus the load to the +500 -volt supply will be approximately equal during mark and space, eliminating the cause of the transient voltages. This is accomplished by supplying a keying voltage from the keying circuit (paragraph $7 c(5)$) of -65 volts during mark and zero volts during space to the grids of the push-pull cathode followers. These voltages are followed approximately at the cathodes, which are tied directly to the grids of power amplifiers. During space, with the grids at zero, the power amplifiers conduct, while during mark the power amplifiers are biased below cutoff by the -65 volts. During space, when the tubes conduct, the voltage developed across the common cathode resistor, $\mathrm{R}-1045$,
acts as a degenerative bias so that the two tubes draw 120 ma total from the +500 -volt supply, which is equivalent to the reduction caused by keying of the RFA.
(c) POWER AMPLIFIERS V-1006 AND V-1007.-The control grids of the power amplifiers, $\mathrm{V}-1006$ and $\mathrm{V}-1007$, pins 3 (figure $2-78$), are tied directly to the cathodes of the preceding cathode follower stage. As stated in the preceding discussion, the no-signal grid bias on the control grids of the power amplifiers is approximately -40 volts. With a screen voltage of +300 volts and a plate supply of +500 volts through the primary of modulation transformer $\mathrm{T}-1004$, this value of bias is such that this stage operates as a class AB_{2} push-pull amplifier, which provides high power outputs with high plate efficiency and low distortion. With the SERVICE SELECTOR switch (U), S-1101, in the PHONE position, the common cathode resistor, $R-1045$, to ground is shorted out through contacts 6 and 12 of S-1101C rear. In the HAND and MACH positions, $\mathrm{R}-1045$ is in the circuit, adding degeneration so the push-pull amplifiers operate at the proper current drain values required for the dumping action.

Modulation transformer T-1004 is provided with two secondaries: one, the 50 -watt secondary, is used only during 100 -watt operation of the transmitter group; the other, the 6 -watt secondary, is used only during 500 -watt operation. The output of the 6 -watt secondary is connected through contacts $7 \mathrm{~L}, 8 \mathrm{~L}$ and $9 \mathrm{~L}, 10 \mathrm{~L}$ of energized relay $K-1104$ to grids of the amplifiers in the HLRM. Negative bias of 50 volts for the HLRM

Figure 2-77. Push-Pull Cathode Followers, V-1005A and V-1005B, Simplified Schematic

NAVSHIPS 92121(A)
THEORY OF OPERATION

Figure 2-78. Power Amplifiers V-1006 and V-1007, Simplified Schematic
grids is supplied from the HLRM through the center tap on the 6 -watt secondary. K-1 104 energizes from " -24 V after time delay" to the "ground for 500 W " AX line. Therefore, in the AN/SRT-14 (see Note in paragraph $10 e(1))$, and in the AN/SRT-15 and 16 in 100 -watt operation, $\mathrm{K}-1104$ is unenergized, and the output of the 6 -watt secondary is open circuit. Unless relay $\mathrm{K}-1106$ is energized, the 50 -watt secondary of $\mathrm{T}-1004$ is short-circuited by contacts L1, R1 of $\mathrm{K}-1106$, and plate voltage $(+1,050 /+1,300$ volts) is delivered through these contacts to the final amplifier in the RFA. In the AN/SRT-14, this plate voltage is delivered directly to the RFA, while in the AN/SRT-15 and 16, it is delivered to the RFA via a switch in the HLRM. With SERVICE SELECTOR switch (U) S-1 101 in the PHONE position, K-1106 is operated from ground through contacts 1 and 11 of $\mathrm{S}-1101 \mathrm{E}$ front to " -24 V after time delay". This source of ground potential is known as the "ground for phone" line and is also utilized in the control circuits of the RFA, MVPS, and HVPS. With K-1 106 energized, the short is removed from the 50 -watt secondary and the plate supply voltage to the RFA is amplitude-modulated by the 50 -watt audio signal.
c. KEYING CIRCUIT.-In hand-key operation, the keying circuit accepts keying signals and produces signals which turn the carrier on and off. In machine key, keying signals are sent to the keying circuit from teletype or
other machine-key equipment, which also turns the carrier on and off. In both hand-key and machine-key operation, an audio oscillator produces an audio signal for aural monitoring of the keying signal. In FSK operation keying signals are received by the keying circuit from machine-key equipment, and signals are produced that control the operation of the frequencyshift oscillator in the RFO, and the audio oscillator produces a signal to phase-modulate the carrier to eliminate selective fading effects. In phone operation the press-to-talk button on the phone sends keying signals to this circuit, which also produces signals to turn the carrier on and off. The keying circuit consists of the keying relay, $K-1101$, press-to-talk relay $\mathrm{K}-1107$, buffer V-1015A, keying control V-1016, keying multivibrator V-1017, dumping cathode follower $V-1015 \mathrm{~B}$, limiter $\mathrm{V}-1018$, keyer $\mathrm{V}-1019$, and audio oscillator $\mathrm{V}-1020$. The outputs of the keying circuit and their functions are listed in table 2-16.
(1) KEYING INPUT CIRCUIT.-SERVICE SELECTOR switch (0) S-1101A rear (figure 2-80) selects the keying input to the keying circuit. In hand-key and phone operation, the keying signals are introduced through the action of the keying relay, K-1101. With the LOCAL-REM switch © S-1106 in the REM position, the keying line from a remote radiophone unit is connected to the keying relay through contacts 8 F and 9 F of $\mathrm{S}-1106$. When a hand key is used, ground

TABLE 2-16. FUNCTIONS OP KEYING CIRCUIT OUTPUTS

OUTPUT	DELIVERED TO	FUNCTION
RF keying signal	Buffer in RFA and output of RFO	To key the carrier
FSK keying signal	FS oscillator in RFO	Control frequency of FSO
Keying signal to dumping circuit	LLRM	Load compensation for +500-vol t power supply
200-cycle signal	FS oscillator in RFO	Phase-modulate the FSO
1,000 -cycle signal	Sidetone amplifier in LLRM	Monitoring of key- ing signals

is put on the keying line when the key is down (mark) and removed when the key is up (space). The presence of ground on the keying line actually operates the antenna switching relay, $\mathrm{K}-1306$ in the RFA, which, in turn, operates the keying relay, $\mathrm{K}-1101$. A discussion of this action is found in paragraph $10 e(2)$. For the purpose of this discussion, it serves to say that the keying relay, $\mathrm{K}-1101$, follows the presence or absence of ground on the keying line. When in phone operation, the press-to-talk button also supplies ground to the keying line when it is depressed. If the phone is connected locally, S-1106 is in the LOCAL position and the ground from press-to-talk button or the key operates $\mathrm{K}-1107$ from the well-filtered -12 -volt d-c supply. With K-1107 operated, ground is fed to $\mathrm{K}-1101$ through contacts 5 L and 4 L of $\mathrm{K}-1107$, and contacts 7 F and 9 F of S-1106. The TEST KEY © ${ }^{\top}$, S-1108, parallels the keying line so that the depressing of S-1108 also supplies a ground to operate K-1101. With SERVICE SELECTOR (1) in FSK or FAX, the keying line is connected to the RFO output stage and the RFA buffer stage through contacts 16 and 6 or 11 and 6 of S-1101B rear. The purpose of this connection is covered in paragraph $7 c(7)$.

Two gas tube voltage regulators, V-1021 and V-1022, supply a regulated -105 -volt and a regulated +105 -volt supply respectively for use in the keying circuit. With -105 volts connected to 4 R of $\mathrm{K}-1101,+105$ volts is applied to contact 6 R of $\mathrm{K}-1101$. In hand-key operation, when the key is depressed (mark), K-1101 operates and +105 volts is connected through contacts $6 R$ and $5 R$ of K-1101, resistor R-1074, contacts 8 and 6 of S-1101A rear, contacts 10 R and 8 R of S-1107 (v) in the OPER position and resistor R-1075 to ground. When the key is up (space), $\mathrm{K}-1101$ is not energized and -105 volts is now applied through contacts 4 R and 5 R of $\mathrm{K}-1101$ and through the same network as mentioned above. Resistors R-1074 and R-1075 act as a voltage divider, with the output, to the buffer stage following, being taken from their junction. The resultant is that mark and space voltages of +85 volts and -85 volts, respectively, are supplied at the grid of the buffer for hand-key operation. In phone operation the same operation takes
place except that the press-to-talk button takes the place of the hand key with the result that the +85 volts appears at the grid of the buffer when press to talk is depressed and -85 volts when press to talk is released.
In machine-key and FSK operation, the source of keying signal is from a machine keyer (figure 2-79). In neutral keying this signal varies from zero for space to a minimum of +30 volts for mark, while in polar keying the signal varies between a negative signal for space and a positive signal for mark of equal amplitude (whose amplitude is a minimum of 30 volts). These signals are fed directly to the grid of the buffer stage through contacts 9 and 6, for MACH operation, or contacts 10 and 6, for FSK operation, of S-1101A rear and through contacts 10 R and 8 R of $\mathrm{S}-1107$ in the OPER position.

A permanent mark or space signal can be produced at the grid of the buffer by the action of S-1107. Setting this switch to MARK connects +105 volts to the grid of the buffer through contacts $11 R$ and $8 R$ of $\mathrm{S}-1107$. In SPACE, S-1107 connects -105 volts, through its contacts 9 R and 8 R , to the buffer grid.

In addition to providing keying voltages for the keying circuit, the keying relay also controls the action of the stand-by relay, K-3005, in the LVPS. The operation of $\mathrm{K}-3005$, in turn, provides the " -24 V after standby" which controls the operation of the MVPS, HVPS, and HLRM, the latter two in the AN/SRT-15 and 16 only (see paragraphs $9 b, 4 d, 5 b, 5 d$ and $6 b$). The ground potential to operate $\mathrm{K}-3005$ is furnished through the PUSH TO TURN switch, S-1110, and contacts 3R and $2 R$ of energized $K-1101$. In hand-key operation only, the action of $K-1101$ in controlling relay $K-3005$ is bypassed by a permanent ground supplied for the stand-by relay line through contacts 1 and 7 of SERVICE SELECTOR switch (U) S-1101A front. As the power supplies controlled by $K-3005$ cannot follow the keying signals, this ground keeps them energized at all times. In other modes of transmission, the transmitter cannot go on the air unless $K-1101$ is energized, supplying the ground to operate K-3005. In machine-key, FSK

Figure 2-79. Machine Keying Input Signals, Voltage Wave Forms

Figure 2-80. Keying Input Circuit, Simplified Schematic
and facsimile transmission, a ground is supplied over the keying line from the remote radiophone unit that energizes K-1101 and provides a "standby-operate" control from the remote radiophone unit. In phone operation, $\mathrm{K}-1101$ is operated only when the press-to-talk button is depressed, either locally or remotely. This means that the power supplies controlled by K-3005, which, in turn, is controlled by K-1101, are on, in phone operation, only when press to talk is depressed.
(2) BUFFER V-1015A. - The buffer, V-1015A (figure 2-81), is a cathode-follower stage whose purpose is to isolate the action of the keying control and the keying multivibrator, which follow, from the keying input signals. The cathode of $\mathrm{V}-1015 \mathrm{~A}$ is power biased to -40 volts by the voltage-divider action of $\mathrm{R}-1083$, $\mathrm{R}-1082$, and $\mathrm{R}-1079$ from the regulated +105 volts to the regulated -105 volts. The keying voltages for the different modes of operation as defined in the previous
paragraphs are connected to the grid, pin 2, of V-1015A and are reproduced approximately at the cathode, pin 3, with the following exception: because of the -40 volts power bias on the cathode, any negative keying signals applied to the grid larger than approximately 45 volts will drive V-1015A to cutoff, with the resultant that the maximum amplitude of a negative keying signal appearing at the cathode is about 40 volts.
(3) KEYING MULTIVIBRATOR V-1017 AND KEYING CONTROL V-1016.-Keying multivibrator V-1017 (figure 2-81) is a flip-flop multivibrator. In the key-up (space) condition V-1017B conducts, causing current to flow through the common cathode resistor R-1089, the voltage developed across R-1089 being sufficient to cut off V-1017A. Keying control V-1016B assures that $\mathrm{V}-1017 \mathrm{~B}$ conducts and $\mathrm{V}-1017 \mathrm{~A}$ is cut off during space. The plate of $\mathrm{V}-1016 \mathrm{~B}$ is connected to the junction of R-1085 and R-1084 in the grid circuit of $\mathrm{V}-1017 \mathrm{~A}$. Disregarding the action of $\mathrm{V}-1016 \mathrm{~B}$, this
about -27 volts. The setting of $R-1082$ will be such that to tap will be about +4 volts. Determination of the exact setting of $R-1082$ is covered in a succeeding paragraph covering conditions met when the keying signal changes from mark to space. With the multivibrator in the space condition, there is +100 volts on the plate on $\mathrm{V}-1017 \mathrm{~B}$ and +235 volts on the plate of V-1017A.
As the keying signal changes from space to mark the potential of the buffer cathode starts to rise. As it reaches +5 volts, in neutral keying, or -27 volts in polar keying, keying control $\mathrm{V}-101 \mathrm{~GB}$ no longer conducts and has no effect on the grid of $\mathrm{V}-1017 \mathrm{~A}$, which rises to about +10 volts. This still is not high enough to overcome the bias potential set up in the common cathode resistor, $\mathrm{R}-1089$. As the mark potential rises higher, keying control $\mathrm{V}-1016 \mathrm{~A}$ comes into action. The cathode of $\mathrm{V}-1016 \mathrm{~A}$ is tied to the grid of $\mathrm{V}-1017 \mathrm{~A}$, which is at +10 volts. The plate of $\mathrm{V}-1016 \mathrm{~A}$ is connected to the tap of potentiometer $\mathrm{R}-1079$, which is the cathode resistor in the buffer circuit with one end tied to the buffer cathode and the other connected to regulated -105 volts. This potentiometer is known as the NEUTRAL-POLAR-MARK control. For keying control V-1016A to conduct, its plate must be +10 volts or higher. As
would be at about +5 volts during space with $\mathrm{V}-1017 \mathrm{~B}$ conducting. The cathode of $\mathrm{V}-1016 \mathrm{~B}$ during neutral keying is tied to the cathode of the buffer through contacts 2 and 1 of NEUT.-POLAR switch $®$ S-1105 in the NEUT. position. During space this point is at +4 volts for neutral machine keying or - $\mathbf{4 0}$ volts for hand keying. As these values are at or below the normal +5 volts to which the plate of $V-1016 B$ is tied, $V-1016 B$ conducts, effectively tying the junction of $\mathrm{R}-1085$ and $\mathrm{R}-1084$ to the space voltage appearing at the buffer cathode. This means that the grid circuit of $\mathrm{V}-1017 \mathrm{~A}$, during space, is at a lower potential than the grid circuit of $\mathrm{V}-1017 \mathrm{~B}$, causing the desired condition of having $\mathrm{V}-1017 \mathrm{~A}$ cut off and $\mathrm{V}-1017 \mathrm{~B}$ conducting. The same action occurs in polar keying, except that keying control $\mathrm{V}-1016 \mathrm{~B}$ is connected so that its cathode goes to about +4 volts when the grid of the buffer is at -30 volts. This is accomplished by connecting the cathode of V-1016B to the tap of potentiometer R-1082 through contacts 2 and 3 of $\mathrm{S}-1105$ in the POLAR position. 'This putentiometer is known as the POLAR SPACE control and is part of a voltage divider consisting of $\mathrm{R}-1083$ and $\mathrm{R}-1082$ connected from regulated +105 volts to the cathode of the buffer. In space, with a -30 volt keying signal on the grid, the cathode will be

Figure 2-81. Cathode Follower V-1015A, Keying Control V-1016 and Keying Multivibrator V-1017B, Simplified Schematic
the mark voltage increases at the cathode of the buffer, the tap of $\mathrm{R}-1079$ will reach +10 volts and $\mathrm{V}-1016 \mathrm{~A}$ will conduct. As V-1016A conducts, it effectively ties the grid of V-1017A to the tap of R-1079. The tap of $\mathrm{R}-1079$ is set so that as the mark signal reaches +30 volts at the grid of the buffer, the voltage at the tap, hence at the grid of $\mathrm{V}-1017 \mathrm{~A}$, will be sufficient to overcome the bias potential on the common cathode resistor R-1089, causing V-1017A to conduct. As V-1017A conducts, its plate voltage decreases. This decrease is coupled to the grid of $\mathrm{V}-1017 \mathrm{~B}$ through the R-C network C-1021 and R-1091, reducing conduction in $\mathrm{V}-1017 \mathrm{~B}$, which increases the plate voltage of $\mathrm{V}-1017 \mathrm{~B}$. This increase is coupled through C-1020 and $\mathrm{R}-1086$ to the grid of $\mathrm{V}-1017 \mathrm{~A}$, making the grid more positive and thereby increasing conduction in $\mathrm{V}-1017 \mathrm{~A}$ still further. This action is rapidly cumulative and continuous until V-1017B is cut off and V-1017A is saturated. The multivibrator remains in this stage ($\mathrm{V}-1017 \mathrm{~B}$ cut off, $\mathrm{V}-1017 \mathrm{~A}$ conducting) as long as the positive (mark) keying signal appears at the buffer. The rapid change of voltage has been passed to the grid of $\mathrm{V}-1017 \mathrm{~A}$ by $\mathrm{C}-1020$. Now, with the keying signal remaining positive (mark), the grid of $\mathrm{V}-1017 \mathrm{~A}$ returns to the steady state value of approximately +24 volts as $\mathrm{C}-1020$ charges through the R-C network. This minimum grid voltage is still sufficient to keep V -1017A conducting heavily and $\mathrm{V}-1017 \mathrm{~B}$ cut off. In mark the plate of $\mathrm{V}-1017 \mathrm{~B}$ is at +235 volts and the plate of $\mathrm{V}-1017 \mathrm{~A}$ is at +70 volts.

As the keying voltage changes from mark to space, for the multivibrator to return to the space condition described previously, the potential of the grid of

Figure 2-82. Keying Multivibrator Voltage Wave Forms, for Hand-Key and MachineKey Operation
$\mathrm{V}-1017 \mathrm{~A}$ must be lowered enough to cause reduction in the current flow of $\mathrm{V}-1017 \mathrm{~A}$, which will cause the resulting cumulative flip-flop. During the mark condition, the junction of $\mathrm{R}-1085$ and $\mathrm{R}-1084$, to which the plate of keying control $\mathrm{V}-1016 \mathrm{~B}$ is connected, returns to about +11 volts. Therefore, when the keying signal reduces to a point where the cathode of V-1016B, which is tied to the cathode of the buffer in neutral keying and to the POLAR SPACE control R-1082 in polar keying, goes below +11 volts, $\mathrm{V}-1016 \mathrm{~B}$ conducts, lowering the grid potential of $V-1017 A$. In neutral keying, when the keying signal reduces to about +7 volts, $\mathrm{V}-1016 \mathrm{~B}$ will conduct enough to lower the V 1017A grid below the saturation point and the flip flop will take place. In polar keying, the POLAR SPACE control $R-1082$ is set so that when the negative (space) keying signal reaches about $\mathbf{- 2 8}$ volts, the keying control, V-1016B, conducts enough to lower the grid potential of V-1017A below the saturation value and the multivibrator returns to the space condition.
(4) KEYING MULTIVIBRATOR OUTPUTS. The keying multivibrator, V-1017, has two outputs, one developed in the plate circuit of V-1017A, and the other, which is out of phase with reference to the first, developed in the plate circuit of V-1017B. Figure 2-82 shows the voltage wave forms at the two plates of V-1017 and the output voltages developed from them. The keying voltage obtained in the plate circuit of $\mathrm{V}-1017 \mathrm{~A}$ is fed to the dumping cathode follower for use in the dumping function of the push-pull cathode followers in the audio amplifier chain of the LLRM to compensate for the reduction in load on the +500 -volt power supply in space. The keying voltage developed in the plate circuit of $\mathrm{V}-1017 \mathrm{~B}$ is fed to the limiter stage, thence to the keyer stage. In hand-key, machine-key, and phone operation, this keying voltage is limited to one value and is fed jointly to the buffer in the RFA and to the output stage of the RFO for the keying of the carrier. In FSK operation, this keying voltage is limited to a different value andis fed to the frequency-shift oscillator in the RFO.
(a) KEYING SIGNAL TO DUMPING CIR-CUIT.-A keying signal of zero volts for space and -65 volts for mark is delivered to the dumping cathode follower, V-1015B. This range of voltages is obtained from a voltage divider connected from the plate of V-1017A through resistors $R-1094$ and $R-1093$ to regulated -105 volts. The output is taken from the junction of $R-1094$ and $R-1093$. In space, the plate of $V-1017 A$ is +235 volts and in mark it is +70 volts.
(b) KEYING SIGNAL TO LIMITERS AND KEYER.-A keying signal of approximately +25 volts for mark and $=-35$ volts for space is delivered to the limiters and the keyer stages following. This range of voltages is obtained from a voltage divider from the plate of $\mathrm{V}-1017 \mathrm{~B}$, through $\mathrm{R}-1097$, ZERO ADJ. control $\mathrm{R}-1096$, and $\mathrm{R}-1095$ to regulated -105 volts. In mark, the plate of $\mathrm{V}-1017 \mathrm{~B}$ is +235 volts and in space it is +100 volts. The output is taken from the tap of the

ZERO ADJ. control R-1096, which is set so the output space voltage is about -30 volts, which will make the output mark voltage about +25 volts. This is made adjustable to compensate for variances in the voltages appearing at the plate of $\mathrm{V}-1017 \mathrm{~B}$ because of variances in characteristics of tubes that might be used in this application.
(5) DUMPING CATHODE FOLLOWER.-Keying signals to the dumping circuit are fed to the dumping cathode follower, V-1015B (figure 2-83), before being passed on to the push-pull cathode followers. The action of the dumping cathode follower is to provide a low impedance to the input to the push-pull cathode follower to reduce the time constant so the waveshape is not destroyed. The signal is fed to the grid of $\mathrm{V}-1015 \mathrm{~B}$ from the multivibrator and controlled by the waveshaping capacitor, $\mathrm{C}-1022$. $\mathrm{R}-1078$ and $\mathrm{R}-1081$ are parasitic suppressors. The output is taken directly from the cathode of $\mathrm{V}-1015 \mathrm{~B}$, with the voltages following closely to the input, which is zero volts for space and -65 volts for mark. The keying signals are connected to the push-pull cathode followers through SERVICE SELECTOR switch (U) S-1101E rear in the HAND and MACH positions. In FSK and FAX operation, the transmitter group is "on the air" continuously; thus no load compensation is required. In phone operation, load compensation is not required as the +500 -volt supply is turned off when press to talk is up by the action of the keying relay, $\mathrm{K}-1101$ (paragraph $7 c(1)$). A complete discussion of the dumping function is given in paragraph $76(7)(b)$.
(6) LIMITER V-1018.-The keying signal from $\mathrm{V}-1017 \mathrm{~B}$, which is +25 volts for mark and -30 volts for space, is delivered to the limiter, $\mathrm{V}-1018 \mathrm{~A}$ and $\mathrm{V}-1018 \mathrm{~B}$ (figure 2-84). The keying signal is applied across a value of capacitance that is selected by the KEYING RATE switch (S), S-1109. The time constant involved in charging and discharging this capacitance gives the required rise and decay time to the keying signal waveshape. The faster the keying rate, the shorter is the decay and rise time, hence the smaller the value of capacitance. For any given keying rate, the decay and rise time of the pulses when the transmitter is in either HAND or MACH, c-w transmission should be longer than for FSK in order that the bandwidth of the side bands transmitted be kept to a minimum. Therefore, in HAND and MACH positions of the SERVICE SELECTOR (1), a second set of waveshaping capacitors comprised of $\mathrm{C}-1046, \mathrm{C}-1047, \mathrm{C}-1048$, and $\mathrm{C}-1049$ is connected in parallel, to lengthen the time constant, with the set of capacitors comprised of C-1023, C-1024, $\mathrm{C}-1025$, and $\mathrm{C}-1026$. The connection is made through S-1101F front contacts 7 and 1 for HAND or contacts 8 and 1 for MACH operation. Table 2-17 shows the value of capacitance and the capacitors employed for the various services and the different keying rates.

The plate, pin 7, of limiter $\mathrm{V}-1018 \mathrm{~A}$ is tied to the tap of a potentiometer, R-1098. In FSK operation $\mathbf{R - 1 0 9 8}$, known as the (-) LIMIT KEYER OUT control, is

Figure 2-83. Dumping Cathode Follower, Simplified Schematic

TABLE 2-17. KEYING RATE SWITCH (S) S-1109

SERVICE	kEYING RATE	CAPACITORS SELECTED	total CAPACITANCE
HAND or MACH	Teletype (23 dots/sec)	$\begin{aligned} & \text { C-1023, C-1026, C- } \\ & 1049 \text { in parallel } \end{aligned}$	$0.0567 \mu \mathrm{f}$
	$\begin{gathered} \text { Multiplex (} 60 \\ \text { dots } / \mathrm{sec} \text {) } \end{gathered}$	$\begin{aligned} & \text { C-1023, C-1025, C- } \\ & 1048 \text { in parallel } \end{aligned}$	$0.035 \mu \mathrm{f}$
	$\begin{aligned} & 200 \text { words per } \\ & \text { minute } \end{aligned}$	$\begin{gathered} \text { C-1023, C-1024, C- } \\ 1047 \text { in parallel } \end{gathered}$	$0.023 \mu \mathrm{f}$
	400 words per minute	C-1023, C-1046 in parallel	$0.012 \mu \mathrm{f}$
FSK or PHONE	Teletype (23 dots/sec)	C-1023, C-1026 in parallel	$0.0067 \mu \mathrm{f}$
	$\begin{aligned} & \text { Multiplex (} 60 \\ & \text { dots } / \mathrm{sec} \text {) } \end{aligned}$	C-1023, C-1025 in parallel	$0.005 \mu \mathrm{f}$
	200 words per minute	C-1023, C-1024 in parallel	$0.003 \mu \mathrm{f}$
	400 words per minute	C-1023	$0.002 \mu \mathrm{f}$

part of a voltage-divider network from regulated -105 volts through $R-1105, R-1098$ and contacts 9 and 1 of SERVICE SELECTOR switch (1), S-1101C front, to ground. $\mathrm{R}-1098$ is adjusted for -10 volts at the tap. Therefore, any negative (space) keying signals in FSK operation are clipped at a maximum of 10 volts by the action of the limiting diode, $\mathrm{V}-1018 \mathrm{~A}$. In the other modes of operation the ground is removed from $R-1098$ by the action of the SERVICE SELECTOR switch (1), $\mathrm{S}-1101 \mathrm{C}$ front, and the plate of $\mathrm{V}-1018 \mathrm{~A}$ is tied to -105 volts. As the maximum negative signal applied is 30 volts, no limiting action takes place and the negative signal applied to the keyer stage then is approximately 30 volts.

Figure 2-84. Limiter V-1018, Simplified Schematic

In hand-key, machine-key and phone operation, the cathode, pin 5, of limiter V-1018B is grounded through SERVICE SELECTOR switch (1) S-1101C front, through contacts 7 and 1 for HAND, 8 and 1 for MACH, and 11 and 1 for PHONE. In FSK operation, the cathode of $\mathrm{V}-1018 \mathrm{~B}$ is connected to the tap of potentiometer $\mathrm{R}-1107$, which is part of a voltage divider from regulated +105 volts, through $\mathrm{R}-1106, \mathrm{R}-1107$ to ground. R-1107, known as the (+) LIMIT control, is adjusted for +10 volts at the tap and the action of $\mathrm{V}-1018 \mathrm{~B}$ clips positive (mark) keying signals at +10 voits. Therefore, positive (mark) signals in hand-key, machine-key and phone operation are clipped at zero, and they are clipped at +10 volts in FSK operation. Capacitors C-1050 and C-1051 are bypasses for the small amount of r-f energy that is picked up in the circuit wiring.
(7) KEYER V-1019.-The keyer, V-1019, is a cathode follower stage to provide a low impedance keying output supply (figure 2-85). The keying signals, as clipped by the limiters, are fed to the grids of the keyer, $\mathrm{V}-1019$, which is a twin triode operating in parallel, through parasitic suppressors $\mathrm{R}-1099$ and $\mathrm{R}-1100$. The cathode load is made up of $\mathrm{R}-1103$ and $\mathrm{R}-1102$, which constitute a voltage divider with the output taken from the junction of the two. When the zero voltage mark keying signal is applied to the grid of the keyer, the
cathode is at about +2 volts. However, the mark signal as delivered to the buffer of the RFA should not go above zero; hence the output is taken at the junction of $\mathrm{R}-1103$ and $\mathrm{R}-1102$ to reduce the mark voltage from +2 volts to zero.

The output of zero volts for mark and -30 volts for space is the same in hand-key, machine-key, and phone operation and is used for the same purpose, namely, to cut off the buffer in the RFA and cut off the output stage of the RFO in the "key-up" (space) condition for the two keying modes or the press-to-talk "up" in the phone operation. Both the buffer in the RFA and the output of the RFO are keyed off to assure that the "key-up" radiation from the transmitter group is below the minimum allowable level of 400 micromicrowatts. In FSK operation, the output from the keyer, which is +10 volts for mark and -10 volts for space, is fed to the RFO to frequency-modulate the frequency-shift oscillator in the RFO.
SERVICE SELECTOR switch (1) S-1101B rear controls the keying input to the buffer in the RFA and the output stage of the RFO. In the HAND, MACH, and PHONE positions, the keying input is the output of the keyer as noted above. In HAND, the connection is through contacts 8 and 6 of S-1101B rear, in MACH through contacts 9 and 6, and in PHONE through 12 and 6. In FSK and FAX the keying input to the RFA
and RFO is connected to the keying line as noted in paragraph $7 c(1)$. As long as the transmitter is in the "operate" condition by having the keying line closed to ground, this ground is connected through contacts 10 and 6 or 11 and 6 of S-1101B rear to the RFA buffer and RFO output stage, keeping the transmitter "on the air" continuously. At the instant the transmitter is placed in "stand-by" by opening the keying line, there is -24 volts on the keying line, through contacts SR and 6R of antenna transfer relay $\mathrm{K}-1306$ before it releases. This -24 volts will instantaneously cut off the RFO output and RFA buffer, to prevent arcing on contacts of K-1306 as it transfers the antenna lead from the RFA output to the receiver input (see paragraph $10 e(2)$).

The input to the frequency-shift oscillator in the RFO is connected through SERVICE SELECTOR switch (1) S-1101B front. In FSK this is the output of the keyer as described previously and is made through contacts 9 and 1 of S-1101B front. In FAX operation, the signal from the facsimile equipment is connected directly to the frequency-shift oscillator of the RFO through contacts 10 and 1 of S-1101B front. The other positions of this switch are grounded as the frequency-shift oscillator is not employed in hand-key, machine-key, or phone operations.
(8) AUDIO OSCILLATOR V-1020.-The audio oscillator, V-1020, figure 2-86, is a Wien-bridge oscillator with two outputs. In FSK operation, the output is a 200 -cycle signal whose purpose is to phase-modulate the frequency-shift oscillator in the RFO, whenever it is necessary to prevent selective fading. Radio waves of
slightly different frequencies occasionally are affected in different ways by atmospheric conditions. In the case of modulated transmission involving side-band frequencies, the carrier and the side-band components may not be propagated in the same relative amplitude at the antenna. This effect, known as selective fading, causes distortion in the signal. Phase-modulating the carrier creates a narrow band of carrier frequencies, some of which may be expected to overcome the adverse conditions causing the fading, thus insuring better signal reception. The 200-cycle frequency is sufficiently high with respect to the highest keying rates to insure sufficient sampling of the keying signals over the band of carriers established. The amplitude of the 200 -cycle signal from the audio oscillator is sufficient to produce a one-radian phase shift in the carrier. This amount of shift can be controlled between zero and one radian by a control mounted on the front panel of the RFO (see below). In hand-key and machine-key operation, the audio oscillator produces a 1,000 -cycle signal during the key down (mark) condition that is fed to the sidetone amplifier in the audio chain for monitoring purposes.

Two basic conditions must be fulfilled to sustain oscillation. A feedback signal must be developed that is large enough to overcome the losses in the grid circuit and be in phase with the signal on the grid. The selection circuit for the feedback is a Wien bridge. Signals appearing at the plate of $\mathrm{V}-1020 \mathrm{~A}$ are coupled through $\mathrm{C}-1020$ to the grid of $\mathrm{V}-1020 \mathrm{~B}$, which is an amplifier and phase inverter. The signals appearing at the plate of $V-1020 \mathrm{~B}$, being shifted 180° in phase with respect

Figure 2-85. Keyer V-1019, Simplified Schematic

Figure 2-86. Audio Oscillator V-1020, Simplified Schematic

Figure 2-87. Wien Bridge Circuit, Simplified Schematic
to the grid, is now in phase with the signal on the grid of $\mathrm{V}-1020 \mathrm{~A}$. This signal is coupled to the bridge circuit through capacitor $\mathbf{C}-1030 \mathrm{~A}$.

Figure 2-87 shows the Wien bridge circuit. E_{IN}, the output of $\mathrm{V}-1020 \mathrm{~B}$, is the voltage applied across the bridge circuit. This voltage is developed across both the resistive half of the bridge ($\mathrm{R}-1113, \mathrm{R}-1112$, and $\mathbf{R}-1116$) and the reactive half of the bridge. In FSK operation, the reactive half consists of $\mathrm{C}-1027, \mathrm{R}-1111$, $\mathrm{R}-1110, \mathrm{R}-1108, \mathrm{R}-1109$, and $\mathrm{C}-1028$. With the SERVICE SELECTOR switch (1), S-1101, in HAND or MACH position, $\mathrm{R}-1111$ is shorted out through contacts 1 and 10 or 11 of S-1101D front, and R-1109 is grounded through contacts 6 and 8 or 9 of S-1101C rear, so that, in hand key or machine key, the reactive half of the bridge is composed of $\mathrm{C}-1027, \mathrm{R}-1110, \mathrm{R}-1108$, and C-1028. A degenerative feedback voltage, E_{2}, is obtained across $\mathrm{R}-1116$ in the resistive half of the bridge as $R-1116$ is the cathode resistor for V -1020A. This voltage is in phase with E_{IN}, which, in turn, is in phase with the signal on the grid of V-1020A. A regenerative feedback signal, E_{1}, obtained in the reactive half of the bridge, is applied to the grid of $\mathrm{V}-1020 \mathrm{~A}$ at the junction of $\mathrm{R}-1110$ and $\mathrm{R}-1108$. At a frequency determined by the components of the reactive half of the bridge the regenerative voltage, E_{1}, will be in phase with the signal at the grid of $\mathrm{V}-1020 \mathrm{~A}$ and concurrently will be at a maximum amplitude that is equal to or slightly larger than the degenerative voltage, E_{2}. This relative amplitude between E_{1} and E_{2} is controlled by the setting of AUDIO OSC. FEEDBACK control R-1113, which directly determines the amplitude of E_{2}. At any other frequency E_{2} will be out of phase and at a smaller amplitude, so the degenerative voltage, E_{1}, which is independent of frequency, will suppress these frequencies. The resonant frequency of the bridge, when all the components in the reactive half are employed, is 200 cycles, which is the case for FSK operation. In hand-key and machine-key operation, with R-1111 and R-1107 removed by the above-described action of S-1101, the resonant frequency becomes 1,000 cycles. In FAX and phone operation, the regenerative feedback in the reactive half of the bridge is grounded through contacts 1 and 10 or 11 of S-1101D front, disabling the circuit.

In the cathode circuit of V -1020A, a 3-watt, 120 -volt ballast lamp, $\mathrm{R}-1116$, is used instead of a resistor to stabilize the amplitude of oscillation. If, for some reason, the amplitude tends to increase, the current through the lamp also tends to increase. This current increases the temperature of the lamp filament and its resistance becomes larger. This larger value of resistance in the bridge circuit previously described means that the degenerative feedback voltage is increased, thus reducing the gain of $\mathrm{V}-1020 \mathrm{~A}$ and thereby holding the output voltage at a nearly constant amplitude. Keeping the amplitude of the voltage wave form small means that the oscillator tube, V - $\mathbf{1 0 2 0}$, operates in the linear portion of its characteristics, assuring that the output will be sinusoidal. C-1031 acts as an r-f bypass.

The output of the audio oscillator, $\mathrm{V}-1020$, is taken from the plate of $\mathrm{V}-1020 \mathrm{~B}$ and coupled through C-1030B. In FSK operation, the 200 -cycle signal is fed to a voltage divider consisting of $\mathrm{R}-1119$ and the F.S.K. PHASE MOD. control © \mathbb{D}, R-2955, the latter being located in unit 14 of the RFO (see figure 2-11). R-2955 is a potentiometer with a built-in "on-off" switch, S-2997. This voltage divider action is such that the signal taken from the movable arm of R-2955 and fed to the frequency-shift oscillator (paragraph $2 f(3)$) can be adjusted to produce from zero to one radian in phase shift of the output of the frequency-shift oscillator, varying around the fundamental carrier frequency at a rate of 200 cycles per second. In hand-key or machinekey operation, the 1,000 -cycle output is coupled through limiting resistor $\mathrm{R}-1141$, contacts 6 and 8 or 9 of SERVICE SELECTOR switch (1) S-1101D rear to the grid of the sidetone amplifier, $\mathrm{V}-1004 \mathrm{~B}$, in the audio chain. In hand-key operation, a parallel connection, through contacts 8 and 6 of S-1101F rear, is made to keying relay $\mathrm{K}-1101$ contact 1 R. In space, $\mathrm{K}-1101$ is not energized and 1,000 -cycle output is grounded through contacts $2 R$ and $1 R$ of $K-1101$. In mark, $K-1101$ energizes and this ground is removed, allowing the sigral to be applied to $\mathrm{V}-1004 \mathrm{~B}$. The resultant output is a 1,000 -cycle signal that follows the mark keying signals. The sidetone amplifier, $\mathrm{V}-1004 \mathrm{~B}$, amplifies this signal and presents it to the sidetone jack, J-1104, and the remote radiophone unit for monitoring purposes.

In addition to controlling the components of the Wien bridge circuit, S-1101C rear, when in FSK or FAX position, supplies a ground to the RFO known as the "ground for FS" line (see paragraph $2 g(1)$).
d. LOCAL-REM. SWITCH © S-1106.-To enable the transmitter to be controlled either locally at the location of the transmitter group or from a remote position, a LOCAL-REM. switch ${ }^{(}$), S-1106, is provided, This switch is a seven-pole, two-position, onesection rotary wafer switch, which is shown in simplified form in figure 2-88. The action of the various poles of S-1106 is covered in the discussion of the associated circuits that they control (see paragraphs $4 c, 7 b(1)$ and $7 c(1))$. For the purposes of uniting the functions required to switch from local to remote operation, table $2-18$ is provided.

Four sets of contacts are employed to connect the a-c line to the master control relay, K-3001, in the LVPS to insure sufficiently low contact resistance for positive action of K-3001.
e. +250 -VOLT REGULATED POWER SUPPLY.A power supply is contained in the LLRM whose output is a regulated +250 volts, which is used in the critical keying and audio circuits of the LLRM and the RFO. This power supply consists of rectifier $\mathrm{V}-\mathbf{1 0 0 9}$, regulator $\mathrm{V}-1010$, regulator control $\mathrm{V}-1011$, and voltage regulator $\mathrm{V}-1012$.

Figure 2-88. LOCAL-REM. Switch © S-1106, Simplified Schematic

TABLE 2-18. FUNCTIONS OF LOCAL-REM. SWITCH ® S-1106

POSITION	CONTACTS	FUNCTION
REMOTE	2F, 5F, 2R, 5R and 3F, 6F, 3R, 6R	Connect "start-stop" switch in remote radiophone unit to master control relay K-3001 in LVPS.
REMOTE	8F and 9F	Connect keying line from re- mote radiophone unit to the keying relay K-1101.
REMOTE	11F and 12F	Connect audio from remote ra- diophone unit to audio trans- former T-1003.
LOCAL	7 F and 9F	Connect local press-to-talk line from HANDSET receptacle J- 1106 or MIC. jack J-1105 to the keying relay K-1101.
LOCAL	8R and 10R	Connect audio from phone re- ceptacle J-1106 or phone jack J-1105 to audio trans- former T-1003.

(1) RECTIFIER V-1009.-Negative 110-volt, 60cycle a-c power is applied to the +250 -volt supply transformer $\mathrm{T}-1001$ through fuse $\mathrm{F}-1001$ (figure 2-89). This a-c power is supplied from the LVPS and is available after the MAIN POWER switch $®$, S-3004, ON button has been depressed (see paragraph 4c). Rectifier

V-1009 is a conventional full-wave rectifier with plate voltage applied from terminals 3 and 5 of the secondary of $\mathrm{T}-1001$. The supply has a ground return through the center-tap terminal 4 of $\mathrm{T}-1001$. The output from $\mathrm{V}-1009$ is filtered by $\mathrm{L}-1001$ and $\mathrm{C}-1036$. Resistors $R-1055, R-1056, R-1057$, and $R-1058$ are a bleeder network for $\mathrm{C}-1036$.
(2) REGULATOR V-1010.-Regulator V-1010 is effectively a variable resistance in series with the power supply. When the output voltage of the power supply tends to rise above the +250 volts, apparent resistance of V-1010 increases, and when the output voltage tends to decrease below +250 volts, the resistance of V-1010 lowers. Thus the regulator opposes the changes in the output voltage owing to such causes as line voltage and current drain changes. The regulator control, V-1011, provides the controlling action of the apparent resistance of $\mathrm{V}-1010$ as explained in the following paragraph. The regulator is a dual-triode (6AS7G) with the two sections operated in parallel to provide sufficient current capacity to meet the entire drain for the power supply. Resistors $R-1059$ and R-1060 are parasitic suppressors in the plate circuits of $\mathrm{V}-1010$. Excessive cathode-to-filament potential on $\mathrm{V}-1010$ is avoided by tying the center tap, terminal 4 , of the secondary of filament transformer T -1002 serving $V-1010$ to the +250 -volt output of the power supply. Similarly, the center tap of the secondary of T -1002, providing filament voltage to several other

Figure 2-89. Rectifier V-1009, Regulator V-1010, Regulator Control V-1011 and Voltage Regulator V-1012, Simplified Schematic
tubes in the LLRM (V-1003, V-1006, V-1007, V-1011, $\mathrm{V}-1013, \mathrm{~V}-1014$), is maintained at +100 volts, taken from the voltage divider comprised of $R-1072$ and $\mathrm{R}-1073$ from +250 volts to gzound.
(3) REGULATOR CONTROL V-1011 AND VOLTAGE REGULATOR V-1012.-When the power supply output tends to vary from +250 volts, regulator control V-1011 (figure 2-89) produces a signal that causes regulator $\mathrm{V}-1010$ to oppose this change in voltage. The two triode sections of $\mathrm{V}-1011$ are d-c amplifiers in cascade. The control grid of $\mathrm{V}-1011 \mathrm{~B}$, pin 7, is connected through $R-1070$ to a regulated +87 volts provided by the voltage divider, $R-1071$, and voltage regulator $V-1012$ from +250 volts to ground. The cathode of $\mathrm{V}-1011 \mathrm{~B}$ is maintained at a positive potential by means of potentiometer $R-1068$, which is part of the voltage divider $R-1069, R-1068$ and $R-1067$ from +250 volts to ground. A change in power supply output voltage results in a change in the voltage divider and consequently a change in the cathode voltage of $\mathrm{V}-1011 \mathrm{~B}$. As the grid voltage of $\mathrm{V}-1011 \mathrm{~B}$ is held constant by the action of $\mathrm{V}-1012$, a change in cathode po-
tential will cause a change in plate current and plate voltage of $\mathrm{V}-1011 \mathrm{~B}$. As the plate of $\mathrm{V}-1011 \mathrm{~B}$ is directly connected to the grid of $\mathrm{V}-1011 \mathrm{~A}$, there will be the same change on the grid of $V-1011 \mathrm{~A}$. The $\mathrm{V}-1011 \mathrm{~A}$ cathode is tied to a positive potential by the voltage divider comprised of $R-1064, R-1063, R-1062$, and $R-1061$ from +250 volts to ground. Rapid changes of voltage appearing at the cathode of $\mathrm{V}-1011 \mathrm{~A}$ are bypassed by $\mathrm{C}-1037 \mathrm{~A}$. Therefore, a change in grid potential of V-1011A causes a change in plate current and plate voltage and, therefore, the same change of grid voltage of both halves of the regulator $\mathrm{V}-1010$ in such a direction that the output voltage of the power supply is restored to +250 volts.

For example, if the power supply output should tend to rise above +250 volts, the cathode potential of $\mathrm{V}-1011 \mathrm{~B}$ rises, causing the plate current to fall, thus increasing the plate voltage of $\mathrm{V}-1011 \mathrm{~B}$. This increases grid voltage of $\mathrm{V}-1011 \mathrm{~A}$. The cathode of $\mathrm{V}-1011 \mathrm{~A}$ does not follow the rapid change of voltage caused by the bypass capacitor, $\mathrm{C}-1037 \mathrm{~A}$. The increased grid voltage of $\mathrm{V}-1011 \mathrm{~A}$ causes an increase in plate current and
a decrease in plate voltage, and, consequently, a decrease in grid voltage of $\mathrm{V}-1010$. As a result, the plate current of $V-1010$ is reduced, which can be considered as an increase in the apparent resistance of the tube, and the output voltage is reduced to the +250 -volt value. If the output voltage tends to drop below +250 volts, a similar action takes place in reverse, decreasing the apparent resistance of $\mathrm{V}-1010$ and restoring the output to +250 volts. The steady state apparent resistance of $\mathrm{V}-1010$ determines the exact value of the output voltage of the supply. Potentiometer $R-1068$, known as the 250 V.P.S. control, can be adjusted to regulate the steady state value of the cathode potential of $\mathrm{V}-1011 \mathrm{~B}$, which sets the apparent resistance of $\mathrm{V}-1010$ through the regulator control, $\mathrm{V}-1011$, and, consequently, also regulates the exact output voltage. The ripple component, remaining after the filtering action, is bypassed by $\mathrm{C}-1038$ directly to the cathode of $\mathrm{V}-1011 \mathrm{~B}$ where the regulation described above takes place to further reduce the ripple content. $\mathrm{C}-1040$ is a final filter capacitor. $R-1053$ is a dropping resistor for 250 V.P.S. indicator $\mathrm{I}-1001$. $\mathrm{J}-1110$ is a test point for measuring this supply.
f. -12-VOLT POWER SUPPLY. - The -12 -volt power supply (figure $2-90$) uses a metallic bridge rectifier, CR-1001, connected to give a negative voltage output. Rectifier CR-1001 receives 16.5 volts rms from terminals 15 and 16 of $T-1002$. The output is filtered by $\mathrm{L}-1005, \mathrm{C}-1034$, and $\mathrm{C}-1035$ with $\mathrm{R}-1054$ acting as a bleeder. The -12 volts is supplied to the DYNAMICCARBON switch \odot, $\mathrm{S}-1102$ in the LLRM, for use as operating voltage for the carbon microphone. The output is also fed to the remote radiophone unit where it is the operating voltage for the carbon microphone and the CARRIER ON indicator and control relay in addition.
g. ATU BYPASS TRANSFER CIRCUIT.-The antenna tuning system is arranged to be bypassed during times when there is no transmitter carrier so that the antenna can be directly connected to a receiver that can be tuned to a different frequency from that of the transmitter. Indications of the presence of a carrier are taken from the keying line, with the exception that it is undesirable to have the bypass function attempt to follow the hand-keying signals. The function of the

ATU bypass transfer circuit is to provide a signal that will cut the antenna tuning system in at the time of the first mark. signal of a transmission and keep the antenna tuning system in until after the last mark of a transmission has been transmitted. The following describes the circuit design that accomplishes this.

For purposes of convenience of mounting location, the circuit components of the ATU bypass transfer circuit are mounted on the preamplifier subchassis (see figure 2-91). Relay K-1102, when energized, completes a signal path, through its contacts 3 and 4, to the antenna tuning system, which keeps the antenna tuning equipment in the line. Conversely, when $K-1101$ is not energized, this control circuit is opened and the antenna tuning system is bypassed. In a "key up" condition the keying line is at -24 volts, while in "key down" the keying line is at ground potential. The grid of the transfer control tube, pin 7 of $\mathrm{V}-1023 \mathrm{~B}$, and cathode of the limiter, pin 3 of $\mathrm{V}-1023 \mathrm{~A}$, are tied to -10 volts through resistors $R-1130$ and $R-1134$. The -10 volts is obtained from the voltage divider comprised of $\mathrm{R}-1121$, $R-1028, R-1133$, and $R-1132$. The voltage divider is connected from the -105 -volt source to ground, and the $\mathbf{- 1 0}$ volts is taken from the junction of $R-1133$ and $R-1132$.

Consider the condition of having the transmitter in the hand-key mode of operation with the key "up" just prior to the start of transmission. In "key up" the limiter, V-1023A, does not conduct, as its plate is at -24 volts while its cathode is at -10 volts. The -10 volts also appears at the grid of the transfer control tube, $V-1023 B$, which is sufficient to cut the tube off. Therefore, $\mathrm{K}-1102$, which is the plate load of $\mathrm{V}-1023 \mathrm{~B}$, is not energized, the transfer control circuit is opened, and the antenna tuning system is in the bypass condition. Also during this so-called steady state condition, the capacitor, $\mathrm{C}-1039$, with one side connected to the plate of $\mathrm{V}-1023 \mathrm{~B}$ and the other connected to the grid of $\mathrm{V}-1023 \mathrm{~B}$, is charged to 260 volts (from +250 volts to -10 volts).

Now, consider the first mark signal of a hand-key transmission. The keying line is now at zero potential with the result that the limiter, $\mathrm{V}-1023 \mathrm{~A}$, now conducts heavily, so that the grid of $V-1023 B$ is tied, effectively, to zero potential. This then causes V-102.3B

Figure 2-90. -12-Volt Power Supply, Simplified Schematic

Figure 2-91. ATU Bypass Transfer Circuit, Simplified Schematic
to conduct heavily, and K-1102 operates, closing the transfer control circuit to the antenna tuning equipment, which, in turn, removes the bypass from the antenna tuning equipment. Owing to the conduction of $\mathrm{V}-1023 \mathrm{~A}$ and B , capacitor $\mathrm{C}-1039$ discharges to about 200 volts (+200 volts at plate of $V-1023 B$ and zero volts at the grid of $\mathrm{V}-1023 \mathrm{~B}$).

At the instant of the change from mark to space, the keying line returns to -24 volts and the limiter V-1023A stops conducting. Capacitor C-1039 starts to recharge, and the grid of $\mathrm{V}-1023 \mathrm{~B}$ begins to return, exponentially, to -10 volts. As the grid of $V-1023 B$ starts to go negative, there is a corresponding reducmon in plate current of $\mathrm{V}-1023 \mathrm{~B}$ and increase of plate voltage. The plate relay, $K-1102$, will remain energized until the current through it reduces below 0.5 milliampere. The time constant of the charge of $\mathrm{C}-1039$ and, consequently, the rate at which the grid of $\mathrm{V}-1023 \mathrm{~B}$ returns to final space value of -10 volts are determined by the value of $\mathrm{K}-1102$ winding resistance, $\mathrm{C}-1039$, R-1130, R-1134 and the plate current characteristic of $\mathrm{V}-1023 \mathrm{~B}$. This time constant can be regulated by the variable resistor, R-1134, TIME CONST. ADJ., so that it takes anywhere from 0.5 second to 6 seconds after the completion of a mark signal before $\mathrm{K}-1102$ de-energizes. The value that is set in this range depends on the operator and is set so that $\mathrm{K}-1102$ remains up during periods between characters or words of a transmission.

In phone operation, the depressing of the press-totalk button produces the same effect on the keying line as the depressing of a hand key and therefore the ATU bypass transfer circuit functions in the same manner as in hand key with the modification that the time constant, as determined by $\mathrm{R}-1134$, be set at the minimum value to prevent the possible loss of the first part of an answering signal. In machine-key, FSK, and facsimile transmission, a permanent ground is supplied to the keying line, which means that $\mathrm{K}-1102$ is permanently energized, and the antenna tuning system remains in at all times when these three modes of transmission are used.

8. RADIOPHONE UNIT.

The radiophone unit, usually located in a remote position, may be used in conjunction with, but is not part of, Radio Transmitting Sets AN/SRT-14, 15 or 16. This unit contains a start-stop switch for turning the transmitter on or off, jacks for connecting a handset, chestset, or hand key, a volume control for the earphones, and visual indicators for power and carrier.

9. RADIO MODULATOR MD-230/SRT (HIGH LEVEL RADIO MODULATOR, HLRM).

a. GENERAL.-During phone operation at the 500watt level, an audio signal of 250 watts is required to amplitude-modulate the plate voltage of the RFA power amplifier. This is done by feeding the audio

Figure 2-92. Audio Amplifiers V-1601 and V-1602, Simplified Schematic
signal from the LLRM, at a 6 -watt level, to the HLRM and amplifying it to 250 watts. During hand-key, ma-chine-key, FSK, and FAX operation, the plate voltage for the RFA power amplifier is routed directly through the HLRM. In the AN/SRT-16, the output of the HLRM is fed to the RFA in one transmitter group only, which signifies that only one transmitter group may operate at the 500 -watt level. The AN/SRT-15 has only one transmitter group that employs the HLRM in 500-watt phone operation. As the AN/SRT-14 transmits only at the 100 -watt level, no HLRM is employed.

b. AUDIO AMPLIFIERS V-1601 AND V-1602.-

 During 500-watt phone operation, the audio modulating signal from the LLRM, at the 6 -watt level (see paragraph $7 b(7)(c)$), is fed to control grids of the push-pull amplifiers, V-1601 and V-1602 (figure 2-92) in the HLRM, equally but out of phase so that the push-pull action is amplified in the output modulation transformer, T-1601. Plate supply for the amplifier ($+2,400 \mathrm{~V}$ during phone) is delivered to the center tap of the primary of T-1601. "Ground for 500 W during phone" is supplied from the MVPS (see paragraph $5 d$) to relay $\mathrm{K}-1601$ and, if " -24 V after standby" is present, $\mathrm{K}-1601$ energizes, supplying +360 -volt screen supply through its contacts, 2 L and 3 L , to the screen gridsof $\mathrm{V}-1601$ and $\mathrm{V}-1602$. Capacitor $\mathrm{C}-1602$ is a bypass for the screen supply and resistor $\mathrm{R}-1628$ is a dropping resistor for the +350 V SCREEN indicator, I-1602, which indicates that the HLRM screen supply is present. In phone operation, the " -24 V after standby" line is energized by the press-to-talk button of the phone which means that press to talk controls the applying of screen voltage to the HLRM. Whenever screen voltage is not applied to $\mathrm{V}-1601$ and $\mathrm{V}-1602$, these tubes cannot conduct, and there is no modulation signal output from the HLRM.
The output of the HLRM in 500 -watt operation is used as the plate supply for the power amplifier in the RFA. In phone operation, the supply is $+2,400$ volts from the HVPS, which is first supplied to one side of the secondary of the output modulation transformer (terminal C of T-1601), so that the 250 -watt audio modulating signal is imposed on the power amplifiers' plate supply. Protection against excessively high voltages across the secondary of $\mathrm{T}-1601$ is provided by spark gaps E-1601 and E-1602. In other than phone operation, the HLRM output is $+3,000$ volts from the HVPS applied directly to the power amplifier plates, as modulation transformer secondary T-1601 is shorted. The shorting and unshorting of the secondary of T-1601

Figure 2-93. -50.Volt Bias Supply, Simplified Schematic
is controlled by relay $\mathrm{K}-1603$. Shorting takes place through contacts 4 and 5 of $K-1603$ when $K-1603$ is not energized. As $K-1603$ is energized through contacts $3 R$ and $4 R$ of energized relay $K-1601$, it operates under the same conditions as $\mathrm{K}-1601$, namely when the press-to-talk button is depressed in 500 -watt phone operation. This removes the short and places the secondary of T-1601 in series with the high voltage supplied from the HVPS.

In the AN/SRT-15, the input to the plate of the power amplifier in the RFA comes from the output of the HLRM under control of the switching relay, $\mathrm{K}-1605$. If the transmitter group is in 100 -watt operation, the "ground for 500 W "AX line is open circuit, and $K-1605$ is not energized. This connects the output of the LLRM (see paragraph $7 \boldsymbol{b}(7)(c)$), which enters through receptacle $J-1604$, through contacts 4 and 5 of $\mathrm{K}-1605$ and receptacle $\mathrm{J}-1605$ to the power amplifier plate. In 500-watt operation the "ground for 500 W " AX line is prepared, and $K-1605$ is energized after time delay. The output of the HLRM is now connected to the power amplifier plate through contacts 3 and 6 of energized $\mathrm{K}-1605$ and receptacle $\mathrm{J}-1605$. In the AN/ SRT-16, the above applies to one transmitter group only. In the other transmitter group, the plate supply of the power amplifier is received from the LLRM directly. As the output of the HLRM is a permanent interconnection, the transmitter group to which it is fed, in the AN/SRT-16, will be the group that can be placed in 500 -watt operation.
c. -50 -VOLT BIAS SUPPLY.-To operate the audio amplifiers at the desired class AB_{2} operation, a -50 -volt bias supply is required. This supply (figure 2-93) is obtained from terminals 5 and 7 of $T-1602$, using metallic rectifier $\mathrm{CR}-1601$ connected as a negative full-
wave rectifier, with the rectified voltage taken from the center-tap terminal 6 of $\mathrm{T}-1602$ through the single section R-C filter comprised of $R-1620$ and $C-1601$. Resistor $R-1603$ is a bleeder for the filter capacitor. The -50 volts is applied to the center tap of the 6 -watt secondary of the driver output transformer of the LLRM, which constitutes the signal input to the HLRM audio amplifier control grids. The -50 volts is also applied to the junction of the amplifier grid resistors, R-1601 and $R-1602$. These grid resistors act to limit grid current drawn in class $A B_{2}$ operation to reduce signal distortion. Transformer $\mathrm{T}-1602$, through another secondary (terminals 8 and 10), also supplies filament voltages for $V-1601$ and $V-1602$. $T-1602$ has two primary windings that are either connected in series for 440 -volt, single-phase, 60 -cycle input or in parallel for 220 -volt input by means of links on E-1603.
d. REGULATED + 360-VOLT D-C SUPPLY.- A regulated +360 -volt d-c supply (figure $2-94$) is obtained for HLRM screen supply from the voltagedivider action of resistors $R-1629, R-1630$, and voltage regulator tubes $\mathrm{V}-1603, \mathrm{~V}-1604, \mathrm{~V}-1605$, all in series from the $+2,400$-volt supply to ground whenever relay $\mathrm{K}-1601$ is energized. During 500 -watt phone operation, $K-1601$ is energized so that at the junction of resistor $\mathrm{R}-1630$ and voltage regulator tube $\mathrm{V}-1603$, through the contacts 2 L and 3 L of $\mathrm{K}-1601$, a regulated +360 volts is obtained from the series action of $V-1604$ and V-1605, which are 105 -volt regulators, and V-1603, which is a 150 -volt regulator. Resistors $R-1631, R-1632$, $\mathrm{R}-1633$ act as a voltage divider in parallel with the regulators when relay $K-1601$ is first operated, protecting the tubes until they fire and take control. When $K-1601$ is not energized, the junction of resistor $R-1630$ and regulator tube $\mathrm{V}-1603$ is grounded through con-

Figure 2-94. Regulated +360-Volt D-C Supply, Simplified Schematic
tacts 1 L and 2 L of $\mathrm{K}-1601$, which effectively turns off the regulated +360 -volt supply. Resistors $R-1629$, $R-1630$ now act as bleeder resistors for the $+3,000$-volt supply filter.

10. RADIO FREQUENCY AMPLIFIER AM-1008/ SRT (RADIO FREQUENCY AMPLIFIER, RFA).

a. GENERAL.-The radio frequency amplifier (RFA) accepts from the RFO a signal at a frequency within the range of 0.3 to 26 mc . The RFA amplifies this signal from a level of approximately 0.1 watt (two volts rms) to a nominal level of either 100 watts or 500 watts. After harmonics have been attenuated by a suitable filter, the RFA output is transmitted by coaxial cable to the load adjusting unit. The RFA output may be either modulated by audio from the LLRM or HLRM, or keyed on and off by keying voltages from the LLRM. During FSK and facsimile operation the r-f signal from the RFO is frequency-modulated in the RFO.

Tuning of the RFA is accomplished manually by means of three controls: the BANDSWITCH (C), TUNE IPA control (B), and the TUNE PA control (D). To enable the RFA to tune through the entire range of 0.3 to 26 mc , the range of frequencies is grouped into six bands. The r-f output of the RFO is amplified by three stages: the buffer, intermediate power amplifier (IPA), and power amplifier (PA). The function of the BANDSWITCH (C) is to connect a tank circuit to each of these amplifiers in accordance with the band that contains the frequency chosen for transmission.

NOTE
CONTROL CIRCUITS AND
METERING CIRCUITS HAVE BEEN OMITTED FOR CLARITY.

Figure 2-95. Radio Frequency Amplifier AM-1008/ SRT (Radio Frequency Amplifier, RFA), Block Diagram

After the desired band is set by the bandswitch, the tuning of the buffer and IPA tank circuits is peaked by the TUNE IPA control (B). The tuning of the PA tank circuit is then peaked by the TUNE PA control (D). The buffer, in addition to amplifying the r-f signal, isolates the RFA from the RFO and turns the RFA off

Figure 2-96. Buffer V-1301, Simplified Schematic
and on in accordance with the keying voltages from the LLRM. Figure $2-95$ is a block diagram of the RFA with the metering and control circuits left out for clarity. Control circuits are shown in detail in figures 2-103 and 2-104 with the metering circuit shown in figure 2-108.
b. BUFFER V-1301.-Buffer V-1301 (figure 2-96) is a class A amplifier that amplifies the r-f output of the RFO and isolates the RFO from possible variations in buffer load impedance resulting from on-off keying of the buffer. During $\mathrm{c}-\mathrm{w}$ and phone operations, the buffer and hence the carrier are keyed on and off by keying voltages from the LLRM. The buffer is keyed off during space in cw , and is keyed on during mark in cw or when the microphone press-to-talk button is depressed in phone operation. The buffer is always on in FSK and facsimile operations.
(1) BUFFER INPUT.-The output of the RFO is terminated by the EXCITATION control (27) R-1397, which is a 100 -ohm potentiometer to match the impedance of the coaxial cable carrying the r-f signal from the RFO to the RFA so that a uniform signal strength is presented to the RFA regardless of the length of this line. The amplitude of r-f signal coupled to the grid of the buffer, V-1301, through capacitor C-1301 and through the INT-OSC-EXT switch (A), S-1305, in the INT. position, is determined by the setting of the (22) control, which should be such that the value is neither in excess of five volts rms nor is such that when all tuning is completed, the value of PA screen grid current does not exceed 70 ma (see paragraph 10d).

An external signal may be fed to the RFA through receptacle J-1308 and coupled to the grid of the buffer through switch (A) S-1305 in the EXT position. The r-f input is also coupled to the meter circuit through capacitor C-1328.
(2) BUFFER TANK CIRCUIT.-The buffer amplifies the r-f signal and tunes it in the plate tank circuit (figures 2-96 and 2-97). The components of the tank are determined by the bandswitch setting. The switches, S-1301A rear, S-1301A front, and S-1301C rear, select the buffer tank components. These switches are ganged together and are manually controlled by the BANDSWITCH control (C). Figures 2-96 and 2-97 show the setting for band 1. The frequency range of each band is given in paragraph $10 f$.
Bandswitch S-1301A rear selects the desired tuning inductor and, on bands 1 through 5 , the required damping resistor. The damping resistor broadens the band response of the tank circuit required to maintain even excitation in phase-shift operation. Band 1 uses damping resistor R-1306 and inductor L-1301; band 2, R-1392 and L-1334; band 3, R-1310 and L-1305; band 4, R-1309 and L-1304; band 5, R-1308 and L-1303; band 6, L-1302. Bandswitch S-1301A front shorts out all unused inductors and damping resistors. Bandswitch S-1301C rear connects tuning capacitor C-1305 in parallel with the selected tuning inductor and, in bands 5 and 6, it selects band-spread capacitor C-1369 or C-1370, respectively. These capacitors spread the tuning of bands 5 and 6 over almost the full 180° rotation of tuning capacitor $\mathrm{C}-1305$. After the desired tank

Figure 2-97. Buffer Tank Circuit, Simplified Schematic

Figure 2-98. IPA V-1302, Simplified Schematic
circuit has been selected, the band circuit is tuned to maximum output by tuning capacitor $\mathrm{C}-1305$, which is manually controlled by the TUNE IPA control © ${ }^{\text {B }}$ The tank circuit is decoupled from the 300 -voit B+ supply by bypass capacitor C-1306 and filter choke $\mathrm{L}-1332$. Capacitor $\mathrm{C}-1307$ couples the output of the buffer stage to the grid of the IPA tube, V-1302. Trimmer capacitor C-1304 is connected on the IPA grid side of coupling capacitor $\mathrm{C}-1307$ to reduce the d-c potential between its plates.
(3) BUFFER KEYING.-During FSK or FAX operation, the buffer control grid (figure 2-96) is maintained at a constant potential of zero volts and its screen grid at a constant potential of approximately +150 volts, thereby keeping the buffer amplifying and the carrier continuously on the air. The zero voltage on the control grid is directly applied from the LLRM, through isolating resistor $\mathrm{R}-1301$, with capacitor C-1377 acting as an r-f bypass. The screen potential is supplied from the regulated +150 volts supplied by the action of the voltage regulator tube, $\mathrm{V}-1303$, in series with resistor $\mathrm{R}-1403$, forming a voltage divider across the +300 -volt supply. Resistor R-1305 and capacitor C-1303 form an r-f filter to further stabilize the buffer screen supply, and resistor $\mathrm{R}-1402$ acts as a suppressor. In $\mathrm{c}-\mathrm{w}$ operation during mark and in phone operation when the press-to-talk button is depressed, the above conditions also prevail and the buffer amplifies. However, in c-w operation during space and in phone operation when the press-to-talk button is not depressed, -30 volts is received from the LLRM through isolating resistor R-1301 and is applied to the control grid of the buffer. This -30 volts is sufficient to drive the buffer well below cutoff so that any r-f signal from the RFO will not be amplified, which effectively cuts the carrier off the air. The origin of the zero and -30 -volt keying voltage is explained in the keying circuit discussion in the LLRM (paragraph $7 c(7)$).
c. IPA V-1302.-The intermediate power amplifier (IPA) V-1302 (figure 2-98) amplifies the r-f signal from the buffer V-1301 to a level of approximately 210 volts rms. The r-f signal is further tuned in the IPA plate tank circuit.
(1) IPA INPUT.-During normal operation, the control grid of the IPA is power biased to approximately -65 volts by means of the voltage divider R-1341 and R-1342 connected between the -220 -volt supply and a ground that is supplied from the antenna tuning unit. A grid leak circuit is comprised of r -f choke L-1344, R-1311, together with grid current meter shunting resistor R-1315. Thus, a combination of grid-leak bias and fixed bias is used. Capacitor C-1308 bypasses the meter and power bias circuit. The cathode is grounded through parasitic suppressor R-1396 and cathode current metershunting resistor $\mathrm{R}-1314$, which is bypassed by $\mathrm{C}-1375$. The screen is connected to the +300 -volt supply through parasitic suppressor R-1312, filter resistor R-1313, and screen current meter-shunting resistor R-1319. E-1309,
in the plate circuit, is a parasitic suppressor formed by a coil wound on a 330 -ohm resistor. When switching takes place, to bypass the antenna tuning unit, the r-f line to the antenna is momentarily opened. At the same time the ground from the ATU supplied to the IPA grid bias voltage divider is removed and, momentarily, R-1395 is added to the voltage divider, raising the bias on the grid to -180 volts, cutting off the IPA and, consequently, the RFA output, to prevent any surge in the r-f output caused by the momentary loss of antenna load.
(2) IPA TANK CIRCUIT.-The IPA tank circuit (figures 2-98 and 2-99, shown for band 1) is similar to the tank circuit of buffer V-1301. Both are tuned by the TUNE IPA control (B), which is ganged to the IPA tuning capacitor, $\mathrm{C}-1312$, as well as to the buffer tuning capacitor, C-1305. Choke L-1306 and capacitor C-1313 comprise a $\mathrm{B}+$ decoupling network, for the +500 -volt plate supply. BANDSWITCH control (c) is ganged to IPA bandswitches S-1301D rear, S-1301B front, and $\mathrm{S}-1301 \mathrm{~B}$ rear, as well as to the buffer bandswitches. The desired tuning inductor and associated damping resistor are selected by S-1301B rear. All other tuning inductors and damping resistors are shorted out by S-1301B front. On bands 5 and 6, bandswitch S-1301D rear selects a band-spread capacitor, C-1371 and C-1372, respectively, in series with tuning capacitor $\mathrm{C}-1312$. The r-f output of the IPA, approximately 210 volts rms, is coupled by capacitor C-1316 to the control grid of the power amplifier (PA) V-1304.
d. PA V-1304. - Power amplifier V-1304 (figure 2-100) amplifies the r-f output of the IPA, V-1302, to a power level of 100 watts or 500 watts depending on the plate and screen voltages selected by means of the control circuits. The signal is again tuned in the PA plate circuit and is matched to the antenna line.
(1) PA INPUT.-In addition to higher plate and screen voltages required for 500 -watt operation as compared to 100 -watt operation, a higher grid bias is needed to keep "key-up" radiation below 400 micromicrowatts. The two grid biases are obtained from two taps on a voltage-divider network from the -200 -volt supply. In 100 -watt operation grid bias is obtained from a tap on potentiometer $\mathrm{R}-1345$, which is part of a voltage-divider network from the -220 -volt supply comprised of potentiometer R-1348, resistor R-1404, potentiometer R-1345, and resistor R-1405 to ground. From the tap on R-1345, bias is supplied through contacts $5 R$ and $6 R$ of relay $\mathrm{K}-1304$, which is not energized in 100 -watt operation, through grid current meter-shunting resistor R -1326, grid return resistor $\mathrm{R}-1344$ and r -f choke $\mathrm{L}-1311$ to the control grid of PA V-1304. In 500 -watt operation, relay $\mathrm{K}-1304$ is energized and grid bias is taken from a more negative point on the voltage divider, the tap on potentiometer R-1348, through contacts 10L and 9L of energized K-1304 to the grid circuit. Potentiometers R-1345 and R-1348 are normally adjusted for $\mathbf{- 1 1 0}$ volts and $\mathbf{- 1 5 5}$ volts respectively.

Figure 2-99. IPA Tank Circuit, Simplified Schematic

Filament power for the PA V-1304 is supplied from a secondary winding (terminals 5 and 7) of transformer $\mathrm{T}-1302$. Center tap of this secondary (terminal 6) is grounded through cathode meter current shunting resistor $\mathrm{R}-1327$. Capacitors $\mathrm{C}-1317$ and $\mathrm{C}-1329$ are feedthrough bypasses for the cathode. Another secondary of T-1302 (terminals 3 and 4, not shown in figure 2-100) supplies filament power for the buffer, V-1301, and IPA V-1302.
(2) PA SCREEN CIRCUIT.-In 100-watt operation the +300 -volt supply is the PA screen supply, while in 500 -watt operation, the +500 -volt supply is the screen supply. The switching is done by relay $\mathrm{K}-1304$, which is energized in 500 -watt operation but not in 100 -watt operation. The +300 -volt supply is connected as screen supply in 100 -watt operation through contacts 5 L and 6 L of unenergized $\mathrm{K}-1304$, thence through the overload coil of $K-1303$ and its shunting resistors R-1389 and $R-1370$, through the screen grid current meter-shunting resistor $R-1330$, then through screen modulation network $L-1343$ and $R-1406$, through the r-f filter network of $\mathrm{R}-1394, \mathrm{C}-1322$ and high frequency parasitic suppressing capacitor $\mathrm{C}-1367$, to the screen grid of the PA V-1304. The +500 -volt supply is applied to the screen grid circuit in 500 -watt operation through contacts 8 L and 7 L of the now energized $\mathrm{K}-1304$.

If screen grid current, which also flows through the overload coil of overload relay $K-1303$, is excessive, the slow operate overload relay $K-1303$ will operate. Operated K-1303 opens the " 500 W disable" line (opened contacts $2 R$ and $3 R$ of $K-1303$). As the only effect of opening the " 500 W disable" line is to restore the transmitter to the 100 -watt level (see paragraph $10 e(1))$, screen overload protection is provided in 500 -
watt operation only. None is required in 100 -watt level, as the screen dissipation is far below the maximum allowable level. Opening of the " 500 W disable" line by K-1303 also removes ground from the PA SCREEN overload indicator $\mathrm{I}-1301$, extinguishing it to denote overload. When the overload condition is cleared, the SCREEN OVERLOAD RESET push button © \mathbb{C}, S-1304, may be depressed, which, in turn, energizes the reset coil of $\mathrm{K}-1303$ from " -24 volts after time delay" to ground. The energized reset coil closes contacts $2 R$ and $3 R$, restoring the " 500 W disable" line. In 100 watt, resistors $R-1389$ and $R-1370$ shunt the overload coil. The allowable screen current in 500 -watt operation is lower than in 100 watt; therefore, one of the shunting resistors, $R-1389$, is removed so that the overload coil will react to the lower screen grid current overload condition. $\mathrm{R}-1389$ is disconnected by the open contacts 3 L and 4 L of $\mathrm{K}-1304$, which is energized for 500 watts.

The rf is bypassed in the screen grid circuit, but a-f changes in screen grid current caused by the corresponding audio changes in the plate voltage, when in phone operation, are not bypassed. These audio changes in screen grid current are amplified by the modulation network of $\mathrm{L}-1343$ and $\mathrm{R}-1377$ so that 100 percent modulation can be obtained in the PA stage. This screen modulation is required for phone operation only and its presence when in cw is detrimental, owing to the transient effect on the screen supply by L-1343, caused by sudden changes in screen current at the instances of "key up" and "key down". Therefore, the action of relay $K-1302$ is such that the modulation network is shorted out in all modes of operation except phone, as $\mathrm{K}-1302$ is energized from " -24 volts after time delay" to the "ground for phone" line, opening its contacts 1 L and 2 L and removing the short around L-1343 and R-1377.

Figure 2-100. PA V-1304, Simplified Schematic
(3) PA PLATE CIRCUIT.-On bands 5 and 6, the PA plate (figures 2-100 and 2-101) is fed through choke L-1316 only; but on other bands, L-1316 is connected to the $\mathrm{B}+$ source through one to four additional r-f chokes, depending on the band selected. Figures 2-100 and 2-101 show the power amplifier on band 1. In this case the PA plate is fed through chokes L-1333, L-1313, L-1314, L-1315, and L-1316. Capac-
itors $\mathrm{C}-1380$ and $\mathrm{C}-1381$ suppress any tendencies of the chokes to resonate under the influence of the audio modulation signal impressed on the plate supply during phone operation. During c-w transmission, the MVPS supplies plate voltage of $+1,300$ volts for 100 -watt operation, and the HVPS supplies $+3,000$ volts for 500 -watt operation. During phone transmission, the MVPS supplies $+1,050$ volts for 100 -watt operation,

Figure 2-101. PA Harmonic Filter, Complete Schematic
and the HVPS supplies $+2,400$ volts for 500 -watt operation. PA plate supply voltages are lower for phone transmission than for cw because the PA plate voltage is amplitude-modulated by the audio outpuit of the LLRM or HLRM. If the PA plate voltage were not reduced during phone operation, it would exceed the PA peak voltage rating. $R-1302, C-1335$, and $C-1379$ decouple rf from the plate supply line, with L-1345 acting to suppress any tendencies to resonate.

The plate is coupled to the tank circuit (figures 2-100 and 2-101) in band 1 by d-c blocking capacitor $\mathrm{C}-1318$. The PA output is obtained from a tap on the antenna matching coil ($\mathrm{L}-1331$ for band 1) and is fed through the ANT CURRENT ammeter, M-1302, to contact 3 L of the antenna switching relay, $\mathrm{K}-1306$. When K-1306 is energized, the output of the PA is connected to the 50 -ohm line to the load adjusting unit through contacts 3 L and 2 L of $\mathrm{K}-1306$ and receptacle J-1304. When $K-1306$ is not energized, the antenna system is connected to the receiver through contacts 1 L and 2 L of $\mathrm{K}-1306$ and receptacle J-1305.

If excessive PA plate dissipation takes place, the resultant increase in radiated energy will cause thermostat S-1381 to open the "500 W disable" line, producing the same results as noted in the screen overload discussion. Opening of S-1381 also removes ground from the PA PLATE overload indicator, I-1302, extinguishing it to denote overload.
(4) PA HARMONIC FILTER.-The output circuit of the power amplifier, V-1304, is essentially a harmonic filter (figures 2-101 and 2-102). The components of this filter are determined by the setting of the bandswitch, S-1302, which is ganged to the IPA buffer bandswitch, S-1301, both of which are set by the BANDSWITCH control (C). Bandswitch S-1302A selects the r-f chokes in the PA plate supply circuit. To keep the signal level constant for all frequencies, more inductance is required at the lower frequencies; therefore, on band 1, all the chokes, L-1333, L-1313, L-1314, $\mathrm{L}-1315$, and $\mathrm{L}-1316$, are connected in series in the PA plate circuit. On band 2, L-1333 is shorted. On band 3, $\mathrm{L}-1313$ and $\mathrm{L}-1333$ are shorted, etc., until, on bands 5 and 6 , only $L-1316$ is in the circuit. Switch sections S-1302B and S-1302E select the required tuning inductors, while S-1302C and S-1302D short out the unused tuning inductors. Switch section S-1302E also selects the required antenna matching inductor and connects tuning capacitors $\mathrm{C}-1320$ and $\mathrm{C}-1321$ in parallel with it. Section $S-1302 F$ couples the output from the impedance matching network to the load adjusting unit. Section S-1302G adds additional impedances to the antenna matching inductor in bands 3 and 4 to form the correct matching network. The effect of the various selections of switch S-1302 is to produce a pi-section filter and an output impedance matching network. Figure 2-102 shows the make-up of the filter and matching network for each of the six bands. After the proper components of the filter have been selected, the filter is tuned to maximum output with the TUNE PA control (D). This con-

Figure 2-102. PA Harmonic Filter, Simplified Schematic
trol simultaneously tunes capacitors $\mathrm{C}-1319, \mathrm{C}-1320$, $\mathrm{C}-1321, \mathrm{C}-1323$ and inductors $\mathrm{L}-1329, \mathrm{~L}-1331, \mathrm{~L}-1339$, L-1340, L-1341, L-1342.
e. RFA CONTROL CIRCUITS.-In addition to the function of the BANDSWITCH (D), TUNE IPA (B), and TUNE PA (D) controls, the master controlling function for differentiating between 100 -watt and 500 -watt operation and the antenna switching function are also included in the RFA.

Figure 2-103. 500-Watt Operate Relay K-1304 and 500-Watt Disable Line, Simplified Schematic
(1) 500-WATT OPERATE RELAY K-1304 and " 500 W DISABLE" LINE.-In addition to controlling the grid bias supply and screen grid supply of the PA for 500 -watt or 100 -watt operation (paragraphs $10 d(1)$ and (2)), the 500 -watt operate relay, K-1304 (figure $2-103$), controls the "ground for 100 W " line and the "ground for 500 W " line, and "ground for 500 W " AX line.

The "ground for 500 W " line and "ground for 500 W" AX line establish the control circuits in the HVPS for turning on the high voltage supply (2,400 volts/ 3,000 volts) ; in the LLRM for connecting the output of the LLRM to the input of the HLRM; in the HLRM for switching the input to the PA plate from the LLRM output to the HLRM output; and for supplying screen voltage to the HLRM (in phone operation only). The "ground for 500 W" line and "ground for 500 W" AX line are established when $K-1304$ is energized, from
ground, through contacts $8 R$ and $9 R$ and $1 L$ and $2 L$, respectively, of $K-1304$. The $A X$ line makes slightly ahead of the other so that faulty operation of the control circuits does not occur because of "sneak" paths.

The "ground for 100 W " line is established when $\mathrm{K}-1304$ is not operated. This line establishes the control circuit in the MVPS for turning on the $+1,050$-volt/ $+1,300$-volt supply, which is required as PA plate supply in 100 -watt operation.

It can be seen from the above discussion that if K 1304 is energized, the transmitter group will be in 500watt operation, and, conversely, when K-1304 is not operated, the transmitter is in 100 -watt operation. To place the transmitter in 500-watt operation, the PUSH FOR 500 W push button (E), $S-1388$, is depressed, which applies " -24 V after time delay" to the winding of $\mathrm{K}-1304$. Ground for operating $\mathrm{K}-1304$ is advanced through a series of controls and protective devices
known as the " 500 W disable" line. If any one of these controls or protective devices is not closed, ground cannot reach $\mathrm{K}-1304$, and the transmitter can operate at the 100 -watt level only. When K-1304 energizes, "-24 V after time delay" is connected to the winding of $K-1304$, through its holding contacts $1 R$ and $2 R$, allowing S-1388 to be released. The following is a list of the components of the " 500 W disable" line and their functions in the order in which they are connected in series from K-1304 to ground.

(a) IN THE RFA.

1. Bandswitch $\mathrm{S}-1378$, which is ganged to BANDSWITCH control (C), so that the circuit is closed in all bands except 1 and 2.
2. DISABLE 500 W push button (F) S-1385, which is normally closed; depressing S-1385 opens the circuit.
(b) IN THE RFO (UNIT 14).-Door interlock switch S-2920, which is closed when the door covering the frequency selector knob is closed. When this door is opened to change frequency, S-2920 opens the circuit.
(c) IN THE HVPS.-The time delay relay, $\mathrm{K}-1504$, whose contacts 2 and 8 are open until the highvoltage time delay is over, when $\mathrm{K}-1504$ energizes, closing the circuit through its now closed contacts 2 and 8. This allows the HVPS heaters to warm up before power is applied to the HVPS plate transformer.

(d) IN THE R-F TUNER.

1. Thermostat $\mathrm{S}-305$, which is normally closed except when heat radiated from tuning coil is excessive, causing S-305 to open circuit.
2. Blower switch $\mathrm{S}-306$, a centrifugal switch operated by the blower motor in the r-f tuner. The circuit is closed through S-306 only if the blower is operating.
(e) IN THE RFA.
3. PA screen overload relay $K-1303$, whose contacts 2 R and 3 R are normally closed. When $\mathrm{K}-1303$ is energized, because of excessive PA screen grid current, contacts $2 R$ and $3 R$ are opened.
4. PA plate thermostat $\mathrm{S}-1381$, which is normally closed except when energy radiated by excessive PA plate dissipation causes $\mathrm{S}-1381$ to open circuit.

The three overload indicators (I-1301, I-1302, I1303) are connected from " -24 V after time delay" to ground obtained from the " 500 W disable" line, in such a manner that the energizing of any one of the overload protective devices will cause one or more of the indicators to extinguish. Figure $2-103$ shows that, if the PA plate thermostat, which is the first in the series chain of overload protection devices, opens, there will be no ground anywhere on the " 500 W disable" line, and all three indicators will extinguish. However, if the PA screen overload relay, $K-1303$, energizes, the PA PLATE overload indicator, I-1302, remains illuminated while the other two indicators are extinguished owing to the fact that $\mathrm{I}-1302$ is connected before $\mathrm{K}-1303$ in the series chain. This same reasoning can be followed for the indications when the r-f tuner protective devices open.

Four indicators controlled by the action of $\mathrm{K}-1304$ indicate the power level of the transmitter and also indicate whether or not the transmitter is on the air.

Figure 2-104. Antenna Switching Relay K-1306, Simplified Schematic

Figure 2-105. Bandswitch, Mechanical Linkages

In 100 -watt operation, $\mathrm{K}-1304$ is not energized and ground is connected to the CARRIER-100 W-READY indicator, I-1306, which lights from " -24 V after time delay." If the STANDBY-OPERATE switch $®$, S-3005 in the LVPS (see paragraph 4d), is in OPERATE, the "-24 volts after standby" supply will be on, which, in addition to turning on the power supplies which put the transmitter on the air, also will light the CARRIER100 W-ON indicator, I-1307, through contacts 7R and 8 R of $\mathrm{K}-1304$ to ground. In 500 -watt operation, the CARRIER-500 W-READY indicator, I-1305, will light from " -24 volts after time delay" through contacts 1 R and 2 R of energized $\mathrm{K}-1304$ and to ground, as provided through the " 500 W disable" line. If the transmitter is in OPERATE, as described above, the CAR-RIER-500 W-ON indicator will light from "-24 V after standby" and to ground, through contacts $9 R$ and 8R of energized K-1304.

Note

The above discussion refers to the AN/SRT15 and 16 only. The AN/SRT-14 operates at the 100 -watt level only and does not include
the HVPS. For uniformity, the 500 -watt operate relay, $\mathrm{K}-1304$, is included in the AN/ SRT-14. However, K-1304 remains inoperative at all times owing to the fact that the " 500 W disable" line is nonexistent because of the absence of the HVPS. Therefore, all the functions described above for 100 -watt operation are pertinent to the AN/SRT-14.
(2) ANTENNA SWITCHING RELAY K-1306. -When the transmitter is on the air, the output of the RFA is coupled to the antenna system, but whenever there is no transmission, the antenna system is connected to the receiver. This switching is accomplished by the antenna switch relay, K-1306 (figure $2-104$), which is energized only when there is transmission.
In remote hand-key operation, ground is forwarded from the remote radiophone unit, whenever the key is in the mark position, through contacts 1 L and 2 L of keying relay $\mathrm{K}-1101$ in the LLRM, to $\mathrm{K}-1306$, which then energizes to " -24 V after time delay". When the hand key is up (in space), there is no ground and

K-1306 is not operated. In paragraph $10 b(3)$ it is shown that the transmitter is keyed on by mark and off by space in c-w operation, so the action of $\mathrm{K}-1306$ follows the keying.

In machine c-w, FSK, and facsimile operation a permanent ground is placed on the keying line, which keeps $K-1306$ energized at all times.

In phone operation, local or remote, ground is placed on the keying line whenever the press-to-talk button is depressed. Therefore, $\mathrm{K}-1306$ is energized only when the press to talk is depressed. Paragraph $10 b(3)$ also shows that this is the only time the transmitter is on the air in phone operation.

Whenever $\mathrm{K}-1306$ is energized as described above, the output from the PA is connected to the load adjusting unit through contacts 3 L and 2 L of $\mathrm{K}-1306$ and receptacle J -1304, and the input to the receiver is grounded through contacts $2 R$ and $3 R$ and receptacle $\mathrm{J}-1305$. When $\mathrm{K}-1306$ is not energized, the antenna system is connected to the receiver through receptacle $\mathrm{J}-1304$, contacts 2 L and 1 L of $\mathrm{K}-1306$ and receptacle $\mathrm{J}-1305$. Also, when $\mathrm{K}-1306$ is energized, it advances " -24 V after time delay" through contacts 6 R and 5 R to keying relay $\mathrm{K}-1101$ in the LLRM. A description of the function of $K-1101$ is found in the discussion of the LLRM.
f. BANDSWITCHING.-To cover the entire frequency range of 0.3 to 26 mc , six frequency bands are provided for the buffer, IPA, and PA amplifier stages. Each of the bands numbered 1 to 6 is identical for each of the stages and is selected by the manually operated BANDSWITCH control (C). Each band and its frequency range are listed in table 2-19 below.

TABLE 2-19. FREQUENCY BANDS

BAND	FREQUENCY RANGE (mc)
1	0.3 to 0.8
2	0.8 to 2
3	2 to 5
4	5 to 11
5	11 to 19
6	19 to 26

The BANDSWITCH control knob (C) is a six-position rotary switch corresponding to each of the six bands (figure 2-105). A push-to-turn feature makes it necessary to push in on the knob before it can be rotated. This forward motion depresses the (PUSH TO TURN) switch, S-1383, whose function is discussed in the LVPS (paragraph $4 d$). The shaft of the BANDSWITCH control is coupled by a chain drive to a second shaft on which is mounted the bandswitch S-1378, and the buffer IPA bandswitch sections S-1301A, S-1301B, S-1301C, S-1301D. Another coupling links the BANDSWITCH control (C) shaft to the PA band-
switch sections S-1302A, S-1302B, S-1302C, S-1302D, S-1302E, S-1302F, and S-1302G. Thus the BANDSWITCH control (C) simultaneously positions the buffer, IPA, and PA bandswitches and switch S-1378 and actuates the (PUSH TO TURN) switch, S-1383. The setting of the BANDSWITCH control (C) is denoted by the pointer on the knob.
g. BUFFER-IPA TUNING.-When bandswitching is completed, the buffer and IPA tank circuits must be tuned for maximum output. The shaft of the TUNE IPA control (B) (figure 2-106) is coupled by chain drive to the dial mounted behind the IPA window. Another chain drive connects the control shaft to a gear box. In the gear box the rotary motion is reversed and a 2 -to-1 reduction is introduced. The gear box, in turn, is coupled to the shafting on which is mounted the buffer tuning capacitor, $\mathrm{C}-1305$, and the IPA tuning capacitor, C-1312. The TUNE IPA dial is calibrated from 0 to 100 to indicate whether the tuning capacitors are at the low end (maximum capacity) of the band, the high end (minimum capacity) or at some intermediate point. The dial is notched at the high and low limits of tuning so that the limit cam falls in the notch at the limits. The action of the cam falling in the notch causes the limit assembly to lock the shaft of the TUNE IPA control (B). Maximum tuning of the buffer and IPA is indicated by maximum PA grid drive as shown by a maximum reading on the PA CURRENT meter, M-1303 (figure 2-102), with the PA-METER SELECTOR (A) in the $I_{c 1}$ position. In tuning, two peaks may be noted on $\mathrm{M}-1303$. The tuning should be set to the maximum at the lowest TUNE PA dial reading to insure that the tuning is to the fundamental frequency and not a harmonic.
b. PA TUNING.-After buffer and IPA tuning are completed, the PA harmonic filter must similarly be tuned for maximum output. The shaft of the TUNE PA control (D) (figure 2-107) is coupled by a chain drive to a right-angle drive which transfers the horizontal rotary drive to a vertical drive and then back to a horizontal drive where it couples, with a 10-to-1 reduction, to a shaft on which are mounted the gears and racks and pinions required for tuning the components of the PA harmonic filter. The cores of tuning inductors L-1339, L-1340, L-1341, L-1342, L-1329, L-1331 are mounted on a core-mounting plate assembly by means of adjusting locknuts, adjusted so the tuning inductors tune through the proper range for the frequency band selected. As the shaft is rotated, the mounting plate assembly is moved up or down by rack-andpinion arrangement which is actuated by gears mounted on the shaft. This moves the cores in or out of the coils to tune the inductors. The adjustable plates of the special vacuum tuning capacitors $C-1319, C-1320$, and C-1321 are moved in and out of the cylindrical housing by means of a similar rack-and-pinion arrangement. A special spring is mounted eccentrically at the end of the rotary shaft to counterbalance the back pressure caused when the adjustable plates of the vacuum tuning capacitors are moved in. The rotor of tuning capacitor $\mathrm{C}-1323$ is coupled by bevel gears to the shaft.

Figure 2-106. Buffer-IPA Tuning, Mechanical Linkages

Figure 2-107. PA Tuning, Mechanical Linkages

WARNING

Tuning capacitors $C-1319, C-1320$, and C-1321 develop voltages which are dangerous to life. Exercise extreme caution when making adjustments near these capacitors.

The shaft of the TUNE PA control (D) is coupled by a chain drive with a 5 -to-1 reduction to the PA dial mounted behind the PA window. This is calibrated in a fashion similar to the IPA dial and has the same limiting arrangement as explained for the TUNE IPA. Maximum tuning of the PA harmonic filter is indicated by maximum reading on the PA CURRENT meter, M-1303, with the PA-METER SELECTOR Θ in the $\mathrm{I}_{\mathrm{c} 2}^{\mathbf{-}}$ position at the lowest setting of the TUNE PA dial.
i. METERING CIRCUITS.-Three meters are provided measuring the various operating voltages and currents in the RFA. These meters are microammeters designated VOLTMETER M-1301, IPA CURRENT M-1304, and PA CURRENT M-1303 (figure 2-108).
(1) VOLTMETER M-1301. - Various operating voltages employed in the RFA, as well as the peak value of the r-f input to the buffer, are selected by the VOLT-METER-METER SELECTOR switch (1), S-1384. As M-1301 is a microammeter the voltages are measured with the meter in series with meter-multiplying resistors located in the circuit to be tested. In the RF IN position, the r-f signal fed to the grid of the buffer, $\mathrm{V}-1301$, is also fed to a network comprised of capacitors $\mathrm{C}-1328$ and $\mathrm{C}-1309$, resistor $\mathrm{R}-1338$, and crystal diode CR-1301, which rectifies the signal and detects the approximate peak value, which is measured by M-1301. Capacitor C-1334 is an r-f bypass for M-1301. The positions of selector switch S-1384, the corresponding quantity measured, the full-scale deflection value of the quantity measured, and the meter-multiplying resistors used are given in table 2-20.

TABLE 2-20. VOLTMETER-METER SELECTOR SWITCH (1) S-1384

POSITION	MEASURED QUANTITY	FULL-SCALE METER DEFLECTION	MULTIPLYING RESISTOR USED
RF IN	R-f input at buffer grid	5 V	None
BIAS SUPPLY	-220 -volt bias sup- ply voltage	-500 V	R-1401
LOW VOLTAGE	+300 -volt supply	+500 V	$\mathrm{R}-1318$
MED. VOLTAGE	+500 -volt supply	+1000 V	$\mathrm{R}-1317$
PA SCREEN	PA screen grid volt- age	+1000 V	$\mathrm{R}-1329$
PA PLATE	PA plate voltage	+5000 V	$\mathrm{R}-1332$ through $\mathrm{R}-1336$, incl.

A receptacle, $\mathrm{J}-1309$, used for checking of audio modulation (see Section 7, paragraph $6 a(1)$) is connected at the junction of meter-multiplying resistors R -1336 and $\mathrm{R}-1337$.
(2) IPA CURRENT METER M-1304 AND PA CURRENT METER M-1303.-The IPA CURRENT meter, M-1304, and PA CURRENT meter, M-1303, are similar microammeters, used to measure operating currents independently in IPA (V-1303) and PA (V-1304), respectively. To measure these currents, the IPA-METER SELECTOR, switch (G), S-1386, and the PA-METER SELECTOR switch $(\mathcal{H}$, S-1387, connect their respective meters across the shunting resistor that is located in the circuit to be measured. Capacitor $\mathrm{C}-1332$ is an r-f bypass for $\mathrm{M}-1304$, and capacitor $\mathrm{C}-1333$ is an r-f bypass for $\mathrm{M}-1303$. The positions of selector switches S-1386 and S-1387, the corresponding quantity measured, the full-scale deflection value of the quantity measured, and the shunting resistors used are given in tables 2-21 and 2-22.

TABLE 2-21. IPA-METER SELECTOR SWITCH (G) S-1386

POSITION	MEASURED QUANTITY	FULL-SCALE METER DEFLECTION	SHUNTING RESISTOR USED
I_{ol}	IPA control grid current	5 ma	R-1315
$\mathrm{I}_{\mathrm{c} 2}$	IPA screen grid current	10 ma	$\mathrm{R}-1319$
I_{k}	IPA cathode current	500 ma	$\mathrm{R}-1314$

TABLE 2-22. PA-METER SELECTOR SWITCH ${ }_{(H)}$ S-1387

POSITION	MEASURED QUANTITY	FULL-SCALE METER DEFLECTION	SHUNTING RESISTOR USED
$\mathrm{I}_{\mathrm{c} 1}$	PA control grid current	50 ma	R-1326
$\mathrm{I}_{\mathrm{c} 2}$	PA screen grid current	100 ma	R-1330
$\mathrm{I}_{\mathbf{k}}$	PA cathode current	1000 ma	$\mathrm{R}-1327$

j. R-F LINE FILTER Z-1301 AND BLOWER MOTOR B-1306.-Single-phase, 110 -volt a-c, 60 -cycle power is applied through terminals $1,2,3$ and 9,10 , 11 of receptacle J-1301 to supply power for the RFA blower motor, B-1306, and the primary of the filament transformer, T-1302 (figure 2-109). The power is applied first through a capacity input L-C filter, Z-1301, for each side of the line. This prevents r-f voltages from the filament transformer being fed back into other units through the power line. The power is then fed through fuse $\mathrm{F}-1301$ in one side of the line, to the blower motor, B-1306, and filament transformer primary terminals (terminals 1 and 2 of T-1302). Capacitor $\mathrm{C}-1310$ is the phasc-shifting capacitor needed to start and run B-1306.

Figure 2-108. Metering Circuits, Simplified Schematic

11. ELECTRICAL EQUIPMENT CABINET CY-1571/ SRT (TRANSMITTER GROUP CABINET).

The transmitter group cabinet houses, from top to bottom, the RFA, LLRM, RFO, LVPS, and MVPS. On the cabinet is the retractable intercabling with the mating connectors for the five slide-in drawers and terminal boards for inputs and outputs to other assemblies of the transmitter. One cabinet is used in the AN/SRT-14 and AN/SRT-15; two are used in the AN/SRT-16. In
a typical AN/SRT-14 and AN/SRT-15 installation, the transmitter group cabinet rests atop Mounting MT-1423/SRT; in the AN/SRT-16, the two cabinets (and mountings) are side by side.
The units in the transmitter group cabinet are removable drawers with mating connectors at their rear. These connectors engage corresponding connectors on the retractable cabinet intercabling, allowing the drawers to remain connected when pulled out. The input and out-

NAVSHIPS 92121(A)
Section 2

Figure 2-109. R-F Line Filter Z-1301 and Blower Motor B-1 306, Simplified Schematic
put connections of these drawers (to units outside of the cabinet) are made at terminal boards E-601 through E-607, located at the bottom of the transmitter group cabinet. (However, the r-f output of the RFA requires special shielding and is fed to the load adjusting unit rather than a terminal board.)

Primary power to the transmitter bay is connected at terminal board E-602, terminals 15 and 16, and thence fed to r-f interference filters Z-601 and Z-602, which filter out any rf picked up in the power supplies, preventing r-f feedback into the primary power source. E-602 terminals 21 and 22 provide an input for uninterrupted 110 volts ac for the RFO oven heaters. This power is fed first through r-f interference filters Z-603 and Z-604. Exact location of Z-601 through Z-604 is shown on the transmitter group control circuit, figure 2-126.

12. ELECTRICAL EQUIPMENT CABINET CY-1572/ SRT (HLRM CABINET).

The HLRM cabinet, which houses the high level radio modulator, is used only in the AN/SRT-15 and AN/ SRT-16. It contains most of the terminal boards for the booster and has retractable cabling with mating connectors for the HLRM drawer, but no other electrical components. The HLRM cabinet and the HVPS cabinet, together with the units they house, constitute Radio Modulator-Power Supply OA-685/SRT, commonly called the "booster".

13. ELECTRICAL-EQUIPMENT CABINET CY-1573/SRT (HVPS CABINET).

The HVPS cabinet is physically similar to the HLRM cabinet and houses the high voltage power supply (used only in the AN/SRT-15 and AN/SRT-16). It contains retractable cabling with mating connectors for the HVPS drawer and terminal boards. A primary power input of 220 - or 440 -volt, 60 -cycle, three-phase ac from the ship's supply is connected to the booster by means of E-1410 terminals 1,2, and 3 located on the floor of the HVPS cabinet. Primary power is fed first through
r-f interference filters Z-1401, Z-1402, and Z-1403, the exact location of these filters being shown on the booster control circuit, figure 2-127.

14. MOUNTING MT-1423/SRT (MOUNTING).

a. GENERAL.-The mounting contains two blowers and four heaters. The blowers supply air for cooling the various parts of the transmitter bay. In cold weather the heaters may be used to maintain the transmitter bay at a more favorable temperature during stand-by or nonoperating periods; after the transmitter bay has warmed up suffciently, the heaters may not be required. One mounting is used in the AN/SRT-14, and two are used in the AN/SRT-15 and AN/SRT-16. Operation of the blower motors and heaters is initiated by means of front panel controls on the LVPS.
b. BLOWERS.-The blowers are placed in operation by depressing the START push* button of MAIN POWER switch \circledR S-3004 on the LVPS front panel. The blowers continue to operate as long as the equipment is on. In the AN/SRT-16, the blowers in both mountings may be controlled from the LVPS in either the right or left transmitter group. The blowers draw air through three oil-impregnated filters in the front of the mounting. Air passes through the filters into an air chamber, from where it is led through two flexible ducts to the blower housings. The blower rotors force the air through two other flexible ducts into the side ducts of the transmitter group cabinet frames. Baffles are located in the transmitter group cabinet and on the drawer chassis to direct air flow through the equipment.

When the START push button of MAIN POWER switch \circledR is depressed, master control relay K-3001 and relay K-3004 are energized (see paragraph 4c), placing motors B-701 and B-702 (figure 2-110) across the 110 -volt a-c line. In the AN/SRT-15 and AN/ SRT-16, all the motors in both mountings are connected in parallel. (For terminal board connections, see the primary power distribution schematic, and the complete schematic of the mounting in Section 7.) Power is sup-

NAVSHIPS 92121(A)
THEORY OF

Figure 2-110. Blower Motors B-701 and B-702, Simplified Schematic
plied to the motors from either the right or left transmitter group through contacts of relay K-3004. These capacitor-start-and-run induction motors are designed for continuous duty and operation in ambient temperatures between $-20^{\circ} \mathrm{C}$. $\left(-4^{\circ} \mathrm{F}\right.$.) and $+65^{\circ} \mathrm{C}$. $\left(+149^{\circ} \mathrm{F}\right.$. $)$. In each mounting, the two motors must run in opposite directions. Motor B-701 runs clockwise and B-702 runs counterclockwise. Although the motors are identical, in other respects, improper ventilation may result if the respective direction of rotation is not kept, because the impellers of B-701 and B-702 are of opposite pitch. The connections which determine the direction of rotation are shown in figure 2-111.

NOTE:
B-7OI ROTATES CLOCKWISE, B-702 COUNTERCLOCKWISE (FACING MOTOR AT END OPPOSITE SHAFT EXTENSION).

Figure 2-111. Blower Motor Connections, Schematic
c. HEATERS.-Heating elements HR-701, HR-702, HR-703, and HR-704 (figure 2-112) are used when the temperature is below $16^{\circ} \mathrm{C}$. ($60^{\circ} \mathrm{F}$.) to keep the oven circuits in the RFO at a temperature that permits them to function properly. When the cabinet ambient temperature is less than $16^{\circ} \mathrm{C}$. $\left(60^{\circ} \mathrm{F}\right.$), the oven circuits are not capable of raising the temperature inside the oven to the specified $75^{\circ} \mathrm{C}$. $\left(167^{\circ} \mathrm{F}\right.$.). It may also be desirable to operate the heaters continuously when the equipment is shut down for long periods of time to prevent the condensation of moisture in the equipment. Power to the heating elements is controlled by CABINET HEATER switch (NW) S-3002 in the LVPS. When the temperature is between $-1^{\circ} \mathrm{C}$. $\left(30^{\circ} \mathrm{F}\right.$.) and $16^{\circ} \mathrm{C}$. ($60^{\circ} \mathrm{F}$.), heater and transmitter power should be turned on simultaneously, and the heaters should remain on 15 minutes. If the temperature is below $-1^{\circ} \mathrm{C} .\left(30^{\circ} \mathrm{F}\right.$.), the heaters must be left on continuously (i.e., for the duration of transmitter operation).

The four 150 -watt heaters are operated on 110 volts ac and are connected in parallel. In the AN/SRT-15, the heater circuits of both mountings are in parallel and receive power from the LVPS. In the AN/SRT-16 the heaters in the two mountings are individually energized from the CABINET HEATER switch (NM) in each of the transmitter groups. Therefore, to operate all heaters in the AN/SRT-16, both EMERGENCY SWITCH (all and the CABINET HEATER switch (all must be on in the LVPS of both transmitter groups. CABINET HEATER indicator light I-3003 in the LVPS of each transmitter group is illuminated individually as the respective heaters receive power.

15. TRANSMITTER COUPLER CU-402/SRT (LOAD ADJUSTING INIT, LAU).

a. GENERAL.-The function of the load adjusting unit (LAU) is to improve the impedance match between the characteristic 50 -ohm r-f output impedance of the radio frequency amplifier and the impedance presented by the antenna tuning equipment. The improved matching permits the final PA stage of the radio frequency amplifier to operate at optimum plate efficiency and improves the transfer of power to the antenna system. The LAU consists of the standing-wave ratio monitor circuit and the impedance transformer circuit.
b. STANDING-WAVE RATIO MONITOR CIRCUIT. - The function of the standing-wave ratio (SWR) monitor circuit is to detect and monitor the standing-wave ratio present in the r-f transmission line at the output of the radio frequency amplifier. The components of the SWR monitor circuit together form a unit designated Directional Coupler Z-3201 (figure 2-116).

The SWR monitor circuit is composed essentially of two bridge circuits combined with a voltage divider that is tapped to provide the required outputs. One bridge circuit provides a d-c voltage proportional to the reflected and the other bridge circuit provides a d-c voltage proportional to the incident wave in the r-f transmission line. Each bridge circuit utilizes a voltage proportional to the current in the r-f line and a voltage proportional to the voltage in the r-f line.

The r-f transmission line from the RFA is connected through J-3201 to the SWR monitor circuit and thence to the impedance transformer circuit. A voltage, $\mathrm{e}_{\mathrm{v} 2}$, proportional to the r-f line voltage, is obtained directly from the line through the voltage divider, $R-3201$, and the d-c blocking capacitor, $\mathrm{C}-3201$, to the crystal rectifier, CR-3202. A second voltage, e_{i}, , proportional to the current in the r-f line, is obtained from one-half of the secondary winding of current transformer T-3202. The center tap of the secondary winding of $\mathrm{T}-3202$ is grounded, providing two voltages, one at each end,
that are 180° apart with respect to each other. Resistors $\mathrm{R}-3201, \mathrm{R}-3202, \mathrm{R}-3203$, and $\mathrm{R}-3204$ are damping resistors. Voltage $e_{i 2}$, since it is shifted 180° in phase by $T-3201$, is in phase with the voltage $e_{\mathrm{v} 2}$ and both voltages add at the junction of CR-3202 and C-3201. Rectifier CR-3202 will conduct only when the voltage $e_{v 2}$ is of less value than $e_{i 2}$. When rectifier CR-3202 conducts, a positive d-c potential will exist at the junction of CR-3202 and C-3201 because of the polarity of CR-3202. This resultant positive d-c voltage is proportional to the incident voltage on the transmission line.

A voltage, $\mathrm{e}_{\mathrm{v} 1}$, proportional to the voltage on the r-f line is obtained directly from the line through voltage divider $R-3201$ and the d-c blocking capacitor, $C-3204$, and is applied to the crystal rectifier, CR-3201. Voltage $\mathrm{e}_{\mathrm{v} 1}$ is equal to and in phase with $\mathrm{e}_{\mathrm{v} 2}$. A second voltage, $e_{i 1}$, proportional to the r-f line current, is obtained from one-half of the secondary winding of $\mathrm{T}-3202$. Voltage $e_{i 1}$ is 180° out of phase with voltage $e_{i 2}$, obtained from the other half of T-3202 secondary. Voltage $\mathrm{e}_{\mathrm{i} 1}$ in this case is 180° out of phase with voltage $e_{\mathrm{v} 1}$. Rectifier CR-3201 will conduct only when the anode is positive with respect to the cathode. Since voltage $e_{i 1}$ is 180° out of phase with $\mathrm{e}_{\mathrm{v} 1}$, these two voltages will subtract and produce a negative voltage at the junction of CR-3201 and C-3204 proportional to the reflected voltage in the r-f transmission line.

Between the junction of $\mathrm{CR}-3202$ and $\mathrm{C}-3201$, where a d-c potential proportional to the incident voltage is found, and the junction of CR-3201 and C-3204, where a d-c potential of opposite polarity, proportional to the reflected wave, is found, a voltage divider is connected. This voltage divider consists of resistors $\mathbf{R}-3206, \mathbf{R}-3208$, then through $\mathrm{J}-3203$ pin B and interconnecting wiring to the control-indicator to pick up resistors $\mathrm{R}-410$, $\mathrm{R}-415, \mathrm{R}-414, \mathrm{R}-412$, then back to the LAU through $\mathrm{J}-3203$ pin C to resistors $\mathrm{R}-3209$ and $\mathrm{R}-3207$. At some point on this divider there is a voltage equal to the ratio of the reflected voltage to the incident voltage, which bears a simple relationship to the standing-wave

Figure 2-112. Heaters HR-701 Through HR-704, Simplified Schematic

Figure 2-113. Control Circuits Operation Through -24 Volts After Time Delay, Simplified Functional Block Diagram
ratio (SWR). For any value of SWR, there will be a balanced (zero) condition at some point on the divider. The value of $R-3201$ is such that if there were no reflected current (SWR of $1: 1$), the d-c voltage at the junction of CR-3201 and C-3204 would be zero, and some positive d-c voltage would exist at the junction of CR-3202 and C-3201. With reflection on the line, d-c voltage at the junction of CR-3201 and C-3204 is nega-
tive and the d-c voltage at the junction of CR-3202 and C-3201 is positive. The zero point lies somewhere on the voltage-divider network. The voltage divider is tapped in the control-indicator unit at points that represent the location of the zero d-c voltage at standing-wave ratios of $8: 1,4: 1$, and $2: 1$. Paragraph $2 q(6)$ covers the location of these taps and how the information is transformed to a meter indication of SWR.

Figure 2-114. Control Circuits Operation from -24 Volts After Time Delay for 100-Watt Operation, Simplified Functional Block Diagram
c. IMPEDANCE TRANSFORMER CIRCUIT.-To improve the impedance match between the characteristic 50 -ohm output impedance of the r-f output from the radio frequency amplifier (RFA) and the impedancé presented to RFA by the antenna and the antenna tuning equipment, an autotransformer, T-3201 (figure 2-117), is introduced into the r-f transmission line. The r-f energy from the output of the RFA, after passing
through the SWR monitor circuit, is connected to one of the taps of T-3201 through the contacts of INPUT TAP \otimes switch S-3201. The output of the transformer, selected from one of the taps by the position of the OUTPUT TAP switch $m, \mathrm{~S}-3202$, is connected through r-f ammeter $\mathrm{M}-3201$ to $\mathrm{J}-3202$, which is the output to the antenna coupler. With controls $(\mathbb{W}$ and (m) both set at position 4, the full winding of the impedance
transformer is shunted across the line. This is the normal setting of these controls. If, after all tuning procedures have been completed, the measured SWR is higher than $2: 1$, controls $\otimes \sqrt{\infty}$ and (n) are set for the optimum impedance match as indicated by the tuning indications of the PA stage of the radio frequency amplifier (see Section 4, paragraph 6a) .

16. TRANSMITTER BAY CONTROL CIRCUITS.

a. GENERAL.-The control circuits located in the transmitter bay have been discussed separately under the descriptions of the various major units to which the individual control functions apply. The following will be a condensed discussion to unite all of the control functions. Included as control functions are the control of power circuits, manual setting up of a frequency in the RFO, manual tuning of the RFA, selection of the output power level, and placing the carrier on the air. Overload and other protection devices are employed to prevent damage to the equipment when operating at the 500 -watt level. Various indicator lights show the operating condition of the transmitter bay.
b. SEQUENCE OF OPERATION.-Figures 2-113, 2-114, and 2-115 are simplified functional diagrams showing, in sequence, the operation of the control circuits. Figure 2-113 shows the operation through " -24 V after time delay", which is the same for either 100 watt or 500-watt operation. Figure 2-114 continues the sequence operation for 100 -watt operation; figure 2-115 shows the sequence for 500 -watt operation.

Note

As the AN/SRT-14 does not operate at the 500 -watt level, the sequence of operation for 500 -watt output level applies to the AN/ SRT-15 and 16 only.
(1) The main power input (top block of figure $2-113$) is 110 -volt, 60 -cycle, single-phase power received from the ship's supply. EMERGENCY SWITCH ® controls the power input to the transmitter bay. When switch ${ }^{14}$ is closed, power is delivered to the CABINET HEATER switch $\times 10$ and to the MAIN POWER switch ®.

Figure 2-115. Control Circuits Operation, from - 24 Volts After Time Delay for 500-Watt Operation, Simplified Functional Block Diagram
(2) When the start button of switch \circledR is depressed, the master control relay is energized, which distributes a-c power for the following purposes: to distribute a-c power through the transmitter bay, to energize all filament supplies in the transmitter bay, to energize the blower in the RFA, to energize the MAIN POWER indicator, to turn on the +250 -volt regulated and -12 -volt power supplies in the LLRM, and, through the interlocks, to energize the LVPS time delay. After the time delay, the " -24 V after time delay" supply is energized, which is a control voltage. With " 24 V after time delay" the -220 V and the +250 V unregulated supplies in the LVPS are energized.

> Note
> The following sequence ap lies only with the SERVICE SELECTOR (1) on the LLRM set at the HAND position.
(3) At this point for 100 -watt operation (figure 2-114), with the STANDBY-OPERATE switch $®$ in STANDBY, the CARRIER-100W-READY indicator will be energized. If a different frequency is desired from the last previous transmission, the manual settings of the new frequency by the control knobs on the RFO are made at this point in sequence, followed by the corresponding manual bandswitching in the RFA, the initial setting of the two switches on the load adjusting unit, and then initial antenna tuning by the manual controls on the control-indicator. Placing the STAND-BY-OPERATE switch © in OPERATE energizes $+500-$ volt and $+1,050 /+1,300$-volt supplies in the MVPS and energizes the CARRIER-100W-ON indicator. Energizing the +500 -volt supply allows the +300 -volt supply in the LVPS to energize. Placing the transmitter in a "key down" condition will now energize a carrier, and manual tuning of the IPA and PA stages of the RFA is performed. The final fine antenna tuning adjustments are now made at the control-indicator. Further adjustment of the switches on the load adjusting unit will be required only if satisfactory tuning is not accomplished with the switches in their initial setting.
(4) For 500 -watt operation (figure 2-115) after LVPS time delay, and with the STANDBY-OPERATE switch ® in STANDBY, frequency selection, if required, takes place as described in the previous paragraph. The sequence now takes one of two paths, depending on whether or not tuning is required. If tuning is required, this should be done with the transmitter energized at the 100 -watt level (path 1), which gives the same sequence of operation as for 100 watts, as explained above. After tuning is complete, the BOOSTER EMERGENCY SWITCH (§), which controls power input to the booster, is turned on. This supplies either 220 -volt or 440 -volt, 60 -cycle, three-phase power to the booster, energizing the HVPS time delay. After the time delay is over, the PUSH FOR 500 W button (E) is depressed, energizing the $+2,400 /+3,000$-volt supply and the CARRIER-500W-ON indicator. Concurrently, the 100 W indicator and the $+1,050 /+1,300$-volt supply
are de-energized. If no tuning is required (path 2), the booster emergency switch (SS) is placed in the ON position. When switch (S) is closed, the booster receives either 220 -volt or 440 -volt, 60 -cycle, three-phase power from the ship's supply, energizing the HVPS time delay. After the time delay is over, the PUSH FOR 500 W button (E) is depressed, energizing the CARRIER-500-W-READY indicator. Placing the STANDBY-OPERATE switch $Ð$ in OPERATE energizes the +2,400/ $+3,000$-volt supply in the HVPS, the +500 -volt supply in the MVPS, the CARRIER-500-W-ON indicator (when the +500 -volt supply is energized), and it allows the +300 -volt supply also to energize. Placing the transmitter in a "key down" condition will now energize the carrier.
(5) The operation of the control circuits in the AN/SRT-14 can be, as described above, for 100 watts only; however, in the AN/SRT-15, operation can be either as described for 100 watts or 500 watts, depending on the power level selected. The AN/SRT-16 has two transmitter groups: one group operates at the 100 -watt level only, the other at either 100 watts or 500 watts. Both transmitter groups of the AN/SRT- 16 may operate simultaneously. The choice of which transmitter group in the AN/SRT-16 operates at both power levels is made at the time of installation, when the "booster" output is connected to one of the transmitter groups.

Note

In the discussion that follows, reference will be made to other portions of Section 2 where the circuits being analyzed are covered more completely. Figures $2-126$ and $2-127$ are simplified schematics of the AN/SRT transmitter bay control circuits, excluding those in the left transmitter group. Switches, relays, and relay contacts that are used in the signal circuits of the transmitter are not shown in figures 2-126 and 2-127. Wire numbers are given to aid in following the discussion. The portion of figure 2-126 concerning the control-indicator control circuits is discussed with the r-f tuner and antenna coupler control circuits (paragraph 17d).
c. SUMMARY OF CONTROL CIRCUIT OPERA-TION.-The LVPS and HVPS receive all the power from the ship's supply. The LVPS receives 110 -volt a-c, 60 -cycle, single-phase power. The HVPS receives either 220 - or 440 -volt, three-phase, a-c power from the ship's supply. All other units in the transmitter bay receive a-c power from the LVPS or the HVPS (with the exception of the RFO oven circuits).
(1) POWER CONTROL. - The power input to the transmitter bay is controlled by EMERGENCY SWITCH © $11 T$, BOOSTER EMERGENCY SWITCH (SS), and MAIN POWER switch ®R). The CABINET HEATER switch ND controls power to the cabinet heaters in the mounting.
(a) The transmitter group cabinet receives the input power (110 volts ac) to the LVPS through E-602 terminals 15 and 16 (figure 2-126). The input power is fed first through interference filters Z-601 and Z-602 to $\mathrm{E}-602$ terminals 17 and 18 . Wires 215 and 216 deliver the 110 volts ac through J-611 to the LVPS via mating connector J-3003 pins 4 through 8 and 12 through 16. Five pins are used on $\mathrm{P}-3001$ for each side of the incoming line to insure adequate current-carrying capacity. This power is fed to EMERGENCY SWITCH S-3001, which controls power to the transmitter group. With switch (ate closed, power is delivered to the cabinet heaters in the right and left mountings through CABINET HEATER switch ©M S-3003, and its presence is shown by CABINET HEATER indicator light I-3003.
(b) Power is also delivered through fuses $\mathrm{F}-$ 3007, F-3008 and F-3005, F-3006 to the start-stop circuit and to the INTERLOCK BATTLE SHORT indicator, I-3007, under control of the INTERLOCK BATTLE SHORT switch, S-3007.
(c) The start-stop circuit controls power to the transmitter group and protects personnel. Depressing the START button on MAIN POWER switch \circledR S-3004 energizes master control relay $\mathrm{K}-3001$ and MAIN POWER INDICATOR light I-3001. When K-3001 is energized, power is applied to the LVPS rectifiers, the RFA filaments and blower, the RFO filaments, the LLRM filaments, the +250 -volt regulated supply and the -12 -volt supply in the LLRM, and the MVPS filaments. (For a complete discussion of power distribution, see paragraph 4c.)
(d) The booster (HVPS and HLRM) receives input power (figure 2-127) (220 or 440 volts, three phase, 60 cps) through E-1410 terminals 1,2 , and 3. The input power is fed first through interference filters Z-1401, Z-1402, and Z-1403 to E-1403 terminals 21, 22 , and 23 . Wires 414,415 , and 416 connect the power to the HVPS through J-1401 and J-1501 pins 1 through 4, 9 through 12, and J-1402 and J-1502 pins 1, 2, 9, 10. This power is then fed to the BOOSTER EMERGENCY SWITCH (3), S-1501, which controls a-c power to the booster. With switch (5) closed, power is fed to the contacts of relay K-1502, through fuses $\mathrm{F}-1501, \mathrm{~F}-1502$, and $\mathrm{F}-1503$, and one phase is fed through fuses $\mathrm{F}-1504$ and $\mathrm{F}-1505$ to the HLRM and HVPS filaments and to the HVPS time delay. The TIME DELAY indicator light indicates that the HVPS time delay has run out. With the STANDBY-OPERATE switch (®) in OPERATE, the transmitter in 500 -watt operation and the HVPS time delay run out, K-1502 energizes and, through its contacts, connects three-phase power to the $+2,400 /+3,000$-volt rectifier. Indicator lights H.V. PRIMARY $\phi 1$ (I-1503), H.V. PRIMARY ϕ^{2} (I-1502, and H.V. PRIMARY $\phi 3$ ($\mathrm{I}-1501$) indicate that power is being applied to the $+2,400 /+3,000$-volt rectifier.
(2) POWER SUPPLIES.-Power supplies providing the various working voltages required are located in the LVPS, HVPS, LLRM, and, for the AN/SRT-15 or 16 only, in the HVPS.

The LVPS (figure 2-126) contains five power supplies: " -24 V after time delay" supply, " -24 V after standby" supply, the -220 -volt supply, the +250 -volt unregulated supply, and the +300 -volt supply.
(a) As soon as the master control relay is operated, a -24 volts, from a metallic rectifier, is fed, through the interlock system, to the time delay relay $\mathrm{K}-3003$. After approximately 30 seconds, $\mathrm{K}-3003$ is operated and a " -24 V after time delay" source becomes available. This is first carried to the (PUSH TO TURN) switch, S-1383, associated with bandswitch in the RFA, by way of J-3001 and J-609 pin 12, through wire 229 to $\mathrm{J}-601$ and $\mathrm{J}-1301$ pin 12. The " -24 V after time delay" is then distributed to the control circuits of the other major units in the following manner: by wire 102 from $\mathrm{J}-1301$ and $\mathrm{J}-601$ pin 5 (in the RFA) to J-603 and J-1101 pin 5 (in the LLRM); then by wire 115 from J-603 pin 5 to J-606 and J-2916 pin 5 (in the RFO); then by wire 126 from J-606 pin 5 to J-609 and J-3001 pin 5 (in the LVPS); then by wire 132 from J-609 pin 5 to J-612 and J-501 pin 5 (in the MVPS); then by wire 161 from J-612 pin 5 to E-607 terminal 87; then by interconnecting cabling to E-1406 terminal 4 (of the HLRM cabinet) (figure $2-127$) through wire 304 to $\mathrm{J}-1403$ and $\mathrm{J}-1601$ pin 5 (in the HLRM); and, finally, by interconnecting cabling, from E-1406 terminal 4 to E-1401 terminal 4 (of the HVPS cabinet), through wire 404 to J-1401 and J-1501 pin 5 (in the HVPS). In the LVPS (figure 2-126) the TIME DELAY indicator, I-3002, is illuminated when the " -24 V after time delay" supply becomes energized. The " -24 V after time delay" is delivered to the STANDBY-OPERATE switch ®, S-3005. When S-3005 is closed, the stand-by relay operates, provided there is a ground on the keying line in the LLRM and, through its closed contacts, provides a supply known as the " -24 V after standby" supply. This supply is fed to the control circuits in the RFA by wire 228 from $\mathrm{J}-3001$ and $\mathrm{J}-609$ pin 13 to $\mathrm{J}-601$ and $\mathrm{J}-1301$ pin 13. The " -24 V after standby" is also fed to other control circuits in the following manner: by wire 135 from $\mathrm{J}-609$ pin 13 to J-612 and J-501 pin 13 (in the MVPS); then by wire 166 from J-612 pin 13 to E-607 terminal 94; then by interconnecting cable to $\mathrm{E}-1406$ terminal 5 (of the HLRM cabinet) (figure 2-127), through wire 305 to J-1403 and J-1601 pin 13 (in the HLRM); and, finally, by interconnecting cabling from E-1406 terminal 5 to E-1401 terminal 5 (in the HVPS cabinet), through wire 405 to $\mathrm{J}-1401$ and $\mathrm{J}-1501$ pin 13 (in the HVPS).
(b) When the "-24 V after time delay" supply becomes energized, relay $\mathrm{K}-3004$ operates (figure $2-126$). In addition to applying power to the blowers in the mounts, operated $\mathrm{K}-3004$ energizes the -220 -volt, +250 -volt unregulated and the +300 -volt supplies in the LVPS. The output of the -220 -volt supply illuminates the -220 V indicator, $\mathrm{I}-3006$, and is delivered to the LLRM from $\mathrm{J}-3001$ and $\mathrm{J}-609$ pin 14 , over wire 197 to $\mathrm{J}-603$ and $\mathrm{J}-1101$ pin 14 ; then it is delivered

NAVSHIPS 92121(A)
Section 2

Figure 2-116. Standing-Wave Ratio Monitor Circuit, Simplified Schematic
to the RFA from J-603 pin 14 over wire 106 to J-601 and J-1301 pin 14. The output of the +250 -volt unregulated supply illuminates the +250 V indicator, I-3004, and is fed to the RFO from J-3002 and J-610 pin 7 over wire 129 to J-607 and J-2917 pin 7 . The output of the +300 -volt supply is delivered first to the MVPS from J-3002 and J-601 pin 16, over wire 137 to $\mathrm{J}-613$ and J-502 pin 16. In the MVPS the +300 volts is fed to the contacts of relay $\mathrm{K}-504$. K-504 is energized when the +500 -volt supply in the MVPS is energized. With K-504 operated, +300 volts is returned through the contacts 5 R and 6 R of K-504 to the LVPS by way of J-502 and J-613 pin 8, over wire 136 to J-610 and $\mathrm{J}-3002$ pin 8. In the LVPS, the +300 -volt supply is now filtered and the output illuminates the +300 V indicator, $\mathrm{I}-3005$, and is delivered to the LLRM from $\mathrm{J}-3001$ and $\mathrm{J}-609$ pin 6 , over wire 196 to $\mathrm{J}-603$ and $\mathrm{J}-1101$ pin 6; then it is fed to the RFA from $\mathrm{J}-603$ pin 6 over wire 103 to J-601 and J-1301 pin 6.
(c) The MVPS contains two power supplies: the +500 -volt supply and the $+1,050 /+1,300$-volt supply. The +500 -volt supply is turned on when relay $\mathrm{K}-501$ is energized. K-501 operates after the LVPS time delay has run out and with the STANDBY-OPERATE switch P in the OPERATE position in either

100 -watt or 500 -watt operation. As soon as power is applied, through the contacts $2 \mathrm{~L}, 3 \mathrm{~L}$ and $2 \mathrm{R}, 3 \mathrm{R}$ of K-501, to the plate transformer of the +500 -volt supply, the 500 V PRI indicator, I-501, is illuminated. The output of the +500 -volt supply illuminates the 500 V OUTPUT indicator, I-503, and is fed first to the LLRM from J-502 and J-613 pin 15, over wire 195 to J-604 and J-1102 pin 15; then it is delivered to the RFA from J-604 pin 15 over wire 113 to J-602 and J-1302 pin 15. The output of the +500 -volt supply also energizes relay $K-504$, which switches on the +300 -volt supply as described in the previous paragraph.
(d) The $+1,050 /+1,300$-volt supply is energized when relay $\mathrm{K}-503$ operates. K-503 operates in 100 -watt operation only after the LVPS time delay has run out and with the STANDBY-OPERATE switch \oplus in the OPERATE position. As soon as power is applied, through the contacts $3 \mathrm{~L}, 4 \mathrm{~L}$ and $2 \mathrm{R}, 3 \mathrm{R}$ of $\mathrm{K}-503$, to the plate transformer of the $+1,050 /+1,300$ volt supply, the 1300 V PRI indicator, I-502, is illuminated, and when there is an output, the 1300 V OUTPUT indicator, I-504, is illuminated. In all modes of operation except phone, relay $\mathrm{K}-502$ is not energized, and the output of the supply is $+1,300$ volts. In phone
operation, $\mathrm{K}-502$ is energized, decreasing the secondary-to-primary turns ratio of the plate transformer, thus reducing the output of the supply to $+1,050$ volts. The output is delivered to the LLRM from J-503 and P-608 over wire 225 to P-605 and J-1107. In the LLRM this voltage is fed to $T-1004$. In phone operation $K-1106$ is energized, removing the short from $\mathrm{T}-1004$, and the $+1,050$-volt supply is modulated. In operations other than phone, $\mathrm{K}-1106$ is not energized and $\mathrm{T}-1004$ is shorted out, having no effect on the $+1,300$-volt supply. The supply, either $+1,050$ volts modulated or $+1,300$ volts unmodulated, is now fed through $\mathrm{J}-1108$ and J-606 over wire 231 to E-608 terminal 1. In an AN/ SRT-15 or 16 , where there is a booster, the $+1,050$ / $+1,300$-volt supply is fed to the HLRM through interconnecting cabling from E-608 terminal 1 to E-1408 terminal 3 (in the HLRM cabinet) (figure 2-127) over wire 318 to $\mathrm{P}-1403$ and J-1604. The supply is switched in the HLRM, as explained in paragraph 9(b), and then fed to the RFA. In an AN/SRT-14, which has no booster, the $+1,050 /+1,300$-volt supply is fed directly to the RFA by a jumper from terminal 1 to terminal 2 of E-608, over wire 232 to P-604 and J-1306.
(e) The LLRM contains two power supplies, a +250 -volt regulated and a -12 -volt supply (figure 2-126), which are used in other major units in addition to the LLRM. As soon as the master control relay in the LVPS is energized by depressing the START butten on the MAIN POWER switch $®$, both the +250 -volt regulated and -12 -volt supplies are energized. The output of the +250 -volt regulated supply illuminates the 250 V.P.S. indicator, $\mathrm{I}-1001$. This supply is used for a plate supply in the LLRM and also is supplied to the RFO through J-1102 and J-604 pin 12, over wire 121 to J-607 and J-2917 pin 12. The -12-volt supply provides power for operating the carbon microphone and press-to-talk relay $\mathrm{K}-1107$ in the LLRM and is supplied to the control circuits of the remote radiophone unit through J-1102 and J-604 pin 7, over wire 209 to E-601 terminal 7, and interconnecting cabling to the remote radiophone unit.
(f) The HVPS, which is a component of the AN/SRT-15 and 16 only, contains the $+2,400 /+3,000-$ volt supply used in the RFA as PA plate supply in 500 -watt operation (figure $2-127$). The output is $+2,400$ volts for phone operation, $+3,000$ volts in other modes of operation. The supply is fed to the HLRM from $J-1503$ and $P-1401$, over wire 417 to E-1404 terminal 1 (in the HVPS cabinet); then over interconnecting cabling to $\mathrm{E}-1408$ terminal 2 (in the HLRM cabinet), over wire 317 to $\mathrm{P}-1402$ and J-1603. In the HLRM, the supply is filtered and delivered to $\mathrm{T}-1601$. In phone operation, relay $K-1603$ is energized, removing the short from $T-1601$, and the $+2,400$-volt supply is modulated. In other modes of operation, $\mathrm{K}-1603$ is not energized, and $T-1601$ is shorted out, having no effect on the $+3,000$-volt supply. The supply, whether $+2,400$ volts modulated or $+3,000$ volts unmodulated, is fed through
$\mathrm{J}-1605$ and $\mathrm{P}-1404$, over wire 316 to $\mathrm{E}-1408$ terminal 1, through interconnecting cabling to E-608 terminal 2 (in the transmitter group cabinet) (figure 2-126) over wire 232 to $\mathrm{P}-604$ and $\mathrm{J}-1306$ in the RFA.
(3) FREQUENCY SELECTION.-At this point of the operation, it is assumed that all power has been turned on, the time delays have run out, and the STANDBY-OPERATE switch $₫$ ® is in STANDBY position. If a frequency of different value from that of the last previous transmission is desired, the selection of the new value is now made in the RFO. Frequency selection in the AN/SRT-14, 15 and 16 is accomplished by the manual setting of nine frequency selection knobs located behind a door on the RFO front panel. To change frequency, the door must first be opened; this opens door switch S-2920, whose function is to reduce the carrier level to 100 watts if someone should attempt to change frequency with a 500 -watt carrier on. Paragraph $10 e(1)$ describes this action in more detail. After the door is opened, the nine knobs are set according to the instructions appearing on the front panel; then the door is closed, completing the frequency selection.
(4) BANDSWITCHING.-Bandswitching in the AN/SRT-14, 15 and 16 also is a manual function and is accomplished by the appropriate setting of the BANDSWITCH (C) in the RFA according to the frequency selected for transmission.
(5) LOAD ADJUSTING UNIT TUNING.-With the transmitter in stand-by the INPUT TAP (\mathbb{D}) and OUTPUT TAP m are both set at 4. After all other tuning is completed and SWR as recorded on the SWR BALANCE meter on the control indicator is still greater than 2:1, \otimes and $(m i m$ controls must be changed to improve the standing-wave ratio.
(6) IPA AND PA TUNING.-As in the case of frequency selection, IPA and PA tuning are required only if a new frequency is selected, or if there is some other reason that the transmitter is not in the same condition as that of the previous transmission. At this point, the RFA must be energized and a signal sent to it from the RFO. This is accomplished by placing the STANDBY-OPERATE switch $®$ in OPERATE and, with the SERVICE SELECTOR (U) in the HAND position, depressing the TEST KEY, $(\bigcirc$. The IPA and buffer tank circuits are tuned first by manually tuning the TUNE IPA control (B) to obtain maximum PA grid drive as measured on the PA CURRENT meter, M-1303, with PA METER SELECTOR $\left(\underset{A}{ }\right.$ in the Ic ${ }_{1}$ position. After IPA tuning is complete, the tank circuit of the PA is tuned by manually controlling the TUNE PA control (D) to maintain maximum PA screen grid current as measured on the PA current meter, M-1303, with PA METER SELECTOR Θ in the Ic., position.
(7) ANTENNA TUNING.-Preliminary antenna tuning takes place at the same time as frequency selection and bandswitching, that is, with the transmitter in stand-by. Final antenna tuning is accomplished after IPA

Figure 2-117. Impedance Transformer Circuit, Simplified Schematic
and PA tuning with a carrier energized. A complete discussion of the control circuits involved in antenna tuning is covered in paragraph $17 d$.
(8) CARRIER ON.-With all power on, all time delays run out and all tuning functions complete, the equipment is prepared for transmission. Five services are available and chosen by the SERVICE SELECTOR (I), located on the LLRM front panel. These services are: hand key, machine key, frequency-shift key, facsimile, and phone. Any of the above services can be operated at either the 100 -watt level or 500 -watt level. The transmitter group is in 100 -watt operation as long as the 500 -watt operate relay $\mathrm{K}-1304$ is not energized and, conversely, is in 500-watt operation when $\mathrm{K}-1304$ is operated.
(a) HAND-KEY OPERATION. - When the SERVICE SELECTOR (1) is in the HAND position, the carrier can be placed on the air by the TEST KEY (T) or by depressing an external key connected to a remote radiophone unit. Depressing the key operates the keying relay, $K-1101$, which, in turn, activates the keying circuit of the LLRM to key on the transmitter. "Key down" also energizes the ATU bypass transfer circuit and the antenna switching relay, $\mathrm{K}-1306$, in the RFA, whose functions are described in paragraphs $7 g$ and $10 e(2)$, respectively.
(b) MACHINE-KEY OPERATION.-When the SERVICE SELECTOR (U) is in the MACH position, keying signals from teletype or other machine equipment are received to trigger the keying circuit of LLRM to key the transmitter. Concurrently, the keying line must be permanently closed in machine-key operation to keep the keying relay, $K-1101$, and the antenna switching relay, $\mathrm{K}-1306$, permanently energized so that the "-24 V after standby" line remains energized and the antenna remains connected to the RFA output during machine-key transmissions. This also provides a permanent signal for the ATU bypass transfer circuit.
(c) FREQUENCY-SHIFT KEY OPERATION. -When the SERVICE SELECTOR (U) is in the FSK position, the carrier remains on the air. Keying signals are received from machine-key equipment that triggers the keying circuit of the LLRM. In this case, the keying
output is used to frequency-modulate the carrier instead of keying the carrier on and off. As for the MACH position described above, a permanent signal must be applied to the keying line for FSK operation.
(d) FACSIMILE OPERATION.-With switch (1) in the FAX position, a permanent signal must be applied to the keying line, as in the MACH and FSK positions, to keep the carrier on the air. There is n; keying function in this operation and the signal from the facsimile equipment is fed to the RFO to frequencymodulate the carrier.
(e) PHONE OPERATION.-In the PHONE position of switch (1) a special line of ground potential is established known as the "ground for phone" line. The presence of this ground energizes $K-1106$ in the LLRM, which removes the short from T-1004, and allows the plate supply of the PA to be audio-modulated. This line also energizes $\mathrm{K}-502$ in the MVPS, which reduces the turns ratio of $\mathrm{T}-502$, reducing the output of the $+1,300$-volt supply to $+1,050$ volts. This supply is the PA plate supply in 100 -watt operation only. Through contacts of energized $K-502$, a source of ground potential, present in 500 watts only, is supplied to energize $K-1601$ in the HLRM, which turns on the screen supply for the HLRM. K-1601, in turn, energizes $\mathrm{K}-1603$, which removes the short from $\mathrm{T}-1601$, permitting the PA plate supply to be audio-modulated. Also in 500-watt operation, "ground for phone" energizes $\mathrm{K}-1501$ in the HVPS, which reduces the turns ratio of $T-1502$, thus reducing the output of the $+3,000$-volt supply to $+2,400$ volts. Placing switch (1) in the PHONE position also connects the keying line to the phone output so that the press-to-talk button operates the keying relay in the same manner as the hand key does when switch (1) is in the HAND position. Therefore, press to talk keys the transmitter carrier on and off, controls the antenna switching function, and controls the output of the ATU bypass transfer circuit.
(f) 100-WATT OPERATION.-When all the operations for energizing the transmitter are followed, as described previously, and transmitter is keyed-on, transmission will be at the 100 -watt level unless $\mathrm{K}-1304$ in the RFA is energized. With $K-1304$ not operated, a
ground supply known as the "ground for 100 W " line is established. This line energizes the +500 -volt and $+1,050 /+1,300$-volt supplies by energizing relay K-503 and K-501 in the MVPS. This line also supplies a ground to illuminate the CARRIER-100 W-READY and CARRIER-100 W-ON indicators. The screen supply to the PA is also controlled by $K-1304$, and with $\mathrm{K}-1304$ not operated in 100 watts, +300 volts is applied to the PA screen.
(g) 500-WATT OPERATION.-To change the transmitter from the 100 -watt level to 500 watts, the plate and screen supplies of the PA are increased and, in phone, the power of the audio modulating signal is increased. To accomplish this, $\mathrm{K}-1304$ is energized by depressing the PUSH FOR 500 W button (E) on the RFA. With K-1304 energized, the "ground for 100 W" line is opened, and in its place two other sources of ground potential known as the "ground for 500 W" and "ground for 500 W" AX lines are established. The latter is established slightly ahead of the former as K-1304 energizes, to prevent a false operation of the control circuits due to "sneak paths". As the "ground for 100 W" line is no longer present, the $+1,050 /$ $+1,300$-volt supply is no longer energized, and, in its place, the $+2,400 /+3,000$-volt supply is energized by the operation of K-1502 through the "ground for 500 W" line (assuming the BOOSTER EMERGENCY SWITCH § has been previously turned ON and that the HVPS time delay has run out). As described in phone operation, the "ground for 500 W " line also energizes K-1603 in the HLRM. The "ground for 500 W" AX line energizes $K-1104$ in the LLRM, which connects the 6-watt output winding of modulation transformer T-1004 to the input of the HLRM to permit amplification of the modulation signal for $\mathbf{5 0 0}$ watts. This ground supply also operates $K-1605$ in the HLRM, which switches the PA plate supply from the output of the LLRM to the output of the HLRM for 500 watts. Energized K-1304 also changes the PA screen supply from +300 volts to +500 volts and illuminates the CARRIER500 W-READY and CARRIER-500 W-ON indicators. The ground return for operating K-1304 passes through several auxiliary protective devices, any one of which, if activated, will open this ground return, de-energizing K-1304 and thus returning the transmitter to the 100 watt level. These protective devices are: bandswitch S--1378 in the RFA; DISABLE 500 W switch (F) S-1385 in the RFA; door interlock switch S-2920 in the RFO unit 14; time delay relay K-1504 in the HVPS; thermostat S-305 and blower switch S-306 in the r-f tuner; PA screen overload relay $K-1303$ and PA plate overload thermostat $\mathrm{S}-1381$ in the RFA. The detailed functioning of these devices is described completely in paragraph $10 e(1)$.

17. ANTENNA TUNING EQUIPMENT.

a. GENERAL.-The customary antennas used in the frequency range in which the AN/SRT-14, 15 and 16 operate (0.3 to 26 mc) are grounded vertical antennas.

For any given frequency the impedance presented to the transmission line can be expressed in terms of R +jX . The r-f output from the radio frequency amplifier works into a characteristic impedance of 50 ohms. Whenever the antenna presents an impedance other than 50 ohms, energy that is being reflected back on the transmission line reduces the energy being radiated and causes high-voltage nodes along the line. The standingwave ratio measurement is an indication of the mismatch. The ideal matching of the antenna load to the RFA output (SWR 1:1) would be to have the reactive component of the antenna impedance reduced to zero and have the resistive component equal to 50 ohms. However, acceptable tuning of the antenna load by the antenna tuning equipment is achieved if the standing-wave ratio is reduced to at least $4: 1$ for any frequency in the range.

The antenna characteristic is such that it is resonant (zero reactance) for any given frequency if its length is some multiple of quarter-wavelengths. However, at even multiples of quarter-wavelengths the resistive component is high, while at odd multiples of quarterwavelengths, the resistance is low or medium. The reactive component of the load of an antenna whose length is between an odd multiple and an even multiple of quarter-wavelengths is positive (inductive). An antenna whose length is between some even multiple of quarter-wavelength and the next odd multiple presents a negative (capacitive) reactance. These antenna characteristics are demonstrated by figure 2-118 which shows the impedance characteristics of a standard Navy 35-foot whip antenna.

It can now be seen that the function of the antenna tuning equipment is to make the antenna length together with the tuning component appear as some odd multiple of quarter-wavelength for any frequency within the 0.3 - to $26-\mathrm{mc}$ tuning range. Radio Frequency Tuner TN-229/SRT contains the main tuning component, an adjustable length of transmission line. The Antenna Coupler CU-372/SRT contains loading components to extend the range of the r-f tuner. The manual controls for the tuning adjustments are located in the ControlIndicator C-1352/SRT, which is a part of Transmitter Group OA-684/SRT and is covered in paragraph $2 q$.
b. RADIO FREQUENCY TUNER TN-229/SRT (R-F TUNER).-Radio Frequency Tuner TN-229/SRT (r-f tuner) contains the main tuning coil with an adjustable sliding short, which is the primary tuning element, and an impedance transformer, together with a switch to cut the transformer in or out, depending on the tuning requirement. The r-f tuner also contains a blower, B-302, for cooling purposes, the operation of which is covered in paragraph $2 q(1)$. A blower switch, $\mathrm{S}-308$, and a thermostat, S-305, are included as protective devices for operation at the 500 -watt level (see paragraph 10e(1)).
(1) MAIN TUNING COIL.-R-f output to the antenna coupler loading components is connected to the main tuning coil, L-302 (figure 2-119), through the

Figure 2-118. Impedance Characteristics, Typical 35-Foot Whip Antenna
bypass switch in the antenna coupler (see paragraph $17 c(1))$. L-302 is a section of helical center conductor transmission line whose length is made adjustable by means of a sliding short. The sliding short is adjusted so that the effective length of the main coil, together with the effective antenna length, is an odd multiple of quarter-wavelength for the frequency, which is the point of resonance (zero reactance). Highest efficiency usually corresponds to the lowest odd multiple, which means employing the shortest length of nonradiating variable line in the circuit. Drive motor B-301 positions the sliding short along the main coil. The manual control for regulating the position is contained in the control-indicator and is discussed in paragraph $2 q(1)$. The transmission line is coupled to the main coil by a single loop coupling coil, L-301, which is mounted on the shorting ring.
(2) IMPEDANCE TRANSFORMER.-The length and configuration of the single loop coupling coil, L-301, has been designed for optimum coupling above 1 mc . The characteristic of the 35 -foot whip antenna (figure 2-118) shows that the resistive component of the antenna impedance is so low at a frequency of 1 mc or lower that a step-up transformer will be required after the antenna is resonated to bring the SWR. to within the allowable limit.

Rf from the load adjusting unit, via the antenna coupler (see paragraph $17 c(1)$), is connected first to transformer switch S-308 (figure 2-120), which will either connect a 9:1 impedance transformer, Z-301, in the transmission line through its contacts 1, 2 and 3, 4
or, in its other setting, will bypass the action of Z-301, through contacts 2,4 , at the same time shorting out the impedance transformer. Magnerotor actuator B-303 positions transformer switch S-308 under control of the positioning cam and the manual control in the controlindicator, as described in paragraph $2 q$ (4). The output from contact 4 of S-305 is fed to the coupling coil, L-301.
(3) R-F TUNER MECHANICAL DRIVE.-To position the shorting ring on the main tuning coil, the drive motor, B-301 (figure 2-121), is energized. Its output of rotary motion is transmitted through a coupling to an extending shaft having fixed to it a helical gear, O-323. A mating helical gear, O-308, permits the right-angle transfer to a shaft to the magnetic clutch, O-301. Rotary motion is further transmitted through the friction plates of the clutch, $\mathrm{O}-301$, to an output shaft that has worm O-304 fixed to it. The mating worm gear transfers rotary motion to the main drive shaft with a 100 -to- 1 reduction ratio. Driving gears O-340 and O-341, on either end of the main drive shaft, transfer the rotary motion, through idler gears $\mathrm{O}-338$ and $\mathrm{O}-339$, to the parallel racks, $\mathrm{O}-321$ and $\mathrm{O}-322$. Rotary motion has now been changed to the required rectilinear motion for the positioning of the shorting ring that is mounted on the end of the racks. Also mounted on the main drive shaft is a worm, $\mathrm{O}-342$, that is mated to a worm gear, O-344. This worm gear, in turn, drives the shaft of position potentiometer R-301 whose function is described in paragraph $2 q(5)$.

NAVSHIPS 92121(A)

Figure 2-119. Main Tuning Coil L-302, Simplified Schematic

Operational requirements demand accurate control of the positioning of the shorting ring. To achieve this, the magnetic clutch, $\mathrm{O}-301$ (figure 2-122), is inserted in the drive to limit the inertia effects. Under normal driving conditions, rotary action is transferred from the clutch input shaft to the clutch output shaft by virtue of having the driven clutch plate in contact with the driving clutch plate under pressure from spring $\mathrm{O}-302$. At the time positioning of the shorting ring is to be stopped, the drive motor is de-energizing and, concurrently, the brake coil, L-303, in the clutch is energized. The magnetic field of the brake coil attracts the driven clutch plate against the stationary housing of the brake coil. The magnetic field opposes the spring action. This causes braking of the output shaft at the same time as it disengages from the driving clutch plate and the input shaft. In this manner the low-velocity members are quickly stopped, leaving the high-velocity members to coast without affecting the positioning of the shorting ring. The braking time of the clutch is a function of the air gap existing between the back surface of the driven clutch plate and the front surface of the brake coil housing. This gap is adjusted by having the lower housing screwed into the upper housing to give the required gap. Locking screw holes are so placed in the lower and upper housings to permit adjustments in increments of 0.002 inch.
c. ANTENNA COUPLER CU-372/SRT (ANTENNA COUPLER).-Antenna Coupler CU--372/SRT (antenna coupler) contains a switch that enables complete bypassing of the antenna tuning equipment in the transmission line under certain operating situations, a
set of loading reactive components to extend the range of tuning accomplished by the main tuning coil in the r-f tuner, together with a switch to select the desired component and set of grounding cams used to prevent surges in the transmitter during periods of switching. Also incorporated in the antenna coupler is a junction box that contains a set of connectors from which are used all the cross-connecting of control leads between the r-f tuner and the antenna coupler and between each of these units and the transmitter group. The usage of these cross-connections is described in paragraph $17 d$ on antenna tuning equipment control circuits.
(1) ANTENNA BYPASS SWITCH S-3512.-At certain frequencies, the actual antenna impedance is such that no tuning is required to meet the SWR reading of $2: 1$ required at the r-f output of the radio frequency amplifier. Also, it is sometimes desired to have the antenna and transmission line connected directly to a receiver (see paragraph $7 g$). To meet these conditions, antenna bypass switch $\mathrm{S}-3512$ (figure 2-123) is introduced into the r-f transmission line.

When it is desired to have the tuning elements in the line, S-3512 is in the "tuner-in" position. The r-f line from the load adjusting unit enters the antenna coupler through connector $\mathrm{J}-3506$, through contacts 4 and 3 of S-3512, and then out through connector J-3505 to the r-f tuner input. The output of the r-f tuner is permanently interconnected to the loading switch, S-3511 (see paragraph $17 c(2)$). The output from S-3511 is connected to contact 2 of bypass switch S-3512. In the "tuner in" position, the r-f transmission line is complete through contacts 2 and 1 of S-3512, through length of RG-19/U first extrusion cable W3501 to external standoff $\mathrm{E}-3523$, from whence it is interconnected to the antenna lead-in.

Figure 2-120. Impedance Transformer Z-301, Simplified Schematic

With the antenna bypass switch, S-3512, placed in the "bypass" position, the r-f output from the load adjusting unit is connected directly to the antenna, through J-3506, contacts 4 and 1 of S-3512, W-3501, and E-3523.
Magnetic actuator B-3502 positions S-3512 in either the "tuner-in" or "bypass" under control of the positioning cam and the manual control in the control-indicator, as described in paragraph $2 q(2)$.
(2) LOADING SWITCH S-3511.-At the low frequencies, a series inductor must be added to the transmission line to increase the effective length of the line, since the total length of the main tuning coil is insufficient to achieve resonance. At frequencies where the effective antenna length is an even multiple of wavelengths (antiresonance) and the resistive impedance is high, a capacitor can be added in series with the line where in the "direct" position a poorer match would be obtained, since the antenna impedance is approaching the characteristic impedance of the variable line. At frequencies where the effective electrical length of the antenna is slightly longer than a quarter-wavelength, a length of tuning coil equal to a little less than a half-wavelength would have to be added to resonate. Here a series capacitor may be added to shift the reactive component of the effective antenna impedance from inductive to capacitive, permitting tuning near the top of the main tuning coil for increased efficiency. In the case of longer "L"-type antennas, the frequency at which first resonance occurs is lower. This requires a greater length of main coil to provide the balance of the extra half-wavelength and may result in no reliable tuning point for a small range of frequencies without the use of capacitance. In some cases the series plus shunt capacitor or the shunt capacitor alone may be used effectively.

If one of the loading components is required to tune for the reasons noted above, the required component is switched into the transmission line through the twosection loading switch, S-3511 (figure 2-124). If no loading component is required, the r-f transmission line is switched through the two sections of S-3511. The output of the r-f tuner is interconnected to contact 1 of S-3511A and contact 1 of S-3511B through the RG-19/ U first extrusion cable, $\mathrm{W}-3502$. If no loading component is required, S-3511 is in the "direct" position and the output of the tuner is connected from S-3511A contact 1 , through the connecting link between sections A and B, through S-3511B contact 2, and then to contact 2 of the antenna bypass switch, S-3512, and then to the antenna (see paragraph $17 c(1)$). If the series capacitor, C-3501, is desired in the line, S-3511 is placed in the "A" position. The output of the r-f tuner is now connected through S-3511B contacts 1 and 5 to one side of C-3501; the other side of C-3501 is connected to S-3511B contact 3, and through the connecting link between sections B and A to contact 2 of S-3511A, and then to S-3512 contact 2. S-3511 has six positions, one

Figure 2-121. R-F Tuner Mechanical Drive
for direct connection and five for different combinations of loading components. Positioning S-3511 to the desired position is accomplished by magnerotor actuator B-3501 under control of the two positioning cams as covered by paragraph $2 q(3)$. Table $2-23$ shows the tuning component employed for each position of the loading switch, S-3511.
(3) GROUNDING CAMS.-As described in paragraph $17 c(1)$, the bypass switch, S-3512, is inserted in the transmission line. At the times S-3512 is switching from "tuner-in" to "bypass" or vice versa, the transmission line is momentarily opened, removing the antenna load. At these times the output of the radio frequency amplifier must be cut off to prevent surges in the output caused by the momentary removal of antenna load.

Figure 2-122. Magnetic Clutch O-301, Cross Section

TABLE 2-23. FUNCTION OF LOADING SWITCH S-3511

POSItion Of S-3511*	LOADING COMPONENT USED
DIRECT	None
A	C-3501 in series
B	C-3501 in series, C-3502, C-3503 shunted across line
C	L-3502 in series
D	L-3501 in series
E	C-3502, C-3503, shunted across line

* Positions of S-3511 correspond to same positions of ANTENNA COÜPLER LOADING (AD) switch S-40̄4 on control-indicator.

Fixed to the shaft of the bypass switch, S-3512, are grounding cams A and B (figure 2-125) which, together with the microswitches S-3507 and S-3510, remove a ground during the instances switching takes place. This ground signal is interconnected to the IPA stage in the radio frequency amplifier (RFA). The absence of the ground will cause the IPA to be cut off, which will cut off the output of the transmitter (see paragraph $10 c(1))$.

Grounding cam A is of such a configuration that it will cause contacts C and NO of its associated microswitch, S-3507, to be closed only when the bypass switch, S-3512, is completely homed in either the "bypass" or "tuner-in" positions. Grounding cam B is formed so that it will close the C and NO contacts of its associated microswitch, S-3510, to be closed only when bypass switch S-3512 is in the "tuner-in" position. With the "tuner in" condition, ground is forwarded through contacts C and NO of $\mathrm{S}-3510$ and through C and NO of S-3507 and interconnected to the IPA stage in the RFA, making it possible to transmit carrier. During the switching from "tuner-in" to "bypass", contacts C and NO of S-3507 are opened, removing the ground to the RFA to cut off the carrier. When the bypass switch reaches the "bypass" position, contacts C and NO of

S-3507 again close, but contacts C and NO of $\mathrm{S}-3510$ are now opened because of the action of cam B. If the transmitter is to be operated with the tuning equipment bypassed, an auxiliary ground will be forwarded through contacts of relay $\mathrm{K}-401$ in the control-indicator (see paragraph $2 q(2)$), through contacts C and NO of S-3507, to the RFA to energize the carrier. However, if it is desired to operate with the automatic bypassing of the tuning equipment between periods of transmission, as explained in paragraphs $7 g$ and $2 q(2)$, the ground from $K-401$ in the control-indicator will not be present. At the end of a transmission, the bypass switch, S-3512, is automatically driven to the bypass position by the action of the ATU bypass transfer circuit in the low level radio modulator and the ANTENNA TRANSFER switch (AE), S-402, in the control-indicator in the REMOTE position. While in bypass, in this mode of operation, the IPA stage in the RFA is cut off, as there will be no ground caused by contacts C and NO of S-3510 being open and no auxiliary ground from K401. At the beginning of the next transmission, the ATU bypass transfer circuit signals the return of the bypass switch S-3512 to the "tuner-in" position. The carrier cannot go on until the bypass switch has reached the tuner-in position, as the ground required to remove the cutoff potential from the IPA stage is not forwarded until both grounding cams A and B have returned to the "tuner-in" position, closing the C and NO contacts of both S-3507 and S-3510. This prevents a premature surge of r-f energy before the proper antenna load is replaced on the transmitter output.

d. ANTENNA TUNING EQUIPMENT CONTROL

 CIRCUIT SUMMARY.-The control of the tuning functions accomplished in the antenna coupler and r-f tuner is from the control-indicator, which is a component of Transmitter Group OA-684/SRT. These functions have been described in detail in paragraphs $2 q$ and $17 c(1),(2)$, and (3) and are now being summarized to show continuity of connections. Figure 2-128 is a simplified schematic of the control circuitry in the antenna coupler and r-f tuner and must be used in con-junction with the control-indicator control circuits shown on figure $2-126$. With the exception of the control of -24 volts dc in two instances, and one ground control, antenna tuning equipment control circuits are concerned with the control of 110 -volt, 60 -cycle, singlephase, a-c power used to operate the two magnerotor actuators in the antenna coupler and one magnerotor actuator, together with the drive and blower motors, in the r-f tuner. In addition to the control functions in the following summary, the r-f tuner contains a thermostatic switch, S-305, and a blower switch, S-306, employed in the 500 -watt operate circuit of the transmitter, as described in paragraph $10 e(1)$ and $16 c(8)(g)$.
(1) ANTENNA TRANSFER CONTROL.-Placing the ANTENNA TRANSFER switch ${ }^{(A E)}, \mathrm{S}-402$, in the control-indicator in the TUNER IN position (figure $2-126$) connects " -24 V after time delay" through contacts 3 and 2 of S -402 and then connects it to the attenna coupler through $\mathrm{P}-402$ and J-2919 pin 12, through J-2916 and J-606 pin 4, over wire 145 to E-605 terminal 66, then by interconnecting cable to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin M , through $\mathrm{P}-3501$ and $\mathrm{J}-3507$ pin P, into the antenna coupler to terminal 4 on TB-3501, to winding of $\mathrm{K}-3501$. The winding of $\mathrm{K}-3501$ is completed to ground through terminal 1 of TB-3501, through J-3507 and P-3501 pin F, to J-3502 and $\mathrm{P}-3301$ pin N , over the interconnecting cabling to the ground potential found at $\mathrm{E}-606$ terminal 74 , which will energize K-3501. Energized K-3501 connects one side of a 110 -volt a-c line, which is taken from the uninterrupted oven heater supply in the transmitter, through contacts 1 and 3 of $\mathrm{K}-3501$, through NO and C contacts of S-3509 to one side of magnerotor actuator B-3502 winding. The other side of the a-c line is connected directly to the other side of the winding of $\mathrm{B}-3502$, which energizes $\mathrm{B}-3502$. This circuit is maintained until B-3502 drives the positioning cam to the point where the actuator of S-3509 falls into the notch, which opens the NO and C controls of S-3509, de-energizing $\mathrm{B}-3502$, stopping at the point corresponding to the "tuner-in" position of the antenna transfer switch.

Placing the ANTENNA TRANSFER switch (AE), S-402, in the BYPASS position, which is the "centeroff" position, disrupts the -24 volts dc from the line to $\mathrm{K}-3501$ which de-energizes $\mathrm{K}-3501$. The a-c supply to B-3502 is now connected through contacts 1 and 4 of de-energized $\mathrm{K}-3501$, through the NO and C contacts of S-3508. B-3502 operates again until the actuator of S-3508 falls into the notch of the position cam which corresponds to the "bypass" position of the antenna transfer switch.

With the ANTENNA TRANSFER switch (AE), S-402, placed in the REMOTE position, the line to $K-3501$ is connected through contacts 2 and 1 of S-402 (figure 2-126), through $\mathrm{P}-402$ and $\mathrm{J}-2919$ pin 14, through $\mathrm{J}-2916$ and J-606 pin 12, over wire 144 to $\mathrm{E}-605$ terminal 65, over wire 240 to E-603 terminal 40, over wire 238 through $\mathrm{J}-605$ and $\mathrm{J}-1103$ pin 10 , through

Figure 2-123. Antenna Bypass Switch S-3512, Simplified Schematic

J-1109 and J-1111 pin 4, to the ATU bypass transfer circuit. When $K-1102$ is energized, " -24 V after standby" is placed on the line through contacts 4 and 3 of K-1102, which will position the antenna transfer switch in the "tuner-in" position. When $\mathrm{K}-1102$ is not operated, the " -24 V after standby" is removed from the line, and the antenna transfer switch is driven to the "bypass" position.
(2) ANTENNA LOADING CONTROL. - The 110 -volt, 60 -cycle, single-phase, a-c line, which is energized in the transmitter after the START button of the MAIN POWER switch \circledR, S-3004 in the low voltage power supply, has been depressed, is connected from $\mathrm{E}-605$ terminals 63 and 64 through the interconnecting cabling to the antenna coupler junction box (figure $2-128$) through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pins V and U. One side of the line, from $\mathrm{J}-3502$ pin V , is connected to $\mathrm{J}-3501$ pin V and then through $\mathrm{P}-3501$ and $\mathrm{J}-3507$ pin K to one side of the antenna loading magnerotor actuator, B-3501. The other side of the line, from $J-3502$ pin U, is connected to $J-3501$ pin U and then through J-3504 and P-3302 pin G, back over the interconnecting cabling to E-606 terminal 82 (figure 2-126) over wire 158, through $\mathrm{J}-607$ and $\mathrm{J}-2917$ pin 15, through J-2920 and P-401 pin 16 to the arm (contact 11) of ANTENNA COUPLER LOADING switch (AD) S-404. S-404 can be set to one of six positions (DIRECT, A, B, C, D or E). For the DIRECT position, the a-c line is connected through contacts 11 and 13 of S-404, through P-402 and J-2919 pin 1, through J-2918 and J-608 pin 6, over wire 192 to E-604 terminal 55,

Figure 2-124. Loading Switch S-3511, Simplified Schematic
through the interconnecting cabling to the antenna coupler junction box (figure 2-128), through P-3302 and J-3504 pin A, through $\mathrm{P}-3501$ and $\mathrm{J}-3507$ pin G, through contacts NO and C of S-3505, to the other side of actuator B-3501. This energizes B-3501 and it drives the positioning cam and loading switch until the actuator of S-3505 falls in the notch of the cam, opening contacts NO and C of S-3505, which opens the circuit to B-3501, stopping the loading switch at the "direct" position. Similar paths for actuating B-3501 can be followed when the ANTENNA COUPLER LOADING (AD) switch, S-404, is in the other five positions.
(3) GROUNDING CAM CONTROL. - When the antenna transfer switch in the antenna coupler is in the "tuner-in" position, the same ground used to operate $\mathrm{K}-3501$ is connected from TB-3501 terminal 1 to TB- 3501 terminal 3, through contacts C and NO of S-3510 to terminal 5 of TB-3501, through J-3507 and P-3501 pin E, through J-3502 and P-3301 pin C, over interconnecting cabling to E-606 terminal 71, back through the interconnecting cabling, through P-3301 and J-3502 pin A, through P-3501 and J-3507 pin C to terminal 7 of TB-3501, through contacts NO and C of S-3507 to TB-3501 terminal 6, through J-3507 and P-3501 pin D, through J-3502 and P-3301 pin B, over interconnecting cabling to E-603 terminal 41 (figure 2-126) and then over wire 236, through J-602 and $\mathrm{J}-1302$ pin 1 to the junction of $\mathrm{R}-1342$ and $\mathrm{R}-1395$ in the radio frequency amplifier. This is the ground required to permit the IPA stage to amplify. During switching of the antenna transfer switch, grounding
cam A (figure 2-128) opens thie contacts NO and C of S-3507, breaking this ground. When the switch is in the "bypass" position, grounding cam B also breaks this ground by opening contacts NO and C of S-3510. When the ANTENNA TRANSFER (AA) switch, S-402 in the control-indicator unit (figure 2-126), is in either the REMOTE or TUNER IN position, a ground to relay $\mathrm{K}-401$ is completed through either contacts 5 and 4 or contacts 5 and 6 of S-402. As the other side of K-401 is connected to " -24 V after time delay", $\mathrm{K}-401$ operates, opening its contacts 1 and 4. When S-402 is in the BYPASS position, ground is removed from $\mathrm{K}-401$, and it ceases to operate, closing its contacts 1 and 4. In this condition, ground is connected through contacts 1 and 4 of K-401, through P-401 and J-2920 pin 3, through J-2917 and J-607 pin 6, over wire 150 to E-606 terminal 71 . This ground now connects through S-3507 in the antenna coupler back to the junction of R-1342 and $\mathrm{R}-1395$ in the radio frequency amplifier through the same connections previously described.
(4) TRANSFORMER CONTROL.-The 110 -volt, a-c line available at $\mathrm{J}-3501$ pins V and U of the antenna coupler junction box is also used for the control of the impedance transformer switch in the r-f tuner. One side of the line, from J-3501 and $\mathrm{P}-3304$ pin V , is connected through the interconnecting cabling through P-3306 and S-301 pin V of the r-f tuner, through terminal 12 of TB-301 and terminal 4 of TB-303, to one side of the impedance transformer switch magnerotor actuator, B-303. The other side of the a-c line from $\mathrm{J}-3501$ pin U is connected through J-3504 and $\mathrm{P}-3302$
pin 4, over the interconnecting cabling to the transmitter group, through E-604 terminal 49 (figure 2-126), over wire 186, through J-608 and J-2918 pin 13, through J-2920 and $\mathrm{P}-401$ pin 14, to the arm (contact 11) of TRANSFORMER switch (Ac) S-403. S-403 has two active positions (DIRECT and 1). For the DIRECT position, the a-c line is connected through contacts 11 and 13 of S-403, through $\mathrm{P}-401$ and $\mathrm{J}-2920$ pin 10, through J-2918 and J-608 pin 10, over wire 189 to E-604 terminal 52, through the interconnecting cabling to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3302$ and J-3504 pin M, through J-3503 and $\mathrm{P}-3303$ pin M , over the interconnecting cabling to $\mathrm{P}-3305$ and $\mathrm{J}-302$ pin M in the r-f tuner, through terminal 11 on TB-301 and terminal 3 of TB-303, through contacts NO and C of S-301, to the other side of actuator B-303. This energizes B-303, and it drives the positioning cam and the impedance transformer switch until the actuator of S-301 falls into the notch of the cam, opening contacts NO and C of S-301, which opens the circuit to $B-303$, stopping the impedance transformer switch at the "direct" position. A similar path for actuating B-303 can be followed when the TRANSFORMER switch (A6), $S-403$, is in the other position (1).
(5) DRIVE MOTOR CONTROL.-The 110 -volt, single-phase, 60 -cycle a-c filament supply found in the radio frequency oscillator is connected to $P-401$ pins 7 and 15 on the control-indicator (figure 2-126). This ultimately is the same a-c supply as found in the antenna coupler junction box at $J-3501$ pins V and U, with the side of the line found at $\mathrm{J}-3501$ pin V corresponding to the side of the line found at $\mathrm{P}-401$ pin 7. The side of the a-c line at $P-401$ pin 7 also is fed through fuse F -2917, located in the radio frequency oscillator. This line is connected through the normally closed contacts 3 and 1 of the SLOW switch $\Theta \Perp$, S-407, through $\mathrm{P}-401$ and J-2920 pin 2, through J-2918 and J-608 pin 2, over wire 181 to E-604 terminal 44, over the interconnecting cabling, to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin W , through $\mathrm{P}-3501$ and $\mathrm{P}-3304$ pin W , over the interconnecting cabling to the r-f tuner, through $\mathrm{P}-3306$ and J-301 pin W, through terminal 11 of TB-302 to winding terminals 2 and 3 of drive motor $B-301$. The other side of the a-c line from $\mathrm{P}-401$ pin 15 in the con-trol-indicator (figure 2-126) is connected to contact 1 of the UP (AF) switch S-406 and to contact 4 of the DOWN (AC) switch S-405. Depressing the UP push button (AF) will connect the a-c line through contacts 1 and 2 of S-406, through $\mathrm{P}-401$ and J-2920 pin 5, through J-2918 and J-608 pin 4, over wire 183 to E-604 terminal 46, over the interconnecting cabling to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin X, through $\mathrm{P}-3501$ and $\mathrm{J}-3304$ pin X, over the interconnecting cabling of the r-f tuner, through $\mathrm{P}-3306$ and J-301 pin X, through terminal 10 of TB-302 to winding terminal 1 of drive motor $B-301$. This same side of the a-c line through contacts 1 and 2 of closed UP switch (Af) S-406 (figure 2-126) is also
connected through phase-shifting capacitor C-402, through $\mathrm{P}-401$ and J-2920 pin 4, through J-2918 and J-608 pin 3, over wire 182 to E-604 terminal 45, over the interconnecting cabling to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin Y , through $\mathrm{J}-3501$ and $\mathrm{P}-3304$ pin Y , over the interconnecting cabling to the r-f tuner, through P-3306 and J-301 pin Y, through terminal 9 of TB-302 to winding terminal 4 of $\mathrm{B}-301$. These connections will energize $B-301$ so that it drives the shorting ring up along the main tuning coil. If the DOWN push button (AC) is depressed instead of the UP push button (AF), similar paths to winding terminals 3 and 4 of B-301 can be traced through contacts 4 and 5 of S-405.

If the SLOW switch $\Theta \rightarrow-S-407$, is depressed, the side of the a-c line, which is usually connected through contacts 3 and 1 of S- 407 to winding terminals 1 and 2 of $\mathrm{E}-301$, as previously described, is opened. Ac is now supplied by alternate connections to $\mathrm{B}-301$. The side of the a-c line found at the $J-3501$ pin V is the same as that previously connected through the SLOW switch (A4), S-407. This line is connected through P-3304 and the interconnecting cabling to the r-f tuner, through $\mathrm{P}-3306$ and J-301 pin V to terminal 12 of TB-302. From this point there are two branches; one branch connects the line from terminal 12 of TB- 302 through terminal 4 of TB-303, through the closed contacts of centrifugal switch S-307 to the winding terminals 1 and 2 of B-301. The other branch from TB-302 terminal connects to the parallel combination of C-301 and R-302, which, in turn, are connected through terminal 11 of TB-301 to winding terminals 1 and 2 of B-301. With the SLOW push button (At) depressed, together with either the UP (A) or the DOWN (AC) push button, $\mathrm{B}-301$ will be energized through connections described, until rotational speed sufficient to open the contacts of the centrifugal switch, $\mathrm{S}-307$, is reached, at which point the $\mathrm{R}-302, \mathrm{C}-301$ network is added in series with the winding, preventing $B-301$ from attaining a speed higher than that set by the action of S-307.
(6) MAGNETIC CLUTCH CONTROL.-The " -24 volts after time delay" is connected through the normally closed contacts 6 and 4 of the UP switch (AF), S-406 (figure 2-126), through the normally closed contacts 3 and 1 of the DOWN switch (AG), S-405, through dropping resistor $R-402$, through $P-401$ and J-2920 pin 8, through J-2917 and J-607 pin 13, over wire 185 to E-604 terminal 48, through the interconnecting cabling to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin O , through $\mathrm{J}-3501$ and $\mathrm{P}-3304$ pin O , through the interconnecting cabling to the r-f tuner, through $\mathrm{P}-3306$ and J-301 pin O , through terminal 7 to TB-302 to one side of the winding of magnetic clutch coil L-303. The other side of the coil is connected to ground through terminal 8 of TB-302, through J-301 and P-3306 pin N, over the interconnecting cabling to the antenna coupler junction box, through $\mathrm{P}-3304$ and $\mathrm{J}-3501$ pin N through $\mathrm{J}-3502$ and $\mathrm{P}-3301$ pin N , over the interconnecting cabling to the transmit-

Figure 2-125. Grounding Cam Circuit, Simplified Schematic
ter group, to the ground potential found at terminal 74 of E-606. This energizes L-303, which mechanically disconnects the drive shaft of drive motor $B-301$ from the load (shorting ring). If the UP push button (AF) on the control-indicator (figure 2-126) is depressed, the one side of the magnetic clutch coil, $\mathrm{L}-303$, is disconnected from the " -24 volts after time delay" and instead is connected through contacts 4 and 5 of S-406, through $\mathrm{P}-401$ and $\mathrm{J}-2920$ pin 6, through J-3918 and J-608 pin 5, over wire 184 to E-604 terminal 47, over the interconnecting cabling to the antenna coupler junction box (figure 2-128), through $\mathrm{P}-3301$ and $\mathrm{J}-3502$ pin D, through $\mathrm{J}-3501$ and $\mathrm{P}-3304$ pin D , over interconnecting cabling to the r-f tuner, through P-3306 and J-3501 pin D, through terminal 2 of TB-301 to the NO contact of top limit switch S-303. If the top limit of travel of the shorting ring has not been reached, the circuit is open at this point, and the magnetic clutch coil is not energized, which means that the clutch is mechanically energized, allowing the drive motor, $\mathrm{B}-301$, to drive the shorting ring. When the top limit of travel is reached, contacts NO and C of $\mathrm{S}-303$ close, and the circuit to the clutch coil continues through the contacts, through contacts NO and C of the bottom limit switch S-304, through terminal 1 of TB-302, through $\mathrm{J}-301$ and $\mathrm{P}-3306$ pin S , through the interconnecting cabling to the antenna coupler junction box, through $\mathrm{P}-3303$ and J-3501 pin S, through J-3502 and $\mathrm{P}-3301$ pin S , and through the interconnecting cabling to a " -24 volts after time delay" found at terminal 87 of $\mathrm{E}-609$. Therefore, at the time the top limit is reached, L-303 will be re-energized to disconnect the load from
the drive to prevent jamming. Control of energizing coil L-303 through the action of the bottom limit switch S-304 when the DOWN push button (A6) is depressed can be followed in a similar manner.
(7) BLOWER MOTOR CONTROL.-The 110volt a-c line found at $J-3501$ pins V and U in the antenna coupler junction box, which is energized when the START push button on the transmitter group is depressed, is used to energize the r-f tuner blower motor, $\mathrm{B}-302$. One side of the line is connected through $\mathrm{J}-3501$ and $\mathrm{P}-3304$ pin V , through the interconnecting cabling to the r-f tuner, through $\mathrm{P}-3306$ and $\mathrm{J}-301$ pin V , through terminal 12 of TB-301, to winding terminals 1 and 2 of $\mathrm{B}-302$. The other side of the line is connected through J-3501 and $\mathrm{P}-3304$ pin U , through the interconnecting cabling to the r-f tuner, through $\mathrm{P}-3306$ and J-301 pin U, through terminal 13 of TB-301 to winding terminal 2 of $\mathrm{B}-302$. The side of the a-c line found at $\mathrm{P}-401$ pin 15 on the control-indicator (figure $2-126)$ is the same side of the line as that at $J-3501$ pin U. This is connected through phase-shifting capacitor C-401, through P-401 and J-2920 pin 1, through J-2918 and J-608 pin 1, over wire 180 to E-604 terminal 43, through the interconnecting cabling, to the antenna coupler junction box (figure 2-128), through P-3301 and $\mathrm{J}-3502$ pin T , through $\mathrm{J}-3501$ and $\mathrm{P}-3304$ pin T , through the interconnecting cabling to the r-f tuner, through P-3306 and J-301 pin T, through terminal 14 of TB-301 to winding terminal 4 of $\mathrm{B}-302$. This completes the energizing circuit for the blower motor, B-302, as soon as the START push button on the transmitter group is depressed.

INSTRUCTION BOOK

for

RADIO TRANSMITTING SETS

AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 3
INSTALLATION

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragraph Page

1. Introduction 3-1
2. Unpacking Procedures 3-1
3. Location of Equipment 3-5
a. Transmitter Bay 3-5
(1) Clearance Requirements 3-5
(2) Variation in Transmitter Bay Ar- rangement 3-5
b. Antenna Tuning Equipment 3-7
(1) Antenna Coupler CU-372/SRT 3-7
(2) Radio Frequency Tuner TN-229/ SRT 3-7
c. Remote Radiophone Unit 3-8
4. Assembly Procedure 3-8
a. Transmitter Bay 3-8
(1) AN/SRT-14 Arrangement "C" 3-8
(2) AN/SRT-15 Arrangement " A_{1}." 3-13
(3) AN/SRT-16 Arrangement "D" 3-17
(4) Transmitter Coupler CU-402/SRT 3-23
b. Antenna Tuning Equipment 3-23
5. Wiring The Equipment 3-23
a. General 3-23
b. Transmitter Bay 3-24
(1) Transmitter Group Cabinets 3-24
Paragraph Page
(2) Mounting 3-24
(3) Radio Modulator-Power Supply 3-24
(4) Transmitter Coupler 3-25
c. Antenna Tuning Equipment 3-25
d. Remote Radiophone Unit 3-25
6. Main Test Cable Assembly 3-25
a. Preparation of Cable 3-26
b. Preparation of Connector Assemblies 3-27
c. Wiring and Final Assembly 3-27
7. Initial Adjustments 3-28
a. General 3-28
b. Power Input Adjustments 3-28
c. Checking Individual Components 3-30
d. Trial Operation 3-30
(1) Transmitter Bay 3-30
(a) 100-Watt Operation 3-30
(b) 500-Watt Operation 3-34
(c) Transmitter Coupler CU- 402/SRT 3-34
(d) Remote Control 3-34
(2) Antenna Tuning Equipment 3-36
(a) Pressurization 3-36
(b) Trial Operation 3-40

LIST OF ILLUSTRATIONS

Figure
Title
Page
3-1 Simplified Pictorial View, Radio Transmit- ting Set AN/SRT-14 3-3
3-2 Simplified Pictorial View, Radio Transmit- ting Set AN/SRT-15 3-6
3-3 Simplified Pictorial View, Radio Transmit-ting Set AN/SRT-163-9, 3-10
3-4 Transmitter Group OA-684/SRT, Unpack- ing Procedure 3-11
3-5 Transmitter Coupler CU-402/SRT, Con- trol-Indicator C-1352/SRT and Electron Tube 4-400A, Unpacking Procedure 3-12
3-6 Mounting MT-1423/SRT, Unpacking Procedure3-14
3-7 Antenna Coupler CU-372/SRT, Unpack- ing Procedure 3-17
3-8 Radio Frequency Tuner TN-229/SRT, Un- packing Procedure 3-19
3-9 Radio Modulator-Power Supply OA-685/ SRT, Unpacking Procedure 3-20
3-10 Installation Material AN/SRT-15 3-23
3-11 Typical Transmitter Bay Arrangements 3-29
3-12 Assembly of UG-21B/U or UG-23B/UConnector on RG-8/U Coaxial Cable 3-31
Figure
Title
3-13 Installing E-702 Cables 3-32
3-14 Assembly of UG-167A/U Connector on RG-18/U Coaxial Cable 3-35
3-15 Assembly of UG-154/U Connector onRG-18/U Coaxial Cable3-36
3-16 Assembly of Adapter (CBTL No. A20112-54) on RG-17/U First Extrusion Cable 3-37
3-17 Input Power Link Arrangements, RadioModulator-Power Supply (Booster).3-38
3-18 Installation of Electron Tubes V-1601 and V-1602 3-39
3-19 Typical Pressurization of Antenna Tuning Equipment 3-39
3-20 Pictorial System Diagram, AN/SRT-14 3-41
3-21 Pictorial System Diagram, AN/SRT-15 3-43
3-22 Pictorial System Diagram, AN/SRT-16. 3-45
3-23 Outline Drawing, Transmitter Bay, AN/ SRT-14 3-47
3-24 Outiine Drawing, Transmitter Bay, AN/ SRT-15 3-49
3-25 Outline Drawing, Transmitter Bay, AN/ SRT-16 3-51
3-26 Terminal Board and Cable Entrance Data, AN/SRT-14, 15 and 16 3-53

LIST OF ILLUSTRATIONS (Cont'd)

Figure Title Page Figure Title
3-27 Outline Drawing, Transmitter Coupler CU-402/SRT 3-55
3-28 Outline Drawing, Antenna Coupler CU- 372/SRT 3-57
3-29 Outline Drawing, Radio Frequency Tuner TN-229/SRT 3-59
3-30 Interconnecting Cabling Diagram, AN/ SRT-14 3-61
3-31 Interconnecting Cabling Diagram, AN/ SRT-15 3-63
3-32 Interconnecting Cabling Diagram, AN/ SRT-16 3-653-33 Cable Assembly Instructions for Multicon-ductor Connectors3-67
3-34 Primary Power Distribution Diagram, Transmitter Group and Mounting, AN/ SRT-14, 15 and 16 3-69
3-35 Primary Power Distribution Diagram, Ra- dio Modulator-Power Supply (Booster), AN/SRT-15 and 16 3-71
3-36 Primary Power Distribution Diagram, An- tenna Coupler and R-f Tuner, AN/SRT- 14,15 and 16 3-73

LIST OF TABLES

Table No, Title Page
3-1 Units Comprising AN/SRT-14, 15 and 16 3-1
3-2 Shipping Data 3-2
3-3 Installation Material 3-4
3-4 Antenna Tuning Equipment Critical Cable Lengths 3-7
3-5 Antenna Tuning Equipment Connector As- semblies 3-26
3-6 Main Test Cable Assembly Drawings 3-27
3-7 Main Test Cable Assembly Cross-Refer- ence List 3-28
$3-8$ Typical Meter Readings at 6 Mc , Hand, Key Down 3-33
3-9 Critical Radio Frequency Oscillator Ad- justments 3-33

SECTION 3
 INSTALLATION

1. INTRODUCTION.

This section contains a discussion of the method of installing and making preliminary tests for Radio Transmitting Sets AN/SRT-14, AN/SRT-15 and AN/ SRT-16. The major components included are listed in table 3-1. The Navy-supplied radiophone unit is considered as a separate entity for the purposes of this discussion. The components composing each equipment are illustrated in the simplified pictorial views, figures 3-1, 3-2, and 3-3. Each equipment is shown on an interconnected system basis in figures 3-20, 3-21, and 3-22.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on the installation of the AN/SRT-14, 15 and 16, as set forth in the following section, applies equally as well for the AN/SRT-14A, 15A and 16A.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.
In this section, the term stack is used to describe all the components of the transmitter bay that are supported by a single mounting. Thus the AN/SRT-14 transmitter
bay is composed of a single stack and a transmitter coupler, which is a component of the Transmitter Group OA-684. The standard AN/SRT-15 transmitter bay comprises a "transmitter stack", a "booster stack", and one transmitter coupler. The AN/SRT-16 comprises two similar stacks, usually identified as " 100 watt stack" and " 500 watt stack," plus two transmitter couplers.

The assembly procedure has been divided into paragraphs according to the type of work required rather than the unit being installed. Thus instructions for the mechanical assembly of all units are found in paragraph 4, wiring in 5 . Within these paragraphs, the material has been arranged by units to permit installation personnel to complete the installation of each unit separately if desirable.

In paragraph 4, Mechanical Assembly, one complete set of instructions is given for the transmitter bay of each set. Wherever two or more arrangements of the transmitter bay are possible, the recommended method is described. Other methods of assembly are considered as variations of the recommended method.

After the equipment is assembled and wired, the main test cable should be assembled and wired in accordance with the instructions given in paragraph 6.

Paragraph 7 sets forth the checks and initial adjustments together with the operation procedures for the first trial operation of the equipment.

2. UNPACKING PROCEDURES.

The complete Radio Transmitting Set AN/SRT-14 is shipped in 11 boxes, an AN/SRT-15 in 17 boxes, and AN/SRT-16 in 24 boxes. The components constituting each set and the number of boxes required for each set are shown in table 3-2.

TABLE 3-1. UNITS COMPRISING AN/SRT-14, 15 AND 16

UNIT	AN/SRT-14	AN/SRT-15	AN/SRT-16
TRANSMITTER BAY:	1	1	1
Mounting MT-1423/SRT	1	2	2
Transmitter Group OA-684/SRT	1	1	2
Radio Modulator - Power Supply OA-685/SRT	-	1	1
Cover (Booster) CW-341/SRT	-	1	-
ANTENNA TUNING EQUIPMENT:			
Antenna Coupler CU-372/SRT	1	1	2
Radio Frequency Tuner TN-229/SRT	1	1	2
REMOTE UNITS:			
Remote Radiophone Unit (Not supplied with equipment. Quantity may vary with individual installation.)			

NAVSHIPS 92121(A)
INSTALLATION
AN/SRT-14, 14A, 15, 15A, 16, 16A

TABLE 3-2. SHIPPING DATA

BOX	ENCLOSURES	NUMBER OF BOXES SUPPLIED			REFER TO FIG. NO.
		AN/SRT-14	AN/SRT-15	AN/SRT-16	
A	Transmitter Group OA-684/SRT (less Transmitter Coupler CU-402/SRT, ControlIndicator C-1352/SRT and Electron Tube 4-400A)	1	1	2	3-4
B	Transmitter Coupler CU-402/SRT, ControlIndicator C-1352/SRT, and Electron Tube 4-400A)	1	1	2	3-5
C	Mounting MT-1423/SRT	1	2	2	3-6
D	Antenna Coupler CU-372/SRT	1	1	2	3-7
E	Radio Frequency Tuner TN-229/SRT	1	1	2	3-8
F	Radio Modulator-Power Supply OA-685/SRT (less two Electron Tubes 4-125A)	-	1	2	3-9
G	Electron Tube 4-125A (2)	-	1	1	-
H	Installation Material for AN/SRT-14 MK-230/SRT-14 (lot 1), Instruction Books (2)	1	-	-	-
I	Installation Material for AN/SRT-14	1	-	-	-
J	Installation Material for AN-SRT/15 MK-232/SRT-15 (lot 1), incl Cover CW-341/SRT	-	1	-	-
K	Installation Material for AN-SRT/15 MK-232/SRT-15 (lot 2), Instruction Books (2)	-	1	-	-
L	Installation Material for AN/SRT-16 MK-234/SRT-16 (lot 1)	-	-	1	-
M	Installation Material for AN/SRT-16 MK-234/SRT-16 (lot 2), Instruction Books (2)	-	-	1	-
\mathbf{N}	Equipment Spares for Transmitter Group OA-684/SRT	1	1	2	-
0	Equipment Spares for Mounting MT-1423/SRT	1	2	2	-
\mathbf{P}	Equipment Spares for Antenna Coupler CU-372/SRT	1	1	2	-
Q	Equipment Spares for Radio Frequency Tuner TN-229/SRT	1	1	2	-
R	Equipment Spares for Radio Modulator-Power Supply OA-685/SRT (less spare transformer T-1502)	-	1	1	-
S	Equipment Spare Transformer (T-1502)	-	1	1	-
	Total number of boxes per set	11	17	24	

Boxes \mathbf{N} through S are cartons containing the various sets of equipment spares and need not be opened for purposes of installing the equipment. Boxes A, C through F have outer wooden cases and disassembly is outlined in figures 3-4, 3-6 through 3-9 respectively. Box B is a consolidating carton for the three components packed therein, which are packed in individual cartons as shown in figure 3-5. Box G is a small carton for packaging the two $4-125 \mathrm{~A}$ electron tubes that are used
in the Radio Modulator MD-230/SRT of AN/SRT-15 or 16 .

The installation material for each AN/SRT-14, 15 or 16 (MK-230/SRT-14, MK-232/SRT-15 or MK-234/ SRT-16 respectively) is packed in two cartons together with two copies of the instruction book. Table 3-3 shows the breakdown of the installation material in accordance with the box in which they are packed. A display of the installation material for an AN/SRT-i5 is shown in figure 3-10.

Figure 3-1. Simplified Pictorial View, Radio Transmitting Set AN/SRT-14

TABLE 3-3. INSTALLATION MATERIAL

ITEM	QUANTITY SUPPLIED				
	$\frac{A N / S R T-14}{\text { Box H}}$	AN/SRT-15		AN/SRT-16	
		Box ${ }^{3}$	Box K	Box 2	Box M
Shock Mount, Barry No. C-4300-T10	4	4	-	8	-
Shock Mount, Barry No. C-4125-T10	-	4	-	-	-
5/8-11 $\times 1$ in. l g screw, cap, hex hd, stl st, type 304	4	8	-	-	8
$5 / 8$ nom $\times 0.203$ in. $w \times 0.156$ in. thk (med) washer, spring lock, stl st, type 302	4	-	8	8	-
1/2-13 $\times 1$ in. 1 g screw, cap, hex hd, stl st, type 304	8	24	-	-	36
$1 / 2$ nom $\times 0.171$ in. $w \times 0.125$ in. thk (med) washer, spring lock, stl st, type 302	8	-	24	36	-
5/16-18 NC-2 x 1-1/4, in. 1 g screw, cap, hex hd, stl st, type 304	-	-	6	14	-
$5 / 16$ nom $\times 0.125$ in. w x 0.078 in. thk (med) washer, spring lock, stl st, type 302	-	-	6	14	-
5/16-18 NC-2 nut, hex, stl st, type 303	-	-	6	14	-
10-32 nut, hex, stl st, type 303	-	-	6	-	-
No. 10 (0.019 nom) $\times 0.062$ in. w x 0.047 in. (med) washer, spring lock, stl st, type 302	-	-	6	-	-
Eyebolt; 1/2-13 thd.	4	4	-	-	8
Leveling Insert; Federal Telecommunication Lab. No. NL-982598-1	10	-	14	24	-
Plug Button; United-Carr No. 51117	12	-	18	28	-
Model Nameplate	1	-	1	1	-
Transmitter Bay Interstack Cables, AN/SRT-14	1 set	-	-	-	-
Transmitter Bay Interstack Cables, AN/SRT-15	-	-	1 set	-	-
Transmitter Bay Interstack Cables, AN/SRT-16	-	-	-	-	1 set
Cable Assembly; Federal Telecommunication Lab. No. NL-9012 14-2	1	1	-	2	-
Connector, Plug; Bendix Scintilla No. 10-64632-8S	2	-	2	4	-
Connector, Plug; Bendix Scintilla No. 10-64632-8P	1	-	1	2	-
Connector, Plug; Bendix Scintilla No. 10-64624-28S	2	-	2	4	-
Connector, Plug; Bendix Scintilla No. 10-64624-28P	1	-	1	2	-
Cable Acesssory: Bendix Scintilla No. 10-35952-321	3	-	3	6	-
Cable Accessory; Bendix Scintilla No. 10-35952-244	3	-	3	6	-
Cap Assembly; Bendix Scintilla No. 10-35963-32	3	--	3	6	-
Cap Assembly; Bendix Scintilla No. 10-35963-24	3	-	3	6	-
Connector, Plug; type UG-154/U	3	-	3	6	-
Connector, Plug; type UG-167A/U	1	-	1	2	-
Connector, Plug; type UG-21B/U	1	-	1	2	-
Connector, Plug; type UG-23B/U	1	-	1	2	-

TABLE 3-3. INSTALLATION WATERIAL (Cont"d!

ITEM	QUANTITY SUPPLIED				
	$\frac{\text { AN/SRT-14 }}{\text { Box H }}$	AN/SRT-15		AN/SRT-16	
		Box J	Box K	Bax 1	Box M
Sleeving, 1/2 in. 1g, Bentley-Harris No. BH "649" No. 13	140	-	140	280	-
Insulation Tape, Electrical; polyethylene, $1 \mathrm{in} . \mathrm{wd}$, 30 ft lg roll	2	-	2	4	-
Ground Strap; 0.032 in. thk, 1/2 in. wd, 24 lg .	2	-	2	4	-
Main Test Cable Assembly*	1	-	1	-	1
Instruction Books	2 sets	-	2 sets	-	2 sets
Cover CW-341/SRT	-	1	-	-	-
Sway Mount; Federal Telecommunication Lab No. NL-901559-12	2	2	-	4	-
3/8-16 NC-2 x 1 in. Ig screw, cap, hex hd, stl st, type 304	8	8	-	-	16
$3 / 8$ nom $\times 0.141$ in. w $\times 0.094$ in. thk (med) washer, spring lock, stl st, type 302	8	8	-	-	16
Leveling Insert; Federal Telecommunication Lab. No. NL-901561-1	2	-	4	4	-
Plug Button; United-Carr No. 48199	12	-	18	28	-

*Not required to install equipment.

3. LOCATION OF EQUIPMENT.

a. TRANSMITTER BAY.
(1) CLEARANCE REQUIREMENTS.-For convenience in operation and maintenance, it is desirable to locate the transmitter bay in the main radio room if enough space is available. The ambient temperature at the installation site should be within a $-20^{\circ} \mathrm{C}$. $\left(-4^{\circ} \mathrm{F}\right.$.) to $+50^{\circ} \mathrm{C}$. $\left(+122^{\circ} \mathrm{F}\right.$.) range. The location chosen for the transmitter bay must provide top and side clearance for a $1 / 2$-inch extrusion of the transmitter group on its shock mounts and adequate rear clearance for cable entry and ventilation. Additional room must be provided to permit removal and replacement of the individual drawers and to allow working space for maintenance personnel repairing the equipment. A minimum of 36 inches clearance in the front of the stack is required to permit the rear of a transmitter bay drawer and slide to clear the front of the cabinets. Since these drawers weigh from 75 to over 100 pounds each, additional clearance sufficient to provide working space for two men must be provided. If the area is too confined to permit one man to stand on each side of the open drawer, additional front clearance must be added to allow one man to work from the front of the open drawer while his partner works at one side. For specific recommendations, consult the outline drawing of the transmitter bay to be installed (figures 3-23, 3-24, 3-25).
(2) VARIATION IN TRANSMITTER BAY ARRANGEMENT.-The design of the AN/SRT-15 and AN/SRT-16 radio transmitting sets allows selection of any one of several transmitter bay arrangements. This
variety of arrangements permits installation personnel to take into consideration any obstruction or space restriction in the radio room and to select the transmitter bay arrangement that is most adaptable to their particular installation. The primary considerations in selecting any of these arrangements are the amount of space provided at the installation site and the amount of cabling necessary for the arrangement chosen. Illustrations of the various methods of assembly for the AN/SRT-14, 15 and 16 series appear in figure 3-11.

The AN/SRT-14 transmitter bay, consisting of a transmitter group and a single mounting, may be assembled only as shown in arrangement " C "' of figure 3-11. However, there are a number of possible variations in the assembly of the AN/SRT-15 transmitter bay. The four main arrangements are shown in " A_{1} ", " A_{2} ", " B_{1} ", and " B_{2} " of figure 3-11. Note that the two stacks of this set may be adjoining or separated by as much as a 10 -foot cable run. The AN/SRT-15 transmitter bay may be assembled with either a portion of the booster between the transmitter group and its mounting or one booster component on top of the other, either adjoining or separated from the transmitter stack. In adjoining arrangements, the booster stack may be installed on either right or left side of the transmitter stack. In any of the illustrations shown, it is possible to interchange the position of the two booster components, provided the necessary changes in the interconnecting cable lengths are made.

Similarly, the AN/SRT-16 transmitter bay may be assembled with either the two stacks adjoining or a maximum separation of 10 feet of cable. In an AN/SRT-16, either transmitter group may be connected for 500 -watt operation. To obtain best use of the prefabricated inter-

Figure 3-2. Simplified Pictorial View, Radio Transmitting Set AN/SRT-15
stack cables supplied with the equipment, the transmitter group mounted over the high level radio modulator should be designated the 500 -watt stack, which corresponds to arrangement " D ". Arrangement " E " is the same as " D ", except that the stacks are separated a maximum of 10 feet. Arrangement " F " shows the booster components mounted adjoining the two transmitter stacks. In arrangements " D " and " E ", the position of the 500 -watt stack and the 100 -watt stack may be transposed.

However, arrangements " A_{1} " for the AN/SRT-15 and "D" for the AN/SRT-16 are considered as the "standard" arrangements. When either of these two assemblies is used, the prefabricated cables supplied with the installation kit may be used for all connections between the two stacks. These cables should be run through the side cable entrances of the two adjoining mountings without the use of stuffing tubes. When any arrangement other than these two is chosen, the corresponding interstack cables must be fabricated by the installation personnel from standard Navy cable. The interconnecting cabling diagrams, figures 3-31 and 3-32, should be used as a guide.

When separated stack arrangements are employed for either the AN/SRT-15 or AN/SRT-16, 10 feet is considered to be the maximum separation between stacks. Greater separation can be used, but with a reduction of quality of transmission when the transmitter is in PHONE operation.

When the AN/SRT-15 transmitter assembly is installed with separated stacks as shown in arrangement \mathbf{A}_{2} of figure 3-11, two additional shock mounts are required for the rear of the booster stack. An installation such as that shown in arrangement " F ", an alternate arrangement of the AN/SRT-16, requires one additional mounting, one booster cover, and four additional shock mounts in addition to the parts supplied for a standard arrangement " D " installation.

The Transmitter Coupler CU-402/SRT (load adjusting unit) should be mounted as close to the transmitter stack as possible. An ideal location of this unit is a mounting on the superstructure or some other suitably grounded member so that the controls of the transmitter coupler can be easily reached by an operator who is standing before the transmitter stack. The maximum distance between the transmitter stack and the transmitter coupler is set by the length of the two-conductor shielded cable, which is supplied with the installation material. This cable extends to a maximum of 12 feet from the cable entrance in the rear of the mounting at the base of the transmitter stack. Consult the outline drawing of the transmitter coupler (figure 3-27) for specific considerations.
b. ANTENNA TUNING EQUIPMENT.-The location of Antenna Coupler CU-372/SRT and Radio Frequency Tuner TN-229/SRT is primarily restricted by limitations of the lengths of the cables connecting these units with one another, with the antenna standoff termi-

TABLE 3-4. ANTENNA TUNING EQUIPMENT CRITICAL CABLE LENGTHS

\(\left.$$
\begin{array}{|c|c|c|}\hline \text { CABLE DESCRIPTION } & \text { CABLE TYPE } & \text { CRITICAL LENGTH } \\
\hline \begin{array}{c}\text { Transmitter bay to antenna } \\
\text { coupler control cable. }\end{array} & \text { MHFA-24 } & 500 \mathrm{ft} \text { max. } \\
\begin{array}{c}\text { Transmitter bay to antenna } \\
\text { coupler control cable. }\end{array} & \text { MSCA-19 } & 500 \mathrm{ft} \text { max. } \\
\begin{array}{c}\text { Transmitter coupler to an- } \\
\text { tenna coupler r-f cable. }\end{array} & \text { RG-18/U } & 500 \mathrm{ft} \text { max. } \\
\begin{array}{c}\text { Antenna coupler to r-f tuner } \\
\text { r-f cable }\end{array} & \begin{array}{l}\text { RG-17/U } \\
\text { 1st extru- } \\
\text { sion }\end{array} \\
\begin{array}{c}\text { Antenna coupler to antenna } \\
\text { standoff terminal. }\end{array}
$$ \& \begin{array}{l}RG-17/U

1st extru-

sion.\end{array}\end{array}\right\}\)| Combined |
| :--- |
| length of two |
| cables should |
| not exceed five |
| feet. |

nal or down-lead and with the transmitter group. Table 3-4 lists the maximum lengths for the critical cables. The most critical cable length is the combined length of the two sections of RG-17/U first extrusion. As these cables, in effect, are radiating members, every effort should be made to locate them as far as possible from any other radiating or reflecting body as well as keeping their total length to a minimum.
(1) ANTENNA COUPLER CU-372/SRT.-The mounting arrangements of the Antenna Coupler CU-372/SRT make it possible to mount this unit in either a horizontal or vertical plane. The principal restrictions in locating this unit are the critical cable lengths as outlined in table 3-4. As previously stated, the combined length of the two RG-17/U first extrusion cables should be kept to a minimum and should not exceed five feet. If this value should exceed five feet, the effective antenna length as seen by the antenna tuning equipment will be so increased as to make the calibrated tuning information inaccurate and, at certain frequencies, to make satisfactory tuning impossible. An increased length of these cables also reduces the radiated power from the antenna element.

In addition to cable lengths, certain clearances must be observed for the connection or removal of the interconnecting cables as shown on the antenna coupler outline drawing, figure 3-28. Finally, to facilitate checking and replacing the charge of dry nitrogen gas, with which this unit is pressurized, the charge valve and pressure gauge mounted at one end should be accessible and visible.
(2) RADIO FREQUENCY TUNER TN-229/ SRT.-The same restrictions on location that apply for the antenna coupler, as described above, also hold for the Radio Frequency Tuner TN-229/SRT. The r-f tuner outline drawing, figure 3-29, shows the required clearances.
c. REMOTE RADIOPHONE UNIT.-The location of the remote radiophone unit with respect to the transmitter bay location is limited only to a 1,000 -foot maximum length of interconnecting cabling between the transmitter bay and radiophone unit. The choice of location should be determined solely by convenience of operation. In many installations, the radiophone unit may connect to the transmitter bay through a patch panel rather than by a direct cable.

4. ASSEMBLY PROCEDURE.

a. TRANSMITTER BAY.-The installation personnel should select the transmitter bay arrangement that will suit the allotted space. If sufficient room is available, arrangement " A_{1} " for the AN/SRT-15 and arrangement " D " for the AN/SRT- 16 will be found to be most practical. An assembly procedure for the standard arrangements shown in figure 3-11 follows. The hardware, shock mounts, and other installation materials are provided with the equipment.
(1) AN/SRT-14 ARRANGEMENT "C".- Using the AN/SRT-14 transmitter bay outline drawing (figure 3-23) as a guide, prepare level, accurately drilled foundations for the bottom and rear of the transmitter group. Secure all four shock mounts (item 3 on figure 3-23) to the foundation deck but do not tighten the bolts completely. Remove the expendable base blocks from the mounting. Set the mounting on its set of shock mounts and check the spacing of the shock mounts by threading a 5/8-11 x 1 -inch long hex head cap screw (item 4 on figure 3-23) through the mounting floor into each shock mount. If the tapped hole in the shock mount lies directly below the matching hole in the mounting floor, the mounting may be removed and the shock mounts tightened in place on the foundation. If holes in mounting and shock mounts are not aligned, the foundation must be redrilled as required to correct spacing of shock mounts.

The rear of the mounting contains four cable entrances: a rectangular entrance of 24 square inches in the rear wall; a 15 -square inch entrance in the mounting floor; a two-inch diameter entrance through the rear gusset on each side. The cables required for the transmitting bay are shown on the AN/SRT-14 Interconnecting Cabling Diagram (figure 3-30). In this arrangement, the rear and bottom cable entrances may be used for interconnecting cables having an external run. The cable entries in the side gussets of the mounting are not used in AN/SRT-14 installations.

Although the rear wall cable entrance is large enough to accommodate all the external cables in the majority of AN/SRT-14 installations, both rear and bottom cable entrances may be used if the number of cables entering the mounting is exceptionally large or if clearance to the rear cable entrance is restricted.

Locate the two capacitors, C. 701 and C-702, in the rear of the mounting. To facilitate cable handling, these capacitors and their clamps should be removed from the mounting during installation. Loosen and remove the two outside screws on each clamp; do not
allow the screws or lock washers to fall into the mounting while this is being done. Disconnect each of the leads from each capacitor. The two capacitors and their clamps may then be removed and set aside to be replaced when the mounting assembly is completed.

Using the AN/SRT-14 Interconnecting Cabling Diagram (figure 3-30) as a guide, connect one end of the interstack cable " A " to the indicated terminals of E-702 in the mounting. Run the cable under the flange holding the terminal board and feed the cable through the cable clamp mounted on the center of the angle iron behind the terminal board. Tighten the clamp and feed the free end of the cable through the upper left cable slot.

Before making cuts in any of the rear or bottom entrance cover plates, plan on paper the number and diameter of the external cables using each entrance.

Note

An r-f output for a receiver terminated in a BNC connector ($\mathrm{P}-609$) is made available inside the transmitter bay. If an external receiver is to be connected to this output, provision should be made in the stuffing tube plan for the incoming coaxial cable from the receiver. The cable assembly consisting of R-RT4 and P-3315, found in the installation material, should also be considered in the stuffing tube plan.
Either stuffing tubes or cable clamps may be used to secure individual external cables to the entry plates. If the former method is chosen, 45° or 90° tubes may be used where clearance is limited or obstructions restrict the cable approach. In such installations, cover plate calculations must be based on the clearance required to install the stuffing tubes rather than the outer diameter of cables. Remove one or both cable entry cover plates as required and put a hole of proper diameter for each cable passing through the plate. If stuffing tubes are to be used, they should be secured to the cover plates by brazing or welding. Refer to BUSHIPS drawing 9-S-3980-L for specific details of stuffing tube installation.

With the exception of the jackets on coaxial cables, remove armor and jackets from the internal runs of all cables entering the mounting. Only the individual insulated conductors should enter the mounting. Strip the last 42 inches of all external cables terminating in the transmitter group cabinet.

Set the mounting in its approximate position. If stuffing tubes are used, feed the external cables through the stuffing tubes on the cable entrance cover plate. If straight stuffing tubes are used, the cable armor and sheath must extend at least $1 / 8$ of an inch beyond the inner edge of the stuffing tube. Where 45° or 90° tubes are used, the armor and jacket should extend a minimum of $1 / 8$ inch beyond the stuffing tube gland. The RG8/U cable, R-RA1, and the coaxial cable from the receiver, if such applies, should extend 10 inches beyond the stuffing tube. Pack each stuffing tube with standard

Figure 3-3. Simplified Pictorial View, Radio Transmitting Set AN/SRT-16

Navy packing, tighten the gland nuts, and seal the end of the gland nut with plastic sealing compound. If cable clamps with retaining lips are used, make certain that the end of the armor and jacket butt up against the inside of the lip. If clamps with retaining lips are not used, the armor and jacket must extend at least $1 / 8$ inch beyond the clamp. Although no packing is required for cable clamps, the area between the clamp and the cable must be sealed with plastic sealing compound. BUSHIPS drawing 9-S-3980-L may be used as a guide for either stuffing tube or cable clamp installations. The individual conductors projecting from the inside of the cable entrance cover plate should be fed into the mounting and run forward to hang over the front screen of the mounting. Remove the UG-23B/U connector from the installation material and assemble it to the incoming RG-8/U cable (R-RA1), following the procedure outlined in the Cable Assembly Instruction (figure 3-12).

If such applies, a connector that will mate to a UG-89/U connector should be assembled to the coaxial cable incoming from a receiver (this connector is not supplied with the equipment). Replace the bottom cable entrance cover plate, securing it in place with the machine screws provided in the equipment. Repeat the above procedure for all cables entering the rear cable entrance.

The mounting is provided with two ground straps. Ground the mounting by securing the free end of each strap to a clean, unpainted portion of the foundation or ship's bulkhead. Then secure the mounting to the bottom shock mounts with the $5 / 8-11 \mathrm{x} 1$-inch long hex head cap screws and $5 / 8$-inch lock washers provided in the installation kit (items 4 and 5 on figure 3-23). Pass the individual conductors of all incoming cables except the coaxial cables through the top left-hand cable slot and lace the portion in the mounting together with interstack cable " A ". Since access to the mounting is

Figure 3-4. Transmitter Group OA-684/SRT, Unpacking Procedure

REMOVE CORRUGATED CARTONS CONTAINING A: TRANSMITTER COUPLER, CU-402/SRT
remove tape and open B: CONTROL INDICATOR, C-I352/SRT

Figure 3-5. Transmitter Coupler CU-402/SRT, Control-Indicator C-1352/SRT, and Electron Tube 4-400A, Unpacking Procedure
very limited after other units have been mounted on top of it, all adjustments and connections in this unit should be made at this time. Then replace and reconnect the two capacitors, $\mathrm{C}-701$ and $\mathrm{C}-702$, in the mounting.

Secure the two sway mounts (item 14 on figure 3-23) in place on the bulkhead. Remove the top cover plate from the transmitter group cabinet.

Remove the five equipment drawers from the transmitter group cabinet by first loosening the captive screws that secure the drawers to the cabinet, using the special wrench mounted on the low voltage power supply front panel. Starting with the top drawer, pull the drawer forward on the rails until a stop on the rail is engaged. Disconnect the connectors of the retractable cabling from the connectors on the drawer. The connector assembly of the retractable cabling has an angle that should be latched on the post that is located on the transmitter group cabinet front above the top drawer, which, in turn, keeps the retractable cabling in its extended position. To complete the removal of the drawer, remove the two machine screws, one on each inner rail, that act as retainers for the latch in case of failure of the latch spring. Depress the latch on each inner rail and pull the chassis forward to clear the projection on the front of the rail.

WARNING

The drawer is now free to be removed entirely from the cabinet. Personnel removing the chassis should now be prepared to support the entire weight of the drawer.

Continue to pull the drawer forward until the inner slide disengages from the front rail roller, at which point the drawer will be completely free from the cabinet. Repeat the above process for each succeeding drawer. For ali other drawers, the retractable cabling, after it is disengaged from the drawer, is returned to the rear of the cabinet.
Remove and discard the expendable base boards. Secure one eyebolt (item 8 on figure 3-23) in each of the tapped holes in the top of the transmitter group cabinet. Hoist the cabinet into position a few inches above the mounting.

CAUTION

Special care must be taken to avoid damaging the aligning tabs on the transmitter group side panels and the ventilation duct extensions on top of the mounting.

Block the cabinet in place a few inches above the top of the mounting. Two coaxial cables, terminating in connectors P-609 and P-610, are located, loose, in the bottom of the transmitter group cabinet. Pull these cables, with their connectors, down through the left-hand rear cable slot. Mate connectors P-609 and P-610, now in the mounting, with the corresponding connectors that have been affixed to the incoming cables, using the Interconnecting Cabling Diagram (figure 3-30) as a guide. Feed the other cables coming from the mounting through
the left cable slot in the bottom of the cabinet. Then carefully lower the cabinet into place on top of the mounting and secure it in place with the 1/2-13 x 1 inch cap screws and $1 / 2$-inch lock washers (items 6 and 7 on figure 3-23) provided in the installation materials. Secure the back of the transmitter to the rear sway mounts with the 3/8-16 x 1 -inch hex head cap screws and $3 / 8$-inch lock washers provided in the installation materials (items 15 and 16 on figure 3-23). Remove the eyebolts from the top of the cabinet but do not replace the top cover plate until the interconnecting wiring has been completed. Remove the 10 leveling inserts (item 10 on figure 3-23) from the installation material and insert them in the tapped holes on the left side of the transmitter group cabinet. Similarly, insert the two leveling inserts (item 12 on figure 3-23) in the tapped holes on the left side of the mounting. Insert 12 plug buttons (item 13 on figure 3-23) in the leveling inserts. Insert the remaining 12 plug buttons (item 11 on figure 3-23) in the holes on the right side of the transmitter group cabinet and mounting.
(2) AN/SRT-15 ARRANGEMENT " A_{1}."-This method of assembly is considered the standard arrangement of the AN/SRT-15. Using the transmitter bay outline drawing (figure 3-24) as a guide, prepare level, accurately drilled foundations for the bottom and rear of the two stacks.

Secure all eight shock mounts (items 5 and 6 on figure 3-24) to the deck foundation but do not tighten the bolts completely. Remove the expendable base blocks from each mounting. Set each mounting on its set of shock mounts and check the spacing of the shock mounts by threading a $5 / 8-11 \times 1$-inch long hex cap screw (item 7 on figure 3-24) through the mounting floor into each shock mount. If the space between the two mountings measures $3 / 32$ inch and the tapped hole in each shock mount lies directly below the matching hole in the mounting floor, the mounting may be removed and the shock mounts tightened in place on the foundation. If holes in mounting and shock mounts are not aligned, the foundation must be redrilled as required to correct spacing of shock mounts.

The rear of each mounting contains four cable entrances: a rectangular entrance of 24 square inches in the rear wall; a 15 -square inch entrance in the mounting floor; a 2 -inch diameter entrance through the rear gusset on each side. The cables required for each stack are shown on figure 3-31, the AN/SRT-15 Interconnecting Cabling Diagram. In this arrangement, the rear and bottom cable entrances may be used for interconnecting cables having an external run.

The cable entry in the gusset of each adjoining side is used for the passage of the prefabricated interstack cables supplied with the equipment. In the standard arrangement these unarmored, interstack cables are used in place of the Navy type cables indicated by asterisks on AN/SRT-15 Interconnecting Cabling Diagram (figure 3-31).

Figure 3-6. Mounting MT-1423/SRT, Unpacking Procedure

Although the rear wall cable entrance is large enough to accommodate all the external cables in the majority of AN/SRT-15 installations, both rear and bottom cable entrances may be used if the number of cables entering the mounting is exceptionally large or if clearance to the rear cable entrance is restricted.

Remove the side panels from the adjoining sides of the two mountings. In each side panel, cut a hole corresponding in diameter and location to that in the side gusset. Then replace the two side panels on the mountings. Remove two leveling inserts (item 20 on figure 3-24) from the installation materials box and thread them into the tapped holes on the left side of the right mounting.

Locate the two capacitors, C-701 and C-702, in the rear of each mounting. These capacitors and their clamps should be removed from the mounting during installation to facilitate cable handling. Loosen and remove the two outside screws on each clamp; do not allow the screws or lock washers to fall into the mounting while this is being done. Disconnect each of the leads from each capacitor. The two capacitors and their clamps may then be removed and set aside to be replaced when the mounting assembly is completed.

Using the AN/SRT-15 Interconnecting Cabling Diagram (figure 3-31) as a guide, connect the specified cables to the indicated terminals of E-702 in the righthand mounting.

Note

See Terminal Board and Cable Entrance Data (figure 3-26) for location of terminal boards discussed in this section.

Run the cable going to the transmitter group (interstack cable " A ") under the flange holding the terminal board and feed the cable through the cable clamp mounted on the center of the angle iron behind the terminal board. (See figure 3-13.) Tighten the clamp and feed the free end of the cable through the upper left cable slot. Run the cable going to the left mounting (interstack cable "B") under the flange and feed this cable through the cable clamp mounted on the left side of the angle iron behind the terminal board. Tighten the clamp and then pass the free end of this cable through the gusset entry on the left side of the mounting.
Set the left-hand mounting in its approximate position and feed the free end of cable from the right-hand mounting through the gusset entrance in the right side
of the mounting. Do not make the connections to E-702 in the left-hand mounting at this time and do not pass the cable through the clamp.

Before making cuts in any of the rear or bottom entrance cover plates, plan on paper the number and diameter of the external cables using each entrance. All incoming cables enter the right mounting except the threephase power cable (R-RT2) that enters the left-hand mounting.

Note

An r-f output for a receiver terminated in a BNC connector ($\mathrm{P}-609$) is made available inside the transmitter bay. If an external receiver is to be connected to this output, provision should be made in the stuffing tube plan for the incoming coaxial cable from the receiver The cable assembly, consisting of R-RT13 and P-3315 located in the installation material, should also be included in the stuffing tube plan.

All interstack cables should enter the mountings through the gusset entrance. Either stuffing tubes or cable clamps may be used to secure individual external cables to the entry plates. If the former method is chosen, 45° or 90° tubes may be used where clearance is limited or obstructions restrict the cable approach. In such installations, cover plate calculations must be based on the clearance required to install the stuffing tubes rather than the outer diameter of cables. Remove one or both cable entry cover plates as required and cut a hole of proper diameter for each cable passing through the plate. If stuffing tubes are to be used, they should be secured to the cover plates by brazing or welding. Refer to BUSHIPS drawing 9-S-3980-L for specific details of stuffing tube installation.
With the exception of the jackets or coaxial shielding required for r-f cables, remove armor and jackets from the internal runs of all cables entering the mounting. Only the individual insulated conductors should enter the mounting. Strip the last 42 inches of all external cables terminating in the transmitter group cabinet and the last 38 inches of the three-phase power cable (R-RT2).
Set the mounting in its approximate position. If stuffing tubes are used, feed the external cables through the stuffing tubes on the cable entrance cover plate. If straight stuffing tubes are used, the cable armor and sheath must extend at least $1 / 8$ of an inch beyond the inner edge of the stuffing tube. Where 45° or 90° tubes are used, the armor and jacket should extend a minimum of $1 / 8$ inch beyond the stuffing tube gland. The RG-8/U cable, R-RA1, and the coaxial cable from the receiver, if such applies, should extend 10 inches beyond the stuffing tube. Pack each stuffing tube with standard Navy packing, tighten the gland nut, and seal the end of the gland nut with plastic sealing compound. If cable clamps with retaining lips are used, make certain that the end of the armor and jacket
butt up against the inside of the lip. If clamps with retaining lips are not used, the armor and jacket must extend at least $1 / 8$ inch beyond the clamp. Although no packing is required for cable clamps, the area between the clamp and the cable must be sealed with plastic sealing compound. BUSHIPS drawing 9-S-3980-L may be used as a guide for either stuffing tube or cable clamp installations.

The individual conductors projecting from the inside of the cable entrance cover plate should be fed into the mounting and run forward to hang over the front screen of the mounting. Remove the UG-23B/U connector from the installation material and assemble it to the incoming $\mathrm{RG}-8 / \mathrm{U}$ cable (R-RA1) following the procedures outlined in the Cable Assembly Instruction (figure 3-12). If such applies, a connector that will mate to a UG-89/U connector should be assembled to the coaxial cable incoming from a receiver (this connector is not supplied with the equipment). Replace the bottom cable entrance cover plate, securing it in place with the machine screws provided in the equipment. Repeat the above procedure for all cables entering the rear cable entrance.

Feed the interstack cables (cables " C " and " F ") from the transmitter group to the two booster units through the left-hand gusset entrance, and up through the left-hand cable slot. The two cables should protrude above the top of the right mounting according to the length required to fan out on the transmitter group terminal boards. Feed interstack cable " G " through the left side panel entrance of the right-hand mounting and pass the cable up through the area between the left-side panel and the structural members of the mounting. Cable " G " should protrude above the top of the right mounting according to the length required to connect to the transmitter group terminal board (E-608). Make certain that the base mount to base mount cable is not clamped tightly in the left mounting and then slide the two mountings slightly apart. Using abrasion-resistant tape, wrap interstack cables " C " and " F " together at the point where they pass through the side panel of the right mounting for a length of four to six inches centered at the side panel. Similarly, wrap interstack cable " G " and the base mount to base mount cable (cable " B ") together. Feed cables " C " and " F " through the right side panel of the left-hand mounting and then up through the area between the side panel and the structural members of the left mounting. Feed the other two cables through both the right side panel and right side gusset entrance of the left mounting. Slide the two mountings into their approximate positions so that the two side panels are adjoining. Feed interstack cable " G " across the floor of the left mounting, through the left side gusset entrance, and then up through the area between the left side panel and the structural members of the mounting. In the left mounting, remove the screw holding the cable clamp on the left side of the angle iron behind the terminal board, E-702, and mount the clamp
in the corresponding tapped hole on the right side of the angle iron. Pass cable " B " through this clamp, under the angle iron to E-702 and tighten the clamp. Using the Interconnecting Cabling Diagram, figure 3-31, as a guide, make the indicated connections on E-702 in the left-hand mounting.

Each mounting is provided with two ground straps. Ground the mounting by securing the free end of each strap to a clean, unpainted portion of the foundation or ship's bulkhead. Thread the adjustable inserts in or out until the space between the two mountings is $3 / 32$ inch. Then secure each mounting to the bottom shock mounts with the 5/8-11 x 1 -inch long hex head cap screws and $5 / 8$-inch lock washers provided in the installation kit (items 7 and 8 on figure 3-24). Using the 5/16-18 x 2 -inch long hex head cap screws, $5 / 16$-inch lock washers and $5 / 16$-inch nuts provided in the installation materials (items 11, 12, and 13 on figure $3-24$), secure the front and rear of the two mountings together.

Lace all the conductors of all cables, except the interstack and the coaxial cables, entering the right mounting together and pass them through the upper left cable slot on the top of the right mounting. The threephase power cable (R-RT2) entering the left-hand mounting should be fed through the cable slot on the left side of the mounting frame. Then replace and reconnect the two capacitors, $\mathrm{C}-701$ and $\mathrm{C}-702$, in each mounting.

Secure the two sway mounts (item 22 on figure 3-24) in place on the bulkhead foundation. Remove the top cover plate from the transmitter group cabinet.

Remove the five equipment drawers from the transmitter group cabinet, by first loosening the captive screws that secure the drawers to the cabinet, using the special wrench mounted on the low voltage power supply front panel. Starting with the top drawer, pull the drawer forward on the rails until a stop on the rail is engaged. Disconnect the connectors of the retractable cabling from the connectors on the drawer. The connector assembly of the retractable cabling has an angle that should be latched on the post that is located on the transmitter group cabinet front above the top drawer, which, in turn, keeps the retractable cabling in its extended position. To complete the removal of the drawer, remove the two machine screws, one on each inner rail, that act as retainers for the latch in case of failure of the latch spring. Depress the latch on each inner rail and pull the chassis forward to clear the projection on the front of the rail.

WARNING

The drawer is now free to be removed entirely from the cabinet. Personnel removing the chassis should now be prepared to support the entire weight of the drawer.

Continue to pull the drawer forward until the inner slide disengages from the front rail roller, at which
point the drawer will be completely free from the cabinet. Repeat the above process for each succeeding drawer. For all other drawers, the retractable cabling, after it is disengaged from the drawer, is returned to the rear of the cabinet.

Remove and discard the expendable base boards. Secure one eyebolt (item 16 on figure 3-24) into each of the four tapped holes on the top of the transmitter group cabinet. Hoist the cabinet into position a few inches above the right-hand mounting.

CAUTION

Special care must be taken to avoid damaging the aligning tabs of the transmitter group and the ventilation duct extensions on top of the mounting.

Block the cabinet in place a few inches above the mounting. The coaxial cables, terminating in connectors P-609 and P-610, are located, loose, in the bottom of the transmitter group cabinet. Pull these cables, with their connectors, down through the left-hand rear cable slot. Feed interstack cable " G " coming from the mounting through area on the bottom left side of the cabinet where terminal board E-608 is mounted. Mate connectors P-609 and P-610, now in the mounting, with the corresponding connectors which have been affixed to the incoming cables, using the Interconnecting Ca bling Diagram (figure 3-31) as a guide. Feed the other cables coming from the right-hand mounting through the left-hand cable slot in the bottom of the cabinet. Then carefully lower the cabinet into place on top of the mounting and secure it in place with the $1 / 2-13 \mathrm{x}$ 1 -inch long cap screws and $1 / 2$-inch lock washers (items 9 and 10 on figure 3-24) provided in the installation materials box. Remove the eyebolts from the top of the cabinet but do not replace the top cover plate until the interconnecting wiring has been completed. Remove four leveling inserts (item 18 on fig. ure 3-24) from the installation material and thread them into the four lowest tapped holes on the left side of the transmitter group cabinet. Thread the inserts in or out until they project $3 / 32$ inch from the side of the cabinet.
Remove the high voltage power supply drawer from its cabinet in the same manner as described for the drawers in the transmitter group cabinet. Resting the front of the cabinet on the front of the mounting, feed the interstack cable " C " coming from the left-hand mounting, through the area between the right side panel of the high voltage power supply cabinet and its structural members, and into the cabinet through the right side entry. Feed interstack cable " F " through the area between the cabinet right side panel and its structural members and out of the top of the cabinet. Feed the interstack cable " G ", coming from the left side of the mounting, along the left side of E-1404 and out of the top of the cabinet. Feed the three-phase power cable (R-RT2) through the left-hand cable slot in the bottom of the high voltage supply cabinet. Lower the
cabinet into place so that all aligning tabs are inside the side panels. Secure the cabinet to the mounting with the hex head cap screws and lock washers (items 9 and 10 on figure 3-24) provided in the installation materials box. Feed the high voltage power supply to the high level modulator interstack cable (cable "D") from the high voltage power supply cabinet, through the right side entry at the rear, up through the area between the right side panel and the cabinet structure, and out of the top of the cabinet, making sure the cable protrudes far enough to fan out to the high level modulator cabinet terminal boards. Lace together cables " D " and " F ".

Remove the high level radio modulator from its cabinet. Resting the front of the cabinet on the high voltage power supply, feed the interstack cables "D" and " F " coming from the power supply through the area between the high level modulator cabinet right side panel and its structure and into the cabinet through the right side entry. Feed interstack cable " G " into the area of the cabinet occupied by E-1408. Lower the modulator cabinet into place, making certain that all aligning tabs are inside the side panels. Secure the modulator cabinet to the high voltage power supply cabinet with the cap screws and lock washers (items 9 and 10 on figure 3-24) provided in the installation materials box. Feed the high level modulator to the high voltage power supply interstack cable (cable "E")
from the location of terminal board E-1408, in the high level modulator, down in the corresponding area of the high voltage power supply cabinet to terminal board E-1404. Temporarily lace this cable to the cabinet structure for support.
Bolt the two stacks together with the hex head cap screws, lock washers and nuts (items 11, 12, and 13 on figure 3-24). Where the spacing between the stacks is excessive, thread the inserts out until $5 / 32$ inch of it projects from the side of the frame and then take up the rest of the spacing by tightening the bolts holding the two stacks together. Secure the back of the transmitter group cabinet to the sway mounts with the $3 / 8$ - 16×1-inch long hex head cap screws and $3 / 8$-inch lock washers (items 23 and 24 on figure 3-24) provided with the installation materials. Thread the remaining two leveling inserts (item 20 on figure 3-24) into the left side of the left mounting. Thread the remaining 10 leveling inserts (item 18 on figure 3-24) into the left side of the booster cabinets and the remaining tapped holes in the left side of the transmitter group cabinet. Insert 12 plug buttons (item 21 on figure 3-24) in the leveling inserts. Insert 12 plug buttons (item 19 on figure 3-24) in the holes on the right side of the transmitter group cabinet and mounting.
(3) AN/SRT-16 ARRANGEMENT "D".-This method of assembly is considered the standard arrangement of the AN/SRT-16. Using the transmitter bay

Figure 3-7. Antenna Coupler CU-372/SRT, Unpacking Procedure
outline drawing (figure 3-25) as a guide, prepare level, accurately drilled foundations for the bottom and rear of the two stacks.

Secure ail eight shock mounts (item 4 on figure 3-25) to the deck foundation but do not tighten the bolts completely. Remove the expendable base blocks from each mounting. Set each mounting on its set of shock mounts and check the spacing of the shock mounts by threading a 5/8-11 x 1 -inch long hex head cap screw (item 5 of figure 3-25) through the mounting floor into each shock mount. If the space between the two mountings measures $3 / 32$ inch and the tapped hole in each shock mount lies directly below the matching hole in the mounting floor, the mounting may be removed and the shock mounts tightened in place on the foundation. If holes in mounting and shock mounts are not aligned, the foundation must be redrilled as required to correct spacing of shock mounts.

The rear of each mounting contains four cable entrances: a rectangular entrance of 24 square inches in the rear wall; a 15 -square inch entrance in the mounting floor; a two-inch diameter entrance through the rear gusset on each side. The cables required for each stack are illustrated in the AN/SRT-16 Interconnecting Cabling Diagram (figure 3-32). In this arrangement the rear and bottom cable entrances may be used for interconnecting cables having an external run.

The cable entry in the gusset of each adjoining side is used for the passage of the prefabricated interstack cables supplied with the equipment. In the standard arrrangement these unarmored, interstack cables are used in place of the Navy-type cables indicated by asterisks on the AN/SRT-16 Interconnecting Cabling Diagram (figure 3-32).

Although the rear wall cable entrance is large enough to accommodate all the external cables in the majority of AN/SRT-16 installations, both rear and bottom cable entrances may be used if the number of cables entering the mounting is exceptionally large or if clearance to the rear cable entrance is restricted.

Where corresponding cables serving the two transmitter groups have completely parallel runs, the two individual cables may be combined into a single larger cable. For example, the two TTHFWA-1-1/2 cables, carrying teletype input to the two transmitter groups (figure 3-32), may be replaced by a single TTHFWA3 if the far ends of both cables terminate at the same point. The TTHFWA-3 may enter either of the two stacks; the two individual conductors feeding the other stack should be run through the gusset cable entrances in the mounting side panels.

Oven heaters in both transmitter groups are fed by a single DSGA-3 line (R-RT3). (See figure 3-32.) This cable is run into the left-hand mounting and terminates on E-602, terminals 21 and 22. Two conductors of the transmitter group to the transmitter group interstack cable are used to connect the heaters in the left transmitter group in parallel with those of the right.

Remove the side panels from the adjoining sides of the two mountings. In each side panel cut a hole corresponding in diameter and location to that in the side gusset. Then replace the two side panels on the mountings. Remove two leveling inserts (item 16 on figure 3-25) from the installation materials box and thread them into the tapped holes on the left side of the right mounting. Locate the capacitors, $\mathrm{C}-701$ and $\mathrm{C}-702$, in the rear of each mounting. These capacitors and their clamps should be removed from the mounting during installation to facilitate cable handling. Loosen and remove the two outside screws on each clamp; do not allow the screws or lock washers to fall into the mounting while this is being done. Disconnect each of the leads from each capacitor. The two capacitors and their clamps may then be removed and set aside to be replaced when the mounting assembly is completed.

Using the AN/SRT-16 Interconnecting Cabling Diagram (figure 3-32) as a guide and assuming the lefthand stack to be the 500 -watt stack, connect one end of the base mount to base mount and base mount to transmitter group interstack cables (interstack cables " L " and " N ") to the indicated terminals on E-702 in the right mounting.

Note

See Terminal Board and Cable Entrance Data (figure 3-26) for location of terminal boards discussed in this section.
In the right mounting, remove the screw holding the cable clamp in the center of the angle iron behind the terminal board, E-702, and mount the clamp in the corresponding tapped hole on the right side of the angle iron. Run the cable going to the right transmitter (interstack cable "L") under the flange holding the terminal board and feed the cable through the cable clamp mounted on the right side of the angle iron. (See figure 3-13.) Tighten the clamp and feed the free end of the cable along the floor of the right mounting, through the right side gusset entry and up through the space between the right side panel and the structure of the mounting. Run the cable going to the left mounting (interstack cable " N ") under the flange and feed this cable through the cable clamp mounted on the left side of the angle iron behind the terminal board. Tighten the clamp, and then pass the free end of this cable through the gusset entry on the left side of the mounting.

Set the left-hand mounting in its approximate position and feed the free end of the base mount to the base mount cable, cable " N ", through the gusset entrance in the right side of this mounting. Do not make the connections to E-702 in the left-hand mounting at this time and do not pass the cable through the clamp.

Before making cuts in any of the rear or bottom entrance cover plates, plan on paper the number and diameter of the external cables using each entrance.

Note

An r-f output for a receiver terminated in a BNC connector ($\mathrm{P}-609$) is made available in-

Figure 3-8. Radio Frequency Tuner TN-229/SRT, Unpacking Procedure
side, the transmitter bay. If an external receiver is to be connected to this output, provision should be made in the stuffing tube plan for the incoming coaxial cable from the receiver. Two cable assemblies, each consisting of R-RT15 and P-3315, located in the installation material, should also be included in the stuffing tube plan.
All interstack cables should enter the mountings through the gusset entrance. Either stuffing tubes or cable clamps may be used to secure individual external cables to the entry plates. If the former method is chosen, 45° or 90° tubes may be used where clearance is limited or obstructions restrict the cable approach. In some installations cover plate calculations must be based on the clearance required to install the stuffing tubes rather than the outer diameter of cables. Repeat the following procedure for each of the two mountings. Remove one or both cable entry cover plates as required and cut a hole of proper diameter for each cable passing through the plate. If stuffing tubes are to be used, these fixtures should be secured to the cover plates by brazing or welding. Refer to BUSHIPS drawing 9-S-3980-L for specific details of stuffing tube installation.

With the exception of the jackets on coaxial cables, remove armor and jackets from the internal runs of all cables entering the mounting. Only the individual insulated conductors should enter the mounting. Strip the last 75 inches of all external cables terminating in the transmitter group cabinet and 38 inches of the three-phase power cable (R-RT2) connected to the high voltage power supply cabinet.

Set the mounting in its approximate position. If stuffing tubes are used, feed the external cables through the stuffing tubes mounted on the cable entrance cover plate. If straight stuffing tubes are used, the cable armor and sheath must extend at least $1 / 8$ inch beyond the inner edge of the stuffing tube. Where 45° or 90° tubes are used, the armor and jacket should extend a minimum of $1 / 8$ inch beyond the stuffing tube gland. The two RG-8/U cables (1-R-RA1 and 2-R-RA1) and the two coaxial cables from receivers, if such applies, should extend 10 inches beyond the stuffing tube. Pack each stuffing tube with standard Navy packing, tighten the gland nuts, and seal the end of the gland nut with plastic sealing compound. If cable clamps with retaining lips are used, make certain that the end of the armor and jacket butt up against the inside of the lip.

If cable clamps with retaining lips are not used, the armor and jacket must extend at least $1 / 8$ inch beyond the clamp. Although no packing is required for cable clamps, the area between the clamp and the cable must be sealed with plastic sealing compound. BUSHIPS drawing 9-S-3980-L may be used as a guide for either stuffing tube or cable clamp installations.

The individual conductors projecting from the inside of the cable entrance cover plates should be fed into the mounting and run forward to hang over the front screen of the mounting. Remove the two UG-23B/U connectors from the installation material and assemble them to the two incoming RG-8/U cables following the procedure outlined in the Cable Assembly Instruction (figure 3-12). If such applies, two connectors that will mate to UG-89/U connectors should be assembled to the two coaxial cables incoming from receivers (these connectors are not supplied with the equipment). Replace the bottom cable entrance cover plates,
securing them in place with the machine screws provided in the equipment. Repeat the above procedure for all cables entering the rear cable entrance.

Feed the interstack cable from the high voltage power supply to the high level modulator and to the 500 -watt transmitter group (interstack cables " H " and " J ") in through the left gusset entrance, across the floor of the right mounting, through the right side gusset entrance, and up through the area between the right side panel and the structure of the right mounting. These two cables should protrude above the top of the right-hand mounting according to the length required to fan out on the high voltage power supply terminal boards. In the same manner feed the interstack cable between the two transmitter groups (cable " P ") through the right side mounting, except this cable should protrude above the top of the right-hand mounting far enough to pass through the high voltage power supply cabinet, and then be able to fan out on

Figure 3-9. Radio Modulator-Power Supply OA-685/SRT, Unpacking Procedure
the terminal boards of the transmitter group, which will mount on top of the high voltage power supply. Feed interstack cable " K " through the left side panel entrance of the right mounting and pass the cable up through the area between the left side panel and the structure of the mounting. Cable " K " should protrude above to the top of the right mounting according to the length required to connect to the high voltage power supply terminal board (E-1404). Make certain that the base mount to base mount cable is not clamped in the left mounting and then slide the two mountings slightly apart. Using abrasion-resistant tape, wrap interstack cables "H", " J ", and " P " together at the point where they pass through the side panel of the right mounting for a length of three inches to the right of this point and one inch to the left of this point. Wrap tape around cable " N " for a length of three inches on both sides of the point. Wrap tape around cable " K " for a length of three inches to the left of the point and one inch to the right of the point.

Feed cables " H ", " J ", and " P " through the right side panel of the left mounting and then up through the area between the right side panel and the structure of the left mounting. Feed cables " K " and " N " through both the right side panel and right side gusset entrance of the left mounting. In the left mounting remove the screw holding the cable clamp on the left side of the angle iron behind the terminal board, E-702, and mount the clamp in the corresponding tapped hole on the right side of the angle iron. Connect one end of the base mount to the transmitter group interstack cable " M " to the indicated terminals on E-702 in the left mounting. Run the free end of the cable through the cable clamp on the right side of the angle iron. (See figure 3-13.) Do not tighten this clamp at this time. Pass the free end of cable " M " through the right side gusset entrance and then up through the area between the right side panel and the mounting structure. Slide the two mountings into their approximate positions so that the two side panels are adjoining. Feed interstack cable " K " across the floor of the left-hand mounting, through the left side gusset entrance, and then up through the area between the left side panel and the mounting structure. Pass interstack cable " N " through the same clamp holding cable "M." Tighten the clamp, packing the inside of this clamp, if necessary to insure that the clamp fits tightly around cables "M" and " N ". Using the Interconnecting Cabling Diagram, figure 3-32, as a guide, make the indicated connection of cable " N " on E-702 in the left mounting.

Each mounting is provided with two ground straps. Ground the mounting by securing the free end of each strap to a clean, unpainted portion of the foundation or ship's bulkhead. Thread the adjustable inserts in or out until the space between the two mountings is $3 / 32$ inch. Then secure each mounting to the bottom shock mounts with the $5 / 8-11 \times 1$-inch long hex head cap screws and $5 / 8$-inch lock washers provided in the installation kit (items 5 and 6 on figure 3-25). Using the 5/16-18 x

2-inch long hex head cap screws, $5 / 16$-inch lock washers, and $5 / 16$-inch nuts provided in the installation materials (items 9, 10, and 11 on figure 3-25), secure the front and rear of the two mountings together.

In the left mounting, lace all the conductors of all cables except the interstack and the coaxial cables entering the left mounting and pass them through the right side gusset entrance, and up through the area between the right side panel and the mounting structure. In the right mounting, lace all the conductors of all cables except the three-phase power cable (R-RT2), the interstack and the coaxial cables entering the right mounting, and pass them through the right side gusset entrance and up through the area between the right side panel and the mounting structure. The three-phase power cable (R-RT2) entering the right mounting should be fed through the left-hand cable slot on the top of the right mounting. Then replace and reconnect the two capacitors, C-701 and C-702, in each mounting.

Remove the five equipment drawers from each of the transmitter group cabinets, by first loosening the captive screws that secure the drawers to the cabinet, using the special wrench mounted on the low voltage power supply front panel. Starting with the top drawer, pull the drawer forward on the rails until a stop on the rail is engaged. Disconnect the connectors of the retractable cabling from the connectors on the drawer. The connector assembly of the retractable cabling has an angle which should be latched on the post that is located on the transmitter group cabinet front above the top drawer, which, in turn, keeps the retractable cabling in its extended position. To complete the removal of the drawer, remove the two machine screws, one on each inner rail, that act as retainers for the latch in case of failure of the latch spring. Depress the latch on each inner rail and pull the chassis forward to clear the projection on the front of the rail.

WARNING

The drawer is now free to be removed entirely from the cabinet. Personnel removing chassis should now be prepared to support the entire weight of the drawer.

Continue to pull the drawer forward until the inner slide disengages from the front rail roller, at which point the drawer will be completely free from the cabinet. Repeat the above process for each succeeding drawer. For all other drawers, the retractable cabling, after it is disengaged from the drawer, is returned to the rear of the cabinet

Remove the high voltage power supply drawer from its cabinet in the same manner as described for the drawers in the transmitter group cabinet. Resting the front of the cabinet on the front of the right mounting, feed interstack cable " K " coming from the left side of the right mounting into the area of the high voltage power supply cabinet occupied by terminal board E-1404. Feed the three-phase power cable (R-RT2) through the left cable hole in the bottom of the high voltage power
supply cabinet. Feed interstack cables "H" and "J" coming from the right side of the right-hand mounting, through the area between the right side panel of the high voltage power supply cabinet and its structural members and into the cabinet through the right side entry. Feed interstack cables " L " and " P " and the incoming cables, coming from the right side of the righthand mounting, through the area between the high voltage power supply cabinet right side panel and the cabinet structure, and out of the top of the cabinet. Lower the cabinet into place so that all aligning tabs are inside the side panels. Secure the cabinet to the mounting with the $1 / 2-13 \times 1$-inch long hex head cap screws and $1 / 2$ inch lock washers (items 7 and 8 on figure 3-25) provided in the installation material box. Remove two adjustable inserts (item 14 on figure 3-25). Thread an insert into each of the tapped holes on the left side of the high voltage power supply cabinet.

Remove the high level radio modulator drawer from its cabinet in the same manner as described for the drawers in the transmitter group cabinet. Resting the front of the cabinet on the front of the left mounting, feed interstack cable " K ", coming from the left side of the left mounting, through the area between the high level radio modulator cabinet left side panel and the cabinet structure and out of the top of the cabinet. Feed interstack cable " J ", coming from the right side of the left mounting, through the area between the high level radio modulator cabinet and its structural members, and into the cabinet through the right side entry. Feed interstack cables " H ", " M ", and "P" and the incoming cables, coming from the right side of the left-hand mounting, through the area between the high level radio modulator cabinet right side panel and the cabinet structure, and out of the top of the cabinet. Lower the cabinet into place so that all the aligning tabs are inside the side panels. Secure the cabinet to the left-hand mounting with the $1 / 2-3 \times 1$-inch long hex head cap screws and $1 / 2$-inch lock washers (items 7 and 8 on figure 3-25). Feed the high level radio modulator to the transmitter group interstack cable (cable "R") from the high level radio modulator cabinet, through the right side entry, up through the area between the cabinet right side panel and the cabinet structure and out of the cabinet, making sure the cable protrudes far enough to fan out to the transmitter group terminal boards. Lace cable " R " to the other cables passing up the right side of the high level radio modulator.

Secure the four sway mounts (item 18 of figure 3-25) to the bulkhead foundation. Remove the right side panel from the transmitter group cabinet that is to mount on the high voltage power supply cabinet by removing the 22 binding-head machine screws that mount each side panel to the cabinet frame. Remove the expendable base blocks from one of the transmitter group cabinets. Secure one eyebolt (item 12 on figure 3-25) into each of the tapped holes in the top of the transmitter group cabinet. Carefully hoist the cabinet into a position a few inches above the high voltage power supply cabinet.

Taking care to avoid damage to any of the aligning tabs, block the transmitter group cabinet in position. Two coaxial cables terminating in connectors P-609 and P-610 are located, loose, on the bottom of the transmitter group cabinet. Pull these cables, with their connectors, back through the right side entry and drop them down through the area between the right side panel and the cabinet structure, through the corresponding area in the right side of the high voltage power supply cabinet, through the same area in the mounting and into the mounting through the right side gusset entrance. Mate connectors P-609 and P-610 with the corresponding connectors that have been affixed to the incoming cables, using Interconnecting Cabling Diagram (figure 3-32) as a guide. Feed the cables coming out of the top of the right side of the high voltage power supply cabinet into the bottom of the transmitter group cabinet through the cable entry located at the bottom of the right side of the cabinet at the rear. These cables should pass through this entry behind the transmitter group cabinet wiring, which also enters the bottom of the cabinet at this point. Replace the right side panel. Lower the transmitter group cabinet into place on top of the high voltage power supply cabinet. Bolt the two units together with ten 1/2-13 $x 1$-inch long hex head cap screws and $1 / 2$-inch lock washers (items 7 and 8 on figure 3-25), but do not tighten the bolts completely. Secure the transmitter group cabinet to the bulkhead sway mounts with the $3 / 8-16 \mathrm{x}$ 1 -inch long hex head cap screws and $3 / 8$-inch lock washers (items 19 and 20 on figure 3-25), but do not tighten the screws completely. Thread leveling inserts (item 14 on figure 3-25) into all the tapped holes on the left side of the right transmitter group cabinet. With the exception of leveling inserts, install the second transmitter group in the same manner. The two top inserts on the right-hand transmitter group should be adjusted until the sides of the two transmitter group cabinets are parallel and, if possible, not over $3 / 32$-inch apart. The adjustable inserts used in this equipment permit the two stacks to be joined together mechanically in spite of misalignments arising from manufacturing tolerances. Bolt the two transmitter group cabinets together at the top with two $5 / 16$-inch cap screws, $5 / 16$-inch lock washers, and 5/16-inch nuts (items 9,10 , and 11 on figure 3-25) and tighten. Tighten the cap screws holding the transmitter group cabinets to the bulkhead sway mounts. The remaining inserts in the transmitter group and modulator cabinets should be threaded out until they touch the side wall of the cabinets on the left. If the cap screws securing the booster cabinets to the mounting and the transmitter group are loose enough, a small amount of adjusting is possible by edging the cabinets toward or away from the center line as required. When the spacing between the two stacks is correct, tighten the cap screws holding the booster components to the mountings and the transmitter group cabinets to the booster. Then secure the two stacks together, as shown on section $A-A$ of figure 3-25, with the remaining eight $5 / 16$-inch cap screws, $5 / 16$-inch lock washers, and $5 / 16$-inch nuts

Figure 3-10. Installation Material, AN/SRT-15
(items 9, 10, and 11 on figure 3-25). Remove the four eyebolts from the top of each transmitter group cabinet, but do not replace the top covers until the wiring has been completed. Thread the remaining two leveling inserts (item 16 on figure 3-25) into the left side of the left mounting. Thread the remaining 12 leveling inserts into the left side of the left transmitter group and the left side of the high level radio modulator cabinet. Insert 14 plug buttons (item 17 on figure 3-25) in the leveling inserts. Insert 14 plug buttons (item 15 on fig. ure 3-25) in the holes of the right side of the right transmitter group, high voltage power supply cabinet and mounting.
(4) TRANSMITTER COUPLER CU-402/SRT.After a suitable location has been found according to paragraph $2 a(2)$ of this section, the only procedure required to mount the Transmitter Coupler CU-402/SRT is to prepare four mounting holes on the bulkhead in accordance with the mounting centers as specified on the Outline Drawing, figure 3-27, and fasten the unit to the bulkhead with the required bolts.
b. ANTENNA TUNING EQUIPMENT.-Outline Drawings, figures 3-28 and 3-29, for the Antenna Coupler CU-372/SRT and Radio Frequency Tuner TN229/SRT respectively, provide foundation drilling plans
and minimum clearance requirements for mounting these units. Generally it will be found easier to locate the shock mounts on the foundation with the units removed. However, in certain instances of close clearance, it may be found easier to mount the entire unit assembled. There is a soft copper grounding strap in the installation material for each unit. One end of each strap is first attached to the ground stud on the end of each unit. The other end of the strap is to be cleaned and secured to a clean, unpainted portion of the superstructure.

5. WIRING THE EQUIPMENT.

a. GENERAL.-The interstack cables used for the standard adjoining arrangements of the AN/SRT-15 and the AN/SRT-16 transmitter bays are prefabricated at the factory and supplied with the equipment. All other interconnecting cables must be fabricated by the installing technicians, using bulk Navy cables and connectors and accessories supplied with the equipment.

In wiring the various units of the set, the installing technicians should be certain that the following precautions are observed:
(1) The internal cables of the transmitter stacks must clear all high-voltage points and drawer pins.
(2) With the exception of shielded leads, all armor
on cables entering the transmitter stacks must be stripped back to the stuffing tubes.
(3) All coaxial cables must be as short as possible and run clear of all hot or abrasive structures.
(4) No sharp bends shall be made in a coaxial cable. The minimum bending radius of 2-1/2 inches for RG-54A/U must be observed.
(5) All wires must approach terminal boards directly, without undue looping.

If the procedure outlined in the assembly section has been followed, the transmitter group interconnecting cables have already been stripped of armor and sheath, laced together and fed into their respective cabinets. The interconnecting wiring diagrams and following text should be used as a guide in completing the wiring of the individual cabinets.

b. TRANSMITTER BAY.

(1) TRANSMITTER GROUP CABINETS.-The majority of the cables terminating in this unit are connected to the terminal board assembly on the floor of the cabinet. This assembly comprises seven terminal boards, E-601 through E-607, arranged in numerical order from front to rear on the cabinet floor. The entire assembly is covered by a metal plate designed to protect the connecting wires from abrasion or accidental contact. The last terminal board, E-608, is located on the lower left side of the cabinet frame to the left of E-607. All terminal boards are easily accessible if the two lowest drawers (medium voltage power supply and low voltage power supply) are removed from the cabinet.

Remove the metal plate covering the terminal boards, E-601 through E-607. In an AN/SRT-14 or AN/SRT15 installation, all interstack cables terminating on the cabinet floor should run from the cable slot at the left rear of the cabinet floor, and then forward along the left side of the terminal board assembly, and branch off along the front of the terminal boards to which they are connected. The incoming cables run from the cable slot at the left rear of the cabinet floor forward along the left side of the terminal board assembly and branch off along the front of the terminal boards to which they are connected. In an AN/SRT-16 installation, both interstack and incoming cables that terminate on the cabinet floor enter through the cable entry at the rear right of the cabinet floor. These conductors should run across the floor of the cabinet, behind the terminal board, E-607, and then forward along the left side of the terminal board assembly and branch off along the front of the terminal boards to which they are connected. Using the applicable Interconnecting Cabling Diagram (figure $3-30,3-31$, or 3-32), sort out the conductors according to the terminals to which they connect. As sorting is done, a cross reference list, showing the insulation color code against the wire number designated on the Interconnecting Cabling Diagram for each conductor of each incoming cable, should be made. Trim the length and remove enough insulation from the end of each conductor to expose sufficient bare conductor for a secure connection and attach the terminal lugs (the pre-
fabricated interstack cables are completely assembled with terminal lugs and marker bands for each conductor). Repdace the metal plate after all connections have been made to terminal boards E-601 through E-607.

The two connections to terminal board E-608 have been brought into the cabinet at the location of E-608. Remove the cover on E-608 to make the connection. If the prefabricated interstack cables are used, the shields on the individual conductors are terminated in ring terminals that should be grounded to the screw provided below the terminal board. If $\mathrm{RG}-54 \mathrm{~A} / \mathrm{U}$ cable is used, in place of the prefabricated interstack cable, remove the last three inches of jacket from the cable. Make a hole in the shielding at the point where it leaves the jacket by pushing the individual strand of the braid to each side. Taking care to avoid damage to the insulation, insert a small screwdriver between the shield and the insulated conductor and pull the insulated conductor out through the hole in the shield. Remove sufficient insulation from the end of the conductor and attach lugs to the conductor and to the shield and connect each as specified on the Interconnecting Cabling Diagram. Replace the cover on E-608 after the connections have been made. On an AN/SRT-14 there is no external connection to this terminal board.

The connections to the r-f output connectors, P-609 and P-610, should have been made at the time of assembly (paragraph 4a).

In an AN/SRT-14 transmitter bay installation, two jumpers are required: one on E-606 and the other on E-608. On E-606 place a jumper between terminals 76 and 77, using SRIR-1-1/2(7)-18 hook-up wire. On E-608 place a jumper between terminals 1 and 2, using SRHV:-2-1/2(19)-16 high-voltage hook-up wire.
(2) MOUNTING-The connections in the mounting should have been made at the time of assembly (paragraph 4a).
(3) RADIO MODULATOR-POWER SUPPLY.The terminal boards of the high voltage power supply section of the booster are all located on the floor of the cabinet, with the exception of the high-voltage terminal boards, which are on the rear left of the cabinet frame. The three terminal boards on the floor are numbered E-1401, E-1402, and E-1410, with the high-voltage terminal board numbered E-1404. The high level radio modulator cabinet contains three terminal boards. Of these, the first two terminal boards, E-1406 and E-1407, are located on the floor of the cabinet, arranged in numerical order from front to rear. The high-voltage terminal board, E-1408, is mounted on the rear left of the cabinet frame.

In the high voltage power supply cabinet the threephase power cable enters the cabinet through the cable hole in the left rear of the cabinet; the interstack cables that terminate on terminal boards E-1401 and E-1402 enter through the cable entry at the rear right of the cabinet. The interstack cable to terminal board E-1404 enters the cabinet at the location of E-1404. Remove the plate covering the terminal boards on the cabinet floor
and the cover on E-1404. Run the three-phase power cable across the rear of the cabinet, and then down the right side of the cabinet, through the cable clamp, to E-1410. Tighten the clamp and prepare the conductors and connect in the same manner as described in paragraph $5 b(1)$. Run the interstack cables terminating at E-1401 and E-1402 forward along the right side of the terminal boards branching off along the front of the terminal boards to which they connect. These cables are fully prepared and need only to be connected to the correct terminals according to the applicable Interconnecting Cabling Diagram. The connections made to E-1404 are made as described for E-608 in paragraph $5 b(1)$. Replace the covers after connections are made.

In the high level radio modulator cabinet the interstack cables are wired in the same manner as prescribed for the high voltage power supply, with the interstack cables, terminating at terminal boards E-1406 and $\mathrm{E}-1407$, entering through the cable entry at the rear right of the cabinet, and the interstack cables, terminating at E-1408, entering the cabinet at the location of E-1408.
(4) TRANSMITTER COUPLER.-There are three interconnecting cable assemblies required to interconnect the transmitter coupler with both the transmitter group and the antenna tuning equipment. (See the three Interconnecting Cabling Diagrams, figures 3-30, 3-31, and 3-32.) One assembly, terminating with P-3315, is supplied with the installation material. The end terminating in the transmitting group cabinet has already been connected (paragraph 5b). The r-f coaxial cable, interconnecting the transmitter coupler with the transmitter group, is made from RG-8/U bulk Navy cable. The transmitting group end of this cable has already been connected (paragraph 4a). An RG-21B/U connector, $\mathrm{P}-3314$, which is found in the installation materials, is assembled to the other end according to the procedure shown on figure 3-12. The remaining interconnecting cable is prepared from RG-18/U bulk Navy cable. The end terminating at the transmitter coupler is assembled to a UG-167A/U connector, P-3308, found in the installation materials, according to the procedure detailed on figure 3-14. The wiring of the antenna tuning equipment (paragraph $5 c$) covers the connections to the other end of this cable. The interconnections to the transmitter coupler can now be made by mating the connectors with the appropriate receptacle on the transmitter coupler as follows:
(a) Mate P-3315 with J-3303.
(b) Mate P-3308 with J-3202.
(c) Mate P-3314 with J-3201.
c. ANTENNA TUNING EQUIPMENT.-The interconnection of the two components of the antenna tuning equipment, Antenna Coupler CU-372/SRT and Radio Frequency Tuner TN-229/SRT, with each other, with the transmitter group, and with the antenna standoff are made by a set of cable assemblies made from connectors supplied with the installation material and bulk cable taken from Navy stores. Table 3-5 shows the con-
nectors and cable type for each assembly. The Interconnecting Cabling Diagrams (figure 3-30, 3-31, or 3-32) state the critical cable lengths involved. Assemble the UG-154/U connectors according to figure 3-15 and assemble the adapter (CBTL A-2011254) according to figure 3-16. For the multiconductor cable, follow both figure 3-33 and the applicable Interconnecting Cabling Diagram. The cables interconnecting to the transmitter group already have the transmitter group end connected (paragraph $5 b(1)$). Use the color code cross reference list prepared when these cables were connected to the transmitter group to insure that the connections to the multiconductor connectors will agree with the wire numbers as shown in the Interconnecting Cabling Diagram. When preparing an assembly where both ends of the cable terminate in multiconductor connectors, color code cross references should be prepared to. insure that each conductor terminates on the same lettered contact on each end.

With regard to the interconnecting cables between the transmitter bay location and the antenna tuning equipment, assemblies should be prepared after the cables have been run. After all assemblies have been completed, mate the cable connectors to the correct receptacles on the antenna tuning equipment according to table 3-5.
d. REMOTE RADIOPHONE UNIT.-The Interconnecting Cabling Diagrams (figure 3-30, 3-31, or 3-32) show the interconnections between the transmitter group and the remote radiophone unit. The transmitter group end of these connections has been prepared (paragraph $5 b(1))$. The other end should be prepared with ring terminals for connections to the terminal board of the radiophone unit. Again, a color code cross reference to wire numbers will prove helpful in establishing the correct point-to-point connections. When a large number of equipments are installed, it may be necessary to connect the radiophone unit to a patch panel instead of running a direct line to the transmitter group.

6. MAIN TEST CABLE ASSEMBLY.

Although the rail and slide mechanisms, employed in the Transmitter Group OA-684/SRT and the Radio Modulator-Power Supply OA-685/SRT, permit the chassis of each major unit to be drawn out to give access to the rearmost part of the chassis, there will be circumstances where it will be more practical for purposes of maintenance to withdraw a chassis completely from a cabinet. For such situations a test cable must be used to interconnect the unit on a test bench to the cabinet in which it is normally connected, for purposes of supplying all of the normal voltages and signals required to energize the unit being tested.

This main test cable should be assembled at the time of installation of the equipment, prior to the initial operation, so that the cable will be available for use if the initial check and operation show that corrective maintenance will be required. All the connections, mounting, hardware, etc., required for the preparation of this cable are supplied packed in with the installation

TABLE 3-5. ANTENNA TUNING EQUIPMENT CONNECTOR ASSEMBLIES

ASSEMBLY DESIGNATION	MATES WITH	CONNECTOR TYPE	ACCESSORIES	CABLE USED WITH	CABLE TERMINATION AT OTHER END
P-3301	$\begin{aligned} & \text { J-3502 } \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	$\begin{aligned} & \text { BENDIX } \\ & 10-64632-8 S \end{aligned}$	BENDIX $10-35952-321$	MHFA-24	TRANS. GROUP E-603 through E-607
P-3302	$\begin{aligned} & \text { J-3504 } \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	BENDIX $10-64624-28 S$	BENDIX $10-35952-244$	MSCA-19	$\begin{aligned} & \text { TRANS. GROUP } \\ & \text { E-602, E-604, } \\ & \text { E-605, E-606 } \end{aligned}$
P-3303	$\begin{aligned} & \mathrm{J}-3503 \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	BENDIX $10-64624-28 P$	$\begin{aligned} & \text { BENDIX } \\ & \text { 10-35952-244 } \end{aligned}$	MSCA-19	P-3305
P-3304	$\begin{aligned} & \text { J-3501 } \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	BENDIX $10-64632-8 \mathrm{P}$	BENDIX $10-35952-321$	MHFA-24	P.3306
P-3305	$\begin{aligned} & \mathrm{J}-302 \\ & \text { R-F } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { BENDIX } \\ & 10-64624-28 S \end{aligned}$	$\begin{aligned} & \text { BENDIX } \\ & 10-35952-244 \end{aligned}$	MSCA-19	P-3303
P-3306	$\begin{aligned} & \text { J-301 } \\ & \text { R-F } \\ & \text { TUNER } \end{aligned}$	BENDIX $10-64632-8 S$	BENDIX $10-35952-321$	MHFA-24	P.3304
P-3307	$\begin{aligned} & \text { J- } 3506 \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	UG-154/U		RG-18/U	P-3308
P-3308	J-3202 TRANS. COUP.	UG-167A/U		RG-18/U	P-3307
P-3309	$\begin{aligned} & \text { J-3505 } \\ & \text { ANT. } \\ & \text { COUP. } \end{aligned}$	UG-154/U		RG-18/U	P-3310
P-3310	$\begin{aligned} & \text { J-303 } \\ & \text { R-F } \\ & \text { TUNER } \end{aligned}$	UG-154/U		RG-18/U	P-3309
P-33 11	W-3502 ANT. COUP.	$\begin{aligned} & \text { CBTL } \\ & \text { A-2011254 } \end{aligned}$		$\begin{aligned} & \text { RG-17/U } \\ & 1 \text { st Extrusion } \end{aligned}$	P-3312
P-33 12	$\begin{aligned} & \text { W-301 } \\ & \text { R-F } \\ & \text { TUNER } \end{aligned}$	$\begin{aligned} & \text { CBTL } \\ & \text { A-2011254 } \end{aligned}$		RG-17/U 1st Extrusion	P.3311

material. The cable wires required are to be supplied by the Navy at the installation site.

Upon opening the carton containing the cable components, a shipping list drawing (drawing No. NL-901 579-1) and a set of seven other drawings providing assembly information will be found as outlined in table 3-6.

The following assembly procedures have direct references to the above drawings and will contain only as much information as is required to supplement and coordinate the information found on the drawings.
a. PREPARATION OF CABLE.-There are 56 conductors required for the test cable. Drawing NL-901 $061-1$ is a complete specification for a manufactured cable and can be used as a guide. Paragraph 4.4 of this
specification lists the quantity, sizes, and color codes of the wires required. The specification states that the cable be eight feet long, which length is not critical.

Note

Substitute color coding may be used. However, a cross reference list will be required between the chosen color code and the one appearing in drawing NL-901061-1, as the wiring diagram and cable harness drawings are prepared based on the color code given in NL-901601-1.
Take cable harness drawing NL-901194-14 and divide sheet 1 into two parts by cutting vertically through the drawing where the cable is shown broken. Tack the two portions of this drawing on a board so that the distance

TABLE 3-6. MAIN TEST CABLE ASSEMBLY DRAWINGS

DRA WING NO.	TITLE
NL-901061-1	Preliminary Specification for 56- conductor Cable Main Test Cable Assembly (SRT)
NL-901192-29	Wiring Diagram - 56-conductor Test Cable
NL-901194-14	56-conductor Test Cable-Cable Harness Cable Assembly Instructions for BNC Connectors
NL-95055-1	Cable Assembly Instruction - Type N Connectors
NL-9833557-1	Specification for Grounding Shielded Wire NL-983346-1 General Specification for Wiring Diagram and Cable Drawings

between the pins is about 22 inches shorter than the length cut for the wires. For instance, if the length of wire cut is nine feet, then the two portions of the drawing should be separated so that the dimensions between the location of the pins is 86 inches (disregard the 96inch dimension shown on the drawing). This now constitutes a template for making the cable.

Using sheets 2 and 3 of NL-901194 as a guide, lay in the individual wires on the template. For instance, wire No. 1 starts at station \#1 on the left side and runs to station \#35 on the right side, the excess of length being cut off at station \#35. At station \#1, the symbol 6 W appears, which denotes that there are six wires that begin at station \#1 and the running list (sheets 2 and 3) show that these are wires Nos. 1, 3, 4, 6, 7, and 8. Wire \#2 is a shielded wire, whose conductor portion starts at station \#2 and terminates at station \#36. In accordance with note 4 on sheet 1 the shield on this wire terminates at point " A " on the left side and point " N " on the right side. At point " A " a grounding lead is attached to the shield in accordance with drawing NL-983357-1, figure 1 , using ferrules according to table A of the cable harness drawing NL-901194-14 sheet 1 (item numbers of ferrules referred to on table A are those items shown on NL-901194-14 sheet 4 that correspond to items 29 through 33 on the shipping list drawing (NL-9015791)). This grounding lead (wire No. 2A) is then terminated at station \#3. Run ali remaining conductors and grounding leads in a similar manner as described above.

After all wires have been run, lace together the wires running between the pins. Prepare the ends of all the conductors except the three coaxial cables in accordance with notes 5,7 , and 8 of drawing NL-901194-14 sheet 1. Remove the cable from the harness and either wrap the portion that was between the pins with electrical insula-
ting tape or enclose this portion of the cable in a vinyl tubing of appropriate diameter (approximately 1 inch).
b. PREPARATION OF CONNECTOR ASSEM-BLIES.-There are two connector assemblies to be prepared for connection to either end of the cable. Main Test Cable Assembly (SRT) drawing NL-901192-29 shows the over-all assembly of the cable and the two connector assemblies. The various individual items going to make up the assemblies are identified on their containers by the item numbers appearing on the shipping list drawing NL-901579-1. Table 3-7 is a cross reference list between item numbers on the shipping list, NL-90 1579-1, and item numbers on the assembly drawing, NL-901192-29.

In the assembly procedure that follows, item numbers referred to are those on the assembly drawing, NL-901192-29, unless otherwise noted.

First assemble the box connector (item 10) and the washer (item 29) to the plate (item 3), and thread the cable clamp (item 9) on the box connector. Assemble the three Amphenol Blue Ribbon receptacles (item 14) to the plate with the appropriate hardware.

Note

To mount the end Amphenol receptacle, use tapped spacer (item 7) instead of nut (item 32).

Mount terminal plate (item 11) and tapped spacer (item 34) to the plate. Mount the insulator (item 5) to the cover assembly (item 4), but do not mount the cover assembly to the plate at this time.

Assemble the other box connector (item 10) and washer (item 29) to the box (item 1) and thread the cable clamp (item 9) on the box connector. Mount the spring (item 6) to the box. Assemble the three Amphenol Blue Ribbon plugs (item 13) to the box. Assemble the two chassis connectors (item 15) and the two jack assemblies (item 16) to the box. Mount the terminal plate (item 11) and tapped spacer (item 38) to the box.
c. WIRING AND FINAL ASSEMBLY.-The prepared cable and the two connector assemblies are ready to be united into the final test cable assembly.
Take the end of the cable that has the seven wires (including three coaxial leads) that extend beyond the other wires and feed this end through the cable clamp and box connector mounted in the plate (item 3). Pass the cable through the box connector until the covering on the cable protrudes $1 / 4$ inch beyond the face of the box connector, and then tighten the cable clamp. Feed the seven wires that extend beyond the others through the cable clamp (item 33), and then mount the clamp on the plate. Take lengths of black fiberglas sleeving (item 35 on the shipping list NL-901579-1) and cut into lengths of $1 / 2 \mathrm{inch}$. Slip a piece of sleeving over the end of each wire, except the seven long wires, and push the sleeving back on each wire so that the tinned end of each wire is clear of the sleeving. Using the wiring diagram,

TABLE 3-7. MAIN TEST CABLE ASSEMBLY CROSS REFERENCE LIST

ITEM NO. ON NL-901192-29	ITEM NO. ON NL-901579-1	DESCRIPTION
1	8	Box (Marking)
2	9	Cover
3	10	Plate (Marking)
4	11	Cover Assembly
5	12	Insulator
6	13	Spring
7	14	Spacer
9	16	Cable Clamp
10	17	Box Connector
11	18	Terminal Plate
13	19	Plug-Amphenol Blue Ribbon Connector
14	20	Receptacle-Amphenol Blue Ribbon Connectur
15	21	Chassis Connector
16	15	Jack Assembly
19	43	Screw - No. 4-40 x 5/16 1 g
20	44	Screw - No. 4-40 x 1/4 lg
21	45	Screw - No. $4-40 \times 3 / 8 \mathrm{lg}$
22	46	Lock washer - No. 4 split
23	47	Nut - No. 4-40 hex
24	48	Screw - No. 6-32 \times / 161 lg
25	49	Lock washer - No. 6 split
26	50	Nut - No. 6-32 hex
27	51	Washer - No. 4 flat
29	22	Washer
30	52	$\begin{aligned} & \text { Screw-No. } 3.56 \text { NF-2 } \\ & \times 1 / 4 \lg \end{aligned}$
31	53	Lock washer - No. 3 split
32	54	Nut - No. 4-40 hex
33	55	Cable Clamp
34	56	Tapped spacer, $1 / 4 \times 5 / 8$ lg, 6-32 tap
35	57	Tapped spacer, $1 / 4 \times 3 / 4$ lg, 6-32 tap
37	28	Connector, Plug
38	27	Connector, Panel Jack
39	26	Connector, Plug, Right Angle
40	25	Connector, Panel Jack
41	24	Cap, Plate
42	23	Cap, Plate

NL-901193-14, as a guide, first cut and mount the two terminal straps (item 34 on the shipping list NL-901579-1), and then make all electrical connections on the plate end of the cable. P-3610 and P-3611 (item 41) and P-3612 and P-3613 (item 42) are plate caps. After all connections have been made, push the lengths of sleeving down to insulate the connections. Attach marker bands as per the wiring diagram, NL-901193-14. Mount the cover assembly (item 4) to the plate (item 3).

Take the other end of the cable and feed it through the cable clamp and box connector mounted on the box (item 1). Pass the cable through the box connector until the covering on the cable protrudes $1 / 4$ inch beyond the face of the box connector and then tighten the cable clamp. Slip a piece of sleeving over the end of each wire terminating on the Amphenol Blue Ribbon plugs. Using the wiring diagram as guide, first cut and mount the two terminal straps, and then make all electrical connections on the box end of the cable. After connections to the Amphenol Blue Ribbon plugs have been made push the lengths of sleeving down to insulate the connections. When wiring and assembling the two panel jack connectors (item 38) to the two small coaxial cables, a voltmeter or buzzer check should be made to the connectors at the other end of these cables to determine which of the connectors is J-3605 and which is $\mathrm{J}-3606$ ($\mathrm{J}-3605$ is connected to coaxial cable that has P-3608 at its other end and J-3606 is connected to coaxial cable that has P-3607 at its other end). Mount the three panel jack connectors, J-3605, J-3606, and $\mathrm{J}-3607$, to the box. Mount the cover (item 2) to the box.

7. INITIAL ADJUSTMENTS.

a. GENERAL.-After the mechanical installation has been completed and all cables properly installed and connected, a series of initial checks and adjustments should be made when energizing the equipment for the first time. Although the equipment may have been previously calibrated and checked, the procedure below will reduce difficulties arising from handling in transit, installation variations, or replacement of critical vacuum tubes. The procedure includes power input adjustments, installation of tubes and fuses, a complete visual inspection, insertion of components, and trial tuning, in the order mentioned.
b. POWER INPUT ADJUSTMENTS.-The transmitter group components of the AN/SRT-14, 15 and 16 are designed for primary power of 110 volts, 60 cycles, single phase only. However, the booster components of an AN/SRT-15 and 16 may be operated from a primary power source of either 220 volts or 440 volts, 60 cycles, three phase. The equipment is normally shipped with all booster links set for 440 -volt operation. Using figure 3-17 as a guide, set these link connections on E-1603 (high level radio modulator) and on E-1503, E-1504, and T-1504 (high voltage power supply), according to the primary power being used. The antenna tuning equipment receives its primary power from the transmitter group, which is $\mathbf{1 1 0}$ volts, $\mathbf{6 0}$ cycles, single

Figure 3-11. Typical Transmitter Bay Arrangements
phase. Figures 3-34, 3-35, and 3-36 are the Primary Power Distribution Diagrams for all components of the AN/SRT-14, 15 and 16.
c. CHECKING INDIVIDUAL COMPONENTS.The tubes for the transmitter bay are normally shipped installed in place in the various major units. Whenever possible, check each tube with a tube tester, then replace each tube in its socket, replacing any that may have been found to be defective. Consult Section 5 of this instruction book for the exact location of each tube. Special care should be taken in installing V-1304, type 4-400A power amplifier tube, in the radio frequency amplifier. Refer to paragraph $3 c(2)$ of Section 5 for the correct handling procedure for V-1304.

In addition to V -1304, the two tubes in the high level radio modulator, $\mathrm{V}-1601$ and $\mathrm{V}-1602$, are packed separately. To install these tubes, first remove the two tube clamps (see figure 3-18) by loosening the two \#10-32 binding-head machine screws mounting each clamp to the right side panel of the high level radio modulator. Insert the tubes into the two tube sockets, XV-1601 and XV-1602. Replace the two tube clamps and tighten the \#10-32 screws. Connect the lead coming through the front grommet to $\mathrm{V}-1601$ by placing the clip on the end of the lead on the plate cap of V-1601. In a similar manner, connect the lead coming through the rear grommet to V-1602.

Using table 5-6 as a guide, check and replace all fuses in their proper places. The fuses normally supplied for the high voltage power supply in an AN-/SRT-15 or 16 ($\mathrm{F}-1501$ through F -1505) are those required for operation with 440 -volt, three-phase primary power. If the primary power to be used is 220 volts, three phase, fuses F-1506 through F-1510 (6.25 amp each) must be drawn from Navy stocks and installed in place of F-1501 through F-1505.

Make a complete visual check of all aspects of each drawer of the transmitter bay. Check carefully for broken parts, loose wires, bent or damaged contacts, loose connectors, or any similar damage that may have occurred either in transit or in the process of installation.

After the visual check is completed, return all units of the Transmitter Group OA-684/SRT to the transmitter group cabinet, mating the connectors of the cabinet wiring to the corresponding connectors on the units. In a similar manner, return units of Radio Modulator-Power Supply OA--685/SRT (booster) (AN/SRT-15 and 16 only) to their respective cabinets.

CAUTION

When replacing the units in the cabinets, replace the retaining screws in the side rails.

d. TRIAL OPERATION.

(1) TRANSMITTER BAY.-Before energizing the. transmitter bay for the first time, the r-f connection to the Transmitter Coupler CU-402/SRT should be broken and an external $50-0 h m$ characteristic impedance, 600 watt dummy load, DA-91/U or equivalent, should be
substituted as a load to the radio frequency amplifier output. This is accomplished by disconnecting P-3314 on the RG-8/U cable from J-3201 on the transmitter coupler and coupling the dummy load to P-3314.

Note

The following trial operation procedures will designate the indications to note when the equipment is functioning properly. If, at any step in the operation, the proper indication is not found, reference to Section 7 of the instruction book should be made for correction of trouble.

After primary power has been applied to the equipment, the first indication of normal operation is that the three HEATER ON indicators on the radio frequency oscillator should come on, indicating that heaters in the three critical oscillator circuits in the radio frequency oscillator are energized. Allow a minimum of one hour after the heaters are first energized before the first step in the trial operation takes place to allow these critical circuits to reach the ambient temperature at which they are designed to work.
(a) 100-WATT OPERATION.-The transmitter group may now be energized. Throw the low voltage power supply EMERGENCY SWITCH to the ON position. Set STANDBY-OPERATE switch ${ }^{ค} 9$ in the STANDBY position. Depress the START push button of the MAIN POWER switch ®R. Listen for the sound of the blower in the radio frequency amplifier. The MAIN POWER indicator light on the low voltage power supply and 250 V.P.S. on the low level radio modulator should be lit at this time. The low voltage power supply has an approximate 25 - to 30 -second time delay, after which the TIME DELAY, the +250 V and -220 V indicator lights on the low voltage power supply and the 100 W -READY indicator on the radio frequency amplifier should come on. Listen for the blower motors in the mounting at this time.

Open the door on the radio frequency oscillator covering the nine frequency selection knobs. Set the knobs for a frequency of 0.3 mc according to instructions on the panel under the tuning knobs. Set the BANDSWITCH (C) to the proper band setting. Set the TUNE IPA control (B), the TUNE PA control (D), and the EXCITATION (22) at their maximum clockwise setting. Place STANDBY-OPERATE switch © ${ }^{(P)}$) in OPERATE and set the SERVICE SELECTOR (0) on the low level radio modulator to the HAND position. Set LOCAL-REM switch (x) on the low level radio modulator at LOCAL. The following indicators should light at this time: 500 V PRI, 500 V OUTPUT and 1300 V OUTPUT on the medium voltage power supply; +300 V on the low voltage power supply and the $100 \mathrm{~W}-\mathrm{ON}$ on the radio frequency amplifier. Throw the TEST KEY (T) on the low level radio modulator to its locking position. With the VOLTMETER-METER SELECTOR (J) on the radio frequency amplifier in the RF IN position, the VOLTMETER should read a minimum of 2 volts. If the read-

FINAL ASSEMBLY

3. PULL SHIELDING BRAID FORWARD AND TAPER TOWARD CENTER CONDUCTOR. SLIDE SLEEVE ASSEMBLY OVER TAPERED SHIELDING BRAID UNTIL INNER SHOULDER OF SLEEVE FITS SQUARELY AGAINST END OF JACKET.

6. PUSH CABLE INTO BODY AS FAR AS IT WILL GO. SLIDE NUT TOWARD BODY AND SCREW INTO PLACE UNTIL MODERATELY TIGHT. HOLD CABLE AND BODY RIGIDLY AND TIGHTEN NUT WITH WRENCH. DO NOT ALLOW CABLE OR BODY TO ROTATE.

Figure 3-12. Assembly of UG-21B/U or UG-23B/U Connector on RG-8/U Coaxial Cable
ing exceeds 5 volts, adjust the EXCITATION control (22) to reduce the reading to 5 volts. Set the PA-METER SELECTOR (H) to $I_{c 1}$ position and tune the TUNE IPA control (B) counterclockwise until a peak on the PA CURRENT meter is reached. Continue to tune counterclockwise to see if a second peak is recorded on the meter. If there is a second peak set the control (B) at this point but if there is no second peak, return the control (B) to the position of the first peak. Regulate
the TUNE PA control (D) in the same manner, using the ANT CURRENT meter as an indicator of tuning peaks.

This completes a trial operation at the 100 -watt level. However, for a complete test of the transmitter group, a frequency in each of the other five tuning bands should be set up and the equipment returned to each (for instance, $1 \mathrm{mc}, 6 \mathrm{mc}, 10 \mathrm{mc}, 18 \mathrm{mc}$, and 26 mc).

AN/SRT-15

AN/SRT-16

Figure 3-13. Installing E-702 Cables

Note

The highest frequency (26 mc) is obtained by setting the knobs to 25.9999910 , with the $10 \sim$ knob (E) set to the 10 position.

After the $6-\mathrm{mc}$ tuning has been completed, the readings on all positions of the VOLTMETER, IPA CURRENT, PA CURRENT, and ANT CURRENT meters should be checked against the list of typical readings given in the 100 -watt column of table 3-8.

TABLE 3-8. TYPICAL METER READINGS AT 6 MC, HAND, KEY DOWN

METER POSITION		100 WATTS	500 WATTS
ANT CURRENT		1.5	3.5
PA	Ic 1	20 ma	12 ma
	Ic2	54 ma	16 ma
	Ik	0.2 a	0.2 a
IPA	Ic 1	1.0 ma	1.0 ma
	Ic2	7.5 ma	9.0 ma
	Ik	60 ma	60 ma
$\begin{aligned} & \text { VOLT- } \\ & \text { METER } \end{aligned}$	RF IN	$2.0 \mathrm{~V}^{*}$	$2.0 \mathrm{~V}^{*}$
	BIAS	200 V	200 V
	LV	260 V	280 V
	MV	430 V	470 V
	PA Ec2	220 V	400 V
	PA Eb	1100 V	2800 V

*Depends upon the setting of the EXCITATION control(23).
If any difficulty is encountered in tuning to any of the above trial frequencies, first check the radio frequency oscillator drawer. This unit contains a number of tubes that are critical. If any of these tubes have been replaced in the tube testing procedure (paragraph $5 c$), it may be necessary to readjust the associated circuits according to the procedures given in table 3-9. If adjustments are required, the tuning procedures should be repeated for the transmitter group.

TABLE 3-9. CRITICAL RADIO FREQUENCY OSCILLATOR ADJUSTMENTS

REPLACED COMPONENTS	REQUIRED ADJUSTMENT PROCEDURES
UNIT 1	With the transmitter in "stand-by", allow
V-2001	crystal ovens to cycle for at least one
(5654)	hour. Tune a receiver (type RBB or
Y-2001	equivalent) to 2.5 mc with BFO turned
(XTAL)	off. Connect the leg of a type "T"
	BNC connector to the i00 KC X-TAL
	receptacle on the RFO front panel.

REPLACED COMPONENTS	REQUIRED ADJUSTMENT PROCEDURES
UNIT 1 V-2001 (5654) Y2001 (XTAL) (cont'd)	Connect a coaxial cable to one arm of the " T " connector and terminate the other end of this cable at the receiver antenna input. Connect a receiving antenna, with a variable attenuator in series, to the other arm of the " T " connector. Adjust the attenuator so that the signal from $W W V$ is at the same level as the 25 th harmonic of unit 1 output. Adjust L-2001 on unit 1 for a zero beat indication. This indication should be observed aurally through the receiver speaker and visually by the indication on the OUTPUT meter of the receiver. The indicator on the OUTPUT meter will oscillate about the null; the frequency of this oscillation is the beat frequency. At high beat frequencies the indicator cannot respond and will remain at the null position. As the zero beat is approached, the indicator on the OUTPUT meter will start to oscillate rapidly. Then as tuning towards the zero beat is continued, the oscillation slows down until the zero beat is reached, at which point the indicator rests at the null position.

Note

Perform the above adjustment only when WWV is not modulating.

UNIT 3
V-2501
(6AK6)

UNIT 6
V-2203
(5725)

V-2204
(5654)

V-2205
(6AK6)

Check the interpolation oscillator, operating at 100 kc , against the crystal oscillator as follows: Set KC knob © , the 100 knob (00), and the 10 knob (G6) at 9, 9, and 10 respectively. Energize the equipment. Set the ZERO ADJ. control (2) to the INT. OSC. position and, with a screwdriver, adjust the INT. OSC. ZERO ADJ. control, located on the same panel as the frequency selection knobs, so that the shadow angle on the ZERO BEAT INDICATOR reaches zero beat.

TABLE 3-9. CRITICAL RADIO FREQUENCY OSCILLATOR ADJUSTMENTS (Cont'd)

REPLACED COMPONENTS	REQUIRED ADJUSTMENT PROCEDURES
$\begin{aligned} & \mathrm{V}-2202 \\ & (12 \mathrm{AU} 7) \end{aligned}$	Adjust R-2210 as follows: Connect 10 KC oscilloscope test jack on the radio frequency oscillator to the vertical input of an oscilloscope OS-8/U (or equivalent.) Connect the 100 KC X-TAL test jack to the horizontal input of the oscilloscope. Adjust R-22 10 to obtain a 10 -to- 1 pattern on the scope. Slowly turn R-2210 counterclockwise until pattern drops out of lock. Mark this point on the chassis. Turn R-2210 clockwise until the pattern locks in again. Continue turning clockwise until the pattern drops out of lock again. Turn R-2210 counterclockwise until pattern again locks in. Mark this point on the chassis. Set R-22 10 midway between the two marks.
$\begin{aligned} & \text { UNIT } 8 \\ & \text { V-2330 } \\ & (5725) \\ & \text { V-2331 } \\ & (5725) \end{aligned}$	Adjust C-2405 and C-2406 as follows: Turn 100 KC control $\Theta \leftrightarrow$ to 9. Connect VTVM, such as a ME-25A/U, to $\mathrm{J}-2330$ on unit 8 . Adjust $\mathrm{C}-2405$ and C-2406 for maximum meter reading.
$\begin{aligned} & \text { V-2327 } \\ & (5725) \\ & \text { V-2328 } \\ & (5654) \\ & \text { V-2329 } \\ & (6 A K 6) \end{aligned}$	Adjust C-2339, located on the top of unit 8, as follows: Set the 100 KC control $(H 2)$ to 9 . Connect the 100 KC STEP oscilloscope test jack to the horizontal input of an oscilloscope $\mathrm{OS}-8 / \mathrm{U}$ (or equivalent) and connect the 100 KC X-TAL test jack to the vertical input of this oscilloscope. A 25 -to- 1 pattern should appear. Adjust C-2339 in the same manner as described for C-22 19 in unit 6 .

An adjustment in the low level radio modulator may be affected by a tube replacement. If it is required to replace the keying multivibrator tube V-1017, then the setting of the ZERO ADJ controi, R-1096, should be checked. This is a screwdriver adjustment located behind the UNIT ADJUSTMENTS door on the front panel. First, pull out the low level radio modulator chassis until the rail stop is reached. "Cheat" the interlock S-1104 located on the outside of the chassis left side panel by pushing in the button on the switch. Locate and remove tube V-1018. With a test meter, ME-25/U or equivalent, set at the +100 -volt d-c range, measure between pin 1 on tube socket XV-1018 and ground. With the equipment energized and the TEST KEY © operated, adjust the ZERO ADJ control, R-1096, to obtain a reading of +25 volts on the meter. Restore the TEST KEY (T) to its normal off position and change the test meter selector from plus to minus; the meter should now read -30 volts ± 5 volts.
(b) 500-WATT OPERATION.-After the 100 watt trial operation is complete on an AN/SRT-15 or

16, the 500 -watt trial should be made. With equipment energized at the 100 -watt level, tune to a frequency of 6 mc . After tuning is completed, return the STAND-BY-OPERATE switch ® to the STANDBY position and return TEST KEY (T) to OFF position.

Throw BOOSTER EMERGENCY switch (§) to the ON position. After an approximate 30 -second time delay, the time delay indicator should come on. Depress the PUSH FOR 500W push button (E) on the radio frequency amplifier. The 500 W READY indicator should come on. With the SERVICE SELECTOR (1) on the low level radio modulator in the HAND position, place the STANDBY-OPERATE switch (®) in OPERATE. The $\phi-1, \phi-2$, and $\phi-3 \mathrm{H} . \mathrm{V}$. PRIMARY indicator on the high voltage power supply, the 3000 v and 350 v SCREEN indicator on the high level radio modulator and the 500 W -ON indicator on the radio frequency amplifier should come on at this time. Throw TEST KEY (\mathbb{T} to KEY ON position. Check meter readings against those shown in table 3-8 under the 500 -watt column. If the equipment installed is an AN/ SRT-16, the 100 -watt trial tuning should be repeated for the second transmitter group.
(c) TRANSMITTER COUPLER CU-402/ SRT.-A trial of the Transmitter Coupler CU-402/ SRT (load adjusting unit) is next in sequence. For the 100 -watt and 500 -watt trials, the r-f connection from the transmitter bay to the load adjusting unit was broken and the dummy load inserted. Now disconnect the dummy load from P-3314 on the RG-8/U interconnecting cable and reconnect P-3314 to J-3201 on the load adjusting unit. Disconnect the r-f connector, P-3308, on the RG-18/U interconnecting cable to the antenna tuning equipment from the receptacle J 3202 on the load adjusting unit, and connect the dummy load to J-3202.
Set the INPUT TAP © on the load adjusting unit to the 4 position and then energize the transmitter bay as described for the 100 -watt trial oneration at a frequency of 6 mc (paragraph $7 d(1)(a)$). Adjusting the OUTPUT TAP mol at its various settings should cause different readings on the r-f ammeter. The optimum setting of both $\mathbb{\Delta}$ and ${ }^{(H / 4}$ should give a reading of approximately 1.5 amp .
(d) REMOTE CONTROL.-If the equipment operates correctly to this point, operation of the remote radiophone unit should be checked. De-energize the equipment by depressing the STOP button on the low voltage power supply. Restore the TEST KEY (T) on the low level radio modulator to its center off position. Set the LOCAL-REM © \otimes switch on the low level radio modulator to REM. Depress the START button on the remote radiophone unit. The POWER indicator on the remote unit should come on together with the indicator on the transmitter group that would come on in the local operation when the START button on the low voltage power supply is depressed (paragraph $7 d(1)(a))$. With STANDBY-OPERATE switch © on the low voltage power supply in OPERATE and the

SERVICE SELECTOR (1) on the low level radio modulator in HAND, patch transmitter to L.O.P. position. Depressing the key should produce the same results at the transmitter bay as were obtained when the TEST KEY $(\bigcirc$ was operated in the local trial operation (paragraph $7 d(1)(a))$. Place the SERVICE SELECTOR (U) on the low level radio modulator in the PHONE position. Insert a phone in the phone jack on the radiophone and depress the press-to-talk switch. This should cause the CARRIER ON indicator on the radiophone to come on and should also energize a carrier at the transmitter bay. Depress the STOP button on the ra-
diophone unit. This should extinguish the POWER indicator and de-energize the transmitter bay.

Place the SERVICE SELECTOR (1) on the low level radio modulator in FSK position. Patch transmitter to TELETYPE position. Depress the START button on the control box at the TELETYPE position. Adjust transmitter for FSK-TT operation; see paragraph $4 c$. Place key in transmit, on the control box at the TELETYPE position. This should cause the carrier indicator to come on at the transmitter bay. Observe for correct frequency shift operation. Depress the STOP button on the control box at the TELETYPE position. This

Figure 3-14. Assembly of UG-167A/U Connector on RG-18/U Coaxial Cable

2 PUSH ARMOR BACK APPROX $123 / 8^{\prime \prime}$ FROM END SLIDE SPANNER NUT 2, GASKET AND SPANNER NUT H OVER VINYL JACKET. CAREFULLY SLIDE WASHER I OVER COPPER BRAIO AS SHOWN.

3. FAN OUT COPPER GRAIO RADIALLY, TRIM ANY LOOSE OR RAGGED EDGES WITH CUTTERS OR SCISSORS. ALL METAL PARTICLES MUST BE CLEANED OFF DIELECTRIC. SLIDE CLAMP OVER DIELECTRIC (PRONGS TOWARD CONNECTOR AS SHOWN) AND PRESS IT AGAINST COPPER BRAID. APPLY SILICONE COMPOUNO TO CLAMP SURFACES.

4. INSERT FORMED END OF CABLE INTO PLUG BOOY. WITH A SPANNER WRENCH SCREW SPANNER NUT I VERY TIGHT AGAINST WASHER 1 . THIS LOCKS THE COPPER BRAID AND FORCES THE CLAMP INTO THE DIELECTRIC. SUFFICIENT PRESSURE SHOULO BE APPLIED TO INSURE CLAMP IS PRESSEO INTO DIELECTRIC AND IS FLATTENED TO PROVIDE GOOD CONTACT WITH BRAID APPLY A THIN FILM OF SILICONE COMPOUND TO THE SURFACES OF THE GASKET FOR BETTER SEALING. SLIDE WASHER \# 2 AGAINST GASKET. SCREW SPANNER NUT 2 TIGHT AGAINST WASHER 2.

5. TURN UP ARMOR $1 / 4^{\prime \prime}$ (RADIALLY). PUSH ARMOR INTO BODY OY SQUEEZING BULGE. PUSH WASHER 3 AGAINST ARMOR. SCREW UP ARMOR NUT TIGHT AGAINST WASHER \& 3 . WITH SHARP KNIFE CUT DIELECTRIC FLUSH WITH FORWARD EDGE OF COUPLING RING. PRY OFF CUT DIELECTRIC. CUT OFF CENTER CONOUCTOR 1/2" FROM FORWARD EDGE OF COUPLING RING. FILE END OF CENTER CONOUCTOR ROUND AND CLEAN OFF ALL FILINGS. APPLY SMALL AMOUNT OF SILICONE COMPOUND IO END OF dielectric just before mating this plug.

Figure 3-15. Assembly of UG-154/U Connector on RG-18/U Coaxial Cable
should extinguish the power indicator and de-energize the transmitter bay.
Place the SERVICE SELECTOR (1) on the low level radio modulator in FAX position. Patch transmitter to FACSIMILE position. Depress the START button on the control box at the FACSIMILE position. Adjust transmitter for facsimile operation; see paragraph $4 d$. Place key in transmit, on the control box, at the FACSIMILE position. This should cause the carrier on indicator to come on at the transmitter bay. Ob serve for correct frequency shift operation. Depress the STOP button on the control box at the FACSIMILE position. This should extinguish the power indicator and de-energize the transmitter bay.
(2) ANTENNA TUNING EQUIPMENT.-AII controls and indicators for the initial trial and adjustment of the antenna coupler and r-f tuner are found on the Control-Indicator C-1352/SRT, which is mounted on the radio frequency oscillator front panel.
First, the dummy load must be disconnected from $\mathrm{J}-3202$ on the load adjusting unit and the connector, P-3308, on the RG-18/U interconnecting cable, reconnected to J-3202.
(a) PRESSURIZATION.-Before trial operation of the antenna coupler and r-f tuner takes place, a preliminary check of the pressurization of these two components should be made. Each of the two components should be charged with dry nitrogen until a

C8TL A-2OII254 WITH
FOUR 6-32 1/4" LG. HEX SOCKET SET SCREWS

1. FROM REQUIRED LENGTH OF RG-I7IU CABLE PREPARE FIRST EXTRUSION BY REMOVING ENTIRELY the vinyl jacket and the shield; leaving ONLY THE DIELECTRIC MATERIAL AND THE CENTER CONDUCTOR. CUT OFF DIELECTRIC MATERIAL 7/8" FROM THE END, TAKING CARE NOT TO DAMAGE THE EXPOSED LENGTH OF CENTER CONDUCTOR.

> 2. SLIDE SMALL DIAMETER HOLE OF ADAPTER OVER CENTER CONOUCTOR OF RG-ITIU FIRST EXTRUSION AND TIGHTEN TWO SET SCREWS.

STRAIGHT CONNECTION

3. AFTER THE ABOVE ASSEMBLIES HAVE BEEN PREPARED. THE CABLES ARE ATTACHED TO W-3502, W-30I IN ACCORDANCE WITH INTERCONNECTING CABLING DIAGRAMS BY SLIDING EITHER LARGE DIAMETER HOLE OF THE ADAPTER OVER THE EXPOSED CENTER CONDUCTORS OF $\mathbf{W}-3502$, AND $W-301$, TIGHTENING THE REMAINING SET SCREWS TO FORM EITHER A STRAIGHT OR RIGHT ANGLE CONNECTION. WRAP THE ENTIRE CONNECTION WITH POLYETHYLENE ELECTRICAL TAPE.

RIGHT ANGLE CONNECTION

Figure 3-16. Assembly of Adapter (CBTL A-2011254) on RG-17/U First Extrusion Cable
pressure of 20 psi is recorded on each of the pressure gauges. The equipment is supplied charged to the required amount. However, during periods of shipment and storage, all or a portion of the pressurized gas may have leaked out. To pressurize the components, the following typical equipment is required: a cylinder of dry nitrogen; a regulator consisting of a regulator valve, needle valve, delivery pressure gauge and cylinder pressure gauge; a hose with a proper fitting to mate with the regulator at one end and a fitting to mate with the intake valve on the antenna coupler and r-f tuner at the other end. Make the connections to the r-f tuner and/or the antenna coupler as shown on figure 3-19.

If the pressure gauge on the component shows that
there is no pressure in the unit, the unit must first be purged with gas and then charged to the required pressure. If the pressure gauge shows that there is a charge of gas but of insufficient pressure, the unit does not need to be purged before charging to the 20 psi valve. To purge the unit, first close the needle valve on the regulator and then loosen the regulator adjusting screw by turning it clockwise. Open the tank valve on the gas cylinder. Close the adjusting screw until the delivery pressure gauge reads 10 to 15 psi. Note the reading on the cylinder pressure gauge. Open the relief valve on the component by inserting a tool in the hole provided in the relief valve stem and pull the stem against the valve spring tension, holding the stem in this position. Open

Figure 3-17. Input Power Link Arrangements, Radio Modulator-Power Supply (Booster)

Figure 3-18. Installation of Electron Tubes V-1601 and V-1602

Figure 3-19. Typical Pressurization of Antenna Tuning Equipment
the needle valve and purge the component until a drop in gas cylinder pressure of 100 psi is noted, at which time the needle valve should be closed. Release the stem of the relief valve. Open the adjusting screw until the delivery pressure gauge reads 25 to 30 psi. Open the needle valve and charge the component until a reading of 20 psi is read on the pressure gauge on the component, at which time the needle valve on the regulator should be closed. The component is now pressurized; close the tank valve and disconnect the pressurizing equipment. Replace the cap on the intake valve of the unit.

If purging is not required, after the charging equipment is connected, close the needle valve and open the adjusting screw on the regulator. Open the tank valve and close the adjusting screw until the delivery pressure gauge reads 25 to 30 psi. Open the needle valve and charge the component until a reading of 20 psi is read on the pressure gauge on the component, at which time the needle valve on the regulator should be closed. The component is now pressurized; close the tank valve, disconnect the pressurizing equipment, and replace the cap on the intake valve.
(b) TRIAL OPERATION.-Energize the transmitter for 100 -watt operation as per paragraph $7 d(1)$ with the exception that the TEST KEY © should not be operated.

Depress and hold the DOWN push button (AG) on the control-indicator and observe the indicator on the POSITION meter moving down scale. Release the DOWN push button (A6) when the indicator on the POSITION meter stops. Loosen the lock on the ZERO ADJ. control and set this control for a reading of 0 on the POSITION meter. Now depress and hold the UP push button (Af) and observe the indicator on the POSITION move up scale. Release the UP push button (Af) when the indicator on the POSITION meter stops. Loosen the lock on the FULL SCALE ADJ. control and set this control for a reading of 100 on the POSITION meter. As the setting of one of these adjustments slightly affects the other, the above two adjustments should be repeated for the fine setting, after which the two locks should be tight-
ened. Operate the DOWN push button (AC) together with the SLOW push button (A4) and observe the reduced rate of travel of the indicator on the POSITION meter.
If a 35 -foot whip antenna is used, select the DIRECT positions on both the TRANSFORMERS (Ac) and ANTENNA COUPLER LOADING (AD) controls. Operate the ANTENNA TRANSFER control (AE) to the TUNER IN position and observe that the TUNER IN indicator lights. Depress the UP push button © ${ }^{(A F)}$ until the indicator on the POSITION meter reads 100 . Set the SWR CALIBRATE control (AB) to 8:1. Operate the TEST KEY (T) on the low level radio modulator and tune the transmitter in the manner outlined in paragraph $7 d(1)$ but to a frequency of 2 mc . Observe the indicator on the SWR BALANCE meter on the control-indicator in the HIGH (red region) portion of the scale. Depress the DOWN push button (A6) watching the SWR BALANCE meter for a dip towards the LOW (green region) portion of the scale. When a dip is found, jog the UP (AF) and DOWN (AG) push buttons to obtain a maximum low indication on the SWR BALANCE meter, moving control (AB) to $4: 1$ position and then to $2: 1$ position as the correct tune point is approached. Note that the reading on the POSITION meter, after the low indication has been found on the SWR BALANCE METER, agrees with the approximate value as set forth in the tuning chart located on the under side of the hinged flap, which is mounted on the door covering the frequency selection knobs on the radio frequency oscillator.

If an antenna other than a 35 -foot whip is used, follow the step-by-step procedure for initial tuning as described in paragraph $6 c$ of Section 4 of this instruction book.

CAUTION

The ANTENNA COUPLER LOADING CONTROL (AD) should not be placed in position c or d when the transmitter is tuned to a frequency above 2.0 megacycles. Operation with control (AD) in position c or d may overheat and destroy coils L-3501 or L-3502 located
in the Antenna Coupler CU-372/SRT. in the Antenna Coupler CU-372/SRT.

$\begin{aligned} & \text { INPUT } \\ & \text { LEAAD } \\ & \hline \end{aligned}$	input power	watts	$\begin{aligned} & \text { POWER } \\ & \text { FACTOR } \end{aligned}$	kVa requirements			
				START	operate	Stanoby	secu
R-RT1	HoV, 19, 60CPs IIOV, 19.60 cps	${ }_{7}^{1400}$	0.92	1.70	1.50		
				*0.071	*0.071	*0.071	± 0.071

notes:
1: RG-17/U FIRST EXTRUSION CABLES MAY be prepareo in THE FIELD FROM BULK RG ITIU OO RGG-18/U BY REMEOVING
THE ARMOR, SLITING THE OUTER THE ARMOR, SLITTING THE OUTER JACKET LENGEHWISE AND
REMOVING IT, AND REMOVING THE BRAIOEO COPPER OUTER CONOUCTOR COMPLETELY.
2: Locate rf tuner and antenna coupler so that com. BINED LENGTH OF R-PA4 AND ANTENNA LEAD-IN DOES NOT
EXCEED 5 FEET.
3: R-RT2 FURNISHES 110 VOLT, 60 CYCLE, Singe rit 3. -RTR FURISHES 110 VOLT, 60 CYCLE, SINQLE PHASE
POWER TO OVEN HEATERS IN THE RADIO FREQUENCY OSCIL LATOR OF THE TRANSMITTER GROUP AND TO THE BY-PASS
SWITCH ACTUATO SWITCH ACTUATOR IN THE ANTENNA COUPLER. THIS CIR-
CUIT SHOULO BE CONTINUOUSLY EMGOED Line against interruptions.
4: maximum Length of cablés r-rts, r-rts and r-baz
IS 500 FEET. MAXIMUM LENGTH OF CABLES IR-RCI AND
IR-RC2 IS 1000 fEET.
lir-RC2 Is 1000 FEET.
5: Dotted items and all interconnecting cables shown
ON THIS drawing Are to be furnisheo by the navy at installation.
6. RF funer and antenna coupler are pressurized
With ory nitrocen gas at a pressuie of 7: Location of transmiter cessure of 20 Les./so. in. Length of cable r-RT4 which extenos li feet fro CABLE ENTRANCE IN MOUNTING.
9: cable r-rt4 is supplied with the equipment.
9: CONNECTOR P-GOO (UG-G9/U), LOCATED IN TRANSMITTER GROU PAC-684/SRT, IS SUPPLIED AS AS R.F. INTPUT TO A RECEIVER, INCOMING CONNECTION TO BE FURNISHED AT
INSTALLATION. ollat
o: SEE installation section of instruction book or correct handling of incoming cables after
1: antenna lead-in as specified and provided

description	INST. BOOK FIG. NO.	INSTALLATION DRAWING NO.
TRANSMITTER BAY, AN/SRT-14	3.23	
TRANSMTTER COUPLER, CU-402/SRT	3-27	NL-901312-25 $\mathrm{NL}-901315-12$
ANTENNA COUPLER, CU-372/SRT	3-28	NL-901316-14
TERMINAL BOARD CABLE	3-29	NL-901317-14
INTERCONNEGTING CABLING, AN/SRT-14	3-26	NL-901318-25
CABLE ASSEMBLY INSTRUCTIONS,	3-12,3-14	NL-901319-14
CABLE ASSEMBLY INSTRUS	3-15,3-16	
CAEE MULT-CONOUCTOR CONNECTORS	3-33	NL-901323
primary power distribution,	3-34	NL-901324-26
primaty power distribution, antenna coupler	3-36	NL-901326-14

Nour	wevt poun	wars	Power				
	Hov, 10.						
-arz		2800	${ }_{0}^{0.82}$	${ }^{3} 20$	${ }^{3.20}$	\cdots	\bigcirc
R:Rers	Hov, 1		a	+0.071	-0.00		

Notes

 0

 .

 sumsem nos Min

Oscamamen		
and	(ize	
max mixice		

weight uncrateo w

$$
\begin{aligned}
& \text { founoation } \\
& \text { ofilimg plan }
\end{aligned}
$$

$\frac{1}{2} \stackrel{\text { LLOOWALE }}{\text { TLLERANCE }}-\frac{1}{32}$
-

NOTES:
Top cover wist ef remove temoonarlr to atract

为

NOTES:

Equezawazu wo

nem

Nown

NOTES

1. This unit mar be mounted in either vertical or horizontal position.
2. THIS UNIT IS PRESSURIZED WITH DRY NTROGEN GAS AT A PRESSURE OF 20 Les/SQ. In. 3. SHOCKMMOUNTS ARE ATTACHED TO MOUNTIGG GRACKET BY SIXTEEN $1 / 4-20 \times 3 / 4$ LGG HEX

3. RFINTERCONECTIONTTO RADO FRECENCY-TUNER, TN-229/SRT IS MADE TO

4. grounoing strap supplied with installation material.
5. relef valve locateo under finger cot.

NOTES:
2. THIS unit is pressurize with dry nitrogen gas at a pressure of 20 lbs/sa. in.
3. SHOCK MOUNTS ARE ATTACHED TO MOUNTING BRACKET BY SIXTEN $1 / 4-20 \times 3 / 4$ LG. HEX
HO., STELL, CAD PLATE CAP SCREWS, THRTY-TWO I/4 SPLIT, STANLESSS STEEL LOCKWSHERS ANO SIXTEEN $114-20$ STEEL, CAD. PLATE HEX NUTS. TO REMOVE UNIT FOR
MANTENANCE PUROOSES THESE SCREWS, WASHESS ANO NUTS ARE REMOVED.
4. R.F INTERCONNECTION TO ANTENNA COPLER IS MADE TO W-301 BY MEANS OF A
LENGTH OF RG-IIU FIRST EXTRUSION CABLE ANO CONNECTOR P-3312. LOCATE THE

5. RELIEF VALVE LOCATED UNDER FINGER GOT.
6. $\operatorname{GROUNOING}$ STRAP SUPPLIEO WTH

CONNECTOR INFORMATION
RECEPTACLE

 w-301 RG-19/N EIISTI Extrusion

WEIGHT, bs. 201 CRATED 135 UNCRATED DIMENSIONS, CRATEO $16 " n \times 20^{\prime \prime} w \times 55^{\prime \prime}$ VOLUME, CRATED ©0.1 cu.ft.

notes:

all ground
EOUPment.
S. LOCAION OF TRANSMITER COUPLER, CU-402 Which ExTENOS 12 FE.
RANEE in mountimg.
4. Connector p-3315 ano cable p-rt 4 are SUPCLIED AS AN ASSEMBLY WITH THE installation material
 So THAT COMBNED LENGGH OF R-RA4
AND HEO ANTENNA LEAD-IN IS LESS
THAN 5 FEET.

1/4-20 NC-2 ThREAD, $1 / 2 \mathrm{IN}$. deep ho

 ANTENNA LEAD-IN PRovideo by Navy.

* SRHV-2 $2 / 2(19)-16$
* cable r-rtz is supplied with the eoup-

${ }^{70}$

 and

 come

 andeme nex

 ,ime min
䢒 and

䢒

cable number			cable trpe	assembles to			
AN/SRT-14	an/ser-15	AN/SRT-16		${ }_{\text {connector }}$ END	${ }^{1}$	${ }^{\text {ENO }}$	
	R-Rtis	R-btir	Msca-19		${ }^{\text {P-3302 }}$		
R-RT5	R-Rtis	R-RTI6	Mhfa-24		p-3301		
				$\begin{aligned} & 10-64632-8 S \\ & 10-35952-32 \end{aligned}$			
	R-rtio	R-Rtig	msca- 19		p-330		P-3305
R-8t7	R-RTI6	R-RTIE	mhfa-		p-3304	-35952-2	
				$10-64632-8 P$ $10-35952-32 \mid$		10-64632-85	p-3306

table of sections

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragrapb Page1. Introduction4-1
a. AN/SRT-14 4-1
b. AN/SRT-15 4-1
c. AN/SRT-16 4-1
d. Tuning Bands 4-1
e. Services 4-1
f. Frequency Selection 4-1
g. Tuning 4-1
b. Power Control 4-1
i. Major Control Functions 4-3
j. Other Control Functions 4-3
k. Units Without Controls 4-3
l. Operation Procedure Based on AN/ SRT-15 4-3
2. Identification of Controls and Indicators 4-3
a. Radio Frequency Amplifier AM-1008/ SRT 4-3
(1) Oscillator INT-EXT Switch (A) 4-3
(2)
and TUNE PA (D) Tuning Con- trols4-3
(3) PUSH FOR 500 W (E) and DIS- ABLE 500 W © Switches 4-3(4) IPA (G), PA \oplus and VOLTMETER(I) Meter Selector Switches andIPA Current Meter, PA CurrentMeter and Voltmeter4-4
(5) SCREEN OVERLOAD RESET Switch (®) 4-5
(6) EXCITATION Control (27) 4-5
(7) Indicator Lights 4-5
(8) Antenna Current Meter 4-5
(9) Fuse 4-5
b. Radio Modulator MD-229/SRT (Low Level Radio Modulator) 4-5
(1) SERVICE SELECTOR Control (1) 4-5
(2) SQUELCH TRIG. Control (L) 4-5
(3) GAIN TO CLIP Control \mathbb{M} 4-6
(4) $\%$ MOD Control $®$ 4-6
(5) AGC Switch $(P$ 4-6
(6) NEUT.-POLAR Switch © 4-6
(7) KEYING RATE Switch (S) 4-6
(8) TEST KEY (T) 4-6
(9) SPACE-OPER.-MARK Control 4-6
(10) SIDETONE Control (W) 4-6
(11) LOCAL-REM Switch © 4-6
(12) CARBON-DYN Switch \uparrow 4-6
(13) Indicator Light 4-6
(14) Fuses 4-6
(15) TIME CONST. ADJ. Control $4-6$
c. Radio Frequency Oscillator O-275/SRT 4-6
(1) ZERO ADJ. Switch (2) 4-7
Paragrapb Page
(2) Frequency Selection Knobs 4-7
(3) F.S. DEVIATION Control ® 4-8
(4) F.S.K. PHASE MOD. Control (1) 4-8
(5) Test Receptacles, Indicators, and Fuses 4-8
(6) Control-Indicator C-1352/SRT 4-8
(a) UP © $®$, DOWN © ${ }^{(A C)}$, SLOW
(14) Pushbuttons and Posi-tion Indicator4-8
(b) ANTENNA COUPLERLOADING Switch (AD) 4-9
(c) TRANSFORMER Switch
(AC) 4-9
(d) ANTENNA TRANSFER Switch (46) and TUNER IN Indicator 4-9
(e) SWR BALANCE Indicator and SWR CALIBRATE Switch (®8) 4-9
d. Power Supply PP-1094/SRT (Low Volt- age Power Supply) 4-9
(1) EMERGENCY SWITCH 4-9
(2) MAIN POWER Control $®$ 4-9
(3) STANDBY-OPERATE Switch 4-9
(4) CABINET HEATER Switch N 4-10
(5) BATTLE SHORT Switch (11) 4-10
(6) Miscellaneous Indicator Lights and Test Jacks 4-10
(7) Fuses 4-10
e. Power Supply PP-1095/SRT (Medium Voltage Power Supply) 4-10
f. Transmitter Coupler CU-402/SRT (Load Adjusting Unit) 4-11
g. Radio Modulator MD-230/SRT (High Level Radio Modulator) 4-11
b. Power Supply PP-1096/SRT (High Volt-age Power Supply)4-11
(1) BOOSTER EMERGENCY Switch (s) 4-12
(2) Elapsed Time Meters 4-12
3. Turning Power On and Off 4-12
a. Transmitter Group OA-684/SRT 4-12
b. Radio Modulator-Power Supply OA-685/ SRT 4-13
4. Selecting a Service 4-14
a. Hand-Key Operation 4-14
b. Machine-Key Operation 4-14
c. FSK Operation 4-14
d. Facsimile Operation 4-14
e. Phone Operation 4-15
f. High-Speed or Tape Keying 4-15
5. Selecting a Frequency 4-15

TABLE OF CONTENTS (Cont'd)

Paragraph Page
6. Tuning Operations 4-16
a. Tuning to an Uncalibrated Frequency 4-16
b. Tuning to a Calibrated Frequency 4-17
c. Variances in Tuning Procedures When an Antenna Other Than a Standard Navy 35-Foot Whip Is Used 4-18
7. Remote Operation 4-19
a. Preliminary Settings 4-19
(1) Frequency Selection and Tuning Required 4-19
(2) Frequency Selection and Tuning Not Required 4-19
b. Turning Power On 4-19
(1) Turning On Transmitter Group Power 4-19
(2) Turning On Booster Power 4-19
c. Energizing a Carrier 4-19
Paragrapb Page
(1) Hand-Key Operation 4-19
(2) Machine-Key, FSK and Facsimile Operation 4-19
(3) Phone Operation 4-20
d. Originating a Signal 4-20
e. Turning Power Off 4-20
8. Monitoring Signals 4-20
a. RFO Oscilloscope Test Receptacles 4-20
b. Zero Beat Indicator 4-20
c. Sidetone 4-20
d. Checking Modulation 4-20
9. Summary of Operation 4-20
a. Turning the Power On 4-20
b. Selecting a Service 4-20
c. Selecting a Frequency 4-20
d. Tuning Operation 4-20
e. Remote Operation 4-21

LIST OF ILLUSTRATIONS

Figure	Title Page	Figure	Title	Page
4-1	Location of Major Control Functions, AN/SRT-15 \qquad 4-2	4-6	Power Supply PP-1094/SRT (Low Voltage Power Supply, LVPS), Front Panel Controls and Indicators	-10
4-2	Radio Frequency Amplifier AM-1008/ SRT (Radio Frequency Amplifier, RFA), Front Panel Controls and Indicators .. 4-4	$4-7$ $4-8$	Power Supply PP-1095/SRT (Medium Voltage Power Supply, MVPS), Front Panel Controls and Indicators Transmitter Coupler CU-402/SRT (Load	$4-10$ $4-11$
4-3	Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM), Front		Adjusting Unit, LAU), Front Panel Controls and Indicators	$4-11$
	Panel Controls and Indicators 4-5	4-9	Radio Modulator MD-230/SRT (High Level Radio Modulator, HLRM), Front	
4-4	Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO), Front Panel Controls and Indicators 4-7	4-10	Panel Controls and Indicators Power Supply PP-1096/SRT (High Voltage Power Supply, HVPS), Front Panel	4-12
4-5	Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO), Frequency Selection Panel Controls 4-8	4-11	Controls and Indicators Tuning Chart on Radio Frequency Oscil- lator Front Panel	$4-13$ $4-16$

LIST OF TABLES

SECTION 4

OPERATION

1. INTRODUCTION.

The following operating instructions presume that Radio Transmitting Set AN/SRT-14, 15 or 16 has been installed and checked by qualified personnel.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on the operation of the AN/SRT-14, 15 and 16, as set forth in the following section, applies equally as well for the AN/SRT-14A, 15A and $16 A$.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.
a. AN/SRT-14.-Radio Transmitting Set AN/SRT14 has all controls necessary for accomplishing the transmission of any one of five different services at a nominal 100 -watt output level. The frequency range of 0.3 to 26 mc , in steps of 10 cycles, is covered in six tuning bands. All frequency selection and tuning are manually accomplished at the site of the transmitter. The set is so constructed as to permit remote control and operation by means of a standard Navy 6 -wire control system.
b. AN/SRT-15. (See figure 4-1.)—Radio Transmitting Set AN/SRT-15 has all the characteristics of AN/ SRT-14. In addition, AN/SRT-15 may be operated at a nominal 500-watt level on any of the high-frequency bands covering the range from 2 to 26 mc .
c. AN/SRT-16.-Radio Transmitting Set AN/SRT16 combines the characteristics of AN/SRT-14 and AN/SRT-15. AN/SRT-16 permits simultaneous transmission of the same service at different frequencies and of any two of the six services either at the 100 -watt carrier level, or one at the 100 -watt level and the other at the 500 -watt level. AN/SRT-16 design permits remote control from two standard Navy 6-wire control systems.
d. TUNING BANDS.-At a 100 -watt carrier level, AN/SRT-14, 15 and 16 radio transmitters cover the frequency range 0.3 to 26 mc in six bands.

Band 1. 0.3 to 0.8 mc	AN/SRT-14, 15, 16
Band 2. 0.8 to 2 mc$\}$	100-watt level only.
Band 3. 2 to 5 mc	AN/SRT-14 100-watt level only.
Band 4. 5 to 11 mc	AN/SRT-15
Band 5. 11 to 19 mc	100- or 500-watt level.
Band 6. 19 to 26 mc	AN/SRT-16
	100-watt level only from one transmitter group, 100 - or $500-$ watt level from other transmitter group.

Frequency band selection is a function of setting up a frequency in the RFO and of tuning in the RFA, both of which are manual operations. In the AN/SRT-15 and 16 the control circuits are such that operation of the transmitter at the 500 -watt level is prevented when bands 1 and 2 are selected.
e. SERVICES.-The AN/SRT-14, 15 and 16 radio transmitting sets are equipped for selecting any one of five modes of transmission.

Service Position	Function
(1) HAND (2) MACHINE (3) FSK (4) FAX Continuous-wave telegraphy (5) PHONE Frequency-shift telegraphy Facsimile (picture)	

Each of the five services can be operated at either the high or low power levels.
f. FREQUENCY SELECTION.-Frequency selection is made manually by the setting of nine front panel controls located on the radio frequency oscillator of the transmitter group. In the AN/SRT-16, which has two transmitter groups and two antenna systems, separate frequencies can be set up and transmitted in each of the transmitter groups.
g. TUNING.-All tuning functions are manually accomplished by the operation of tuning controls in the radio frequency amplifier, load adjusting unit, and the control-indicator.
b. POWER CONTROL.-Primary power is fed to the transmitting sets through emergency switches located on the transmitter group low voltage power supply, and on the high voltage power supply (the latter in AN/ SRT-15 and 16 sets only). With these switches ON, the sets may be started either by the start-stop push-button controls on the transmitter bay or from the radiophone unit.

Figure 4-1. Location of Major Control Functions, AN/SRT-15.
i. MAJOR CONTROL FUNCTIONS.-Most of the controls and indicators of the AN/SRT-14, 15 and 16 are grouped together functionally to avoid confusion in operation. In this way, individual units may be associated with basic functions. Table 4-1 shows the major functions performed by the controls on each unit of the three radio transmitting sets. The radio modulatorpower supply (booster) controls are only associated with the AN/SRT-15 and 16 sets.

TABLE 4-1. MAJOR CONTROL FUNCTIONS

Functions	Unit
Transmitter Group OA-684/SRT	
Turning on transmitter group power.	Low Voltage Power Sup. ply PP-1094/SRT (figure 4-6)
Selection of mode of transmission.	Low Level Radio Modulator MD-229/SRT (figure 4-3)
Knob setting of frequencies.	Radio Frequency Oscillator O-275/SRT (figure 4-4)
Selecting local or remote operation.	Low Level Radio Modulator MD-229/SRT (fig. ure 4-3)
Manual tuning of the transmitter group.	Radio Frequency Amplifier AM-1008/SRT (figure 4-2)
Manual tuning of the antenna tuning equipment.	$\begin{aligned} & \text { Control-Indicator } \\ & \text { C-1352/SRT (figure } \\ & \text { 4-4) } \end{aligned}$
Output impedance matching.	Transmitter Coupler CU-402/SRT (figure 4-8)
Connection of 500 -watt circuits to a transmitter group.	Radio Frequency Amplifier AM-1008/SRT (figure 4-2)
Radio Modulator-Power Supply (Booster) OA-685/SRT	
Turning on booster power.	High Voltage Power Supply PP-1096/SRT (figure $4-10$)
Remote Control Units	
Turning on power, carrier control, and modulation.	Radiophone unit, Navy Type 23500 or equivalent.

For location of the various controls of the transmitter bay, see figure 4-1.
j. OTHER CONTROL FUNCTIONS.-There are other controls on the AN/SRT-14, 15 and 16 sets that perform functions not associated with the usual operation of the units. There is a control for checking currents and voltages in the RFA, and another control on the RFA panel which resets the overload circuit. Some of the controls on the radio frequency oscillator (RFO) permit check up and alignment of the RFO circuits. On the front panel of the low voltage power supply (LVPS) are controls for heating the transmitter bay
under abnormally low temperatures, for placing it in a "stand-by" condition, and for bypassing the interlocks with a "battle short".
k. UNITS WITHOUT CONTROLS.-Five units of the AN/SRT-14, 15 and 16 radio transmitters have no front panel controls. These are as follows: Power Supply PP-1095/SRT (medium voltage power supply), Antenna Coupler CU-372/SRT, Radio Frequency Tuner TN-229/SRT, Radio Modulator MD-230/SRT (high level radio modulator), and Mounting MT-1423/SRT.

1. OPERATION PROCEDURE BASED ON AN/ SRT-15.-For purposes of simplicity, the statement of operation procedure will be based on the AN/SRT--15 radio transmitting set. Whenever references to the AN/ SRT-14 and AN/SRT-16 are required, they will be clearly identified.

2. IDENTIFICATION OF CONTROLS

AND INDICATORS.

All controls and indicators associated with the operation of the AN/SRT-15 radio transmitting set are identified below, according to the individual units on which they are located.
a. RADIO FREQUENCY AMPLIFIER AM-1008/ SRT.-The radio frequency amplifier (RFA) (figure 4-2) has controls for manually tuning Transmitter Group OA-684/SRT.
(1) OSCILLATOR INT-EXT SWITCH (A).-In normal operation, the INT-EXT switch (A) is placed in the INT position. This connects the output of the RFO to the input of the RFA. For purposes of corrective maintenance, alignment, etc., it might be desirable to connect an external source of r-f energy to the RFA. In this instance, switch (A) is placed in the EXT position and the output of the external source of r-f energy is connected through the EXT. OSC receptacle on the RFA front panel.
(2) BANDSWITCH © , TUNE IPA © B, AND TUNE PA © TUNING CONTROLS.-The three tuning controls are reset with each change of transmitted frequency. The BANDSWITCH (C) is a rotary switch that is set to the band in which the transmitted frequency lies. The TUNE IPA control (B) is a continuous tuning control that is set according to the appropriate indication on the PA CURRENT meter with PAMETER SELECTOR switch Θ in the proper position. The TUNE PA control © is a similar continuous tuning control that also is set according to the indication on the PA CURRENT meter with PA-METER SELECTOR switch Θ in the proper position.
(3) PUSH FOR 500 W © AND DISABLE 500 W © SWITCHES.-In the AN/SRT-15 and AN/ SRT-16, PUSH FOR 500 W (E) push-button switch, when depressed, places the transmitter group in 500watt operation. With the transmitter in 500 -watt operation, depressing the DISABLE 500 W © push-button switch returns the transmitter to the 100 -watt level without having to take the transmitter off the air. In the AN/SRT-16, the booster is connected to only one

NAVSHIPS 92121(A)

Figure 4-2. Radio Frequency Amplifier AM-1008/SRT (Radio Frequency Amplifier, RFA), Front Panel Controls and Indicators
of the two transmitter groups. Switches (E) and (F) of the transmitter group to which the booster is connected function as described for the AN/SRT-15, while the switches (E) and (\mathcal{F} in the transmitter group not connected to the booster are inoperative. Similarly, the switches (E) and (F) in the AN/SRT-14 are inoperative, as there is no booster.
(4) IPA (G), PA (H) AND VOLTMETER (1) METER SELECTOR SWITCHES AND IPA CURRENT METER, PA CURRENT METER AND VOLTMETER. -The three test meters with their corresponding selector switches perform the function of checking the r-f input voltage from the RFO, checking input d-c supply voltages, checking operating currents of the IPA and PA stages, and giving indications of tuning of the IPA and PA stages.

The PA METER SELECTOR (G) has three positions as follows:

Pasition	Indication
$I_{c 1}(5 \mathrm{ma})$	IPA control grid current
$I_{c 2}(10 \mathrm{ma})$	IPA screen grid current
$I_{k}(500 \mathrm{ma})$	IPA cathode current

The PA METER SELECTOR $(\mathbb{H}$ has three positions as follows:

Position	Indication
$I_{c 1}(50 \mathrm{ma})$	PA control grid current
$I_{c 2}(100 \mathrm{ma})$	PA screen grid current
$I_{k}(1 \mathrm{~A})$	PA cathode current

The VOLTMETER METER SELECTOR (J) has six positions as follows:

Position	Indication
RF IN $(5 \mathrm{~V})$	RF input from RFO
BIAS $(500 \mathrm{~V})$	-220 V d-c input supply
LV $(500 \mathrm{~V})$	+300 V d-c input supply
MV $(1000 \mathrm{~V})$	+500 V d-c input supply
PA E $\quad(1000 \mathrm{~V})$	PA screen supply voltage
PA E $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$	PA plate supply voltage

In the nomenclature of all of the above meter selector switch positions, the figure in parentheses indicates the full scale reading of the meter for the corresponding position.
(5) SCREEN OVERLOAD RESET SWITCH ®. -In case the PA screen overload relay is energized because of excessive PA screen grid current when in 500 -watt operation, the transmitter is returned to the 100 -watt level. The overload is indicated by the PA SCREEN OVERLOAD lamp. When the cause of the overload is removed, depressing the SCREEN OVERLOAD RESET switch © restores the overload relay, and depressing the PUSH FOR 500 W (E) push button allows the transmitter to return to the 500-watt level.
(6) EXCITATION CONTROL (22). -The input signal from the RFO varies in amplitude at the various frequencies. To compensate for this and for variances in output impedance of the PA, a control known as the EXCITATION control (27) regulates the input level of signal from the RFO to prevent overdriving of the PA stage.
(7) INDICATOR LIGHTS.-There are eight indicator lights mounted on a panel in the lower center of the front panel. Three of these lights are overload indicators, four others indicate the condition of the carrier in either 100 -watt or 500 -watt operation, and the remaining light is a spare.
(8) ANTENNA CURRENT METER.-The ANT. CURRENT meter is placed in the output of the PA stage to give indication of amplitude of r-f line current at the output of the RFA.
(9) FUSE.-A 3 -amp fuse is located on the front panel for protection of the blower motor in the RFA.
b. RADIO MODULATOR MD-229/SRT (LOW LEVEL RADIO MODULATOR).-The front panel of the low level radio modulator (LLRM) (figure 4-3) contains the following major control functions: selection of the mode of transmission, selection of local or remote transmission, and controls of audio modulator and keyer circuits.
(1) SERVICE SELECTOR CONTROL (1).-The mode of transmission of the transmitter group is determined by the manual setting of the SERVICE SELECTOR control (1). The control has five positions: HAND for hand-keyed cw, MACH for c-w keyiing originating from a machine-keying device such as teletype, FSK for frequency-shift keying from machinekeying equipment, FAX for facsimile transmission and phone for amplitude-modulated phone transmission. To prevent random bursts of transmission when the contacts are transferred during radio silence and to prevent switching of power supply circuits under load, a push-to-turn feature is incorporated in this switch.
(2) SQUELCH TRIG. CONTROL (L).-The SQUELCH TRIG. control (L) is used only when the SERVICE SELECTOR control (1) is in the PHONE position. When monitoring through SIDETONE jack, this control is adjusted to reduce the noise level between words to a minimum without sacrificing low level voice. The setting is a compromise between low level speech signals and the noise level during pauses in speech.

Figure 4-3. Radio Modulator MD-229/SRT (Low Level Radio Modulator, LLRM), Front Panel Controls and Indicators.
(3) GAIN TO CLIP CONTROL (M).-The GAIN TO CLIP control (M) also is used only when the SERVICE SELECTOR control (1) is in the PHONE position. This control is set according to operator preference for maximum signal fidelity without an excessively low signal-to-noise ratio.
(4) $\%$ MOD CONTROL ©.-The $\%$ MOD control © is another control used only in phone operation and is set for 100 percent modulation of the carrier by the audio signal.
(5) AGC SWITCH ©.-In phone operation, the AGC switch \mathbb{P} is used to incorporate or bypass the automatic gain control circuit in the audio amplifier chain of the LLRM. With this switch in the ON position, variations in amplitudes of the output modulation are retained within a predetermined limit despite large variations in voice signal levels.
(6) NEUT.-POLAR SWITCH ®.-The NEUT.POLAR switch \mathbb{B} must be set according to the position of the SERVICE SELECTOR control (1) and the type of signal input available. With control (1) in HAND, FAX, or PHONE, the position of the NEUT.-POLAR switch (B) is immaterial. In the NEUT. position, the keying circuit accepts a keying voltage that varies from zero during space to a positive value for mark. In the POLAR position the circuit accepts a keying voltage that varies from a negative value for space to a positive value for mark. In the MACH and FSK positions of the SERVICE SELECTOR control (1), the NEUT.POLAR switch © setting is determined by the nature of the incoming keying signal from the machine-keying equipment, which can be either neutral or polar as described above.
(7) KEYING RATE SWITCH (S.-The KEYING RATE switch © has four positions: TT, MLTPX, 200 WPM, and 400 WPM. The proper setting of the KEYING RATE switch (S) should be made in handkey, machine-key or FSK operation, but has no purpose in facsimile or phone operation. The TT position is used for hand- or machine-key speeds up to approximately 60 words per minute. MLTPX is used for multiplex transmission from 60 to 150 words per minute. The 200 WPM position is used with high-speed tape keying between 150 and 300 words per minute. The 400 WPM position is used with high-speed tape keying rates between 300 and 600 words per minute.

This control is provided to minimize side-band frequencies. To maintain an optimum keying pulse waveshape, the amount of capacitance in the circuit is varied with the keying speed. Failure to put this control in the proper position will not prevent the keying operation, but it will affect the waveshaping and, therefore, the bandwidth required for transmission.
(8) TEST KEY (T).-The TEST KEY $(\uparrow$ is used for front panel checking or keying. The upper locking position and lower momentary position energize the keying circuits in the LLRM. With the equipment energized and tuned, operation of the test key will cause r-f output in all positions of the SERVICE SELECTOR (1).

> Note
> Always return TEST KEY (T) to the central or neutral position upon completion of checks or tests.
(9) SPACE-OPER.-MARK CONTROL ©.-During normal keying operation, the SPACE-OPER.-MARK control (V) is in the OPER. position, which allows regular keying signals from hand- or machine-key equipment to energize the keying circuit of the LLRM. Placing this control in either SPACE or MARK makes it possible to test the action of the keying circuit without causing r-f output. This testing can be performed regardless of the position of SERVICE SELECTOR (1).
(10) SIDETONE CONTROL $(\mathbb{W}$.-The SIDETONE control ${ }^{(W)}$ is used to regulate the volume of the signal from the sidetone amplifier. It is adjusted only when a sidetone signal is being used for monitoring.
(11) LOCAL-REM SWITCH ©.-The LOCALREM switch \otimes is set depending on the location of the place of operation. For operation from the transmitter bay location, this switch must be in the LOCAL position. For operation from a remote radiophone unit, this switch must be in the REM position.
(12) CARBON-DYN SWITCH ©.-For local phone operation only, the CARBON-DYN switch \odot is set according to the type of microphone being used. As the level of signal from a dynamic microphone is less than from a carbon microphone, the CARBONDYN switch (γ) adjusts the amplification in the audio chain to compensate for the different input levels.
(13) INDICATOR LIGHT.-There is one indicator light designated 250 V.P.S. which, when lit, denotes the energizing of the +250 -volt regulated power supply, which is located in the LLRM. A front panel jack is also provided for measuring this voltage.
(14) FUSES.-Two fuses are provided, one for protection of overload of the +250 -volt regulated supply, and the other to protect the supply that provides filament voltages for the tubes in the LLRM.
(15) TIME CONST. ADJ. CONTROL.-The TIME CONST. ADJ. control is set according to the operator's keying rate in hand-key transmission. The setting of this control is not an operational function but rather a maintenance control. Because of restrictions of front panel mounting space, this control is located on the preamplifier subchassis. To gain access to this control, the LLRM chassis must be pulled out from the cabinet a sufficient amount to reach the preamplifier subchassis. This subchassis is mounted on the top left front of the main LLRM chassis.
c. RADIO FREQUENCY OSCILLATOR O-275/ SRT.-The radio frequency oscillator, RFO (figures 44 and 4-5), contains all controls for the manual selection of a frequency and other controls for the adjustment of operation of certain circuits within the RFO. The Control-Indicator C-1352/SRT, included as a com-
ponent of the RFO, has controls and indicators for the manual tuning of the antenna tuning equipment.
(1) ZERO ADJ. SWITCH (2).-The ZERO ADJ. switch (2) is used in connection with the ZERO BEAT INDICATOR, the INT. OSC. ZERO ADJ., and F.S. OSC ZERO ADJ. controls. The outputs of the frequency shift oscillator (unit 12) and the interpolation oscillator (unit 3) within the RFO should each be 100 kc . Placing the ZERO ADJ. switch (2) in the INT. OSC. position connects the output of the interpolation oscillator to the zero beat indicator circuit where it is compared with the standard $100-\mathrm{kc}$ signal from the crystal-controlled 100-kc oscillator (unit 1). The output of the interpolation oscillator can be regulated by the INT. OSC. ZERO ADJ. control, located behind the door that covers the frequency selection knobs. The electron ray tube ZERO BEAT INDICATOR gives the indication of the variance in frequency between the standard and the interpolation oscillator signal. Placing the ZERO ADJ. switch (2) in the F.S. OSC. position connects the output of the fre-
quency shift oscillator into the zero beat indicator circuit and permits the output of the frequency shift oscillator to be compared and adjusted in the same manner as described previously for the interpolation oscillator.
(2) FREQUENCY SELECTION KNOBS.-There are nine frequency selection knobs for the manual selection of a frequency to be transmitted (figure 4-5). They are located behind a door on the RFO front panel. This door must be opened to change a frequency setting. Incorporated in the opening of the door is a safety device that prevents the transmitter from having a 500 -watt carrier on while the door is open. The nine control knobs are designated: (AA) KNOB control, (B) KNOB control, KC © control knob, 100 ~ (DD) control knob, 10 ~ © control knob, BAND © \oplus control knob, MC (66) control knob, 100 KC (HTP) control knob, and 10 KC (ID) control knob. These knobs are set for the frequency desired according to instructions inscribed on the front panel. After the selection has been made, the door is closed.

Figure 4-4. Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO), Front Panel Controls and Indicators

Figure 4-5. Radio Frequency Oscillator O-275/SRT (Radio Frequency Oscillator, RFO) Frequency Selection Panel Controls
(3) F.S. DEVIATION CONTROL ®.-When in FSK operation, the F.S. DEVIATION control \circledast is set according to the degree of frequency shift desired between space and mark. This control consists of two concentric dials. The outer dial is connected to the knob, which is rotated by hand, the inner dial follows at a 1 -to- 10 ratio. The inner dial is calibrated in hundreds of cycles ($0-10$), whereas the outer dial is calibrated in cycles ($0-100$). Therefore, number 1 on the inner dial represents 100 cycles. One complete clockwise turn of the outer dial produces a clockwise rotation of one number on the inner dial. The combined reading of the dials gives, in cycles per second, the shift of the carrier frequency above and below the nominal frequency for FSK operation. For example, consider the frequency selection knobs set to provide a carrier frequency of 20.000000 mc and F.S. DEVIATION control \circledast set so the dials read 4 on the inner dial and 50 on the outer dial (450 cps) and the SERVICE SELECTOR (1) in the LLRM set at FSK. A space keying signal will shift the carrier to 19.999550 mc , and a mark signal will shift the carrier to $\mathbf{2 0 . 0 0 0 4 5 0} \mathbf{~ m c}$. In FAX operation, the dial reading represents half of the deviation derived from a maximum facsimile signal. Paragraph $2 f(3)$ of Section 2 provides a more complete description of the effect of the F.S. DEVIATION control ®®. The F.S.O. RANGE ADJ. control, located behind the door which covers the frequency selection knobs, calibrates the effect of F.S. DEVIATION control $₫ \leftrightarrow$ so that dial readings in cps are correct.
(4) F.S.K. PHASE MOD. CONTROL (1L).-In FSK and FAX operation a 200 -cps signal is generated in the LLRM and fed to the frequency shift oscillator (unit 12) in the RFO to phase-modulate the output of the frequency shift oscillator to combat the effect of selective fading (see paragraph $7 c(8)$ of Section 2). The degree of shift is proportionate to the amplitude of the 200 -cps signal input to the frequency shift oscillator.

The F.S.K. PHASE MOD. control (1L) regulates the degree of the phase shift. Full clockwise rotation of this control will produce a maximum one-radian phase shift.
(5) TEST RECEPTACLES, INDICATORS, AND FUSES.-Across the bottom of the RFO is a set of test receptacles, indicator lights, and fuses. The test receptacles bring out several of the outputs of the subunits within the RFO for purposes of examination with a standard test oscilloscope. The three indicator lights are heater indicators of the three oscillator circuits in the RFO, which have ovens to stabilize their ambient temperatures. The operation of any of these indicators means that the temperature of the corresponding oven has fallen below its minimum and that the corresponding heat element has been switched on by its thermostat. These lights will go on and off intermittently, the rate being solely dependent on the ambient temperature. There are two fuses, one being in the a-c line supply to the RFO filament supplies and the other in the a-c line provided for the oven heater supply.
(6) CONTROL-INDICATOR C-1352/SRT.The control-indicator, mounted on the RFO front panel, has all controls and indicators required to manually tune the two components of the antenna tuning equipment, namely, Radio Frequency Tuner TN-229/SRT and Antenna Coupler CU-372/SRT.
 TONS AND POSITION INDICATOR.-The main tuning component of the antenna tuning equipment is a length of helically wound transmission line. The length of this line is varied by positioning a sliding short. The sliding short is positioned by a tuning motor, which, in turn, is controlled by the UP © \oplus, DOWN (A6), and SLOW (AH) push buttons. Depressing the (AA) control causes the sliding short to move up on the tuning coil, while depressing the (A6) control causes the short to move down. Depressing the SLOU ${ }^{r}$ control (A4) together with either the (Af) or (A6) control will cause
movement of the sliding short in the desired direction at a reduced speed for fine tuning. The POSITION meter indicates the position of the sliding short on the tuning coil, with a reading of 100 on the meter indicating the short at the top of the coil and 0 indicating the short at the bottom. The FULL SCALE ADJ. and ZERO ADJ. screwdriver adjustments are used to calibrate the POSITION meter.
(b) ANTENNA COUPLER LOADING SWITCH ©D.-To extend the range of tuning of the main tuning coil, it is possible to add certain values of inductance or capacitance in series or shunt with the main tuning coil. With ANTENNA COUPLER LOADING switch (AD) in DIRECT, no reactive components are added. With (AD) in its other positions, A through E, a selection of one of five different types and values of loading is possible. Table 4-2 shows the tuning component employed for each position of the ANTENNA COUPLER LOADING (AD) SWITCH (S-404).

TABLE 4-2. FUNCTION OF ANTENNA COUPLER LOADING SWITCH (AD) (S-404)

Position of S-404*	Loading Component Used
Direct	None
A	Capacitance in series
B	Capacitance in series and in shunt
C	Inductance in series
D	Inductance in series
E	Capacitance in shunt

* Positions of S-404 correspond to same positions of the loading switch S-3511 on Antenna Coupler CU-372/SRT.
(c) TRANSFORMER SWITCH (AC).-At low frequencies, when the reflected resistance of the antenna on the transmission line is low, a "step-up" impedance transformer must be placed in the transmission line. Placing the TRANSFORMER control (AC) in position 1 switches the impedance transformer in, while placing (AC) control in its DIRECT position switches the transformer out. Positions 2 and 3 of the (AC) control are inoperative.
(d) ANTENNA TRANSFER SWITCH (ABE AND TUNER IN INDICATOR.-Placing the ANTENNA TRANSFER switch (At) in the BYPASS position switches all the tuning components out of the transmission line and connects the antenna directly to the load adjusting unit. With (AE) in the TUNER IN position the tuning components are in the transmission line. With (AE) in the REMOTE position the tuning components are automatically switched in and out under control of the keying signals when the transmitter is operated in either HAND or PHONE. Paragraph $6 a$ (step 18) of this section and paragraph $7 g$ of Section 2 of this instruction book explain this operation in more detail. Whenever the tuning components are switched into the transmission line, the TUNER IN indicator will be energized.
(e) SWR BALANCE INDICATOR AND SWR CALIBRATE SWITCH (AB).-The indication for proper tuning of the antenna is obtaining the lowest possible standing-wave ratio (SWR) on the transmission line at the output of the transmitter. While the circuit for measuring the SWR is in the load adjusting unit, the indicator, SWR BALANCE meter, is located on the control-indicator. With the SWR CALIBRATE switch (AB) in the $8: 1$ position, a center reading on the SWR BALANCE meter will indicate an SWR of 8:1, reading to the right of center indicating an SWR greater than 8:1, while an indication to the left of center is less than 8:1. Similarly, with the (AB) control in the $4: 1$ and $2: 1$ positions, center readings on the SWR BALANCE meter will indicate an SWR of 4:1 and 2:1, respectively.
d. POWER SUPPLY PP-1094/SRT (LOW VOLTAGE POWER SUPPLY).-The low voltage power supply, LVPS (figure 4-6), has front panel controls that accomplish three functions: energize the transmitter, heat the transmitter bay internally, and place the radio transmitting set in a "stand-by" condition. In addition, the front panel of this unit has fuses for control and $B+$ voltages, and also six indicator lamps to show the degree to which the equipment has been energized. The " T " handle key used to loosen or secure the captive screws holding the drawers in the frame is also mounted on the low voltage power supply front panel.
(1) EMERGENCY SWITCH 140 .-The function of this switch is to connect primary power to the equipment terminals and energize the MAIN POWER START-STOP push-button circuits. EMERGENCY SWITCH M must be turned on before depressing the MAIN POWER START push button if the transmitter group is to be energized. EMERGENCY SWITCH (MIT should be kept ON unless maintenance procedures or certain routine checks are being made.
(2) MAIN POWER CONTROL ®R.—The START STOP push buttons of the MAIN POWER control $®$ are used to start or stop an AN/SRT-14, 15 or 16 radio transmitting set. If the emergency switches (114 and (5)) are on, depressing the START button of this switch will energize the entire equipment. Failure to have the EMERGENCY SWITCH on in the low voltage power supply will prevent the MAIN POWER control from energizing the transmitter group only. Failure to turn on the emergency switch on the booster prevents the MAIN POWER switch from energizing the booster only. Depressing the MAIN POWER-STOP push button will turn off equipment power.
(3) STANDBY-OPERATE SWITCH ®.—The STANDBY-OPERATE switch $®$ has two positions. If equipment power is turned on when this switch is in the OPERATE position, plate power will be applied after the time delay in the LVPS has run out in handkey operation. Plate power will also be applied and the carrier will be on in machine-key, FSK, and facsimile operation if the keying line is closed. In phone, depressing the press-to-talk button will apply plate power and turn the carrier on. With STANDBY-OPERATE

Figure 4-6. Power Supply PP-1094/SRT (Low Voltage Power Supply, LVPS), Front Panel Controls and Indicators
switch \mathscr{P} in the STANDBY position, turning the equipment power on will energize the filament power in the transmitter group, but plate power will not be present and hence no carrier will be on.
(4) CABINET HEATER SWITCH NiN.-The CABINET HEATER switch (N1) controls the heating elements installed in the sides of each mounting to heat the transmitter bay during conditions of low ambient temperature. This switch is normally off. However, if room temperature is between $-1^{\circ} \mathrm{C}$. $\left(+30^{\circ} \mathrm{F}\right.$.) and $+10^{\circ} \mathrm{C} .\left(+50^{\circ} \mathrm{F}\right.$.), this switch should be turned on for 15 minutes prior to the actual operation of the equipment. If the room temperature is under $-1^{\circ} \mathrm{C} .\left(+30^{\circ} \mathrm{F}\right.$.), this switch should be kept on as long as the room temperature is below $-1^{\circ} \mathrm{C}$. $\left(+30^{\circ} \mathrm{F}\right.$.). The CABINET HEATER indicator light glows when the heaters are turned on.

Note

In an AN/SRT-16 the heaters of each transmitter group are independently energized by the CABINET HEATER Nwitches in the respective transmitter groups. Both CABINET HEATER switches must be on to energize the heaters in both groups.
(5) BATTLE SHORT SWITCH ©.-BATTLE SHORT switch © is used as an emergency measure only to bypass the action of the drawer interlocks in case of failure of these interlocks.
(6) MISCELLANEOUS INDICATOR LIGHTS AND TEST JACKS.-The $+250 \mathrm{~V},-220 \mathrm{~V}$, and +300 V indicator lights are illuminated when the corresponding voltages are supplied; they are used as servicing aids
to isolate power supply troubles. Trouble-shoowing these circuits is facilitated by the provision of a front-panel jack for each of these voltages to enable the operating personnel to make voltmeter readings. The MAIN POWER indicator light indicates the presence or absence of primary power in the MAIN POWER START. STOP push-button circuits. The TIME DELAY indicator light comes on after the filament time delay has run out, and the transmitter is ready for application of complete control and plate voltages. The BATTLE SHORT indicator lights when the BATTLE SHORT switch (II) is on with the EMERGENCY SWITCH on also. INT. TEST jacks provide an access for testing the continuity of the drawer interlocks.
(7) FUSES.-The 10 AMP. fuse on the lower right of the front panel protects all d-c control voltages. Failure of this fuse will prevent the TIME DELAY indicator light from lighting. The 5 AMP fuse on the lower left limits total current for the d-c control supplies and for the $+250 \mathrm{~V},-220 \mathrm{~V}$, and +300 V supplies. Its failure will prevent the corresponding indicator lights from coming on.

e. POWER SUPPLY PP-1095/SRT (MEDIUM

 VOLTAGE POWER SUPPLY).-The front panel of the medium voltage power supply, MVPS (figure 4-7), mounts four indicator lights, two elapsed time meters, 3 fuses, one test point, a set of spare fuse holders. Two indicator lights (red for the a-c input, neon for the d-c output) are provided for each of the power supplies, +500 V dc and $+1,050 /+1,300 \mathrm{~V} \mathrm{dc}$, which are contained in this unit. One of the elapsed time meters indicates the total hours of filament operation, the other shows total hours of plate power on. One fuse limits the total filament current drawn by the two power sup-

Figure 4-7. Power Supply PP-1095/SRT (Medium Voltage Power Supply, MVPS), Front Panel Controls and Indicators
plies, another fuse limits current drawn from the +500 -volt supply, and the third fuse limits the drain from the $+1,050 /+1,300$-volt supply. A front panel test jack is supplied to measure the output voltage of the +500 -volt supply. A set of spare fuses for the various major units is provided under a hinged cover which is on the front panel.
f. TRANSMITTER COUPLER CU-402/SRT (LOAD ADJUSTING UNIT).-The load adjusting unit (LAU) (figure 4-8) has two controls and one indicator. The INPUT TAP \otimes and OUTPUT TAP © controls select input and output taps on an impedance transformer that is inserted in the transmission line between the transmitter output and the antenna tuning equipment to further match the impedance presented to the transmitter output to the characteristic 50 -ohm value. The r-f ammeter measures transmission line current at the output of the load adjusting unit.
g. RADIO MODULATOR MD-230/SRT (HIGH LEVEL RADIO MODULATOR).-The high level radio modulator (HLRM) (figure 4-9) is a unit of the transmitter bay for AN/SRT-15 and 16 radio transmitting sets. There are two indicator lights and two test points on this unit. The upper indicator light, marked 3000 V , comes on when the $+2,400 /+3,000$-volt supply in the high voltage power supply is energized, and the plate voltage is applied to the final stage of the RFA. It will not light during 100 -watt operation. The 350 V SCREEN indicator light comes on when the press-totalk button is depressed during phone operation. The two test points are used in maintenance operations to check grid voltage on the two amplifier tubes in this unit.
b. POWER SUPPLY PP-1096/SRT (HIGH VOLTAGE POWER SUPPLY). -The high voltage power supply (HVPS) (figure 4-10) is a unit of the AN/ SRT-15 and 16 radio transmitting sets. One control, two elapsed time meters, and four indicator lights are mounted on its front panel.

Figure 4-8. Transmitter Coupler CU-402/SRT (Load Adjusting Unit, LAU), Front Panel Controls and Indicators

Figure 4-9. Radio Modulator MD-230/SRT (High Level Radio Modulator, HLRM), Front Panel Controls and Indicators
(1) BOOSTER EMERGENCY SWITCH (S).This power switch is turned on whenever 500-watt operation of the AN/SRT-15 and 16 sets is desired. Turning this switch on energizes tube filaments in the HLRM and HVPS units. Unless it is desired to operate at 500 watts, this switch should be turned off.

CAUTION

Be certain this switch is OFF before attempting maintenance procedures.

The three H.V. PRIMARY and the TIME DELAY indicator lamps are associated with the operation of this switch. The three H.V. PRIMARY indicator lights show the presence or absence of primary power in each of the three phases of the supply line.
(2) ELAPSED TIME METERS.-One elapsed time meter indicates the total hours of booster filament operation, the other total hours of booster plate power operation.

3. TURNING POWER ON AND OFF.

The sequence of operation, together with the indication given, for the turning of power on and off is given below. The front panel drawings, figures 4-2 through 4-10, inclusive, have call-outs that refer to the paragraph numbering that follows as an aid in the distinguishing of the sequence of control operation.
a. TRANSMITTER GROUP OA-684/SRT.-All the controls for turning the transmitter group power on are located on the low voltage power supply (LVPS).

(1) Turn EMERGENCY SWITCH on.

(2) Depress START push button of MAIN POWER switch ®.

When the main power is on, the following events should take place immediately.
(a) The MAIN POWER indicator light on the LVPS panel is energized.
(b) The blower motor in the RFA starts operating.
(c) The -12 -volt and the +250 -volt regulated power supplies in the LLRM energize, which energizes the 250 V.P.S. indicator in the LLRM.
(d) The filament supplies in all units are energized.

After approximately $25-30$ seconds, the following occurs:
(e) The LVPS time delay expires and the TIME DELAY indicator light on the LVPS energizes.
(f) The +250 V and -220 V indicator lights on the LVPS energize, denoting the presence of the corresponding supply voltages.
(g) The CARRIER-100W-READY indicator on the RFA energizes.
(b) The blower motors in the mounting start operating.

If the STANDBY-OPERATE switch $® P$ in the LVPS is in the STANDBY position, there will be no plate power and nothing further will happen. However, if the equipment is in the OPERATE condition and the SERVICE SELECTOR (U) in the LLRM is set to HAND, the following will occur:
(i) The +500 -volt and the $+1,050 /+1,300$-volt supplies, together with the 500 V PRI., 500 V OUTPUT, 1300 V PRI., and 1300 V OUTPUT indicator lights in the MVPS are energized.
(j) The +300 V indicator light in the LVPS energizes, denoting the presence of this supply voltage.
(k) The CARRIER-100W-ON indicator light in the RFA goes on.

The above ((i) through (k)) will occur when the SERVICE SELECTOR (U) is in the MACH, FSK, and FAX positions only if the keying line is closed. If the SERVICE SELECTOR (1) is in the PHONE position, (i) through (k) will occur only when the press-to-talk button on the phone is depressed.
(3) Power in the transmitter group may be turned off by depressing the STOP push button on the MAIN POWER switch \curvearrowleft ® or by throwing the EMERGENCY SWITCH (4) to the OFF position. The latter control removes all power, while the MAIN POWER SWITCH ®R STOP push button removes all power except that to the mounting heaters.
b. RADIO MODULATOR-POWER SUPPLY OA685/SRT. - The radio modulator-power supply (booster) is energized only when it is desired to have the AN/ SRT-15 or 16 radio transmitting sets operate at the 500-watt level. To energize the booster, the transmitter group must be energized, and the STANDBY-OPERATE switch P^{P} be in the STANDBY position. The booster now may be energized as follows:
(1) Turn BOOSTER EMERGENCY switch © on the HVPS panel to the ON position. After a 30 -second time delay, the TIME DELAY indicator light is energized.
(2) The PUSH FOR 500 W button (E) on the RFA is now depressed to operate a transmitter group at the 500 -watt level. In the AN/SRT-16 only, one
transmitter group can be operated at the 500 -watt level. The selection of which group can be operated at either 100 watts or 500 watts is made at the time of installation when the output of the booster is permanently interconnected to one of the transmitter groups. When the PUSH FOR 500 W button (E) is depressed, the following occurs:
(a) The CARRIER-500W-READY indicator on the RFA is illuminated.

At this time filament power has been applied to the booster but there will be no plate power. By now placing the equipment in the OPERATE condition and having the SERVICE SELECTOR (1) in the LLRM set to the HAND position, the following will occur:
(b) The $+1,050 /+1,300$-volt supply in the MVPS is de-energized and the 1300 V PRI and 1300 V OUTPUT indicator lights are extinguished.
(c) The $\phi 1, \phi 2$, and $\phi 3 \mathrm{H} . \mathrm{V}$. PRIMARY indicator lights on the HVPS are energized.
(d) The 3000 V and 350 V SCREEN indicator lights on the HLRM are energized, denoting the presence of these supplies.
(e) The CARRIER-500W-ON indicator is energized in the RFA.

Note

If tuning is required, it should be done at the 100-watt level.
(3) To turn the booster off, the DISABLE 500 W push button (F) on the RFA may be depressed, which de-energizes the plate power only in the booster. Turn-

Figure 4-10. Power Supply PP-1096/SRT (High Voltage Power Supply, HVPS), Front Panel Controls and Indicators
ing the BOOSTER EMERGENCY switch © to OFF removes both filament and power in the booster. If the transmitter group power is turned off as described in paragraph $3 a(3)$ while booster power is still on, plate power will be removed from the booster also.

4. SELECTING A SERVICE.

The AN/SRT-14, 15 and 16 radio transmitting sets have five modes of transmission: hand key, machine key, FSK, facsimile and phone. The controls for selecting any one of these services are found on the LLRM panel. These adjustments may be made before or after radio transmitter power has been turned on.

a. HAND-KEY OPERATION.

The following TIME CONST. ADJ. control setting is normally a function of maintenance procedure.
(1) Depress SERVICE SELECTOR switch (1) and turn it to HAND. (See figure 4-3.) Be certain this switch does not remain depressed after the transfer is completed.
(2) Set KEYING RATE switch (S) to TT for hand keying.
(3) Place POLAR-NEUT. switch © ${ }^{(8)}$ in the NEUT. position.
(4) Loosen the captive screws on the LLRM front panel and pull out the LLRM chassis until the TIME CONST. ADJ. control, R-1134, on the preamplifier subchassis becomes accessible. "Cheat" the LLRM drawer interlock. With the transmitter on in the "standby" condition, turn the TIME CONST. ADJ. full counterclockwise. Operate the TEST KEY $(T$ at the operator's normal keying speed. Relay $K-1102$ will operate at the start of transmission and will possibly drop out during pauses between words. The TIME CONST. ADJ. is regulated clockwise until $\mathrm{K}-1102$ will no longer drop out during these pauses at the operator's normal keying rate. As K-1102 is a sealed relay, the indications of $\mathrm{K}-1102$ dropping out must be noted by ear.
b. MACHINE-KEY OPERATION.
(1) Depress SERVICE SELECTOR switch (1) and turn to MACH. Be certain this switch does not remain depressed after the transfer is completed.
(2) Set KEYING RATE switch (S) to TT for use with a single teleprinter or to MLTPX for multiplex operation. For high-speed tape keying set switch to 200 WPM for rates between 150 and 300 words per minute or to 400 WPM for rates between 300 and 600 words per minute.
(3) Place POLAR-NEUT. switch $®$ in the NEUT. or POLAR position, according to the type of input signal available from the machine-key equipment.
c. FSK OPERATION.
(1) Depress SERVICE SELECTOR switch (1) and turn it to FSK. Be certain this switch does not remain depressed after the transfer is completed.
(2) Unscrew the lock in the center of F.S. DEVIATION control ®. To obtain a desired frequency shift, divide total desired shift by two and set control ® to this latter value.
(3) Place POLAR-NEUT. switch $®$ in the NEUT. or POLAR position according to the type of input signal available.
(4) Set KEYING RATE switch (S) to TT for use with a single teleprinter or to MLTPX for multiplex operation. For high-speed tape keying set switch to 200 WPM for rates between 150 and 300 words per minute or to 400 WPM for rates between 300 and 600 words per minute.
(5) Under conditions of selective fading, it may be desirable to supplement the frequency shift with a 200-cycle phase modulation. In this case, F.S.K. PHASE MOD. control (1L) should be turned clockwise approximately 60° from its counterclockwise limit.

d. FACSIMILE OPERATION.

(1) Turn SERVICE SELECTOR switch (1) to FAX.
(2) Loosen the center lock on F.S. DEVIATION control $\circledast \mathbb{1}$ and set this control to the required number of cycles in accordance with the following formula:

$$
\begin{aligned}
& \text { F.S. Deviation Setting }=\frac{\Delta f}{2} \times \frac{20}{V_{\max }-V_{\min }} \\
& \left(\triangle f=f_{\max }-f_{\min }\right)
\end{aligned}
$$

Figures for $f, V_{\text {max }}$ and $V_{\text {min }}$ are specified by the photo transmission equipment. For example, if $\triangle f$ is 900 cycles, $\mathrm{V}_{\text {max }}$ is 20 and $\mathrm{V}_{\text {min }}$ is 5:

$$
\text { F.S.D. Setting: } \frac{900}{2} \times \frac{20}{20-5}=600 \text { cycles }
$$

Lock F.S. DEVIATION control ® in place.
(3) Set frequency control knobs to the assigned carrier trequency in accordance with the following formula:

Frequency setting $=$ Carrier Freq. -

$$
\frac{\text { F.S.D. Setting }}{20}\left(V_{\max }+V_{\min }\right)
$$

For example, if $V_{\max }$ is $20, V_{\min }$ is $5, \triangle f$ is 900 cycles (F.S. DEVIATION setting would be 600 cycles), and the carrier frequency is to be $15,950,900$ cycles:

Frequency setting $=15,950,900-\frac{600}{20}(20+5)=$ $15,950,150$ cycles

Note

If computed frequency ends in a number other than 10 cycles (for example, 15,950,153 cycles), set the carrier to the nearest 10 cycles (that is, $15,950,150$ cycles). Frequency control knobs can be set only to the nearest 10 cycles.
e. PHONE OPERATION.
(1) Turn SERVICE SELECTOR control (U) to PHONE.
(2) Set CARBON-DYN switch $(\underset{)}{ }$ according to the type of microphone used. (Typical handsets are Navy Type H-51/U with carbon microphone and Navy Type H-52/U with dynamic microphone.)
(3) Turn SQUELCH TRIG control (L) clockwise to the point of least noise level consistent with adequate depth of modulation. While making this adjustment, monitor the output either with sidetone or handset receiver or as described in $4 e(7)$.
(4) Turn AGC switch \oplus on.
(5) Turn GAIN TO CLIP control (M) for best volume level.

Having this control set improperly may cause abnormal modulation of the voice signal. Refer to Section 7, Maintenance, for a detailed adjustment procedure for this control.
(6) The $\%$ MOD control © is set for 100 percent modulation by referring to the percent modulation adjusment procedures indicated in the maintenance section. There should be no need to adjust \% MOD control as an operating control.
(7) To monitor microphone output, plug earphones into the SIDETONE jack. Control the volume of the earphones with the SIDETONE control (W).

Note

When using handset, excessive sidetone level may cause feedback to the microphone with consequent audio howl.
f. HIGH-SPEED OR TAPE KEYING.-This type of operation may be used when SERVICE SELECTOR switch (1) is in either MACH or FSK position if an external keying voltage is provided and the signal is fed in on the machine-key input lines. When using highspeed or tape keying, set KEYING RATE switch (S) to 200 WPM for rates between 150 and 300 words per minute and to 400 WPM for rates between 300 and 600 words per minute.

Note

To avoid unwanted carrier radiation when SERVICE SELECTOR (1) is in MACH, FSK, or FAX, place the equipment in "stand-by" until the start of transmission. When operated locally, the STANDBY-OPERATE switch ® placed in STANDBY position will keep transmitter in "stand-by". When operated remotely, with the STANDBY-OPERATE switch \oplus in OPERATE, the transmitter is placed in "standby" by keeping the keying line open.

5. SELECTING A FREQUENCY.

A set of nine frequency selection knobs are located behind a transparent door on the RFO front panel (figure 4-5). These knobs are designated (AA) KNOB, (B)

KNOB, BAND \oplus, MC © $(6) 100 \mathrm{KC} \oplus, 10 \mathrm{KC}$ (ID), KC © $100 \sim$ (10), and $10 \sim$ (19.

To set up a frequency the first step is to open the transparent door. The above-mentioned control knobs permit the manual selection of any frequency in 10 -cycle steps from 0.3 mc to 26 mc . The dial readings corresponding to the 100 KC control knob $\Theta 1+$ down through the $10 \sim$ control knob (E2) designate directly the significant figures of the frequency setting through the 100 KC setting. The selection of the correct megacycle setting requires the regulating of the (44) KNOB control, (®) KNOB control, BAND control knob \oplus and the MC control knob (6). The following table shows the setting of (AA), (BB), $\sqrt{\circ}$, and (6) according to the megacycle value of the output frequency desired.

TABLE 4-3. FINAL OUTPUT FREQUENCIES AND (AA), (BB), ©, AND © CONTROL POSITIONS

RFO Output Frea. (mc)	(A4) Control Position	(38) Control Position	(F) Control Position	(64) Control Position
0.3-1	0	10	$0.3-6 \mathrm{mc}$	*
1-2	0	9		*
2-3	0	8		*
3-4	0	7		*
4-5	0	6		*
5-6	1	10		*
6-7	0	4	6.16 mc	6
7.8	1	8		7
8-9	0	3		8
9-10	0	2		9
10-11	1	5		0
11-12	1	4		1
12-13	2	8		2
13-14	2	7		3
14-15	2	6		4
15-16	3	10		5
16-17	3	9	16-26 mc	6
17-18	3	8		7
18-19	2	3		8
19-20	1	1		9
20-21	3	5		0
21-22	3	4		1
22-23	0	1		2
23-24	3	3		3
24-25	3	2		4
25-26	2	0		5

As an example, to set up a frequency of 16.589450 mc , the following knob settings must be made: (A4) to 3 , (BB) to 9 , \because to $16-26 \mathrm{mc}$, © 6 to 6 , (H) to 5 , (1) to 8 , (C) to 9 , (D) to 4 , and (E2) to 5 .

Note

The highest frequency (26 mc) is obtained by setting the knob to 25.9999910 , with the $10 \sim$ knob © © set to the 10 position.

NAVSHIPS 92121(A)

The selection of a frequency should be made with the power off or with the power on and the transmitter in the "stand-by" condition. Opening the door to change a frequency incorporates a safety feature that prevents the transmitter from being in 500 -watt operation while this door is open.

6. TUNING OPERATIONS.

The system tuning of the components of the transmitter group and the associated antenna tuning equipment is normally accomplished by the regulation of controls in three of the units of the Transmitter Group OA684/SRT. These components are the Radio Frequency Amplifier AM-1008/SRT (radio frequency amplifier), the Transmitter Coupler CU-402/SRT (load adjusting unit), and the Control-Indicator C-1352/SRT (a subunit of Radio Frequency Oscillator O-275/SRT). A tuning chart is available on the RFO front panel (figure 4-4) which provides space for recording the settings of all frequency selection and tuning controls for 10 preestablished channels. However, to establish these settings for the first time or operate at a frequency other than a pre-established one, a more defined procedure must be followed. Also a calibration chart on the RFO governs settings of controls on the control-indicator, assuming the equipment works into a standard Navy 35foot whip antenna. If this type of antenna is not used, this calibration chart must be disregarded and a more detailed procedure followed for adjusting the controls of the control-indicator.
a. TUNING TO AN UNCALIBRATED FRE-QUENCY.-The following will cover the tuning procedure in detail to tune the equipment to a frequency that has not been previously calibrated. This proced ure does presume, however, that a standard Navy 35 -foot whip antenna is used.

Step 1. Place STANDBY-OPERATE switch ® in STANDBY on LVPS and check LOCAL-REM switch (x) for LOCAL position.

Step 2. Select the service desired as per paragraph 4.

Step 3. Turn transmitter group power on as per paragraph 3.

Step 4. If required, select a new frequency in the RFO in accordance with paragraph 5.

Step 5. Set the BANDSWITCH (C) in the RFA to the band in which the selected frequency falls.

Step 6. Set the EXCITATION (27) control in the RFA at its maximum clockwise setting.

Step 7. On the under side of the hinged flap, which is mounted on the door covering the frequency selection knobs on the RFO is a tuning chart (figure 4-11) used for presetting the controls on the controlindicator. If the tuning chart indicates BYPASS for the selected frequency, the ANTENNA TRANSFER (AB) control should be set to BYPASS, and no further tuning will be required on the control-indicator. For other frequencies, set the TRANSFORMER (AC) control and the ANTENNA COUPLER LOADING (AD) control to the positions indicated under the XFMR and COUP columns, respectively, of the tuning chart according to the frequency being transmitted. The (ALC) control should be set to the TUNER IN position. Set SWR CALIBRATE (AB) control to 8:1.

Step 8. Set both the INPUT TAP © and the OUTPUT TAP ${ }^{(H 6)}$ on the load adjusting unit to position 4.

Step 9. Place STANDBY-OPERATE ® switch in OPERATE.

Step 10. Throw the TEST KEY (T) on the LLRM to its locking position, which will energize a carrier.

Step 11. With the VOLTMETER-METER SELECTOR (J) in the RF IN position, the voltmeter reading should not exceed 5 volts. If it does, adjust the EXCITATION (22) control to reduce the reading to 5 volts maximum.

Step 12. Loosen the dial lock of the TUNE IPA (B) control. Set the TUNE IPA (B) control for maximum output of the buffer and IPA stages. Maximum tuning of these stages is indicated by maximum PA grid drive as shown by a maximum reading on the PA CURRENT meter in the RFA with the PA-METER SELECTOR (A) in the $I_{c_{1}}$ position. In tuning, two peaks may be noted on the PA CURRENT meter. The TUNE IPA (B) control should be set to the peak at the lowest TUNE IPA dial reading to insure that the tuning is to the desired

Figure 4-11. Tuning Chart on Radio Frequency Oscillator Front Panel
frequency and not to the second harmonic thereof. Tighten the dial lock.

Step 13. Loosen the dial lock of the TUNE PA (D) control. Set TUNE PA (D) control for maximum output of the PA stage. Maximum tuning of this stage is indicated by maximum reading on the PA CURRENT meter with PA-METER SELECTOR Θ in the $I_{\text {c } 2}$ position. As with TUNE IPA, TUNE PA control (D) should be set at the peak at the lowest TUNE PA dial reading. If the meter reading should go "off scale", adjust the EXCITATION (27) control to bring meter reading "on scale".

Step 14. On the control-indicator, depress the UP (Af) button until POSITION meter reads 100. Depress DOWN (Ac) button until the indicator on the SWR BALANCE meter shows a dip towards the low (green) area.

Note

The calibrations 8:1, 4:1, and 2:1 on the SWR CALIBRATE © ${ }^{(A B}$ meter denote that, when the indicator of the SWR BALANCE meter reads 0 (center of scale), the standing-wave ratio on the line will be either $8: 1,4: 1$, or $2: 1$, depending on the setting of $A B$. A reading in the green area of the meter indicates a SWR lower than the indicated center reading value, while a reading in the red area of the meter indicates a SWR of a higher value than the center reading.

Jog the UP © ${ }^{-4}$ and the DOWN (AC) buttons, holding the SLOW Θ button depressed until a maximum lefthand deflection is found. As the jogging is done the SWR CALIBRATE (®AB control should be set to $4: 1$ for a more sensitive tuning indication. If the SWR BALANCE meter still reads near the left-hand end of the scale, change the setting of © $®$ to 2:1.

Abstract

Note If the tuning chart designates that ANTENNA TRANSFER (4A) control be set to BYPASS (see paragraph 6a, step 7), the tuning procedure described above in paragraph 6a, step 14 , is not required.

Step 15. If, upon completion of the tuning adjustments described in the previous paragraph, the SWR BALANCE meter indicates a SWR higher than 2:1, adjust the positions of both the INPUT TAP © and the OUTPUT TAP $\times 1 /$ on the load adjusting unit, to improve the SWR reading. If no improvement of SWR is obtained, after trying all combinations of $(\mathbb{)}$ and (a) control settings, return both the (1) and (1) controls to the initial position 4.

Step 16. The TUNE PA (D) control on the RFA should be "touched up" for optimum reading on the r-f ammeter on the load adjusting unit to compensate for the changes in output impedance caused by the tuning
of subsequent components after the first setting of TUNE PA (D) control. Tighten the dial lock.

Step 17. With the PA-METER SELECTOR Θ in the $\mathrm{I}_{\text {c2 }}$ position, check the PA screen grid current. If the reading is in excess of 70 ma , adjust the EXCITATION (22) control to reduce the value to 70 ma . If the reading is below 70 ma , and if the (27) control is not in the fully clockwise position, increase (27) to approach a reading of 70 ma , making sure RF IN reading on the VOLTMETER does not exceed 5 volts.

Note

If operating at the 500 -watt level in an AN/ SRT-15 or AN/SRT-16, the PA $\mathrm{I}_{\mathrm{c} 2}$ reading should be checked again for possible further readjustment of the EXCITATION (22) control.

Step 18. The integrated tuning of the transmitter and its associated antenna tuning equipment is now complete. Restore the TEST KEY © $(\uparrow$ on the LLRM to its normal off position. If the equipment is to be operated either in HAND or PHONE, and the automatic "bypass" feature is desired, place the ANTENNA TRANSFER (AbC) control in the REMOTE position after tuning is completed. This allows automatic bypassing of the antenna tuning equipment during periods of no transmission for purposes of using a receiver with the same antenna being used for transmission. This feature is more completely covered in paragraph 7 g of Section 2 in this instruction book.
b. TUNING TO A CALIBRATED FREQUENCY.The tuning chart on the outside of the hinged flap, which is mounted on the door covering the frequency selection knobs on the RFO (figure 4-4), has tabular space for recording all the frequency selection and tuning control settings for 10 preselected frequencies. Use of this chart will permit tuning to any one of the 10 chosen frequencies under "radio silence" conditions without energizing a carrier for tuning purposes.

To establish the values for the first time to be recorded on the chart, the tuning procedures as described in paragraph $6 a$ should be followed.

Note

After the final optimum setting for the TUNE PA (D) control has been established (paragraph 6a, step 16), detune slightly by turning the TUNE PA (D) control counterclockwise five divisions on the TUNE PA dial. Now slowly rotate the TUNE PA (D) control clockwise until the optimum setting is again read on the r-f ammeter on the load adjusting unit. The TUNE PA dial reading now established should be recorded on the chart under the " D " column. (The above procedure is followed to take in account the slight backlash in the chain-drive mechanism of the PA tuning.)

If it is established for any of the 10 frequencies that the correct setting for the control-indicator is "BYPASS", the word "BYPASS" should be entered on the chart under the combined "POS", "AC", and "AD" columns.

Once the proper values for each of the 10 preselected frequencies have been recorded on the chart, the following tuning procedure can be followed:

Step 1. Perform preliminary steps outlined in paragraph 6a, step 1 through step 3.

Step 2. Set EXCITATION (22) control on the RFA at its maximum clockwise setting.

Step 3. Make all frequency selection and tuning control settings according to the readings recorded on the chart.

Note

When setting the TUNE PA (D) control, start with the TUNE PA dial reading less than the desired reading and turn control (D) clockwise until the recorded dial setting is reached.

If the recorded setting for the control-indicator controls is "BYPASS", place ANTENNA TRANSFER (AE) control in the BYPASS position and the settings of the POSITION meter, (AC) and (AD) will be immaterial. If specific values are recorded on the chart for the settings of "POS", "AC" and "AD", these values should be set and the ANTENNA TRANSFER (AEP control placed in the TUNER IN position.

Step 4. Place STANDBY-OPERATE © switch on the LVPS in OPERATE.

Step 5. Throw TEST KEY (T) on the LLRM to its locking position, which will energize a carrier.

Step 6. With the PA-METER SELECTOR \oplus in the $I_{c 2}$ position, check the PA screen grid current. If the reading is in excess of 70 ma , adjust the EXCITATION (22) control to reduce the value to 70 ma . If the reading is below 70 ma , leave (22) control at its full clockwise rotation if the RF IN reading on the VOLTMETER does not exceed 5 volts. If RF IN reads in excess of 5 volts, reduce the (27) control regardless of the reading of the PA $I_{\text {e } 2}$.

Step 7. Restore the TEST KEY $(T$ on the LLRM to its normal off position. Tuning is completed.

> c. VARIANCES IN TUNING PROCEDURES WHEN AN ANTENNA OTHER THAN A STANDARD NAVY 35-FOOT WHIP IS USED.-Variances in the tuning procedure described in paragraphs $6 a$ and $6 b$ caused by employing an antenna other than a standard Navy 35-foot whip are reflected only in changes in setting up the controls on the control-indicator.
> In tuning to an uncalibrated frequency, the following procedure can be followed:

Step 1. Perform preliminary steps outlined in paragraph 6a, step 1 through step 6.

Step 2. Place ANTENNA TRANSFER (AB) control on the control-indicator in the BYPASS position. Set SWR CALIBRATE (AB) control to 2:1.

Step 3. Perform steps to tune the transmitter bay as outlined in paragraph $6 a$, step 8 through step 13.

Step 4. Set the controls on the control-indicator in accordance with one of the following alternatives. (If none of the following adjustments provide a reading on the SWR BALANCE meter of $2: 1$ or lower, accept the setting which provides the lowest SWR reading.)

If SWR BALANCE meter reads an SWR of $2: 1$ or lower, no further regulation of controls on the controlindicator is required.

If SWR is greater than $2: 1$, place (AD) control in the TUNER IN position. Set (AB) control to 8:1. Set the TRANSFORMER (AC) control to DIRECT and the ANTENNA COUPLER LOADING (AD) control to DIRECT. Depress the UP (AF button until the POSITION meter reads 100. Then depress the DOWN (A6) button until the indicator on the SWR BALANCE meter shows a dip towards the low area. Jog the UP (AF) and DOWN (AG) buttons, holding the SLOW ©Ht button depressed until a maximum left-hand deflection is found. If the reading is $2: 1$ or lower, no further adjustments on the controlindicator are needed.
(1) If the SWR is higher than $2: 1$ and if the tuned frequency is higher than 2.0 mc , try position A (series capacitor in) on the (AD) control. Rescan the tuning with the UP (AF and DOWN (AG) buttons; starting downwards from 100 on the POSITION meter, look for a dip in the SWR BALANCE meter. If no dip is found, set (AD) control to B and, if necessary, to E, rescanning each time.
(2) If the SWR is higher than $2: 1$ and if the tuned frequency is lower than 0.5 mc , select position C (series inductor) on the (AD) control and position 1 on the (AC). Rescan the tuning with the UP (AF) and DOWN (A6) buttons; starting downwards from 100 on the POSITION meter, look for a dip in the SWR BALANCE meter. If no dip is found, set the (AD) control to D and rescan.

CAUTION

Positions C and D on the ANTENNA COUPLER LOADING (AD) control should not be used above 2.0 mc .
(3) If the SWR is higher than $2: 1$ and if the tuned frequency is between 0.5 mc and 2.0 mc , select position 1 on the (AC) control with the (AD) control in DIRECT. Rescan the tuning with the UP (AA) and DOWN (A6) buttons; starting downwards from 100 on the POSITION meter, look for a dip on the SWR BALANCE meter.

Step 5. Complete final tuning adjustments as outlined in paragraph 6a, step 15 through step 18, after which tuning will be completed.

7. REMOTE OPERATION.

The turning on or off of power, the energizing of a carrier, and the originating of a signal, the latter in hand-key or phone operation only, can be accomplished from a remote position. The two transmitter groups of an AN/SRT-16 may be operated independently from two different remote locations. To operate remotely, several preliminary steps must be accomplished at the transmitter bay location.
a. PRELIMINARY SETTINGS.-The preliminary settings required depend on whether or not frequency selection and tuning are required.
(1) FREQUENCY SELECTION AND TUNING REQUIRED.-The following are the preliminary steps required at the transmitter bay location when frequency selection and tuning are required.
(a) With the LOCAL-REM switch \mathbb{x} in the LLRM in the LOCAL position, accomplish all frequency selections and tuning functions required as detailed in paragraphs 5 and 6.
(b) Turn power off by depressing the STOP button of the MAIN POWER switch © on the LVPS; the EMERGENCY SWITCH remains on.
(c) Put LOCAL-REM switch \mathbb{X} in the REM position.
(d) Select a service in accordance with paragraph 5.
(e) Place STANDBY-OPERATE switch $®$ in the LVPS in the OPERATE position.
(f) Turn the BOOSTER EMERGENCY switch (SS) to the ON position if it is desired to transmit at the 500-watt level (AN/SRT-15 and 16 only).
(2) FREQUENCY SELECTION AND TUNING NOT REQUIRED.-The following are the preliminary steps required at the transmitter bay location when frequency selection and tuning are not required.
(a) Put LOCAL-REM switch \times) in the REM position.
(b) Turn EMERGENCY SWITCH (1HP) to the ON position.
(c) Select a service in accordance with paragraph 5.
(d) Place STANDBY-OPERATE switch \oplus in the OPERATE position.
(e) Turn the BOOSTER EMERGENCY SWITCH (S) to the ON position if it is desired to transmit at the 500-watt level (AN/SRT-15 and 16 only).

Note

If there is any doubt as to the condition of the transmitter prior to transmission at the 500 watt level, the tuning procedures as described previously should be followed prior to energizing of a carrier.
b. TURNING POWER ON.-Energizing of transmitter group power may now be done from the remote location using a remote radiophone unit (Navy Type 23500 or equivalent). To turn booster power on for 500-watt operation (AN/SRT-15 and 16 only) requires control from the transmitter bay location.
(1) TURNING ON TRANSMITTER GROUP POWER.-Depressing the START push button on the remote radiophone unit will energize the POWER indicator light. Simultaneously, in the transmitter group, the same indicator lights and circuits as described in paragraph $3 a(2)(a)$ through paragraph $3 a(2)(b)$ will be energized. If the service chosen was hand key, the indicator lights and circuits in the transmitter group, as described in paragraph $3 \boldsymbol{q}(2)(i)$ through paragraph $3 a(2)(k)$, will also be energized at this time.
(2) TURNING ON BOOSTER POWER.-To turn on booster power in the AN/SRT-15 and 16 when in remote operation, the preliminary settings described in paragraph $7 a$ must be made, followed by the energizing of transmitter group power, per paragraph $7 b(1)$. The final step is to depress the PUSH FOR 500 W push button (E) on the RFA of the transmitter group, which energizes the CARRIER-500 W-READY indicator on the RFA. If the service chosen was hand key, indicator lights and circuits, as described in paragraph $3 b(2)(b)$ through paragraph $3 b(2)(e)$, will be energized at this time.
c. ENERGIZING A CARRIER.-In remote control, a "standby-operate" control is available in all services to control the presence of a carrier at the transmitter output.
(1) HAND-KEY OPERATION.-As described in paragraph $7 b(1)$, plate power is applied in the transmitter group in hand-key operation when the START button on the remote radiophone unit is depressed. However, a carrier is not radiated until a hand key is inserted in the KEY jack of the remote radiophone unit. As hand-key operation is a c-w transmission, a "keydown" (mark) signal from the hand key will energize the carrier while the "key up" (space) signal cuts the carrier off.
(2) MACHINE-KEY, FSK, AND FACSIMILE OPERATION.-In machine-key, FSK, and facsimile transmission, the remote control of the carrier is accomplished by controlling the application of plate power in the transmitter group. Closing the keying line, using a key inserted in the KEY jack, energizes the plate voltage, which places the transmitter in the "operate" condition. In FSK and facsimile transmission, this simultaneously energizes the carrier. In machine-key operation, which is a c-w transmission, a mark signal must be received in addition at the transmitter group to energize the carrier. Opening the keying line removes plate power in the transmitter group, and it returns to the "stand-by" condition.
(3) PHONE OPERATION.-As above, closing the keying line from the remote radiophone unit, in PHONE operation, energizes plate power and the carrier in the transmitter group. In this case, the keying line is closed by depressing the press-to-talk button on the phone. Release of the press-to-talk button opens the keyline and restores the transmitter group to "stand-by" by de-energizing the plate power. When press to talk is depressed, the CARRIER ON indicator light on the remote radiophone unit will be energized.
d. ORIGINATING A SIGNAL.-A hand-key or phone signal may be originated at the remote radiophone unit. In hand-key operation, the carrier is keyed on and off. This is covered in paragraph $7 c(1)$. In phone operation, a carbon phone is inserted in the HANDSET or CHESTSET jack and the voice signal transmitted through it to the transmitter group will be the modulating signal. In machine-key and FSK operation, the originating signal comes from machine-key equipment and is supplied directly to the transmitter group. In facsimile operation, the originating signal also is connected directly from the facsimile equipment to the transmitter group.
e. TURNING POWER OFF.-As long as the transmitter group remains in operation under control of the remote radiophone unit (LOCAL-REM switch © in REM), transmitter group power can be turned off remotely. With the transmitter group energized, depressing the STOP push button on the remote radiophone unit de-energizes transmitter group power in the same manner as depressing the STOP push button of the MAIN POWER switch ® does in local operation (paragraph 3a(3)).

8. MONITORING SIGNALS.

a. RFO OCSILLOSCOPE TEST RECEPTACLES.Across the bottom of the RFO front panel are located six receptacles that bring out the signals from various subunits of the RFO for checking purposes (figure 4-4). These receptacles are designated 100 KC XTAL, 10 KC , 10 KC STEP, 100 KC STEP, INT. OSC., and F.S. OSC. These outputs can be connected to a standard test oscilloscope (Navy type OS-8/U or equivalent) for observation of the various outputs.
b. ZERO BEAT INDICATOR.-To monitor the outputs of the interpolation oscillator and frequency-shift oscillator subunits of the RFO against the crystal-controlled standard, an electron ray tube designated ZERO BEAT INDICATOR is provided on the RFO front panel (figure 4-4). ZERO ADJ. switch (2) is used to select which of the two signals is to be compared to the standard. The INT. OSC. ZERO ADJ. and F.S.O. ZERO ADJ. controls are adjusted to give a zero beat condition of the shadow angle on the ZERO BEAT INDICATOR. The adjustments are located behind the door on the RFO panel that covers the frequency selection knobs (figure 4-5).

Abstract

Note If the beat frequency between the measured output and the standard is large, the opening and closing of the shadow angle on the ZERO BEAT INDICATOR will be so rapid as to appear as a blur. Care should be taken to distinguish this condition from a zero beat indication.

c. SIDETONE.-The LLRM has a front panel control and jack that permit the local monitoring of an audio signal (figure 4-3). With a headset connected to the SIDETONE jack, the SIDETONE control © should be turned clockwise as far as required for the desired level of earphone reception.
d. CHECKING MODULATION.-For setting and checking 100 percent modulation in phone operation, follow the procedure outlined in paragraph $4 e(6)$. A more exact method of checking for 100 percent modulation to be made by a technician with test equipment is found in paragraph $6 a(1)$ of Section 7 of this instruction book.

9. SUMMARY OF OPERATION.

a. TURNING THE POWER ON.-Turn on the EMERGENCY SWITCH operation is desired, turn on the BOOSTER EMERGENCY switch (55. Depress the START button of the MAIN POWER switch \circledR^{\circledR} on the LVPS.
b. SELECTING A SERVICE.-Turn the SERVICE SELECTOR switch (U) on the LLRM to the desired service. For hand-key operation, set controls (S), (B), and TIME CONST. ADJ. control (paragraph 4a). For ma-chine-key operation, set controls (S) and © (paragraph 4b). For FSK operation, set controls $\circledast ®$, ($)$, (S), and (LL) (paragraph 4c). For facsimile operation, set control (®1) (paragraph 4d). For phone operation, set controls $(\mathrm{Y}),(\mathrm{L}), \mathbb{(}, \mathbb{M}),(\mathbb{)}$, and $(\mathbb{1})$ (paragraph $4 e$).
c. SELECTING A FREQUENCY.-Open the door covering the frequency selection knobs on the RFO.
 (D0), and (E) according to the desired frequency (paragraph 5). Close the door covering the knobs.
d. TUNING OPERATION.-Place the STANDBYOPERATE switch \mapsto^{P} in STANDBY. Turn transmitter group power on. Set BANDSWITCH (C) on the RFA to the band of the frequency selected. Set EXCITATION control (27) on the RFA full clockwise. Preset controlindicator controls (paragraph 6a, step 7). Preset (D) and (/4.4) controls on the load adjusting unit to position 4. Place STANDBY-OPERATE switch in OPERATE position. Throw TEST KEY $(T$ on the LLRM to the locking position. Adjust EXCITATION control (22) if required (paragraph 6a, step 11). Set TUNE IPA control (B) (paragraph $6 a$, step 12). Make initial setting of TUNE PA control (D) (paragraph 6a, step 13). Regulate UP (Af) and DOWN (AG) controls on the control-indicator (paragraph $6 a$, step 14). If required, adjust \otimes and (m)
controls on load adjusting unit (paragraph 6a, step 15). "Peak up" TUNE PA (D) control (paragraph 6a, step 16). Check setting of (22) control (paragraph 6a, step 17). Restore TEST KEY (T) to its normal off position.
e. REMOTE OPERATION.-Turn EMERGENCY sWITCH to ON. Make all preliminary settings at the
transmitter group location (paragraph 7a). Depress START push button on the remote radiophone unit. Energize a carrier (paragraph $7 c$). Transmit a signal in either hand-key or phone operation. Open keying line to de-energize a carrier (paragraph 7c). Depress STOP push button on the remote radiophone unit to turr transmitter group power off.

NOTES

INSTRUCTION BOOK

for

RADIO TRANSMITTING SETS

AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 5
OPERATOR'S MAINTENANCE

FEDERAL TELEPHONE' AND RADIO COMPANY A division of International Telephone and Telegraph Corporation

CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragraph Page Paragraph Page

1. Introduction 5-1
a. General 5-1
b. Short or Common Names 5-1
2. Routine Checks 5-1
a. Preliminary Control Positions 5-1
b. Routine Check Chart 5-1
3. Emergency Maintenance 5-3
a. General 5-3
(1) Chassis Removal 5-3
(2) Chassis Replacement 5-4
b. Fuses 5-5
(1) Fuse Replacement 5-5
(2) Symptoms of Fuse Failure, 100- Watt Operation 5-7
(3) Symptoms of Fuse Failure, 500- Watt Operation 5-9
(4) Fuse Locations 5-9
(5) Spare Fuses 5-9
(6) Units Without Fuses 5-10
c. Tubes 5-10
(1) Tube Locations 5-10
(2) PA Tube V-1304 5-10
(a) Removing the PA Tube 5-10
(b) Replacing the PA Tube 5-13
(3) Removing the IPA Tubes V-1301 and V-1302 5-13
(4) Critical Tubes, Adjustment Refer- ences 5-13
(5) Units Without Tubes 5-13
d. Shutdown Procedure 5-14
e. Pressurizing the R-f Tuner and Coupler 5-14
f. Changing R-f Tuner or Coupler 5-14

LIST OF ILLUSTRATIONS

Figure	Title	Page	Figure	Title	Page
5-1	AN/SRT-15, Routine Checks	5-2	5-8	Radio Modulator MD-230/SRT (HLRM),	
5-2	AN/SRT-15, Front Panel Tube and Fuse Locations	5-4	5-9	Top View, Tube Locations Radio Frequency Oscillator O-275/SRT	5-15
5-3	Power Supply PP-1094/SRT (LVPS), Left Side Panel, Fuse Locations	5-10	5-10	(RFO), Top View, Tube Locations Radio Frequency Oscillator O-275/SRT (RFO), Right Side, Tube Locations	$5-15$ $5-16$
5-4	Power Supply PP-1096/SRT (HVPS), Top View, Tube and Fuse Locations	5-10	5-11	Radio Frequency Oscillator O-275/SRT (RFO), Left Side, Tube Locations	5-17
5-5	Power Supply PP-1095/SRT (MVPS), Top View, Tube Locations	5-11	5-12	Radio Frequency Oscillator O-275/SRT (RFO), Bottom View, Tube Locations	5-18
5-6	Radio Modulator MD-229/SRT (LLRM), Top View, Tube Locations	5-12	5-13	Power Supply PP-1094/SRT (LVPS), Top View, Tube Locations	5-18
5-7	Radio Frequency Amplifier AM-1008/ SRT (RFA), Right Side, Tube Locations	5-14	5-14 5-15	Removing the PA Tube, V-1304 Typical Pressurizing Method	$5-19$ $5-19$

LIST OF TABLES

Table No. Title Page Table No. Title Page
5-1 Short or Common Names 5-1
5-2 Preliminary Control Positions 5-3
5-3 Routine Check Chart 5-5
5-4 Symptoms of Fuse Failure, 100-Watt Oper- ation 5-8
Figure Page
5-8 Radio Modulator MD-230/SRT (HLRM), Top View, Tube Locations 5-15
5-9 Radio Frequency Oscillator O-275/SRT
(RFO), Top View, Tube Locations -15
5-10 Radio Frequency Oscillator O-275/SRT (RFO), Right Side, Tube Locations -16
5-11 Radio Frequency Oscillator O-275/SRT (RFO), Left Side, Tube Locations -17
S 12 Radi Frequency Oscillat O-27S/SRT (RFO), Bottom View, Tube Locations 5-185-13 Power Supply PP-1094/SRT (LVPS),Top View, Tube Locations5-185-15 Typical Pressurizing Method5-19

,

J

SECTION 5 OPERATOR'S MAINTENANCE

1. INTRODUCTION.

a. GENERAL.-Many of the operator's adjustment and replacement procedures in servicing AN/SRT-14, 15 and 16 may be accomplished directly in front of the equipment. The operator of the equipment, as a matter of routine, is to make the various checks and adjustments suggested in this section. A general view of the AN/ SRT-15 is shown in figure 5-1.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16, respectively. Since the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on the operator's maintenance of the AN/ SRT-14, 15 and 16, as set forth in this section, applies equally to the AN/SRT-14A, 15A and 16 A .

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be
interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.
b. SHORT OR COMMON NAMES.-To facilitate reference to the equipment, certain short or common names will be used in this section. They are identified in table 5-1, Short or Common Names. Most of these short names will be used throughout the text.

2. ROUTINE CHECKS.

a. PRELIMINARY CONTROL POSITIONS. - In checking the equipment, a certain order should be maintained to avoid confusion during the sequence of operations. Table 5-2 gives the basic positions of certain sig. nificant controls at the start of these routine checks.
b. ROUTINE CHECK CHART. (See figure 5-1.)At the beginning of each watch, check the components as listed in table 5-3. At this time, the accessible parts of the equipment should be wiped clean with a dry cloth to check moisture and to maintain the appearance of the equipment.

TABLE 5-1. SHORT OR COMMON NAMES

ITEM	COMMON NAME	NOMENCLATURE	SYMBOL NO.
1	Base Mount	Mounting MT-1423/SRT	701-799
2	Coupler	Antenna Coupler CU-372/SRT	3501-3599
3	HLRM (High Level Radio Modulator)	Radio Modulator MD-230/SRT	1601-1699
4	HLRM Cabinet	Electrical Equipment Cabinet CY-1572/SRT	1401-1499
5	HVPS (High Voltage Power Supply)	Power Supply PP-1096/SRT	1501-1599
6	HVPS Cabinet	Electrical Equipment Cabinet CY-1573/SRT	1401-1499
7	LAU (Load Adjusting Unit)	Transmitter Coupler CU-402/SRT	3201-3250
8	LLRM (Low Level Radio Modulator)	Radio Modulator MD-229/SRT	1001-1299
9	LVPS (Low Voltage Power Supply)	Power Supply PP-1094/SRT	3001-3099
10	MVPS (Medium Voltage Power Supply)	Power Supply PP-1095/SRT	501-599
11	RFA (Radio Frequency Amplifier)	Radio Frequency Amplifier AM-1008/SRT	1301-1399
12	RFO (Radio Frequency Oscillator)*	Radio Frequency Oscillator O-275/SRT	2001-2099
13	R-F Tuner	Radio Frequency Tuner TN-229/SRT	301-399
14	100-Watt Frame	Electrical Equipment Cabinet CY-1571/SRT	601-699

[^4]

Figure 5-1. AN/SRT-15, Routine Checks

TABLE 5-2. PRELIMINARY CONTROL POSITIONS

ITEM	CONTROL	POSITION	COMPONENT
1	PA switch ${ }^{(H)}$	$\mathrm{I}_{\mathrm{c} 1}(50 \mathrm{MA})$	Radio Frequency Amplifier AM1008/SRT (RFA)
2	IPA switch (G)	$\mathrm{I}_{\mathrm{c} 1}$ (5 MA)	
3	VOLTMETER switch (J)	RF IN (5 V)	
4	INT-OSC-EXT (A)	INT	
5	EXCITATION (27)	180 degrees CW	
6	LOCAL-REM. *	LOCAL	Radio Modulator MD-229/SRT (LLRM)
7	NEUT-POLAR ®	NEUT	
8	SPACE-OPER.-MARK ()	OPER.	
9	SERVICE SELECTOR (1)	HAND	
10	TEST KEY (T)	Off	
11	ZERO ADJ. switch (2)	Center	Radio Frequency Oscillator O-275/ SRT (RFO)
12	Frequency Knobs	Set for 2 mc .	
13	ANTENNA TRANSFER (AE)	BYPASS	Control-Indicator C-1352/SRT
14	SWR CALIBRATE © ${ }_{\text {A }}$	OFF	
15	TRANSFORMER (AC)	DIRECT	
16	ANTENNA COUPLER LOADING (AD)	DIRECT	
17	EMERGENCY SWITCH	OFF	Power Supply PP-1094/SRT (LVPS)
18	INTERLOCK BATTLE SHORT (10)	OFF	
19	CABINET HEATER (N10	OFF	
20	OPERATE-STANDBY	STANDBY	
21	BOOSTER EMERGENCY SWITCH (SS)	OFF	Power Supply PP-1096/SRT (HVPS)

Note

If equipment is already in operation at the time of change-over, check the various indicators noted in table $5-3$, item 9 for the 100 -watt level and item 10 for the 500 -watt level.

The checks in table 5-3 should be made in the numerical sequence established in this chart to avoid confusion concerning the relative positions of the controls. The routine checks are started with the controls in the positions listed in table 5-2.

3. EMERGENCY MAINTENANCE.

a. GENERAL.-The operator should make himself familiar with the equipment in order to correct minor trouble that may develop during periods of emergency. When technical aid is not immediately available, the operator should be able to recognize some of the symptoms that indicate trouble in any of the components.
(1) CHASSIS REMOVAL. - To remove a unit from its drawer, the socket-head captive screws on the front panel (see figure 5-1) must be loosened. These screws are protected by retaining cups. A hex wrench with a T-handle, attached to the front panel of the LVPS (see figure 5-1), is supplied for this purpose.

With these captive screws loosened, the unit may be pulled out for its entire length along the chassis slide runners in the cabinet. The latches, located directly on the slides towards the rear, must be pressed down before the chassis can be lifted out. The latches cannot be pressed down until the two screws under the latches are removed. Two men will be needed to lift any chassis out of its compartment.

Note

Before actually lifting the chassis out of its drawer, its interconnecting cable plug must be removed and fastened to the cable post (see figure 5-1) on the chassis just above, to prevent its springing back into the drawer. If the chassis above the withdrawn unit has been removed, too, this will, of course, be impossible. In the latter case, the cable is to be allowed to retract gently into the vacated drawer recess.

When a drawer is pulled out, two stop buttons are placed in operation, one in each chassis slide. To push the drawer back in, these two spring-loaded stop buttons must be pressed in completely, to clear the inner slide. This will allow the chassis to continue the rest of the way back into its compartment.

Figure 5-2. AN/SRT-15, Front Panel Tube and Fuse Locations

The interlock continuity is interrupted when the drawer is pulled out. To bypass the interlock, a "cheater" switch has been installed on the left side of each chassis, towards the rear. This switch may be closed to energize the withdrawn chassis. The hard rubber push rod is pushed in to complete the circuit. Another means of circumventing the interlock is provided on the Power Supply PP-1094/SRT (LVPS) front panel in the form of a switch called INTERLOCK BATTLE SHORT (110. (See figure 5-1.) This bypasses all the interlocks in every chassis.

Note

'The INTERLOCK BATTLE SHORT switch is used only under emergency conditions.
(2) CHASSIS REPLACEMENT. - The chassis slides, which are located along the side of each unit, are made in two parts, an inner part and an outer part. Check to be sure that the inner slide is fully engaged in the outer slide before replacing the chassis in its drawer. This will avoid damage to the inner slide. The springloaded stop buttons in each of the slides must be depressed to engage the inner slide.

If binding is encountered when replacing a unit, the front of the chassis should be raised slightly and then pushed in.

Note

The safety screws under the slide latches must be replaced whenever a chassis is returned to its drawer. The front panel hex screws must be securely fastened to prevent the drawer from sliding out unexpectedly.
b. FUSES.
(1) FUSE REPLACEMENT.

CAUTION

Never replace a fuse with one of higher rating, unless continued operation of the equipment is more important than possible damage. Never replace a fuse while the power is on.

The EMERGENCY SWITCH on the LVPS must always be turned to OFF before any of the fuses are removed.

Most of the fuses are accessible from in front of the equipment (see figure 5-2). Some fuses are available only when the chassis is withdrawn from its compartment (see figure 5-3). This withdrawal procedure is described in this section, paragraph $3 a(1)$. Two of the LVPS fuses are located on the front panel, as shown in figure 5-2. The remainder of the LVPS fuses are located on the left side of the chassis and are available only when the chassis is partially withdrawn (see figure 5-3).

The fuses for Power Supply PP-1096/SRT (HVPS) are located on terminal boards that are mounted on the chassis towards the rear (see figure 5-4). To remove these fuses, the drawer should be removed from its compartment as described in paragraph $3 a(1)$.
table 5-3. ROUTINE CHECK CHART

What to check	HOW TO Check	PRECAUTIONS
1. Low Voltage Power Supply PP1094/SRT (LVPS)	(See 1, figure 5-1.) $\begin{gathered} \text { Note } \\ \text { Check table 5-2. } \end{gathered}$ Step 1. Place EMERGENCY SWITCH (40) in ON position.	Note The HEATER ON lamps on the RFO front panel will be illuminated at all times. They operate intermittently.
	Step 2. Check the CABINET HEATER switch (nil) and the INTERLOCK BATTLE SHORT (0. Note Keep these two switches turned off, unless they are actually needed.	The CABINET HEATER lamp and the INTERLOCK SHORTED WHEN ON lamp will be illuminated. If they do not light, check table 5-4, Symptoms of Fuse Failure.
	Step 3. Press START button of MAIN POWER switch ®.	The MAIN POWER INDICATOR will be illuminated and the blower in the RFA will operate. The 250 V. P.S. lamp on the LLRM front panel will be illuminated. After the time delay, the blowers in the base mount will operate and the following lamps will be illuminated: (1) TIME DELAYS (LVPS) (2) -220 V (3) +250 V (4) Overload lamps (RFA) (5) 100 W -READY lamp Note The overload lamps will be extinguished only when trouble is indicated. Press the SCREEN OVERLOAD RESET button ${ }^{\circ}$ on RFA.
2. Medium Voltage Power Supply PP1095/SRT (MVPS)	(See 2, figure 5-1.) Step 1. Place OPERATE-STANDBY switch (PP) (LVPS) in OPERATE.	The following lamps will be illuminated: (1) 500 V PRI. (MVPS) (2) 500 V OUTPUT (3) 1300 V PRI. (4) 1300 V OUTPUT (5) $100 \mathrm{~W}-\mathrm{ON}$ (RFA) (6) +300 V (LVPS)

NAVSHIPS 92121(A)
OPERATOR'S
AN/SRT-14, 14A, 15, 15A, 16, 16A
MAINTENANCE
table 5-3. ROUTINE CHECK CHART (Cont'd)

WHAT TO ChECK	HOW TO CHECK	PrECAUTIONS
3. Radio Modulator MD-229/SRT (LLRM)	(See 3, figure 5-1.) Step 1. Place SERVICE SELECTOR switch (1) in PHONE position.	The +300 V lamp on the LVPS will be extinguished, together with the following: (1) 500 V PRI. (MVPS) (2) 500 V OUTPUT (3) 1300 V PRI. (4) 1300 V OUTPUT
	Step 2. Connect phone to HANDSET jack and close the press-to-talk switch.	The lamps in step 1 , above, will be illuminated when the press-to-talk switch is closed. The following meters will indicate: (1) ANT CURRENT (RFA) (2) PA CURRENT (3) IPA CURRENT (4) VOLTMETER
	Step 3. Check sidetone by varying the SIDETONE control while modulating the carrier.	The SIDETONE control is adjusted to the individual need.
	Step 4. Check modulation by watching the ANT CURRENT meter.	The ANT CURRENT meter will show variations during modulation.
	Step 5. Release the press-to-talk key on the phone and press the TEST KEY (T).	The result will be the same as in step 2.
	Step 6. Place SERVICE SELECTOR switch (1), successively, in FAX and FSK. Press the TEST KEY © \mathbb{T} in each position.	The result will be the same as in step 2 .
	Step 7. Place SERVICE SELECTOR switch (1) in MACH position.	The lamps which were extinguished in step 1 will remain illuminated, even without pressing the TEST KEY (T).
	Step 8. Press TEST KEY (T) and place SPACE-OPER.-MARK switch (v) in MARK.	The meters on the RFA will indicate normal operation. Restore TEST KEY (T) to center position.
4. Radio Frequency Amplifier AM-1008/ SRT (RFA)	(See 4, figure 5-1.) Step 1. Listen for blower operation in rear of RFA.	The RFA blower is on at all times during operation of equipment.
	Step 2. Place VOLTMETER control (1) in BIAS (500 V).	The VOLTMETER will show a reading without energizing the TEST KEY (T) on the LLRM.
	Step 3. Place VOLTMETER control (J) in its various positions.	The VOLTMETER will show a different reading in each position. If no reading is seen, try turning the EXCITATION control (27) clockwise.
	Step 4. With TEST KEY (T) energized, place the METER SELECTOR controls in their various positions.	The meters that correspond to the controls will vary with each setting.
	Step 5. With TEST KEY (T) energized, check to be sure transmitter is onfrequency.	If off-frequency, check correct operation of units $1,6,8$, and 12 of the RFO.
5. Booster a. Power Supply PP-1096/SRT (HVPS)	(See 5, figure 5-1.) Step 1. Place the BOOSTER EMERGENCY SWITCH (SS) in its ON position.	After time delay, the TIME DELAY lamp on the HVPS will be illuminated.

tABLE 5-3. ROUTINE CHECK CHART (Cont'd)

WHAT TO CHECK	HOW TO CHECK	PRECAUTIONS
b. Radio Modulator MD-230/SRT (HLRM)	Step 2. Press the PUSH FOR 500 W switch (E) on the RFA.	The following lamps will be illuminated: (1) $\phi 1$ (HVPS) (2) $\phi 2$ (3) H.V. $\phi 3$ (4) 3000 VOLTS (HLRM) (5) 500 W-READY (RFA) (6) $500 \mathrm{~W}-\mathrm{ON}$ At the same time, the following lamps will be extinguished: (1) 1300 V PRI. (MVPS) (2) 1300 V OUTPUT (3) 100 W-READY (RFA) (4) $100 \mathrm{~W}-\mathrm{ON}$
	Step 3. Press the DISABLE 500 W push button switch $(\underset{F}{ }$ on the RFA.	The results obtained in step 2 , above, will be reversed.
6. Radio Frequency Oscillator O-275/ SRT (RFO)	(See 6, figure 5-1.) HEATER ON lamps should be illuminated intermittently even when equipment is not energized.	Check table 5-4, Symptoms of Fuse Failure, if these lamps do not light.
7. Control-Indicator C-1352/SRT	(See 7, figure 5-1.) Place ANTENNA TRANSFER switch (46) in TUNER IN position.	The TUNER IN lamp will be illuminated. Now restore switch to BYPASS.
8. Radio Frequency Tuner TN-229/ SRT and Antenna Coupler CU-372/ SRT Pressure Gauges	If the r-f tuner and antenna coupler are readily accessible, check readings on pressure gauges.	Each gauge should read 20 psi. Refer to paragraph $3 e$ for pressurizing information.
9. 100-watt Operation	With the equipment operating at the 100 -watt level, check the following key indicators: a. 250 V. P.S. (LLRM) b. MAIN POWER INDICATOR (LVPS) c. 500 V OUTPUT (MVPS) d. 1300 V OUTPUT	If any of these lamps is not illuminated at the 100 -watt level, check table 5-4, Symptoms of Fuse Failure -100-watt Operation.
10. 500-watt Operation	With the equipment operating at the 500-watt level, check the following key indicators: a. TIME DELAY (HVPS) b. $\phi 1$ c. $\phi 2$ d. H.V. $\phi 3$ e. 3000 V (HLRM)	Note BAND SWITCH (C) must be in 2-5 MC position. If any of these lamps is not illuminated at the 500 -watt level, check table 5-5, Symptoms of Fuse Failure-500 Watt Operation.

Notice to Operators OPERATORS MUST NOT PERFORM THIS WORK UNLESS SPECIFICALLY AUTHORIZED.

(2) SYMPTOMS OF FUSE FAILURE, 100-WATT OPERATION.-Table 5-4 has been compiled to enable the operator to check for blown fuses when the equipment is operating at the 100 -watt level. The operator will check fuses on the same horizontal line as the indicators designated as "OFF" in the body of the table. In some cases, the main symptoms are the same for several fuses. To avoid such conflict, the "Comments" column is consulted in order to locate the faulty fuse.

Example: In the body of the table, it will be noted that $\mathrm{F}-1301$ and $\mathrm{F}-2917$ have the same general symptoms. The correct fuse is located by checking the "Comments" column.

Note

Refer to table 5-1 for nomenclature. The lamps utilized in table 5-4 are lamps which have a definite significance in regard to fuse failure. Other lamps that may be illuminated at this time are not pertinent to this procedure.

NAVSHIPS 92121(A)

TABLE 5-4. SYMPTOMS OF FUSE FAILURE, 100-WATT OPERATION

* Top line shows normal operating conditions. Check any deviation from normal. In some cases, the lamp may be defective, missing, or loose.

TABLE 5-5. SYMPTOMS OF FUSE FAILURE, 500-WATT OPERATION

HLRM	HVPS				440-VOLT INPUT		220-VOLT INPUT		COMMENTS
3000 V	TIME DELAY	$\phi 1$	$\phi 2$	$\begin{gathered} \text { H.V. } \\ \phi 3 \end{gathered}$	BLOWN FUSE	VALUEAMPS	BLOWN FUSE	VALUEAMPS	
*ON	ON	ON	ON	ON	-	-			See figure 5-4 for HVPS fuse locations.
				OFF	F-1501	$31 / 2$	F-1506	61/4	$\mathrm{F}-1501$ through $\mathrm{F}-1505$, inclusive, are used with the 440volt input. F-1506 through $\mathrm{F}-$ 1510 , inclusive, are used with the 220 -volt input.
			OFF		F-1502	.31/2	F-1507	61/4	
		OFF			F-1503	$31 / 2$	F-1508	61/4	
OFF	OFF	OFF	OFF	OFF	F-1504	31/2	F-1509	61/4	$\mathrm{F}-1504, \mathrm{~F}-1505, \mathrm{~F}-1509$, and $\mathrm{F}-1510$ produce the same general symptoms.
OFF	OFF	OFF	OFF	OFF	F-1505	$31 / 2$	F-1510	61/4	

* Top row shows normal operation. Any deviation from normal is to be investigated. In some cases, the lamp itself may be defective, missing or loose in its socket.
(3) SYMPTOMS OF FUSE FAILURE, 500-WATT OPERATION.-Table 5-5 is used to assist the operator in locating blown fuses when the equipment is in 500watt operation. Check the indicators designated as "OFF" in the body of the table; this will identify the faulty fuse on the same horizontal line.

Example: If the indicator lamp designated as " $\phi 1$ " on the HVPS is the only lamp which is "OFF" (extinguished), the faulty fuse will be F-1503 or F-1508. These fuses perform the same function, depending on the voltage input.

Note

Refer to table 5-1 for nomenclature. The lamps utilized in table 5-5 have been chosen for
their special significance in locating fuse failures. Other lamps which may be illuminated at this time are not pertinent to this procedure.
(4) FUSE LOCATIONS.-Table 5-6 will enable the operator to locate the positions of the various fuses in the equipment.
(5) SPARE FUSES.-Table 5-7 is a list of the spare fuses supplied with the equipment. A box of spare fuses is located on the front panel of the Medium Voltage Power Supply PP-1095/SRT (MVPS). (See figure 5-1.)

TABLE 5-6. FUSE LOCATIONS

LOCATION	sYmbol	PROTECTS	AMPS	volts	TYPE
Power Supply PP-1095/SRT (MVPS) (See figure 5--2.)	F-501	T-500; 500-volt supply	6	250	F09G6R00B
	F-502	T-503; 1,050-1,300-volt supply	6	250	F09G6R00B
	F-503	T-502	1	250	R09G1R00B
Radio Modulator MD-229/SRT (LLRM) (See figure 5-2.)	F-1001	T-1001; 250-volt regulated supply	3	250	F09G3R00B
	F-1002	T-1002; filament supply	2	250	R09G2R00B
Radio Frequency Amplifier AM-1008/ SRT (RFA) (See figure 5-2.)	F-1301	B-1306; T-1302	3	125	R09G3R00B
Power Supply PP-1096/SRT (HVPS) (See figure 5-4.)	F-1501	Phase 1, 440 volts	$31 / 2$	600	FRS 31122
	F-1502	Phase 2, 440 volts	$31 / 2$	600	FRS 31/2
	F-1503	Phase 3, 440 volts	$31 / 2$	600	FRS $311 / 2$
	F-1504	T-1501, 440 volts	$31 / 2$	600	FRS 3112
	F-1505	T-1501, 440 volts	$31 / 2$	600	FRS 3112
	F-1506	Phase 1, 220 volts	61/4	600	FRS $61 / 4$
	F-1507	Phase 2, 220 volts	61/4	600	FRS 61/4
	F-1508	Phase 3, 220 volts	61/4	600	FRS $61 / 4$
	F-1509	T-1501, 220 volts	61/4	600	FRS 61/4
	F-1510	T-1501, 220 volts	61/4	600	FRS 61/4
Radio Frequency Oscillator O-275/ SRT (RFO) (See figure 5-2.)	F-2917	Filaments and tuner motors	2	250	F09G2R00B
	F-2918	Oven heaters	2	250	F09G2R00B
Power Supply PP-1094/SRT (LVPS) (See figure 5-3.)	F-3001	Cabinet heater	10	250	F09D10R0B
	F-3002	Cabinet heater	10	250	F09D10R0B
	F-3003	Fused a-c line	5	250	F09G5R00B
	F-3004	Fused a-c line	5	250	F09G5R00B
	F-3005	Main a-c line	15	250	F09G15R0A
	F-3006	Main a-c line	15	250	F09G15R0A
	F-3007	Input a-c line	1	250	F09G1R00B
	F-3008	Input a-c line	1	250	F09G1R00B
(See figure 5-2.)	F-3009	T-3001	5	250	F09G5R00B
	F-3010	$\begin{aligned} & \text { CR-3001; CR-3003; -24-volt con- } \\ & \text { trol } \end{aligned}$	10	250	F09D 10R0B

Figure 5-3. Power Supply PP-1094/SRT (LVPS), Left Side Panel, Fuse Locations
(6) UNITS WITHOUT FUSES.-The following units contain no fuses.
(a) Radio Frequency Tuner TN-229/SRT (R-F Tuner)
(b) Control-Indicator C-1352/SRT
(c) Antenna Coupler CU-372/SRT (Coupler)
(d) Transmitter Coupler CU-402/SRT (LAU)

TABLE 5-7. SPARE FUSES

SPARES FOR	NO. OF SPARES	AMPS	VOLTS	TYPE
F-501	3	6	250	F09G6R00B
F-503	2	1	250	F09G1R00B
F-1301	3	3	250	F09G3R00B
F-2917	4	2	250	F09G2R00B
F-3001	4	10	125	F09D10R0B
F-3003	4	5	250	F09G5R00B
F-3005	3	15	250	F09G15R0A

(e) Mounting MT-1423/SRT (Base Mount)
(f) Radio Modulator MD-230/SRT (HLRM)
c. TUBES.
(1) TUBE LOCATIONS.-Table $5-8$ is a list of the tubes, with illustration references that will enable the operator to locate the tubes in the equipment. The tubes are listed in order of their numerical symbols, from the lowest number, V-501 (MVPS), through the highest number, V-3003 (LVPS).

(2) PA TUBE V-1304.

(a) REMOVING THE PA TUBE. (See figure 5-14.)-The following procedure is followed in removing the power amplifier tube, V-1304 (4-400A):

Figure 5-4. Power Supply PP-1096/SRT (HVPS), Top View, Tube and Fuse Locations

Figure 5-5. Power Supply PP-1095/SRT (MVPS), Top View, Tube Locations

TABLE 5-8. TUBE LOCATIONS

1.	SYMBOL	TYPE	SYMBOL	TYPE
	Power Supply PP-1095/SRT (MVPS). (See figure 5-5.)			
	V-501	3B28	V-503	3B28
	V-502	3B28	V-504	3B28
2.	Radio Modulator MD-229/SRT (LLRM). See figure 5-6.)			
	V-1001	5725	V-1013	5726
	V-1002	5751	V-1014	5726
	V-1003	5751	V-1015	6201
	V-1004	5814	V-1016	5726
	V-1005	5814	V-1017	6201
	V-1006	5933	V-1018	5726
	V-1007	5933	$\mathrm{V}-1019$	6201
	V-1008	5814	V-1020	6201
	V-1009	5R4WGB	V-1021	0B2
	V-1010	6AS7G	V-1022	0B2
	V-1011	5751	V-1023	6201
	V-1012	5651		

TABLE 5-8. TUBE LOCATIONS (Cont'd)

3.	SYMBOL	TYPE	SYMBOL	TYPE
	Radio Frequency Amplifier (See figure 5-7.)		AM-1008/SRT (RFA).	
	V-1301	6AG7	V-1303	0A2
	V-1302	5933	V-1304	*4-400A

4. Power Supply PP-1096/SRT (HVPS). (See figure 5-4.)

$\mathrm{V}-1501$	3 B 28	$\mathrm{~V}-1504$	3 B 28
$\mathrm{~V}-1502$	3 B 28	$\mathrm{~V}-1505$	3 B 28
$\mathrm{~V}-1503$	3 B 28	$\mathrm{~V}-1506$	3 B 28

5. Radio Modulator MD-230/SRT (HLRM). (See figure 5-8.)

$\mathrm{V}-1601$	4D21	$\mathrm{V}-1604$	0B2
$\mathrm{V}-1602$	4D21	$\mathrm{V}-1605$	0B2
$\mathrm{V}-1603$	0A2		

6. Radio Frequency Oscillator Z-2001 (RFO-Unit 1). (See figure 5-9.)

$\mathrm{V}-2001$	5654	$\mathrm{~V}-2003$	5814
$\mathrm{~V}-2002$	5814		

* In emergencies, tube type 5D21 may be used, if available, in place of the $4-400 \mathrm{~A}$, but only at the $\mathbf{1 0 0}$ watt level.

Figure 5-6. Radio Modulator MD-229/SRT (LLRM), Top View, Tube Locations

TABLE 5-8. TUBE LOCATIONS (Cont'd)

7.	SYMBOL	TYPE	SYMBOL	TYPE
	Frequency Multiplier Z-2034 (RFO-Unit 2). (See figure 5-9.)			
	V-2031	5654	V-2033	5814
	V-2032	5654	V-2034	5814
8.	Radio Frequency Oscillator Z-2053 (RFO-Unit 3). (See figure 5-10.)			
	V-2051	6AK6		
9.	Frequency Multiplier Z-2103 (RFO-Unit 4). (See figure 5-9.)			
	V-2101	5654	V-2102	5654
10.	Radio Frequency Oscillator Z-2127 (RFO-Unit 12). (See figure 5-9.)			
	V-2126	6AG5	V-2128	6AK6
	V-2127	6AG5		

TABLE 5-8. TUBE LOCATIONS (Cont'd)

11.	SYMBOL	TYPE	SYMBOL	TYPE
	Electron Frequency Converter Z-2158 (RFO-Unit 5). (See figure 5-9.)			
	V-2151	5725	V-2153	5725
	V-2152	5725	V-2154	5654
12.	Electron Frequency Converter Z-2204 (RFO-Unit 6). (See figure 5-10.)			
	V-2201	5654	V-2206	5725
	V-2202	12AU7	V-2207	5725
	V-2203	5725	V-2208	5654
	V-2204	5654	V-2209	5654
	V-2205	6AK6		
13.	Frequency Multiplier Z-2305 (RFO-Unit 7). (See figure 5-9.)			
	V-2301	5654	V-2303	5654
	V-2302	5654	V-2304	5654

TABLE 5-8. TUBE LOCATIONS (Cont'd)

14.	SYMBOL	TYPE	SYMBOL	TYPE
	Electron Frequency Converter Z-2330 (RFO-Unit 8). (See figure 5-11.)			
	V-2326	6201	V-2331	5725
	V-2327	5725	V-2332	5654
	V-2328	5654	V-2333	5654
	V-2329	6AK6	V-2334	6AK6
	V-2330	5725		
15.	Electron Frequency Converter Z-2426 (RFO-Unit 9). (See figure 5-11.)			
	V-2426	5725	V-2428	5654
	V-2427	5654	V-2429	6AK6
16.	Frequency Multiplier Z-2526 (RFO-Unit 10). (See figure 5-11.)			
	V-2526	5654	V-2528	5654
	V-2527	5654	V-2529	5654
17.	Electron Frequency Converter Z-2626 (RFO-Unit 11A). (See figure 5-12.)			
	V-2626	5725	V-2628	5654
	V-2627	5654	V-2629	5687
18.	Electron Frequency Converter Z-2651 (RFO-Unit 11B). (See figure 5-10.)			
	V-2651	5725	V-2653	5654
	V-2652	5654	V-2654	6AK6
19.	Electron Frequency Converter Z-2801 (RFO-Unit 11C). (See figure 5-10.)			
	V-2801	5725	V-2803	5654
	V-2802	5654	V-2804	6AK6
20.	Mounting Z-2901 (RFO-Unit 14). (See figure 5-2.)			
	V-2917	6E5		
21.	Power Supply PP-1094/SRT (LVPS). (See figure 5-13.)			
	V-3001	5R4WGB	V-3003	5R3WGB
	V-3002	5R4WGB		

Step 1. Short the plate to ground.
Step 2. Loosen the holding screw on top of the plate cap radiator and slip the clip off the plate cap.

Step 3. Release the three captive screws holding the glass chimney and remove the chimney.

Step 4. Loosen the two tube-clamp screws and the clamp adjustment screw.

Step 5. Turn the tube-clamp to clear the two tubeclamp screws and remove the tube.

Note

The plate cap radiator is removed and re-used on the replacement tube. A socket wrench,
provided for this purpose, is attached to the right side of the chassis, forward. (See figure 5-7.)
(b) REPLACING THE PA TUBE.-Replace this tube by simply reversing the removal procedure described in preceding paragraph $3 c(2)(a)$.
(3) REMOVING THE IPA TUBES V-1301 AND V-1302. (See figure 5-7.)-The voltage regulator tube, $\mathrm{V}-1303$, requires no special removal procedure. The other tubes in the Radio Frequency Amplifier are part of the IPA subassembly. These tubes are V-1301 and $\mathrm{V}-1302$. The subassembly cover plate must be removed to gain access to these tubes. V-1302 must be removed before V-1301 can be reached.

Note

The subassembly cover plate has already been removed as seen in figure 5-7 to show the tubes.
(4) CRITICAL TUBES, ADJUSTMENT REFER-ENCES.-In some of the critical circuits in the Radio Frequency Oscillator O-275/SRT (RFO), certain adjustments may be required after a critical tube has been changed. Table 5-9 is a list of these critical tubes with a reference to the adjustments needed.

TABLE 5-9. CRITICAL TUBES, ADJUSTMENT REFERENCES

RFO UNIT	TUBE SYMBOL	FIGURE REFERENCE	SECTION AND PARAGRAPH REFERENCE
1.	V-2001	$5-9$	Section 6, paragraph $4 g(1)(a)$
3.	V-2051	$5-10$	Section 6, paragraph $4 g(2)(a)$
6.	V-2202 V-2203 V-2204 V-2205	$5-10$	Section 6, paragraph $4 g(3)(a)$ Section 6, paragraph $4 g(3)(b)$
8.	V-2327 V-2328 V-2329 V-2330 V-2331	$5-11$	Section 6, paragraph 4g(4)(a)
12.	V-2126 V-2127 V-2128	$5-9$	Section 6, paragraph 4g(4)(b)

(5) UNITS WITHOUT TUBES.-The following units contain no tubes:
(a) Radio Frequency Tuner TN-229/SRT
(R-F Tuner)
(b) Control-Indicator $\mathrm{C}-1352 / \mathrm{SRT}$
(c) Antenna Coupler CU-372/SRT (Coupler)
(d) Transmitter Coupler CU-402/SRT (LAU)
(e) Mounting MT-1423/SRT (Base Mount)

Figure 5-7. Radio Frequency Amplifier AM-1008/SRT (RFA), Right Side, Tube Locations
d. SHUTDOWN PROCEDURE. - The equipment may be completely shut down at the front panel of Power Supply PP-1094/SRT (LVPS) by simply placing EMERGENCY SWITCH 410 in the OFF position. (See figure 5-2.)

Note
 With the EMERGENCY SWITCH $M 140$ its OFF position, all the lamps, except the HEATER ON lamps, will be extinguished.

e. PRESSURIZING THE R-F TUNER AND COUP-LER.-When it becomes necessary to recharge either of these units, it is important that only fresh, dry gas be used. Refer to Section 7 for recharging, purging, and exhausting procedures.
f. CHARGING R-F TUNER OR COUPLER. (See figure 5-15.)-When pressure in the r-f tuner or the coupler falls below 15 psi , it will be necessary to add more nitrogen to bring the pressure up to its normal 20 psi. A method for charging these units follows:

Note

This procedure, with its accompanying illustration, pertains to the r-f tuner. However, the antenna coupler is treated in exactly the same manner.

Step 1. Check the regulator (1) to be sure that the adjusting screw (2) and the needle valve (3) are closed at this time.

Step 2. Fasten the delivery hose (4) securely to the regulator (1) by means of the hose coupling nut (5).

Step 3. Attach the regulator (1) to the gas cylinder and secure the hexagonal inlet coupling nut (5).

Step 4. Connect the delivery hose (4) to the r-f tuner intake valve (7).

Step 5. Open the cylinder valve (8).

Note

With a full 9-cubic foot nitrogen gas cylinder, the cylinder-pressure gauge (9) on the regulator (1) should read about 1,600 psi.

Step 6. Open the adjusting screw (2) until the delivery-pressure gauge (10) reads 20 psi.

Note

The exhaust valve (11) is not used, except for purging or exhausting the cylinder as outlined in Section 7.

Step 7. Open the needle valve (3) and bring the r-f tuner pressure up to 20 psi as indicated on the r-f tuner pressure gauge (12). When the desired pressure is attained, the cylinder valve (8) is closed. The regulator (1) may then be removed from the gas cylinder.

Figure 5-8. Radio Modulator MD-230/SRT (HLRM), Top View, Tube Locations

Figure 5-9. Radio Frequency Oscillator O-275/SRT (RFO), Top View, Tube Locations

Figure 5-10. Radio Frequency Oscillator O-275/ SRT (RFO), Right Side, Tube Locations

Figure 5-11. Radio Frequency Oscillator O-275/SRT (RFO), Left Side, Tube Locations

Figure 5-1 2. Radio Frequency Oscillator O-275/SRT (RFO), Bottom View, Tube Locations

Figure 5-1 3. Power Supply PP-1094/SRT (LVPS), Top View, Tube Locations

Figure 5-14. Removing the PA Tube, V-1304

Figure 5-15. Typical Pressurizing Method

INSTRUCTION BOOK

for

 RADIO TRANSMITTING SETS

 RADIO TRANSMITTING SETS
 AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 6
PREVENTIVE MAINTENANCE

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation

 CLIFTON, NEW JERSEY
DEPARTMENT OF THE NAVY BUREAU OF SHIPS

Contract: NObsr-52021 NObsr-52622

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

TABLE OF CONTENTS

Paragraph Page

1. General 6-1
2. Initial Checks 6-1
3. RFA Meter Readings 6-1
a. 100-Watt Operation 6-1
b. 500-Watt Operation 6-1
4. Maintenance Checks 6-3
a. Routine Maintenance Check Chart 6-3
b. RFA Meter Readings, Weekly Record 6-9
c. RFO Metering Socket Voltages, Weekly Record 6-10
d. Front Panel Test Point Voltages, Weekly Record 6-12
e. LLRM Keying Voltages, Monthly Record 6-12
f. RFO Unit Test Jack Voltages, Monthly Record 6-12
g. RFO Unit Adjustments 6-12
(1) Unit 1 6-12
(2) Unit 3 6-13
(3) Unit 6 6-15
(a) 10-Kc Adjustment 6-15
(b) 300-Kc Adjustment 6-16
(4) Unit 8 6-17
(a) 100-Kc Adjustment 6-17
(b) Maximum Amplitude Adjust- ment 6-19
(5) Unit 12 6-19
5. Maintenance Procedures 6-19
a. Disassembly 6-19
b. Cleaning and Inspection 6-19
c. Lubrication Procedures 6-21
(1) Frames and Base Mounts 6-21
(2) Radio Frequency Amplifier AM- 1008/SRT (RFA) 6-21
(a) PA Tuning Mechanism (RFA) 6-22
(b) PA Dial Assembly 6-22
(c) Bandswitch Mechanism
(RFA) 6-22
(d) IPA Dial Assembly 6-22
(3) Radio Frequency Oscillator O-275/ SRT (RFO) 6-22
(a) Typical Unit Lubricating Points 6-22
(b) Left Side 6-22
(c) Unit 8 6-22
6. Unit 8 Removal Pro- cedure 6-23
7. Unit 8 Replacement Procedure 6-23
(d) Control Panel Removed 6-23
(e) Right Side 6-24
(f) Unit 3 6-24
Paragrapb Page
(4) Radio Modulator MD-229/SRT (LLRM) 6-24
(5) Mounting MT-1423/SRT (Base Mount) 6-24
(6) Control-Indicator C-1352/SRT 6-24
(7) Chassis Slides 6-24
(8) Radio Frequency Tuner TN-229/ SRT 6-24
(a) Jacks 6-24
(b) Gears and Racks 6-24
(c) Drive Motor Shaft Extension 6-25
(d) Clutch-Brake 6-25
(e) Main Drive Ball Bearings 6-25
(f) Actuator Motor 6-25
(9) Antenna Coupler CU-372/SRT 6-25
(a) Drive Gears 6-25
(b) Antenna Transfer Switch 6-25
(c) Load Selector Switch 6-25
(d) Actuator Motors 6-25
(e) Jacks 6-25
d. Lubrication Periods 6-25
(1) Quarterly Lubrication 6-26
(2) Semiannual Lubrication 6-26
(3) Annual Lubrication 6-28
(4) Biennial Lubrication 6-28
(5) Three-Year Lubrication 6-28
(6) Major Overhaul Lubrication 6-28
e. Lubricating Greases 6-28
f. Lubricating Oils 6-28
g. Lubricating Tools 6-28
b. Dry Cleaning Solvent 6-28
8. Special Maintenance 6-30
a. Shafts 6-30
b. Variable Capacitors 6-30
c. Relays 6-30
d. Jacks and Plugs 6-31
e. Gears and Racks 6-31
f. Wafer Switches and Detents 6-32
g. Chains 6-32
b. Cleaning Bearings 6-32
i. Lubricating Bearings 6-32
j. Motors 6-32
(1) General 6-34
(2) RFA Blower Motor B-1306 6-34
(3) Base Mount Motors B-701 and B-702 6-34
(4) R-f Tuner and Coupler Motors 6-34
k. Record of Tube Changes 6-34
l. Hair and Bristle Brushes 6-34
m. Pressurizing the R-f Tuner and Coupler 6-36
n. Charging R-f Tuner or Coupler 6-36

LIST OF ILLUSTRATIONS

Figure Title Page
SRT-156-2
6-2 Control-Indicator C-1352/SRT, Adjust- ments for R-f Tuner Control 6 6-3
6-3 Weekly Routine Maintenance Checks, AN/SRT-15 Transmitter Bay 6-7
6-4 Radio Frequency Oscillator O-275/SRT(RFO), Metering Socket E-2919 6-10
6-5 Monthly Routine Maintenance Checks, AN/SRT-15 Transmitter Bay 6-11
6-6 RFO, Top View, Unit Test Jacks, Voltages 6-13
6-7 RFO, Right Side, Unit Test Jacks, Volt-ages6-15
6-8 RFO, Left Side, Unit Test Jacks, Voltages 6-16
6-9 RFO, Bottom View, Unit Test Jacks, Volt-ages6-17
6-10 RFO, Front Panel Unit Adjustments 6-18
6-11 Electrical Equipment Cabinet and Base Mount Tapped Holes, Lubrication. 6-19
6-12 Electrical Equipment Cabinet and Base Mount Latches, Rollers and Nuts, Lubri- cation 6-20
6-13 Radio Frequency Amplifier AM-1008/ SRT (RFA), Left Side, Lubrication 6-216-14 RFA, Loading Spring and Actuating Arm,Lubrication6-22
6-15 RFA, PA Dial Assembly, Lubrication 6-22
6-16 RFA, Right Side, Bandswitch Lubrication 6-23
6-17 RFA, IPA Dial Assembly, Lubrication 6-23
6-18 Typical Lubrication Points in the RFO 6-24
Figure
TitlePage
ó-iy KFO , Left Side, iubrication 6-24
6-20 RFO, Unit 8 (Z-2330), Lubrication 6-25
6-21 RFO, Control Panel Removed, Idler Gear Lubrication 6-26
6-22 RFO, Right Side, Lubrication 6-27
6-23 RFO, Unit 3 (Z-2053), Lubrication 6-27
6-24 Radio Modulator MD-229/SRT (LLRM), Front Panel Switch Lubrication 6-28
6-25 Mounting MT-1423/SRT (Base Mount), Air Filters, Lubrication 6-30
6-26 Control-Indicator, Lubrication 6-31
6-27 Chassis Slide, Lubrication 6-31
6-28 Radio Frequency Tuner TN-229/SRT and Antenna Coupler CU-372/SRT, Jacks and Plugs, Lubrication 6-32
6-29 R-f Tuner, Gears and Racks, Lubrication 6-33
6-30 R-f Tuner, Cross Section of Drive MotorShaft Extension, Lubrication6-34
6-31 R-f Tuner, Cross Section of Clutch-Brake Assembly, Lubrication 6-34
6-32 R-f Tuner, Cross Section of Main Drive Bearings, Lubrication 6-35
6-33 Actuator Motor, Lubrication 6-36
6-34 Antenna Coupler, Lubrication 6-37
6-35 Antenna Transfer Switch S-3512 and Bear- ings, Lubrication 6-38
6-36 Load Selector Switch S-3511 and Bear- ings, Lubrication 6-39
6-37 Typical Pressurizing Procedure 6-40

LIST OF TABLES

Table No. Title Page
6-1 Initial Checks 6-1
6-2 RFA Meter Readings, 100-Watt Operation 6-3
6-3 RFA Meter Readings, 500-Watt Operation 6-3
6-4 Routine Maintenance Check Chart 6-4
6-5 RFA Meter Readings, Weekly Record 6-10
6-6 RFO Metering Socket Voltages, Weekly Record 6-10
6-7 Front Panel Test Point Voltages, Weekly Record 6-12
6-8 LLRM Keying Voltages, Monthly Record 6-126-9 RFO Unit Test Jack Voltages, MonthlyRecord6-14
6-10 Unit 6 10-Kc Step Oscillator Check 6-17
6-11 Unit 8 100-Kc Step Oscillator Check 6-17
6-12 Lubricating Greases 6-29
6-13 Lubricating Oils 6-29
6-14 Lubricating Tools 6-29
6-15 Record of Tube Changes 6-35

SECTION 6
 PREVENTIVE MAINTENANCE

1. GENERAL.

Preventive maintenance is routine procedure that is used to check needless breakdown of running equipment and to keep it working efficiently for as long a period as possible. If wear is noticed and checked at an early stage, a serious shutdown may be avoided. Constant and careful inspection, care in replacement and handling procedures, together with the use of proper methods of assembly and disassembly of parts, are all necessary in contributing to the over-all efficient maintenance of the equipment. Accurate records must be kept and a series of routine checks instituted. These will be explained in more detail later in this section. Figure 6-1 illustrates a typical Radio Transmitting Set AN/SRT-15 installation.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on preventive maintenance for AN/SRT-14, 15 and 16, as set forth in this section, applies equally as well to AN/SRT-14A, 15A and 16A.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.

2. INITIAL CHECKS.

Certain fundamental precautions should be observed before actually placing the equipment in operation. Every effort should be made to become familiar with the equipment in order to recognize and anticipate avoidable defects. Table 6-1 should be used to assist in making these fundamental observations.

3. RFA METER READINGS.

All the readings should be taken under the same conditions and with the same antenna or dummy load. Weekly readings are to be made and compared with those of the previous week, so as to check the various conditions existing. It should be borne in mind that various production line tubes will vary considerably in their current output readings. A definite trend or fluctu-

TABLE 6-1. INITIAL CHECKS

ITEM	cHECK
1. Primary Power	The ship power supply must be available at atl times.
2. Control Equipment	Radiophone, teletype, facsimile, hand keys and other control equipment must be in good working order and connected properly.
3. Insulators	Antena and line insulators must be kept clean and free of unwanted grounds.
4. Cables	All internal and external cables must be firmly and properly connected.
5. Dirt and Moisture	Leakage paths are often provided by dirt and moisture, resulting in arc-overs and loss of efficiency.
6. Loose Parts	In operation, some mountings or fittings may work loose or become damaged. Correct this condition as quickly as pos- sible.
7. Visual Check	Check for broken, damaged, or loose hard- ware, meters, knobs, dials or lamps. Re- place damaged parts without delay.

ation in the readings is to be interpreted as an indication of trouble. By charting these fluctuations, a reliable record of tube performance is available for ready reference, and trouble may be avoided by changing tubes before a critical stage is reached.
a. 100-WATT OPERATION.-With the equipment operating at the 100 -watt level, the readings on the various meters associated with Radio Frequency Amplifier AM-1008/SRT (RFA) should read approximately as in table 6-2. The following conditions prevailed for these typical readings:
(1) Line voltage- $110 / 220$ volts.
(2) Load- 50 ohms (resistive).
(3) Phone modulation- 100 percent.
(4) TEST KEY © $($-energized.
(5) Frequency-2 mc.

Note

The nominal readings in table 6-2 are to be used for reference only. Some of the readings are dependent on the setting of the EXCITATION control (22).
b. 500-WATT OPERATION.-With the equipment operating at the 500 -watt level, the readings on the RFA meters should read approximately as in table 6-3 under the following conditions:

Figure 6－1．Daily Routine Maintenance Checks，AN／SRT－15

Figure 6-2. Control-Indicator C-1352/SRT, Adjustments for R-f Tuner Control

TABLE 6-2. RFA METER READINGS, 100-WATT OPERATION

CONTROL SETTINGS	VOLTMETER READINGS	
	PHONE	cW
VOLTMETER (1) Switch:	2.5-5.0 V	2.5-5.0 V
RF IN (5 V)		
BIAS (500 V)	200-215 V	200-215 V
LV (500 V)	260-315 V	260-315 V
MV (1000 V)	430-525 V	430-525 V
PA E $\mathrm{c}_{2}(1000 \mathrm{~V})$	220-300 V	220-300 V
PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$	900-1100 V	1100-1365 V
IPA © Switch:	IPA CURRENT METER READINGS	
	0.5-3.5 ma	0.5-3.5 ma
$\mathrm{I}_{\mathrm{c} 1}$ (5 MA)		
$\mathrm{I}_{\mathrm{c} 2}(10 \mathrm{MA})$	5-8 ma	5-8 ma
I_{k} (500 MA)	$50-80 \mathrm{ma}$	50-80 ma
PA © Switch:	PA CURRENT METER READINGS	
	15-25 ma	18-30 ma
$\mathrm{I}_{\mathrm{cc}}(50 \mathrm{MA})$		
$\mathrm{I}_{\mathrm{c} 2}(100 \mathrm{MA})$	50-80 ma	40-70 ma
$\mathrm{I}_{\mathbf{L}}(1 \mathrm{~A})$	200-350 ma	200-350 ma

(1) Line voltage- $110 / 220$ volts.
(2) Load- 50 ohms (resistive).
(3) Phone modulation- 100 percent.
(4) TEST KEY (T-energized.
(5) Frequency-2 mc.

Note

The nominal readings in table 6-3 are to be used for reference only. Some of the readings are dependent on the setting of the EXCITATION control (27). The BAND SWITCH (C) must be in the 2-5 MC position. A lower band position will prevent 500 -watt operation.

TABLE 6-3. RFA METER READINGS, 500-WATT OPERATION

CONTROL SETTINGS	VOLTMETER READINGS	
	PHONE	CW
VOLTMETER (1) Switch:	2.5-5.0 V	2.5-5.0 V
RF IN (5 V)		
BIAS (500 V)	200-215 V	200-215 V
LV (500 V)	285-315 V	285-315 V
MV (1000 V)	475-525 V	475-525 V
PA E c_{2} (1000 V)	390-500 V	400-525 V
PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$	2280-2520 V	2850-3150 V
IPA © Switch:	IPA CURRENT METER READINGS	
	$0.5-3.5 \mathrm{ma}$	0.5-3.5 ma
$\mathrm{I}_{\mathrm{c} 1}(5 \mathrm{MA})$		
$\mathrm{I}_{\mathrm{c} 2}(10 \mathrm{MA})$	6-9 ma	6-9 ma
Ik (500 MA)	$50-80 \mathrm{ma}$	$50-80 \mathrm{ma}$
PA © Switch:	PA CURRENT METER READINGS	
	15-25 ma	12-20 ma
$\mathrm{I}_{\mathrm{c} 1}(50 \mathrm{MA})$		
$\mathrm{I}_{\mathrm{c} 2}(100 \mathrm{MA})$	20-60 ma	15-50 ma
$\mathrm{I}_{\mathrm{k}}(1 \mathrm{~A})$	$300-450 \mathrm{ma}$	$300-450 \mathrm{ma}$

4. MAINTENANCE CHECKS.

a. ROUTINE MAINTENANCE CHECK CHART.

Note

For the following checks and adjustments, make sure that the equipment is not being operated from the remote location, except for the item specifically called "Remote Operation". Refer to Section 5, table 5-1, which may be used to check nomenclature references.

Table 6-4 will enable the technician to check and adjust the equipment in a regular, orderly manner.

Note

The attention of maintenance personnel is invited to the requirements of chapter 67 of the Bureau of Ships Manual, of the latest issue. Personnel are also requested to read the safety instructions included in the front matter of this book.

Section

TABLE 6-4. ROUTINE MAINTENANCE CHECK CHART

TABLE 6-4. ROUTINE MAINTENANCE CHECK CHART (Cont'd)

What to check	HOW TO CHECK	PRECAUTIONS
3. RFO Oven Heaters (HEATER ON)	(See 3, figure 6-1.) The indicators for the oven heaters are marked: a. INT. b. X-TAL c. F.S.	These lamps have their own supply and operate intermittently. Always check lamps first, if trouble is suspected.
4. Base Mount Blowers	(See 4, figure 6-1.) After the time delay, the base mount blowers will operate.	Listen for blower operation, after time delay.
5. Cabinet Heater	(See 5, figure 6-1.) Turn CABINET HEATER switch (1N) to its ON position.	The CABINET HEATER lamp will be illuminated. If trouble is suspected, check lamp first. Note Keep Cabinet heater switch in in OFF position, unless the heaters are needed.
6. INTERLOCK BATTLE SHORT switch (10)	(See 6, figure 6-1.) Place switch in ON position; the lamp marked INTERLOCK SHORTED WHEN ON will be illuminated.	The INTERLOCK BATTLE SHORT switch (10) bypasses the drawer interlocks and allows operation of the equipment even with a component removed from its drawer.
7. INT. TEST jacks (Interlock Continuity)	(See 7, figure 6-1.) Place ohmmeter leads across test jacks as a check for continuity.	The INTERLOCK BATTLE SHORT switch (10) is in OFF position for this check. If no continuity is indicated, check the various chassis interlocks or their cheater switches.
8. R-F Tuner and Antenna Coupler a. Pressure Gauges b. R-F Tuner control	(See 8A, figure 6-1.) Check readings on pressure gauges. (See figure 6-2.) Step 1. Press DOWN button on con-trol-indicator until pointer of POSITION meter stops at bottom of scale.	Each gauge should read 20 psi. Refer to paragraph $6 m$ for pressurizing information. Note Reading of these gauges daily is based on the premise that the units are readily available. Should these units be placed in remote positions a revision of the schedule may be needed.
	Step 2. Zero the POSITION meter by loosening the nut on the ZERO ADJ. control and set the pointer on 0 .	
	Step 3. Press UP button until POSITION meter shows maximum.	
	Step 4. Adjust for full scale deflection by loosening locknut on FULL SCALE ADJ. control and set pointer on 100.	
	Note Repeat the preceding steps, if needed, to trim to optimum.	Note Be sure to relock the nuts on the adjustment controls after trimming and adjusting.
	Step 5 . After the trimming adjustments, check speed of traverse when the SLOW button is pressed simultaneously with UP or DOWN.	

TABLE 6-4. ROUTINE MAINTENANCE CHECK CHART (Cont'd)

WHAT TO CHECK	HOW TO CHECK	PRECAUTIONS
9. Remote Operation	(See 9, figure 6-1.) Place LOCAL-REM switch \otimes in REM position.	In remote operation, the equipment is operated from the remote Navy radiophone unit.
10. General Sequence 500-Watt Operation a. Radio Frequency Amplifier AM1008/SRT (RFA)	(See 10A, figure 6-1.) Step 1. Energize the PUSH FOR 500 W switch (E).	Note At this time, the equipment is presumed to be in 100 -watt opperation.
b. Power Supply PP-1096/SRT (HVPS)	(See 10B, figure 6-1.) Step 2. Place BOOSTER EMERGENCY SWITCH (s) in ON position.	The following lamps will be illuminated: (1) $\phi 1$ (2) $\phi 2$ (3) H.V. $\phi 3$ The TOTAL HOURS-500 W elapsedtime meters will operate.
c. Radio Modulator MD-230/SRT (HLRM)	(See 10C, figure 6-1.)	The following lamp will also light: (1) 3000 V (HLRM)
d. Power Supply PP-1095/SRT (MVPS)	(See 10D, figure 6-1.)	The following lamps will be extinguished: (1) 1300 V OUTPUT (MVPS) (2) 1300 V PRI.
1. Radio Frequency Amplifier AM- 1008/ SRT (RFA) Meter Readings	WEEKLY (See 1, figure 6-3.) Note A form should be prepared to record the weekly meter readings. A comparison of the week-by-week readings will be useful for checking tube performance.	Refer to paragraph $4 b$, table 6-5, for typical example of form to be used. Table 6-2 gives typical RFA meter readings.
2. Radio Frequency Oscillator O-275/ SRT (RFO) : Metering Socket, E-2919	(See 2, figure 6-3.) Measure from each pin to pin 1 (GND.). These test points are found on the left side of the RFO, just forward of unit 8, under the cover plate. (See figure 6-4.)	Refer to paragraph 4c, table 6-6, RFO Metering Socket Voltages, for typical form to be used.
3. Radio Modulator MD-229/SRT (LLRM)	(See 3, figure 6-3.) Check from test point (250 V.P.S.) on LLRM front panel to ground.	Refer to paragraph $4 d$, table 6-7, Front Panel Test Point Voltages.
4. Power Supply PP-1094/SRT (LVPS)	(See 4, figure 6-3.) Check from test points to ground: a. +250 V b. +300 V c. $\mathbf{- 2 2 0 ~ V}$	
5. Radio Modulator MD-230/SRT (HLRM)	(See 5, figure 6-3.) Grid No. 1 - V-1601 Grid No. 1 - V-1602	
6. Power Supply PP-1095/SRT (MVPS)	(See 6, figure 6-3.) caution 500 V OUTPUT Check from test jack to ground.	

Figure 6-3. Weekly Routine Maintenance Checks, AN/SRT-15 Transmitter Bay

TABLE 6-4. ROUTINE MAINTENANCE CHECK CHART (Cont'd)

WHAT TO CHECK	HOW TO CHECK	PRECAUTIONS
7. Modulation Check: (LLRM)	$\begin{array}{c}\text { (See 7, figure 6-3.) } \\ \text { Talk or whistle into the microphone. } \\ \text { Observe the ANT CURRENT meter. }\end{array}$	$\begin{array}{c}\text { The ANT CURRENT meter will show } \\ \text { an increase in antenna current with } \\ \text { an increase in modulation. When the } \\ \text { ANT CURRENT meter shows a de- }\end{array}$
crease in antenna current with an in-		
crease in modulation, it is an indica-		
tion of overmodulation.		

TABLE 6-4. ROUTINE MAINTENANCE CHECK CHART (Cont'd)

WHAT TO CHECK	HOW TO ChECK	PRECAUTIONS
3. Blower Motors a. RFA Blower b. Base Mount Blowers	(See 3A and 3B, figure 6-5.) With equipment turned on, check motors for abnormal or noisy operation.	Refer to Section 7 for disassembly procedures, if necessary.
4. Ventilators and Louvers	Check all air passages, screens and ducts for dirt and obstructions.	Air should flow freely through all louvers and screens during operation of the equipment.
5. Variable Capacitors	Refer to paragraph 66.	
6. Relays	Refer to paragraph $6 \boldsymbol{c}$.	
7. Jacks and Plugs	Refer to paragraph 6 d.	
8. Transmitter Group Gears and Racks	Refer to paragraph $6 e$.	
9. Lubrication	Refer to paragraph 5d(2).	
1. Cleaning	QUARTERLY Refer to paragraph 56.	
2. Lubrication	Refer to paragraph $5 d$ (1).	
3. Shafts	Refer to paragraph 6a.	
1. Chains	ANNUALLY Refer to paragraph 6 g.	
2. R-F Tuner and Coupler Gears and Racks	Refer to paragraph 6 e	
3. Motors	Refer to paragraph $6 \mathbf{j}$.	
4. Lubrication	Refer to paragraph $5 d(3)$, for annual lubrication procedures.	
1. Lubrication	BIENNIALLY Refer to paragraph $5 d(4)$.	
1. R-F Tuner and Antenna Coupler	THREE YEARS Refer to paragraph 6 b.	
2. Lubrication	Refer to paragraph $5 d$ (5).	
1. Cleaning and Checking Equipment	MAJOR OVERHAUL Refer to paragraph $5 b$.	Replace burred or damaged hardware. Replace frayed insulation or repair with tape or spaghetti. Check tube sockets and terminal boards.
2. Lubrication	Refer to paragraph $5 d$ (6).	Refer to Section 7 for disassembly of the parts involved in these procedures.
3. Wafer Switches and Detents	Refer to paragraph 6 .	

b. RFA METER READINGS, WEEKLY RECORD.

-Table 6-5 is a form which may be used to record the weekly readings of the RFA panel meters. Observe the following:
(1) The equipment controls are to be in the positions designated in Section 5, table 5-2.
(2) Three different frequencies should be chosen, one in each of the following bands:
(a) $\mathrm{f}_{1}-\mathbf{- 0 . 3}$ to 6.0 mc
(b) $\mathrm{f}_{2}-6.0$ to 16.0 mc
(c) $\mathrm{f}_{3}-16.0$ to 26.0 mc
(3) The following conditions should be the same each week:
(a) Frequencies
(b) Mode of transmission
(c) Output power (100-watt operation)
(d) Antenna or dummy load
(e) EXCITATION control (27) position 180° clockwise from minimum position.
(4) For trouble-shooting procedures, refer to Section 7 of this instruction book.
(5) Include date and TOTAL HOURS-FILAMENT meter reading as indicated in space at top of table 6-5.

TABLE 6-5. RFA METER READINGS, WEEKLY RECORD

DATE: ()	TOTAL HOURS-FILAMENT: ()			
	VOLTMETER			
VOLTMETER Switch (1) Positions:	f_{1}	f_{2}	f_{3}	
RF IN (5 V)				
BIAS (500 V)				
LV (500 V)				
MV (1000 V)				
PA $E_{\text {c2 }}(1000$ V)				
PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$				
IPA Switch (G) Positions:	IPA CURRENT METER			
	f_{1}	f_{2}	f_{3}	
$\mathrm{I}_{\mathrm{c} 1}$ (5 MA)				
$\mathrm{I}_{\mathrm{c} 2}(10 \mathrm{MA})$				
I_{k} (500 MA)				
PA Switch \oplus Positions:	PA CURRENT METER			
	f_{1}	f_{2}	f_{3}	
$\mathrm{I}_{\mathrm{c} 1}$ (50 MA)				
$\mathrm{I}_{\mathrm{c} 2}(100 \mathrm{MA})$				
$\mathrm{I}_{\mathrm{k}}(1 \mathrm{~A})$				
Antenna Current Readings	ANT CURRENT METER			
	f_{1}	f_{2}	f_{3}	

Figure 6-4. Radio Frequency Oscillator O-275/SRT (RFO), Metering Socket, E-2919
c. RFO METERING SOCKET VOLTAGES, WEEKLY RECORD.-Table 6-6 is a chart which may be used to record the RFO weekly readings at the metering socket, $\mathrm{E}-2919$. (See figure 6-4.)

Observe the following:
(1) Place equipment controls in the positions suggested in Section 5, table 5-2.
(2) Take readings with Multimeter ME-25A/U.
(3) For trouble-shooting procedures, refer to Section 7 of this instruction book.
(4) Make a record of date and TOTAL HOURSFILAMENT meter reading as indicated in space at top of table 6-6.

TABLE 6-6. RFO METERING SOCKET VOLTAGES, WEEKLY RECORD

		DATE:	DATE:	DATE:
E-2919 PIN NO. (See figure 6-4.)	PIN DESIGNATIONS	total hoursFILAMENT: \qquad	TOTAL HOURSFILAMENT: \qquad	TOTAL HOURSFILAMENT: \qquad \qquad)
1	GND.			
2	$\begin{aligned} & \text { 6.3 V. A.C. } \\ & \text { REG. } \end{aligned}$			
3	$\begin{aligned} & \text { 6.3 V. A.C. } \\ & \text { UNREG. } \end{aligned}$			
4	$\begin{aligned} & 250 \text { V. D.C. } \\ & \text { REG. } \end{aligned}$			
5	$\begin{gathered} 250 \text { V. D.C. } \\ \text { UNREG. } \end{gathered}$			
6	$\begin{aligned} & 24 \mathrm{~V} \text { AFTER } \\ & \text { TD } \end{aligned}$			
7	VOLTS MARK. SPACE			
8	*KEY V. IN			

[^5]

Figure 6-5. Monthly Routine Maintenance Checks, AN/SRT-15 Transmitter Bay

TABLE 6-7. FRONT PANEL TEST POINT VOLTAGES, WEEKLY RECORD

FIGURE REFERENCE	TEST POINT	DATE: ()			
		TOTAL HOURSFILAMENT: ()	TOTAL HOURSFILAMENT: ()	TOTAL HOURS FILAMENT: ()	TOTAL HOURSFILAMENT: ()
See 3, figure 6-3, (LLRM)	250 V. P.S.				
See 4, figure 6-3, (LVPS)	, +250 V				
	$+300 \mathrm{~V}$				
	-220 V				
See 5, figure 6-3, (HLRM)	$\underset{\mathrm{V}-1601}{* \text { GRID }} \underset{1}{ }$				
	$\underset{V-1602}{\text { GRID }}-$				
See 6, figure 6-3, (MVPS)	$\begin{aligned} & \text { CAUTION } \\ & 500 \mathrm{~V} \\ & \text { OUTPUT } \end{aligned}$				

* 500-Watt Operation: Record TOTAL HOURS-FILAMENT reading on HVPS.
d. FRONT PANEL TEST POINT VOLTAGES, WEEKLY RECORD.-Table 6-7 is a typical chart which may be used to check the weekly front panel test point readings.

Observe the following:
(1) Use Multimeter ME-25A/U.
(2) For trouble shooting, refer to Section 7 of this instruction book.
(3) Make a record of the date and the reading on the TOTAL HOURS-FILAMENT meter as indicated in the space at the top of table 6-7.
e. LLRM KEYING VOLTAGES, MONTHLY REC-ORD.-Table $6-8$ is a form that may be used to check the monthly keying voltage readings.

Observe the following:
(1) Place equipment controls in the positions suggested in Section 5, table 5-2.
(2) Take readings with Multimeter ME-25A/U.
(3) For trouble-shooting procedures, refer to Section 7 of this instruction book.
(4) Make a record of date and TOTAL HOURSFILAMENT meter reading as indicated in space at top of table 6-8.
f. RFO UNIT TEST JACK VOLTAGES, MONTHLY RECORD.-Table 6-9 is a form that may be used to check some significant voltages in the RFO.

Observe the following:
(1) Place the equipment controls in the positions suggested in Section 5, table 5-2.
(2) Use Multimeter ME-25A/U.
(3) For trouble-shooting procedures, refer to Section 7 of this instruction book.
(4) Make a record of date and TOTAL HOURSFILAMENT reading as indicated in space at top of table 6-9.
g. RFO UNIT ADJUSTMENTS.
(1) UNIT 1.-R-F Oscillator Z-2001 (unit 1) is commonly called the crystal oscillator. It contains an oven-controlled $100-\mathrm{kc}$ crystal. For purposes of this section, unit 1 has one routine check and adjustment (see figure 6-10).

TABLE 6-8. LLRM KEYING VOLTAGES, MONTHLY RECORD

METERING SOCKET (See figure 6-4.)			DATE: ()	DATE: ()	DATE: ()
	SERVICE SELECTOR SWITCH (U)	NOMINAL VOLTAGES	TOTAL HOURSFILAMENT: ()	TOTAL HOURS. FILAMENT: ()	TOTAL HOURSFILAMENT: ()
$\text { E-2919, Pin } 8 \text { to }$ GND. (Key V. IN)	HAND	$(-) 17.5 \mathrm{~V}$			
	MACH	$(-) 17.5 \mathrm{~V}$			
	FSK	$(-) 30 \mathrm{~V}$			
	FAX	$(-) 30 \mathrm{~V}$			
	PHONE	$(-) 17.5 \mathrm{~V}$			

Figure 6-6. RFO, Top View, Unit Test Jacks, Voltages

Step 1. Tune suitable receiver (RBA, RBB, RBC series or equivalent) to 2.5 mc . Keep RFO turned off at this time.

Step 2. Place transmitter in stand-by for at least one hour to allow crystal ovens to stabilize.

Step 3. Connect "T" type of BNC connector to 100 KC X -TAL test jack and couple output of one arm directly to receiver input.

Note

The output of 100 KC X -TAL test jack is 100 kc at all times, regardless of setting of frequency knobs.

Step 4. Connect ship receiving antenna to other arm of " T " connector. Use variable attenuator in series with this signal to reduce it to level of the 25 th harmonic of $100-\mathrm{kc}$ crystal.

Step 5. Adjust L-2001 on unit 1 for zero beat. (See figure 6-\% for location of L-2001.) Rotate L-2001 clockwise until beat is heard, then counterclockwise through null until beat is heard again.

Step 6. Set L-2001 at midposition between two beats, which will then be the center of the null.

Note

Zero beat these signals only when WWV is not modulating, to avoid false beats.

Step 7. Carefully observe meter. At high beat frequencies, the indicator will not respond and will seemingly remain at a null. However, as the zero beat is more closely approached, the meter indicator will begin to oscillate rapidly. In continuing towards zero beat, these oscillations will become slower and slower, until, finally, at zero beat, the pointer will come to rest.

Note

This procedure may be used after replacement of V-2001 in unit 1.
(2) UNIT 3.-R-F Oscillator Z-2053 (unit 3) is commonly called the interpolation oscillator. For purposes of this section, unit 3 requires one routine check and adjustment-the $100-\mathrm{kc}$ adjustment (see figure 6-10).

Step 1. Turn the KC knob © to 9; the 100 knob (D) to 9 , the 10 knob (EG) to 10 .

NAVSHIPS 92121(A)
PREVENTIVE
AN/SRT-14, 14A, 15, 15A, 16, 16A
MAINTENANCE
TABLE 6-9. RFO UNIT TEST JACK VOLTAGES, MONTHLY RECORD

ILLUSTRATION REFERENCE	RFO UNIT	TEST JACK	NOMINAL VOLTAGE (AC)	TOTAL HOURSFILAMENT: ()			
				DATE: ()	DATE: (1)	DATE: $\left(\begin{array}{l} \text { (} \end{array}\right.$	DATE: (
RFO, Top View (See figure 6-6.)	2	12	11.2				
	5	1b	0.58				
		2 b	1.25				
	7	2d	8.8				
	4	2a	8.0				
	12	12a	13.6				
	5	4 a	1.1				
RFO, Right Side (See figure 6-7.)	3	3 a	0.28				
	11B	10b	0.35				
		9b	1.40				
	11C	9c	1.20				
		10c	0.35				
	6	1 c	6.45				
		2 c	1.25				
		5 a	1.17				
RFO, Left Side (See figure 6-8.)	8	1d	11.10				
		6 b	1.00				
		7 a	1.20				
	9	7b	1.90				
		8b	0.90				
	10	2 e	8.80				
RFO, Bottom View (See figure 6-9.)	11 A	9a	1.40				
		10a	0.47				
RFO, Front Panel (See figure 6-10.)	14	$\begin{gathered} 100 \mathrm{KC} \\ \mathrm{X}-\mathrm{TAL} \\ \hline \end{gathered}$	1.00				
		$\begin{gathered} 100 \mathrm{KC} \\ \text { STEP } \end{gathered}$	0.8				

Note

At this setting, the output of unit 3 will be 100 kc , available at INT. OSC. test jack on the front panel of the RFO.

Step 2. Place ZERO ADJ. toggle switch (2) in INT. OSC. position.

CAUTION

Do not confuse this switch with the ZERO ADJ. controls behind the access door.

Step 3. Place the output of INT. OSC. test jack on vertical plates of Oscilloscope OS-8/U.

Step 4. Place output of 100 KC X -TAL test jack on horizontal plates of scope. Trim scope controls for equal amplitudes on scope screen. A steady $1: 1$ ratio pattern should be seen.

Step 5. Open the access door on the front of the RFO and adjust the control marked INT. OSC.-ZERO ADJ. to obtain a correct $1: 1$ Lissajous pattern, if necessary. (See figure 6-10 for location of this control.)

Note

This procedure may be used after replacement of V-2051 in unit 3.

Figure 6-7. RFO, Right Side, Unit Test Jacks, Voltages
(3) UNIT 6.-Electron Frequency Converter Z2204 (unit 6) is commonly called the $10-\mathrm{kc}$ step generator. For purposes of this section, unit 6 requires two routine checks and adjustments.
(a) 10-KC ADJUSTMENT. (See figure 6-10.)
Step 1. Connect the output of the $10-\mathrm{kc}$ test jack to the vertical plates of Oscilloscope OS-8/U.

Note

The output of the 10 KC test jack is 10 kc , regardless of the setting of the frequency knobs.

Step 2. Place the output of the 100 KC X-TAL test jack on the horizontal plates of the scope. A 10:1 Lissajous pattern will be seen if the $10-\mathrm{kc}$ step generator is properly adjusted.

Step 3. Adjust R-2210 (see figure 6-7 for location of $R-2210$) for proper Lissajous pattern, if necessary, as follows:

Note

R-2210 may be adjusted without removing unit 6 from its mounting. Unit 1 must be properly aligned before adjusting R-2210.

Step a. Place the equipment in stand-by condition, switch (P) in STANDBY.

Step b. Connect a cable to jack 10 KC on the front panel of the RFO to the vertical input of Oscilloscope OS-8A/U (or equivalent).

Step c. Connect a cable to jack 100 KC X-TAL on the RFO front panel to the horizontal input of the oscilloscope.

Step d. Loosen locknut and set R-2210 completely counterclockwise, and then turn it clockwise until the 10 -kc blocking oscillator "locks-in" (i.e., until a 10:1 Lissajous pattern appears on the CRT; refer to figure 7-2).

Step e. Note the position of $\mathrm{R}-2210$ shaft.

Step f. Set R-2210 completely clockwise, and then turn it counterclockwise until the $10-\mathrm{kc}$ blocking oscillator again "locks-in" at a 10:1 frequency ratio.

Step g. Again, note the position of R-2210 shaft.
Step b. Center shaft of $\mathrm{R}-2210$ between the positions noted in steps 5 and 7.

Note

This procedure may be used after replacement of $V-2202$ in unit 6 .
(b) 300-KC ADJUSTMENT. (See figure 6-10.)
Step 1. Place 10 KC knob (JT) in position 9.

Note

At this setting the output of the 10 KC STEP test jack will be 300 kc .

Step 2. Connect the output of the 10 KC STEP test jack to vertical plates of Oscilloscope OS-8/U.

Step 3. Place the output of the 100 KC X-TAL test jack on the horizontal plates of the scope. A steady 3:1 Lissajous pattern will be seen if the $10-\mathrm{kc}$ step generator is properly adjusted.

Step 4. Disconnect the cable to the 100 KC X-TAL jack on the RFO front panel. Connect this cable to the 10 KC jack on the RFO front panel. Check positions $0-8$ of the $10-\mathrm{kc}$ step switch for correct Lissajous pattern count as indicated in table 6-10.

Step 5. Adjust C-2219 (see figure 6-7 for location of C-2219) for correct Lissajous pattern, if necessary, as follows:

Note

C-2219 may be adjusted without removing unit
6 from mounting by pulling RFO drawer out.

Figure 6-8. RFO, Left Side, Unit Test Jacks, Voltages

TABLE 6-10. UNIT 6 10-KC STEP OSCILLATOR CHECK

POSITION OF S-2201	LISSAJOUS PATTERN
8	$29: 1$
7	$28: 1$
6	$27: 1$
5	$26: 1$
4	$25: 1$
3	$24: 1$
2	$23: 1$
1	$22: 1$
0	$21: 1$

Units 1, 2, 3, 4, 5 and R-2210 must be properly aligned before making this adjustment.

Step a. Place equipment in stand-by condition, switch ${ }^{(P)}$ in STANDBY.

Step b. Place knob (II) at 9. (Position of other knobs is immaterial.)

Step c. Connect a cable from the $100 \mathrm{KC} \mathrm{X}-\mathrm{TAL}$ jack on the RFO front panel to the horizontal input of an oscilloscope (OS $8 \mathrm{~A} / \mathrm{U}$ or equivalent).

Step d. Connect a cable from 10 KC STEP jack on RFO front panel to the vertical input of the oscilloscope.

Step e. Turn C-2219 clockwise until the oscillator unlocks, then turn slowly counterclockwise until the oscillator locks at the Lissajous pattern of 3:1. Note the position of the adjustment slot.

Step f. Turn C-2219 counterclockwise until oscillator unlocks, then turn slowly clockwise until the oscillator locks at the Lissajous pattern of 3:1. Note the position of the adjustment slot. Set the slot at the midrange point of the "lock-in" range

Note

This procedure may be used after replacement of any or all of the following unit 6 tubes:

1. V-2203
2. V-2204
3. V-2205
(4) UNIT 8.-Electron Frequency Converter Z2330 (unit 8) is commonly called the $100-\mathrm{kc}$ step generator. For purposes of this section, unit 8 requires two routine checks and adjustments.
(a) 100-KC ADJUSTMENT.
(See figure 6-10.)
Step 1. Set 100 KC knob \oplus in position 9.
Step 2. Place the output of the 100 KC STEP test jack on the vertical plates of the Oscilloscope OS-8/U.

Note

At this setting the output of the 100 KC STEP test jack will be 2.5 mc .

Figure 6-9. RFO, Bottom View, Unit Test Jacks, Voltages

Step 3. Place this output of the 100 KC X-TAL jack on the horizonal plates of the scope. A Lissajous pattern with a ratio of $1: 25$ will be seen. Check positions $0-8$ of the $100-\mathrm{kc}$ step switch for correct Lissajous pattern count as indicated in table 6-11.

TABLE 6-11. UNIT 8 100-KC STEP OSCILLATOR CHECK

POSITION OF © H POINTER	LISSAJOUS PATTERN
8	$24: 1$
7	$23: 1$
6	$22: 1$
5	$21: 1$
4	$20: 1$
3	$19: 1$
2	$18: 1$
1	$17: 1$
0	$16: 1$

Step 4. Adjust C-2339 (see figure 6-8 for location of C-2339), if necessary, to obtain a steady pattern as follows:

Note

C-2339 may be adjusted without removing unit 8 from the mounting, by pulling the RFO

Figure 6-10. RFO, Front Panel Unit Adjustments
drawer out and removing its left side cover. Units 1, 2, 3, 4, 5, 6 and 7 must be properly aligned before making this adjustment.

Step a. Switch $®$ in STANDBY. Frequency selection knob as follows: HT at position 9. (The position of other knobs immaterial.)

Step b. Connect a cable from the 100 KC X-TAL jack on the RFO front panel to the horizontal input of an oscilloscope (OS-8A/U or equivalent).

Step c. Connect a cable from the 100 KC jack on the RFO front panel to the vertical input of the oscilloscope.

Step d. Turn C-2339 clockwise until the oscillator unlocks, then turn slowly counterclockwise until the oscillator locks at the Lissajous pattern of 25:1. Note position of adjustment slot.

Step e. Turn C-2339 counterclockwise until the oscillator unlocks, then turn slowly clockwise until the oscillator locks at the Lissajous pattern of 25:1. Note position of adjustment slot. Set slot at the midrange point of the "lock-in" range.

Note

This procedure may be used after replacement of any or all of the following:

1. V-2327
2. V- 2328
3. V-2329
(b) MAXIMUM AMPLITUDE ADJUSTMENT. (See figure 6-10.)
Step 1. Turn the 100 KC knob HH to position 9.
Step 2. Connect Multimeter ME-25A/U to test point 8 b on unit 8 . (See figure $6-8$ for location of test point 8 b . Use test jack marked 8 b on unit 8 , not the one on unit 9.)

Step 3. Adjust C-2405 and C-2406 for a maximum reading on the meter. (See figure 6-8 for location of $\mathrm{C}-2405$ and $\mathrm{C}-2406$.)

Note

This procedure may be used for unit 8 after replacement of the following tubes:

$$
\begin{aligned}
& \text { 1. } \mathrm{V}-2330 \\
& \text { 2. } \mathrm{V}-2331
\end{aligned}
$$

(5) UNIT 12.-R-F Oscillator Z-2127 (unit 12) is commonly called the frequency shift oscillator (FSO). For purposes of this section, unit 12 requires one routine check and adjustment-the 100 -kc adjustment (see figure 6-10).

The output of the frequency shift oscillator is 100 kc when no frequency shift or facsimile signal is present. Be sure that the F.S. DEVIATION control \circledast is at the 0 position. This output is taken at the F. S. OSC. test jack.

Step 1. Place ZERO ADJ. switch (2) in the F. S. OSC. position.

CAUTION

Do not confuse the ZERO ADJ. switch (2) with the ZERO ADJ. controls behind the access door on the RFO front panel.

Step 2. Connect the output of the F. S. OSC. test jack to the vertical plates of Oscilloscope OS-8/U. A steady 1:1 Lissajous pattern should be seen.

Step 3. Adjust the F.S.O ZERO ADJ. control for the steady $1: 1$ pattern, if necessary.

Note

This procedure may be used after replacement of any or all of the following tubes:

$$
\begin{aligned}
& \text { 1. V-2126 } \\
& \text { 2. V-2127 } \\
& \text { 3. } V-2128
\end{aligned}
$$

5. MAINTENANCE PROCEDURES.

a. DISASSEMBLY.-Section 7 of this instruction book describes major disassembly procedures. Obvious disassembly or dismounting sequences will not be specially treated, but will be left to the discretion of technical personnel.

b. CLEANING AND INSPECTION.-As a prelin.-

 inary to cleaning and inspecting, it is advisable to remove all the plug-in components and other parts which may be removed without unsoldering any of the wires. These parts include such items as tubes, crystals, and pilot lamps. This work should be done unit by unit to avoid a mix-up of the various parts removed. Some of the tubes, of course, will require loosening of clamps and tube shields.

Figure 6-11. Electrical Equipment Cabinet and Base Mount Tapped Holes, Lubrication

Figure 6-12. Electrical Equipment Cabinet and Base Mount Latches, Rollers and Nuts, Lubrication

Check for unusual odors, such as potting compound, which might indicate an overloaded transformer; burning paint-overheated resistors; burning rubber-defective insulation.

An air hose may be used to remove dust, dirt, and foreign particles. Be sure to use extreme care when using the air hose around delicate parts, such as tuning capacitors. As a precautionary measure, the air line is purged of moisture by directing the nozzle towards the floor and releasing the air in the line.

A rag or brush dipped in dry-cleaning solvent (refer to paragraph 5 b) will remove dirt or grease. When used as a spray, use solvent sparingly. Ball bearings and other small parts may be dipped in the solvent and brushed to loosen any grease residue. They may then be air-dried by spinning.

Do not disturb the layout of the wiring, if possible. If wiring must be removed, however, be sure to return it to its original position after the cleaning procedure to prevent oscillation, feedback, and other circuit disturbances. Check all the sockets, and remove any dirt or corrosion with solvent or with fine sandpaper or crocus cloth.

After cleaning, the equipment is inspected for faulty or damaged parts. Some of these parts include tube
sockets and contacts, springs, gears, tuning capacitors, potentiometers, bandswitches, insulators, terminal strips, jacks, plugs, and hinges. Check for and replace or secure loose or damaged hardware.

The operating controls should be given a careful visual inspection and then checked for correct operation and setting. Turn each control slowly to its maximum clockwise limit, then to its maximum counterclockwise limit. Binding or scraping should be noted and referred to the proper department for correction, if it involves more than a simple adjustment.
In gear assemblies and in tuning mechanisms, backlash must be held to a minimum. Hence, trouble of this sort should be noted and corrected or reported as soon as possible.

Replace damaged parts, such as shorted or leaky capacitors or burned-out resistors. However, before actual replacement of the damaged part, the circuit should be carefully inspected to find the cause of the trouble. Only in extreme emergencies should replacement be made without a check-up.
The plug-in parts which had been previously removed must be cleaned and inspected before replacing. Dirt and grease may be removed with dry-cleaning solvent (paragraph 5b).

Figure 6-13. Radio Frequency Amplifier AM-1008/SRT (RFA), Left Side, Lubrication

Abstract

Note It is important to remove dirt or corrosion on the prongs of plug-in parts, such as tubes, jacks, and plugs, to avoid a high resistance connection between the prong and its socket. Use crocus cloth or fine sandpaper.

Tubes are to be tested in a tube checker before replacing. Cables and cords and their jacks and plugs must be checked for damage to their inserts and insulation. Look for opens, shorts, and intermittent contacts. The latter may often be found by wiggling the plugs in their sockets. If damage is found or if trouble is suspected, use an ohmmeter to check for continuity in the cords and cables.
c. LUBRICATION PROCEDURES.-The lubricants described in table 6-12, Lubricating Greases, and table 6-13, Lubricating Oils, are to be used on this equipment. It is recommended that certain tools be used for lubricating purposes (refer to table 6-14, Lubricating Tools). A small oil can is particularly convenient in most applications. For the more inaccessible points, the lubricant may be applied on the end of a long rod. The latter method is useful for one-drop applications, such as required at shaft-ends. Grease may be applied by hand or with a small paddle or rag. A small brush may be used, if convenient.
When dispensing a lubricant, wipe all dirt, dust, or moisture from around the opening of the container. The containers must be kept closed when not in use, to prevent moisture condensation on the surface of the lubricant and to keep dust and dirt out of the container. It is extremely important that lubricants be kept free of foreign matter.

Note

Many of the bearings used in the equipment are made of oil-impregnated bronze and require no lubrication; hence, in certain cases, no lubrication information will be needed.

Lubricants are effective in reducing friction, but it must be borne in mind that the effects of overlubrication are almost as serious as those of poor lubrication. Too much lubricant in ball and roller bearings prevents efficient operation and may cause a good deal of harm from the pressure which is built up in the bearings as they become warm.

An excess will cause an overflow of the lubricant onto the machine. The overflow not only collects harmful dirt and grit, but necessitates more cleaning time.

In some equipments, break-downs have been traced to overlubrication. The oil tends to destroy electric insulation. Careless handling of the lubricant can result in dirt being carried into bearings with the lubricant.

Under certain conditions, it is possible that the lubrication directions may seem inadequate, while under other circumstances they may seem excessive. Personal observation under working conditions must decide this important factor. The period of the lubrication procedure may then be changed and written into the routine maintenance checks.
(1) FRAMES AND BASE MOUNTS. - Figures 6-11 and 6-12 refer to the lubrication procedures that are used on the equipment frames. The various tapped holes, nuts, latches, and rollers are shown, with references to the lubricants to be used.
(2) RADIO FREQUENCY AMPLIFIER AM-1008/SRT (RFA).

Figure 6-14. RFA, Loading Spring and Actuating Arm, Lubrication
(a) PA TUNING MECHANISM (RFA).-The left side of the radio frequency amplifier is shown in figure 6-13. The lubrication procedures for the gears, racks, rollers, and idlers used in this assembly are described. References to the loading spring, blower, and PA dial assembly are also included. As noted in figure $6-14$, the bearings in the actuating arm assembly need be serviced only at the time of a major overhaul. Section 7 describes the pertinent disassembly procedure.
(b) PA DIAL ASSEMBLY.-The PA dial assembly is shown in figure 6-15 as a line drawing which calls out the necessary lubrication points.
(c) BANDSWITCH MECHANISM (RFA).-A portion of the right side of the RFA is shown in figure 6-16. This illustration describes the procedure used to lubricate the detent roller, arm shaft, and idler. Reference to the IPA dial drive is also made.
(d) IPA DIAL ASSEMBLY. - Figure 6-17 shows the lubrication points on the IPA dial assembly.
(3) RADIO FREQUENCY OSCILLATOR O-275/SRT (RFO).
(a) TYPICAL UNIT LUBRICATING POINTS. -Certain parts of the RFO are shown in detail in figure 6-18 to clarify subsequent unit lubrication procedures.

Figure 6-15. RFA, PA Dial Assembly, Lubrication
(b) LEFT SIDE.-Figure 6-19 shows the left side of the RFO and brings out the lubricating points in unit 9 , unit 10 , and S-2998. Reference to unit 8 is also included here.
(c) UNIT 8.-A partially disassembled unit 8 is shown in figure 6-20 to direct attention to the lubrication points.

Figure 6-16. RFA, Right Side, Bandswitch Lubrication

Figure 6-17. RFA, IPA Dial Assembly, Lubrication

1. UNIT 8 REMOVAL PROCEDURE.-To remove unit 8 from the RFO, proceed as follows:

Step 1. Place the 100 KC knob $\Theta \nmid$ in its 0 position. (See figure 6-10 for location of 100 KC knob.)

Step 2. Disconnect all cables to unit 8.
Step 3. Loosen the four mounting studs.
Step 4. Carefully pull unit 8 straight out.
2. UNIT 8 REPLACEMENT PROCEDURE. -To replace unit 8:

Step 1. Place 100 KC knob $₫ \rightarrow$ at 0 . (See figure 6-10.)

Step 2. Place the red indicator stud on unit 8 detent at 0 . (See figure 6-20 for location of unit 8 detent.)

Step 3. Carefully place unit 8 in position in the RFO.

Step 4. Secure the four mounting studs.
Step 5. Replace unit 8 cables.
(d) CONTROL PANEL REMOVED. - The chains and gears are shown in figure 6-21, a view of the RFO with its front panel removed. Lubrication of the fixed and adjustable idler gears is included in this illustration.

Figure 6-18. Typical Lubrication Points in the RFO
(e) RIGHT SIDE.-In figure 6-22 the right side of the RFO is shown, with the lubrication points on unit 6 , unit 11 B , and unit 11 C pointed out. Reference to unit 3 is included in this illustration.
(f) UNIT 3.-Lubricating points in unit 3 are shown in figure 6-23, a partially disassembled view of the unit.
(4) RADIO MODULATOR MD-229/SRT (LLRM).-The location of the front panel switches and their lubrication are shown in figure 6-24, a view behind the front panel of the LLRM.
(5) MOUNTING MT-1423/SRT (BASE MOUNT).-The air filters in the base mounts must be removed for cleaning and relubricating. Figure 6-25 describes the procedure to be used.
(6) CONTROL-INDICATOR C-1352/SRT.-For lubrication of the control-indicator positioning studs and insert threads see figure 6-26.
(7) CHASSIS SLIDES.-Figure 6-27 refers to the lubrication of the chassis slides. As noted, this lubrication procedure applies to one left and one right chassis slide on each of the following:
(a) Radio Frequency Amplifier AM-1008/SRT (RFA)
(b) Radio Modulator MD-229/SRT (LLRM)
(c) Radio Frequency Oscillator O-275/SRT (RFO)
(d) Power Supply PP-1094/SRT (LVPS)
(e) Power Supply PP-1095/SRT (MVPS)
(f) Power Supply PP-1096/SRT (HVPS)
(g) Radio Modulator MD-230/SRT (HVPS)
(8) RADIO FREQUENCY TUNER TN-229/SRT.
(a) JACKS.-The mating threads in the following jacks are to be lubricated as shown in figure 6-28:

1. J-301
2. J-302
3. J-303
(b) GEARS AND RACKS.-To check lubrication of the gears and racks in the r-f tuner, see figure

Figure 6-19. RFO, Left Side, Lubrication

Figure 6-20. RFO, Unit 8 (Z-2330), Lubrication

6-29. In addition, this illustration may serve as a reference guide to other lubrication procedures in the r-f tuner.
(c) DRIVE MOTOR SHAFT EXTENSION.See figure 6-30 for a cross-sectional view of the r-f tuner drive-motor extension-shaft with its lubrication instructions.
(d) CLUTCH-BRAKE.-The clutch-brake assembly, as shown in figure 6-31, must be disassembled before lubrication. Refer to Section 7 for disassembly, when necessary.
(e) MAIN DRIVE BALL BEARINGS.-For a detailed view of the main drive, see the cross-section line drawing of figure 6-32. Disassembly of the bearings is simple and obvious. No explanation is needed.
(f) ACTUATOR MOTOR. - There are three actuator motors in the equipment. One is in the r-f tuner and the other two are in the antenna coupler. These motors require some lubrication, as shown in figure 6-33.
(9) ANTENNA COUPLER CU-372/SRT.
(a) DRIVE GEARS.-Figure 6-34 shows lubricating procedures for the drive gears in the coupler. This illustration may serve as a guide to other lubrication procedures in the coupler.
(b) ANTENNA TRANSFER SWITCH.-Three bearings and four sliding switch contacts associated with antenna transfer switch S-3512 are called out in figure $6-35$, showing the points of lubrication.
(c) LOAD SELECTOR SWITCH.-Figure 6-36 shows six sliding switch contacts and three ball bearings, with the lubrication procedures for these parts.
(d) ACTUATOR MOTORS.-The two actuator motors in the coupler are to be lubricated as noted in figure 6-33.
(e) JACKS.-The mating threads on the jacks in the antenna coupler are to be lubricated as directed in figure 6-28. These jacks are as follows:
. J-3501
. J-3502
J-3503
J-3504
. J-3505
6. J-3506
7. J-3507
d. LUBRICATION PERIODS.-The lubrication periods mentioned on the lubrication illustrations are not intended to be absolutely inflexible. They are intended for use on the equipment under normal conditions. For extreme operating conditions, these periods may possibly be reduced to a fraction of the original. Some abnormal conditions encountered may be: (a) extremely wide ranges of temperature, (b) prolonged high-speed operation, (c) immersion in water, (d) operation in dust or sand, (e) exposure to moisture. Contamination of the lubricant will certainly take place under any of these conditions. Thus, the protective qualities of the lubricant applied will be lost.

Figure 6-21. RFO, Control Panel Removed, Idler Gear Lubrication

Individual or on-the-spot judgment can lead to a reduction of the lubricating period in some borderline cases. In other cases, it may be obvious that the lubricant is not performing its task of keeping the equipment operating at optimum efficiency and that break-down will follow. Immediate relubrication of the part will be in order, with revision of the lubricating schedule to follow.
(1) QUARTERLY LUBRICATION.-Check the following illustrations for quarterly lubrication instructions:
(a) Figure 6-12
(b) Figure 6-13
(c) Figure 6-15
(d) Figure 6-16
(e) Figure 6-17
(f) Figure 6-19
(g) Figure 6-21
(b) Figure 6-25
(i) Figure 6-27
(2) SEMIANNUAL LUBRICATION.-The following illustrations cover lubrication instructions for the semiannual interval:
(a) Figure 6-11
(b) Figure 6-12
(c) Figure 6-13

Figure 6-22. RFO, Right Side, Lubrication

Figure 6-23. RFO, Unit 3 (Z-2053), Lubrication

MAINTENANCE

(d) Figure 6-14
(e) Figure 6-16
(f) Figure 6-17
(g) Figure 6-19
(b) Figure 6-20
(i) Figure 6-22
(j) Figure 6-23
(k) Figure 6-24
(l) Figure 6-26
(m) Figure 6-27
(3) ANNUAL LUBRICATION.-The following illustrations contain lubrication procedures to be followed for the annual lubrication interval:
(a) Figure 6-28
(b) Figure 6-29
(c) Figure 6-33
(d) Figure 6-35
(e) Figure 6-36
(4) BIENNIAL LUBRICATION.-The following illustrations contain lubrication procedures to be followed for the biennial lubrication interval:
(a) Figure 6-30
(b) Figure 6-31
(c) Figure 6-34
(5) THREE-YEAR LUBRICATION.-The following are the lubrication illustrations that cover the threeyear lubrication intervals:
(a) Figure 6-32
(b) Figure 6-35
(c) Figure 6-36
(6) MAJOR OVERHAUL LUBRICATION.-The following are the lubrication illustrations that cover major overhaul intervals:
(a) Figure 6-14
(b) Figure 6-24
(c) Figure 6-27
e. LUBRICATING GREASES.-Table 6-12 is a list of the greases to be used on the equipment. They are listed in the Navy Stock List of General Stores, FSC Group 91.
f. LUBRICATING OILS.-Table 6-13 is a list of the oils to be used on the equipment. They are catalogued in the Navy Stock List of General Stores, FSC Group 91.
g. LUBRICATING TOOLS.-Table 6-14 is a list of tools which may be used for lubricating purposes. The brushes are catalogued in Class 38, General Stores Section. The oil can is listed in General Stores Section, Class 53, Group 2.
b. DRY CLEANING SOLVENT.-Grease, oil, and dirt may be removed with Dry Cleaning Solvent P-S661b. It is packed in commercial units for distribution and is furnished in 1 -gallon, 5 -gallon, and 55 -gallon metal containers. The solvent may be used as a dip or a spray, or it may be applied with a rag or brush. This specification covers two types of solvent, referred to commercially as "Stoddard Solvent" and " 140° F. Solvent".

Figure 6-24. Radio Modulator MD-229/SRT (LLRM), Front Panel Switch Lubrication

TABLE 6-12. LUBRICATING GREASES

ITEM	SPECIFICATION NUMBER AND TITLE	TYPE	STANDARD NAVY STOCK NUMBER					
			8 ox.	1 lb.	5 lb.	25 lb.	35 lb.	100 lb.
1.	MIL-G-3278; Grease, Aircraft and Instrument		$\begin{gathered} \text { WS9150- } \\ 261- \\ 8297 \end{gathered}$	$\begin{gathered} \text { WS9150- } \\ 261- \\ 8298 \end{gathered}$	$\begin{gathered} \text { WF9150- } \\ 223- \\ 4012 \end{gathered}$	$\begin{gathered} \text { WR9150- } \\ 190- \\ 0897 \end{gathered}$	$\begin{gathered} \text { WF9150- } \\ 190- \\ 0898 \end{gathered}$	$\begin{gathered} \text { WS9150- } \\ 190- \\ 0899 \end{gathered}$
2.	14-L-3; Grease, Ball and Roller Bearing	I		$\begin{gathered} \text { WM9150- } \\ 235- \\ 5564 \end{gathered}$	$\begin{gathered} \text { WF9150- } \\ 235- \\ 5544 \end{gathered}$			
3.	MIL-L-15719; Grease, Silicone Insulated Electric Motor	HTG	$\begin{gathered} \text { WS9150- } \\ 257- \\ 5358 \end{gathered}$					

TABLE 6-13. LUBRICATING OILS

	SPECIFICATION NUMBER AND TITLE	MS	STANDARD NAVY STOCK NUMBER				
ITEM			Bulk	1 pt .	1 gal.	5 gal .	55 gal .
1.	MIL-L-9000; Lubricating Oil, Diesel (SAE 30)	9250	$\begin{aligned} & \text { WF9150- } \\ & 231- \\ & 6656 \end{aligned}$			$\begin{aligned} & \text { WF9150- } \\ & 231- \\ & 6653 \end{aligned}$	$\begin{gathered} \text { WF9150- } \\ \text { 231- } \\ 6655 \end{gathered}$
2.	MIL-L-17331; Lubricating Oil, Turbine (SAE 30)	2190 T	$\begin{gathered} \text { WM9150- } \\ 235- \\ 9064 \end{gathered}$			$\begin{aligned} & \text { WM9150- } \\ & 235- \\ & 9061 \end{aligned}$	$\begin{gathered} \text { WF9150- } \\ 235- \\ 9063 \end{gathered}$
3	14-O-20; Lubricating Oil, Instrument			$\begin{gathered} \text { WS9150- } \\ 223- \\ 8898 \end{gathered}$	$\begin{gathered} \text { WS9150- } \\ 261- \\ 7902 \end{gathered}$		

TABLE 6-14. LUBRICATING TOOLS

ITEM	SPECIFICATION NUMBER AND TITLE	NAVY STOCK NO.	USE	DESCRIPTION

Figure 6-25. Mounting MT-1423/SRT (Base Mount), Air Filters, Lubrication

6. SPECIAL MAINTENANCE.

a. SHAFTS.-Shafts should be checked for dirt and corrosion. Remove dirt with dry-cleaning solvent (refer to paragraph $5 b$). The shafts may also be cleaned with fine crocus cloth to remove obstinate dirt marks. Use a fine file or fine sandpaper to remove burrs. After cleaning, the shafts should be relubricated according to the procedures listed in the lubrication illustrations.
b. VARIABLE CAPACITORS.-Noise, loss of sensitivity, and improper tuning may be caused by faulty or dirty tuning capacitors. Serious losses may occur, as well, in certain types of tuned circuits.

Rotor contacts, bearings and plates may be cleaned with dry-cleaning solvent. Pipe cleaners are especially useful for cleaning between capacitor plates, if available.

A small, soft brush, dipped in solvent, may also be used for this purpose. Be careful not to damage or bend any of the plates.
c. RELAYS.-Some relay contacts are plated with thin coats of silver. In cleaning this type of contact, avoid the use of abrasives, which may damage the contact surfaces. These surfaces are cleaned with dry-cleaning solvent.

Pitted contacts on heavier relays, such as those used for power control circuits, are cleaned with a fine grade of crocus cloth. Badly pitted contacts should be replaced singly, if possible. If not, a complete new relay may have to be installed. After cleaning, the contacts of both types of relays are finished with a burnishing tool.

Check the working parts of the relays, as follows:

Figure 6-26. Control-Indicator, Lubrication
Step 1. Check the armature pivot points. They should be free of burrs, rust, corrosion, or any other defect that may prevent free movement. Remove burrs or corrosion with a fine file or fine sandpaper.

CAUTION

Be sure that the shape and location of the pivot points have not been changed.

Step 2. The return spring should be inspected for good tension. Replace the spring if rusted or damaged.

Step 3. Examine the relay winding for damage to the insulation. Damaged wires or insulation may be repaired with tape or insulated tubing (spaghetti).

Step 4. Check the relay core for corrosion. If corroded, the relay shobuld be replaced to avoid possible future failure.

Step 5. Check the frame. Repair or replace if damaged.

Note

All parts of the relay may be cleaned with drycleaning solvent. (Refer to paragraph 5b.)
d. JACKS AND PLUGS.-Particular care should be used in checking the mating threads when examining jacks and plugs. Any damage to the threads will make it difficult, if not impossible, to mate the connectors. Clean off grease and dirt with dry-cleaning solvent, using a firm, bristle brush. After cleaning and checking the plug or jack, it should be relubricated by covering the threads with a thin film of grease, specification MIL-G-3278 (item 1, table 6-12). Avoid overlubrication.
e. GEARS AND RACKS.-The gears and racks must be checked for dirt and other foreign particles in the gear teeth. Clean off dirt or caked lubricant with a small brush dipped in dry-cleaning solvent.

The gear shafts may also be cleaned with the solvent. Polish the shaft with a piece of fine crocus cloth, if necessary.

Figure 6-27. Chassis Slide, Lubrication

NAVSHIPS 92121(A)

Figure 6-28. Radio Frequency Tuner TN-229/SRT and Antenna Coupler CU-372/SRT Jacks and Plugs, Lubrication

After cleaning, the gears and racks are to be relubricated, according to the procedures described in the lubrication illustrations.
f. WAFER SWITCHES AND DETENTS.-Examine the contacts for good spring tension. Weak spots require restoration of spring tension. However, long, telephonetype switch or relay contacts should never be bent. These contacts should be replaced, if possible. If the contacts cannot be replaced singly, the entire switch may have to be replaced, as poor contact pressure leads to trouble and eventual failure.

Check the detent actions and the switch shaft. These parts, as well as the switch contacts, may be cleaned with dry-cleaning solvent.
The various detent assemblies, especially those in the various subunits of the RFO, need careful attention. They should be repaired immediately or replaced if repair is not practical.

After cleaning a switch or detent, the part should be relubricated as directed in the lubrication instruction illustrations.
g. CHAINS.-When inspecting the chains, be sure to check the adjustment of the idlers. Proper tension on the chains must be maintained at all times. To achieve correct tension, a balance must be found which is a compromise between ease of operation and minimum back lash. In case of severe damage to the chain, it should be replaced. Remove dirt and grease with the dry cleaning solvent.
b. CLEANING BEARINGS.-Before relubricating, the bearings should be cleaned and inspected. They may be cleaned by swishing in dry-cleaning solvent. Use a small brush to clean out any stubborn dirt or grease which tends to cling to the bearings. Dry by spinning in air.
i. LUBRICATING BEARINGS.-Examine all polished rubbing surfaces for cracks or pits. Pitted or cracked bearings must be replaced. After cleaning and examination, the bearings are to be lubricated according to the instructions in the lubrication illustrations.
j. MOTORS.-Section 7 of this instruction book describes disassembly procedures in detail. Refer to Section 7 for the more complex assembly or reassembly procedures.

Figure 6-29. R-f Tuner, Gears and Racks, Lubrication
(2) RFA BLOWER MOTOR B-1306.-A check

Figure 6-30. R-f Tuner, Cross Section of Drive Motor Shaft Extension, Lubrication
(1) GENERAL. - Some general motor maintenance procedures follow:
(a) Motor brushes are to be replaced in the same relative positions they occupied previously.
(b) Commutators should be dressed, if necessary, with sandpaper (not emery cloth).
(c) After undercutting mica, clean and polish as a finishing operation.
(d) Bearings are to be treated as described in paragraph $6 b$ of this section.
(e) Clean and polish motor shafts with a piece of fine crocus cloth.
(f) When reassembling, be sure to check for excessive shaft end play.
(g) Avoid overlubrication. Run the motor for a few minutes after assembly to check. No lubricant shouid be thrown off when the motor is running.
period of 1,000 hours, as noted on the TOTAL HOURSFILAMENT counter on the front panel of the Power Supply PP-1095/SRT (MVPS), should be the maximum for this motor. Since the motor is in continuous operation this check period should not be exceeded by more than 50 percent. Check for noise and/or excessive heating.
(3) BASE MOUNT MOTORS B-701 AND B-702.-Check these motors every 10,000 hours as noted on the TOTAL HOURS-FILAMENT meter. Bearings must be carefully cleaned and inspected, if necessary. Refer to the bearing information of Section 6 , paragraph $6 h$, and any pertinent disassembly procedures in Section 7.
(4) R-F TUNER AND COUPLER MOTORS.The r-f tuner has drive motor $\mathrm{B}-301$, blower motor $B-306$, and actuator motor $B-303$. The coupler has actuator motors B-3501 and B-3502. An annual inspection of these motors is required. Check Section 7 for the disassembly procedures necessary to gain access to these motors. The drive motor (B-301) and the blower motor (B-306) require no lubrication but should be examined for operating defects. The three actuator motors ($\mathrm{B}-303$, $B-3501$, and $B-3502$) require some lubrication. This procedure is outlined in figure 6-33. Refer to Section 6, paragraph $6 h$, for bearing information.
k. RECORD OF TUBE CHANGES.-When it becomes necessary to change any of the tubes, the date and the reading of the TOTAL HOURS-FILAMENT meter should be recorded, as provided in the space at the top of table 6-15.
l. HAIR AND BRISTLE BRUSHES.-Some of the brushes listed in table 6-14 are made of hair or bristle.

Figure 6-31. R-f Tuner, Cross Section of Clutch-Brake Assembly, Lubrication

TABLE 6-15. RECORD OF TUBE CHANGES

TUBE TYPE	CHANGE DATA			CHANGE DATA			CHANGE DATA		
	DATE	METER READING	TUBE CHANGE	DATE	METER READING	TUBE CHANGE	DATE	METER READING	TUBE CHANGE
OA2									
OB2									
3B28									
4-400A									
4D21									
5R4WGB									
6AG5									
6AG7									
6AK6									
6AS7G									
6E5									
12AU7									
5651									
5654									
5687									
5725									
5726									
5751									
5814									
5933									
6201									

$3 A-\frac{\text { LEGEND }}{\text { THREE YEARS }}$
Figure 6-32. R-f Tuner, Cross Section of Main Drive Bearings, Lubrication

Figure 6-33. Actuator Motor, Lubrication

Brushes of this type are highly susceptible to insect infestation. Since insect repellents are highly volatile, they must be replenished as they wear off. To protect the brushes, when a partial issue is made, the repellent must be replaced and the package must be resealed. Inspect these packages periodically (3 to 6 months).

Brushes should be cleaned immediately after using. Do not stand a brush on its bristles or it will become distorted. Prolonged immersion in water will destroy the resilience of bristles, rust the ferrule, and swell the block.
m. PRESSURIZING THE R-F TUNER AND COUPLER.-When it becomes necessary to recharge either of these units, it is important that only fresh, dry gas be used. Refer to Section 7 for recharging, purging, and exhausting procedures.
n. CHARGING R-F TUNER OR COUPLER. (See figure 6-37.)-When pressure in the r-f tuner or the coupler falls below 15 psi , it will be necessary to add more nitrogen to bring the pressure up to its normal 20 psi. A method for charging those units follows:

Note

This procedure, with its accompanying illustration, pertains to the r-f tuner. However, the antenna coupler is treated in exactly the same manner.

Step 1. Check the regulator (1) to be sure that
the adjusting screw (2) and the needle valve (3) are closed at this time.

Step 2. Fasten the delivery hose (4) securely to the regulator (1) by means of the hose-coupling nut (5).

Step 3. Attach the regulator (1) to the gas cylinder and secure the hexagonal inlet coupling nut (6).

Step 4. Connect the delivery hose (4) to the r-f tuner intake valve (7).

Step 5 . Open the cylinder valve (8).

Note

With a full 9 -cubic-foot nitrogen gas cylinder, the cylinder-pressure gauge (9) on the regulator (1) should read about $1,600 \mathrm{psi}$.

Step 6. Open the adjusting screw (2) until the de-livery-pressure gauge (10) reads 20 psi .

Note

The relief valve (11) is not used, except for purging or exhausting the cylinder as outlined in Section 7.

Step 7. Open the needle valve (3) and bring the pressure up to 20 psi as indicated on the pressure gauge (12). When the desired pressure is attained, the cylinder valve (8) is closed. The regulator (1) may then be removed from the gas cylinder.

Figure 6-34. Antenna Coupler, Lubrication

Figure 6-35. Antenna Transfer Switch S-3512 and Bearings, Lubrication

Figure 6-36. Load Selector Switch S-3511 and Bearings, Lubrication

Figure 6-37. Typical Pressurizing Procedure

INSTRUCTION BOOK

for

RADIO TRANSMITTING SETS

AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16A

SECTION 7
CORRECTIVE MAINTENANCE

FEDERAL TELEPHONE AND RADIO COMPANY A division of International Telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
	Parts Lists

TABLE OF CONTENTS

Paragraph Page Paragraph Page
7-1

1. Introduction
2. Theory of Localization 7-2
3. Trouble-Shooting the Transmitter Bay 7-2
a. General 7-2
b. Test Equipment Required 7-2
c. Locating Faulty Unit 7-2
4. Trouble-Shooting and Repair of the Major Units 7-8
a. Removal of Major Units 7-8
b. Replacement of Major Units 7-8
5. Radio Frequency Oscillator O-275/SRT (RFO), Trouble Shooting 7-8
a. RFO Mounting, Unit 14 (Z-2901),Trouble Shooting 7-12
b. RFO Mounting, Unit 14 (Z-2901), Re-pair and Adjustment7-12
(1) Electrical Adjustments 7-12
(2) Mechanical Adjustments 7-13
(a) Rẹmoval and Repair 7-13
(b) Replacement and Adjust- ments 7-14
c. Radio Frequency Oscillator, Unit 1 (Z-2001), Trouble Shooting 7-15
d. Radio Frequency Oscillator, Unit 7-18
(1) Electrical Adjustments 7-18
(2) Mechanical Adjustments 7-18
(a) Removal and Repair 7-18
(b) Replacement and Adjust- ments 7-20
e. Frequency Multiplier, Unit 2 (Z-2034), Trouble Shooting 7-20
f. Frequency Multiplier, Unit 2 (Z-2034), Repair and Adjustment 7-20
(1) Electrical Adjustments 7-20
(2) Mechanical Adjustments 7-21
(a) Removal and Repair 7-21
(b) Replacement and Adjust- ments 7-21
g. Radio Frequency Oscillator, Unit 3 (Z-2053), Trouble Shooting 7-21
b. Radio Frequency Oscillator, Unit 3 (Z-2053) Repair and Adjustment 7-21
(1) Electrical Adjustments 7-21
(2) Mechanical Adjustments 7-25
(a) Removal and Repair 7-25
(b) Replacement and Adjust- ments 7-26
j. Frequency Multiplier, Unit 4 (Z-2103), Trouble Shooting 7-26
k. Frequency Multiplier, Unit 4 (Z-2103) Repair and Adjustment 7-27
(1) Electrical Adjustments 7-27
(2) Mechanical Adjustments 7-28
(a) Removal and Repair 7-28
(b) Replacement and Adjust- ments 7-28
l. Electronic Frequency Converter, Unit 5
(Z-2158) Trouble Shooting 7-28
m. Electronic Frequency Converter, Unit 5
(Z-2158) Repair and Adjustment 7-28
(1) Electrical Adjustments 7-28
(2) Mechanical Adjustments 7-30
(a) Removal and Repair 7-30
(b) Replacement and Adjust- ments 7-30
n. Electronic Frequency Converter, Unit 6
(Z-2204), Trouble Shooting 7-30
o. Electronic Frequency Converter, Unit 6
(Z-2204) Repair and Adjustment 7-31
(1) Electrical Adjustments 7-31
(a) R-2210 Adjustment 7-31
(b) C-2219 Adjustment 7-31
(c) T-2202 Adjustment 7-32
(d) Step Oscillator S-2201 Ad- justments 7-32
(e) $10-\mathrm{Kc}$ Step Filter Adjust- ments 7-33
(f) T-2203, T-2204, T-2205 Ad- justment 7-34
(g) 10-Kc Trap Adjustment 7-34
(2) Mechanical Adjustments 7-38
(a) Removal and Repair 7-38
(b) Replacement and Adjust- ments 7-38
p. Frequency Multiplier, Unit 7 (Z-2305),
Trouble Shooting 7-38
q. Frequency Multiplier, Unit 7 (Z-2305),
Repair and Adjustments 7-38
(1) Electrical Adjustments 7-38
(2) Mechanical Adjustments 7-41
(a) Removal and Repair 7-41
(b) Replacement and Adjust-ments7-41
r. Electronic Frequency Converter, Unit 8
(Z-2330), Trouble Shooting 7-41
s. Electronic Frequency Converter, Unit 8
(Z-2330) Repair and Adjustment 7-41
(1) Electrical Adjustments 7-41
(a) C-2339 Adjustment 7-41
(b) T-2326 Adjustment 7-42
(c) S-2326 Step Oscillator Ad- justments 7-42
(d) S-2326 Step Filter Adjust- ments 7-43
(e) Z-2327, Z-2328 and Z-2329 Adjustments 7-43
(f) 100-Kc Trap Adjustment 7-44 7-44

TABLE OF CONTENTS (Cont'd)

Paragraph Páge
t. Electronic Frequency Converter, Unit 9
(Z-2426), Trouble Shooting 7-45
u. Electronic Frequency Converter, Unit 9
(Z-2426), Repair and Adjustment 7-45
(1) Electrical Adjustments 7-45
(2) Mechanical Adjustments 7-47
(a) Removal and Repair 7-47
(b) Replacement and Adjust- ments 7-49
v. Frequency Multiplier, Unit 10 (Z-2526), Trouble Shooting 7-49
w. Frequency Multiplier, Unit 10 (Z-2526) Repair and Adjustment7-49
(1) Electrical Adjustments 7-49
(2) Mechanical Adjustments 7-51
(a) Removal and Repair 7-51
(b) Replacement and Adjust- ments 7-51
x. Electronic Frequency Converter, Unit 11A (Z-2626), Trouble Shooting 7-52
y. Electronic Frequency Converter, Unit11A (Z-2626), Repair and Adjust-ment7-52
(1) Electrical Adjustments 7-52
(2) Mechanical Adjustments 7-52
(a) Removal and Repair 7-52
(b) Replacement and Adjust- ments 7-53
z. Electronic Frequency Converter, Unit
11B (Z-2651) Trouble Shooting 7-53
aa. Electronic Frequency Converter, Unit 11B (Z-2651), Repair and Adjust- ment 7-53
(1) Electrical Adjustments 7-53
(2) Mechanical Adjustments 7-56
(a) Removal and Repair 7-56
(b) Replacement and Adjust- ment 7-56
bb. Electronic Frequency Converter, Unit11C (Z-2801) Trouble Shooting .7-56
cc. Electronic Frequency Converter, Unit11C (Z-2801), Repair and Adjust-ment7-57
(1) Electrical Adjustments 7-57
(2) Mechanical Adjustments 7-61
(a) Removal and Repair 7-61
(b) Replacement and Adjust- ments 7-61
dd. Radio Frequency Oscillator, Unit 12 (Z-2127), Trouble Shooting 7-63
ée. Radio Frequency Oscillator, Unit 12
(Z-2127), Repair and Adjustment 7-63

Paragraph

Paragraph

Paragraph

Paragraph

Paragraph Page Page Page Page Page
(1) Electrical Adjustments
(1) Electrical Adjustments
(1) Electrical Adjustments
(1) Electrical Adjustments 7-63 7-63 7-63 7-63
(a) F.S.O. ZERO ADJ.
(a) F.S.O. ZERO ADJ.
(a) F.S.O. ZERO ADJ.
(a) F.S.O. ZERO ADJ.
(R-2916) Adjustment
(R-2916) Adjustment
(R-2916) Adjustment
(R-2916) Adjustment 7-64 7-64 7-64 7-64
(b) F.S.O. RANGE ADJ.
(b) F.S.O. RANGE ADJ.
(b) F.S.O. RANGE ADJ.
(b) F.S.O. RANGE ADJ.
(R-2919) Adjustment
(R-2919) Adjustment
(R-2919) Adjustment
(R-2919) Adjustment 7-65 7-65 7-65 7-65
(c) T-2126 Adjustment
(c) T-2126 Adjustment
(c) T-2126 Adjustment
(c) T-2126 Adjustment 7-67 7-67 7-67 7-67
Pag
Pag
Pag
Pag
Pag
7-67
(2) Mechanical Adjustments
7-67
7-67
(a) Removal and Repair
(a) Removal and Repair
7-67
ff. Control-Indicator C-1352/SRT, Trouble Shooting 7-67
gg. Control-Indicator, C-1352/SRT, Repair and Adjustment 7-67
(1) Electrical Adjustments 7-67
(2) Mechanical Adjustments 7-68
(a) Removal and Repair 7-68
(b) Replacement and Adjust- ments 7-68
6. Radio Modulator MD-229/SRT, Low Level Radio Modulator (LLRM) 7-68
a. Trouble Shooting 7-68
(1) Audio Circuits 7-68
(2) Keying Circuits 7-72
(3) Power Supply Circuits 7-72
b. Repair and Adjustment 7-73
(1) Electrical Adjustments 7-73
(a) Audio Circuits 7-73

1. CLIPPER SYM. Control 7-73
2. GAIN TO CLIP \mathbb{M} and SQUELCH TRIG. (L) Controls 7-73
3. 500 W . AUDIO LEVEL
Control 7-74
(b) Keying Circuits 7-74
4. Neutral Polar Mark and Space Controls 7-74
5. (+) LIMIT and (-) LIMIT Controls 7-75
6. ZERO ADJ. Control 7-75
7. AUDIO OSC. FEEDBACK Control 7-76
8. TIME CONST ADJ.
Control 7-76
(c) Power Supply Circuits 7-76
9. 250 V.P.S. Control 7-76
10. -12-Volt Supply 7-77
(2) Mechanical Adjustments 7-77
(a) Removal and Repair 7-77
(b) Replacement and Adjust- ments 7-77
11. Radio Modulator MD-230/SRT, High Level Radio Modulator (HLRM) 7-77
a. Trouble Shooting 7-77
b. Repair and Adjustments 7-79
(1) Electrical Adjustments 7-79

TABLE OF CONTENTS (Cont'd)

ParagraphPage
(2) Mechanical Adjustments 7-79
(a) Removal and Repair 7-79
(b) Replacements and Adjust- ments 7-79
8. Radio Frequency Amplifier AM-1008/SRT (RFA) 7-81
a. Trouble Shooting 7-81
b. Repair and Adjustment 7-82
(1) Electrical Adjustments 7-82
(a) Buffer and IPA Circuits 7-82

1. 19- to 26-Mc Band Ad- justments 7-82
2. 11- to $19-\mathrm{Mc}$ Band Ad- justments 7-83
3. 5- to $11-\mathrm{Mc}$ Band Ad- justments 7-84
4. 2- to 5-Mc Band Adjust- ments 7-86
5. 0.3 - to $0.8-\mathrm{Mc}$ and 0.8 - to 2-Mc Band Adjust- ment 7-86
(b) PA Circuit 7-86
6. C-1319, C-1320, C-1321
Adjustments 7-86
7. R-1345, R-1348 Adjust- ment 7-86
8. Harmonic Trap Adjust- ment 7-87
9. L-1339, L-1340, L-1341 L-1342, L-1329 and L-1331 Adjustment .. 7-88
10. C-1319 Coupling Ad-justment7-88
(2) Mechanical Adjustments 7-89
(a) Removal and Repair 7-89
11. $\mathrm{C}-1319, \mathrm{C}-1320$ and
C-1321 7-89
12. L-1329, L-1331, L- 1339, L-1340, L-1341and L-13427-91
13. IPA Dial Drive Assem- bly 7-91
14. PA Dial Drive Assem- bly 7-91
15. Harmonic Trap Capaci- tor C-1323 7-92
16. PA Tuning Counter- balance Assembly. 7-93
17. Right Angle Drive As- sembly 7-93
18. Bandswitches S-130 1 and S-1302 7-93
19. Blower Motor B-1306 7-95
20. IPA Subassembly 7-95
(b) Replacement and Adjust- ments 7-95
Paragrapb Page
21. Power Supply PP-1094/SRT, Low Voltage Power Supply (LVPS) 7-95
a. Trouble Location 7-95
b. Repair and Adjustment 7-95
(1) Electrical Adjustments 7-95
(2) Mechanical Adjustments 7-95
(a) Removal and Repair 7-95
(b) Replacements 7-97
22. Power Supply PP-1095/SRT, Medium Volt- age Power Supply (MVPS) 7-97
a. Trouble Location 7-97
b. Repair and Adjustment 7-97
(1) Electrical Adjustments 7-97
(2) Mechanical Adjustments 7-99
(a) Removal and Repair 7-99
(b) Replacement 7-99
23. Power Supply PP-1096/SRT, High Voltage
Power Supply (HVPS) 7-99
a. Trouble Location 7-99
b. Repair and Adjustment 7-99
(1) Electrical Adjustments 7-99
(2) Mechanical Adjustments 7-99
(a) Removal and Repair 7-99
(b) Replacement 7-99
24. Mounting MT-1423/SRT (Base Mount) 7-99
a. Trouble Location 7-99
b. Repair and Adjustment 7-101
(1) Electrical Adjustments 7-101
(2) Mechanical Adjustments 7-101
(a) Removal and Repair 7-101
(b) Replacement 7-101
25. Cabinet, Electrical Equipment CY-1571/ SRT (100-Watt Frame Assembly) 7-101
a. Trouble Location 7-101
b. Repair and Adjustment 7-105
(1) Electrical Adjustments 7-105
(2) Mechanical Adjustments 7-105
(a) Removal and Repair 7-105
(b) Replacement 7-105
26. Cabinet, Electrical Equipment CY-1572/ SRT (HLRM Cabinet) 7-105
a. Trouble Location 7-105
b. Repair and Adjustment 7-105
(1) Electrical Adjustments 7-105
(2) Mechanical Adjustments 7-105
(a) Removal and Repair 7-105
(b) Replacement 7-107
27. Cabinet, Electrical Equipment CY-1573/ SRT (HVPS Cabinet) 7-107
a. Trouble Location 7-107
b. Repair and Adjustment 7-107
(1) Electrical Adjustments 7-107
(2) Mechanical Adjustments 7-107
(a) Removal and Repair 7-107
(b) Replacement 7-107

NAVSHIPS 92121(A)
CORRECTIVE
AN/SRT-14, 14A, 15, 15A, 16, 16A
MAINTENANCE

TABLE OF CONTENTS (Cont'd)

ParagraphPage
16. Antenna Tuning Equipment 7-107
a. System Trouble Shooting 7-107
b. Test and Alignment 7-108
17. Transmitter Coupler CU-402/SRT (Load Adjust Unit) 7-108
a. Trouble Location 7-108
(1) Electrical Adjustments 7-109
(a) Voltage Divider R-3201 7-110
(b) R-3206 and R-3207 7-110
(c) Transformer T-3202 Load- ing Circuit, (R-3202, R-3203 and R-3204, R-3205) 7-111
(d) Matching Procedure for Crystal Diodes 7-111
(e) Final Test to Be Performed when SWR Monitor Z- 3201 is Replaced in the Transmitter Coupler CU- 402/SRT 7-111
(2) Mechanical Adjustments 7-112
(a) Removal and Repair 7-112
(b) Replacement 7-112
18. Antenna Coupler CU-372/SRT 7-112
a. Trouble Location 7-112
(1) General 7-112
(2) Trouble-Shooting the Antenna Coupler Bypass Section Switch Assembly S-3514 and Switch S-3512 7-115
(3) Trouble Location of the Antenna Coupler Loading Section Switch Assembly S-3513, and Switch S-3511 7-115
b. Repair and Adjustment 7-116
(1) Electrical Adjustments 7-116
(2) Mechanical Adjustments 7-116
(a) Removal and Repair 7-116

1. Removal of Unit fromShock Mount Bases 7-116
2. Removal of JunctionBox 7-116
3. Removal of Housing 7-116
4. Removal of Loading Section from Unit 7-117
5. Disassembly of Bypass Section 7-117
6. Disassembly of Loading Section 7-117
7. Removal of Vacuum Capacitor C-3501 and Coil L-3503 7-118
(b) Replacement and Adjust- ments 7-118
Paragrapb
Page
(c) Bypass Section Alignment 7-118
(d) Loading Section Alignment 7-121
(e) Purging and Pressurizing 7-121
8. Radio Frequency Tuner TN-229/SRT 7-121
a. Trouble Location 7-121
(1) General 7-121
(2) Trouble-Shooting the Main Drive Assembly of the R-f Tuner 7-122
(3) Trouble-Shooting the Impedance Transformer Switch S-308 7-122
b. Repair and Adjustment 7-122
(1) Electrical Adjustments 7-122
(2) Mechanical Adjustments 7-123
(a) Removal and Repair 7-123
9. Removal of Unit from Shock Mount Bases .. 7-124
10. Removal of Input End(Bottom) Housing 7-124
11. Removal of Output End(Top) Housing 7-124
12. Removal of Components in Drive Section 7-125
13. Removal and Disas-sembly of ImpedanceTransformer SwitchAssembly 7-125
14. Removal of ShortingRing Assembly 7-126
(b) Replacement and Adjust- ments 7-126
15. Clutch-Brake Unit Ad-justment7-126
16. Contacts, Bearings and Gaskets 7-126
17. Purging and Pressuriz- ing 7-126
18. Maintenance of Relays 7-127
a. Contact Burnishing 7-127
b. Contact Cleaning 7-127
19. Component Characteristics 7-127
a. Electron Tubes 7-127
b. Crystal Data 7-129
c. Winding Data 7-129
d. Emergency Measures 7-129
(1) Transformer Windings 7-129
(2) Audio .Transformers 7-129
(3) Bridging Defective Stage 7-129
(4) Fixed Resistors 7-129
(5) Variable Resistors 7-130
(6) Chokes and Coils 7-130
(7) Tubes 7-130
(8) INTERLOCK BATTLE SHORT 7-130
(9) R-f Tuner Emergency Switches 7-130
(a) Centrifugal Switch 7-130
(b) Thermal Switch 7-130
(10) Cheaters 7-130

LIST OF ILLUSTRATIONS

Figure Title Page
7-1 Radio Frequency Oscillator O-275/SRT,Block Diagram7-9
7-2 Typical Lissajous Patterns 7-10
7-3 Radio Frequency Oscillator O-275/SRTand Control-Indicator C-1352/SRT,Front Panel7-11
7-4 RFO. Unit 14 (Z-2901), Voltage and Resistance Chart 7-12
7-5 RFO, Unit 14 (Z-2901) Right SideView, Units Removed7-13
7-6 Radio Frequency Oscillator O-275/SRT, Covers Removed, Left Side View 7-14
7-7 Radio Frequency Oscillator O-275/SRT,Covers Removed, Right Side View ..7-15
7-8 Radio Frequency Oscillator O-275/SRT, Covers Removed, Top View 7-16
7-9 Radio Frequency Oscillator O-275/SRT, Bottom View 7-16
7-10 Radio Frequency Oscillator O-275/SRT, Front Panel Removed, Chain Drives .. 7-17
7-11 RFO, Unit 1 (Z-2001), Voltage andResistance Chart7-19
7-12 RFO, Unit 1 (Z-2001), Top View 7-20
7-13 RFO Frequency Check, Test Setup 7-20
7-14 RFO, Unit 1 (Z-2001), Cover Removed, Bottom View 7-21
7-15 RFO, Unit 2 (Z-2034), Voltage and Resistance Chart 7-22
7-16 RFO, Unit 2 (Z-2034), Top View 7-23
7-17 RFO, Unit 2 (Z-2034), Cover Removed, Bottom View 7-23
7-18 RFO, Unit 3 (Z-2053), Top Oblique View 7-23
7-19 RFO, Unit 3 (Z-2053), Right Side View 7-24
7-20 RFO, Unit 3 (Z-2053), Tube Shelf, Wir- ing Side 7-25
7-21 .RFO, Unit 3 (Z-2053), Voltage and Resistance Chart 7-26
7-22 RFO, Unit 4 (Z-2103), Voltage and Resistance Chart 7-27
7-23 RFO, Unit 4 (Z-2103), Top View 7-28
7-24 RFO, Unit 4 (Z-2103), Cover Removed, Bottom View 7-28
7-25 RFO, Unit 5 (Z-2158), Voltage and Re- sistance Chart 7-29
7-26 RFO, Unit 5 (Z-2158), Top View 7-30
7-27 RFO, Unit 5 (Z-2158), Cover Removed, Bottom View 7-31
7-28 RFO, Unit 6 (Z-2204), S-2201 Cover Removed, Top View 7-32
7-29 RFO, Unit 6 (Z-2204), Cover Removed, Bottom View 7-33
7-30 RFO, Unit 6 (Z-2204), Voltage andResistance Chart 7-35, 7-36
7-31 RFO, Unit 7 (Z-2305), Voltage and Resistance Chart 7-37
Figure Title Page
7-32 RFO, Unit 7 (Z-2305), Top View 7-38
7-33 RFO, Unit 7 (Z-2305), Cover Removed, Bottom View 7-38
7-34 RFO, Unit 8 (Z-2330), Voltage and Resistance Chart 7-39, 7-40
7-35 RFO, Unit 8 (Z-2330), Top View 7-42
7-36 RFO, Unit 8 (Z-2330), Covers Removed,Bottom View7-43
7-37 RFO, Unit 9 (Z-2426), Cover Removed, Left View 7-45
7-38 RFO, Unit 9 (Z-2426), Covers Removed, Right View 7-47
7-39 RFO, Unit 9 (Z-2426), Voltage and
Resistance Chart 7-48
7-40 RFO, Unit 10 (Z-2526), Voltage and Resistance Chart 7-50
7-41 RFO, Unit 10 (Z-2526), Covers Re- moved, Bottom Oblique View 7-52
7-42 RFO, Unit 10 (Z-2526), Covers Re-
moved, Right View 7-53
7-43 RFO, Unit 11A (Z-2626), Voltage and Resistance Chart 7-54
7-44 RFO, Unit 11A (Z-2626), Top View 7-55
7-45 RFO, Unit 11A (Z-2626), Cover Re-moved, Bottom View7-55
7-46 RFO, Unit 11B (Z-2651), Voltage and Resistance Chart 7-58
7-47 RFO, Unit 11B (Z-2651), Covers Re- moved, Top Oblique View 7-59
7-48 RFO, Unit 11B (Z-2651), Covers Re- moved, Right View 7-60
7-49 RFO, Unit 11C (Z-2801), Voltage and Resistance Chart 7-62
7-50 RFO, Unit 11C (Z-2801), Covers Re- moved, Left View 7-63
7-51 RFO, Unit 11C (Z-2801), Cover Re- moved, Right View 7-64
7-52 RFO, Unit 12 (Z-2127), Top View 7-65
7-53 RFO, Unit 12 (Z-2127), Bottom View 7-65
7-54 RFO, Unit 12 (Z-2127), Voltage and Resistance Chart 7-66
7-55 Control-Indicator C-1352/SRT, Inner View 7-68
7-56 LLRM, Voltage and Resistance Chart 7-69, 7-70
7-57 Typical Percentage Modulation Patterns 7-71
7-58 Radio Modulator MD-229/SRT (LLRM),Top View7-74
7-59 Radio Modulator MD-229/SRT (LLRM), Bottom View 7-75
7-60 Symmetrical Clipping Waveform 7-76
7-61 LLRM Test Circuit for Simulating Key- ing Signals 7-76
7-62 Radio Modulator MD-229/SRT (LLRM), Front Panel 7-77

NAVSHIPS 92121(A)
CORRECTIVE
Illustrations

LIST OF ILLUSTRATIONS (Cont'd)

FigureTitlePáge7-63 Radio Modulator MD-229/SRT Unit Ad-justments, Door Opened7-78
7-64 Radio Modulator MD-230/SRT
(HLRM), Top View 7-78
7-65(HLRM), Front panel7-79
7-66 HLRM Voltage and Resistance Chart 7-80
7-67 Radio Frequency Amplifier AM-1008/ SRT (RFA), Block Diagram 7-82
7-68 Radio Frequency Amplifier AM-1008/ SRT (RFA), Top View 7-83
7-69 Radio Frequency Amplifier AM-1008/SRT (RFA), Right View, Cover Re-moved from IPA Subassembly7-84
7-70 RFA Voltage and Resistance Chart 7-85
7-71 Radio Frequency Amplifier AM-1008/SRT (RFA), Left View7-86
7-72 Radio Frequency Amplifier AM-1008/ SRT (RFA), Bottom View 7-87
7-73 Radio Frequency Amplifier AM-1008/
SRT (RFA), Front Panel 7-88
7-74 RFA, S-1302 Bandswitch Assembly, Left Oblique View 7-89
7-75 RFA, Power Amplifier (PA), Mechanical
Drive System 7-90
7-76 RFA, Intermediate Power Amplifier (IPA), Mechanical Drive System 7-91
7-77Mechanical Drive System7-92
7-78 LVPS, Voltage and Resistance Chart 7-94
7-79 Power Supply PP-1094/SRT (LVPS),Front Panel7-96
7-80 Power Supply PP-1094/SRT (LVPS), Top View 7-98
7-81 Power Supply PP-1094/SRT (LVPS), Bottom View 7-98
7-82 Power Supply PP-1095/SRT (MVPS),Front Panel7-100
7-83 Power Supply PP-1095/SRT (MVPS), Top View 7-100
7-84 Power Supply PP-1095/SRT (MVPS),Bottom View .. 7-101
7-85 MVPS, Voltage and Resistance Chart 7-102
7-86 HVPS, Voltage and Resistance Chart7-103, 7-104
7-87 Power Supply PP-1096/SRT (HVPS),Front Panel ... 7-105
7-88 Power Supply PP-1096/SRT (HVPS),Top View .. 7-106
7-89 Mounting MT-1423/SRT, Top View 7-106
7-90 Electrical Equipment Cabinet CY-1571/SRT (100 W. Frame), Units Removed,Front View7-107
7-91 Electrical Equipment Cabinet CY-1571/SRT (100 W. Frame), Cover RemovedShowing Terminal Boards7-109
Figure TitlePage
7-92 Electrical Equipment Cabinet CY-1572/ SRT (HLRM Frame), Side Covers Re- moved, Top View 7-109
7-93 Electrical Equipment Cabinet CY-1573/ SRT (HVPS Frame), Side Covers Re- moved, Top View 7-110
7-94 Transmitter Coupler CU-402/SRT, Side Covers Removed, Right Inner View .. 7-110
7-95 Standing Wave Ratio (SWR) Monitor Alignment, Test Setup 7-111
7-96 Crystal Matching, Test Setup 7-112
7-97 Antenna Coupler CU-372/SRT, with Housing and Shock Mounts 7-112
7-98 Antenna Coupler CU-372/SRT, Mechan- ical Drives 7-113, 7-114
7-99 Antenna Coupler CU-372/SRT, Junction Box Assembly 7-115
7-100 Antenna Coupler CU-372/SRT, Less Housing 7-116
7-101 Cross Section of S-3514 Assembly 7-117
7-102 Antenna Coupler CU-372/SRT, Loading Section 7-117
7-103 R-f Tuner TN-229/SRT, with Housing and Shock Mounts 7-118
7-104 R-f Tuner, Test Setup 7-118
7-105 R-f Tuner TN-229/SRT, Mechanical Drives 7-120
7-106 R-f Tuner TN-229/SRT, Less Housing 7-1227-107 R-f Tuner TN-229/SRT, Drive Section,Clutch Side7-123
7-108 R-f Tuner TN-229/SRT, Drive Section, Air Duct Side 7-123
7-109 Typical Pressurization and Purging Setup 7-1247-110 Bridging Defective Transformer Wind-ing ... 7-127
7-111 Alternate Method of Bridging Trans- former Windings 7-129
7-112 Emergency Repair of Audio Transformer -129
7-113 Bypassing a Defective Stage 7-130
7-114 Transmitter Group OA-684/SRT and Mounting MT-1423/SRT, Control Cir- cuits, Simplified Schematic 7-161
7-115 Modulator Power Supply Group OA- 685/SRT, Control Circuits, Simplified Schematic 7-163
7-116 Antenna Coupler CU-372/SRT, and R-f Tuner TN-229/SRT, Control Circuits, Simplified Schematic 7-165
7-117 Primary Power Distribution Diagram, Transmitter Group and Mounting, AN/SRT-14, 15 and 16. 7-167
7-118 Primary Power Distribution Diagram, Modulator Power Supply Group and Mounting, AN/SRT-14, 15 and 16. 7-169

LIST OF ILLUSTRATIONS (Cont'd)

Figure Title
7-119 Primary Power Distribution Diagram, Antenna Tuning Equipment, AN/ SRT-14, 15 and 16 7-171
7-120 Radio Frequency Oscillator O-275/SRT (RFO), Simplified Trouble Location, Block Diagram 7-173
7-121 RFO, Unit 14 (Z-2901), Schematic Dia- gram 7-175
7-122 RFO, Unit 14 (Z-2901), Wiring Dia- gram (Sheets 1 and 2) 7-177, 7-179
7-123 RFO, Unit 1 (Z-2001), Schematic Dia-gram7-181
7-124 RFO, Unit 1 (Z-2001), Wiring Diagram 7-183
7-125 RFO, Unit 2 (Z-2034), Schematic Diagram7-185
7-126 RFO, Unit 2 (Z-2034), Wiring Diagram 7-1877-127 RFO, Unit 3 (Z-2053), Schematic Dia-gram7-189
7-128 RFO, Unit 3 (Z-2053), Wiring Diagram 7-1917-129 RFO, Unit 4 (Z-2103), Schematic Dia-gram7-193
7-130 RFO, Unit 4 (Z-2103), Wiring Diagram 7-194
7-131 RFO, Unit 5 (Z-2158), Schematic Dia-gram7-195
7-132 RFO, Unit 5 (Z-2158), Wiring Diagram 7-1977-133 RFO, Unit 6 (Z-2204), Schematic Dia-gram7-199
7-134 RFO, Unit 6 (Z-2204), Wiring Diagram 7-2017-135 RFO, Unit 7 (Z-2305), Schematic Dia-gram7-203
7-136 RFO, Unit 7 (Z-2305), Wiring Diagram 7-2057-137 RFO, Unit 8 (Z-2330), Schematic Dia-gram7-207
7-138 RFO, Unit 8 (Z-2330), Wiring Diagram 7-209
7-139 RFO, Unit 9 (Z-2426), Schematic Dia- gram 7-211
7-140 RFO, Unit 9 (Z-2426), Wiring Diagram 7-2137-141 RFO, Unit 10 (Z-2526), Schematic Dia-gram7-215
7-142 RFO, Unit 10 (Z-2526), Wiring Dia- gram 7-217
7-143 RFO, Unit 11A (Z-2626), Schematic Diagram 7-219
7-144 RFO, Unit 11A (Z-2626), Wiring Dia- gram 7-221
7-145 RFO, Unit 11B (Z-2651), Schematic Diagram 7-223
7-146 RFO, Unit 11B (Z-2651), Wiring Dia- gram 7-225
7-147 RFO, Unit 11C (Z-2801), Schematic Dia- gram 7-227
7-148 RFO, Unit 11C (Z-2801), Wiring Dia- gram 7-229
7-149 RFO, Unit 12 (Z-2127), Schematic Dia- gram 7-231
7-150 RFO, Unit 12 (Z-2127), Wiring Dia- gram 7-233
Figure Title Page
7-151 Control-Indicator C-1352/SRT, Sche- matic Diagram 7-234
7-152 Control-Indicator C-1352/SRT, Wiring Diagram 7-235
7-153 Radio Modulator MD-229/SRT (LLRM),Schematic Diagram7-237
7-154 Radio Modulator MD-229/SRT(LLRM), Wiring Diagram (Sheets 1, 2and 3)7-239, 7-241, 7-243
7-155 Radio Modulator MD-229/SRT(LLRM), Servicing Block Diagram ...7-245
7-156 Radio Modulator MD-230/SRT(HLRM), Schematic Diagram7-247
7-157 Radio Modulator MD-230/SRT (HLRM), Wiring Diagram 7-249
7-158 Radio Frequency Amplifier AM-1008/SRT (RFA), Schematic Diagram 7-2517-159 Radio Frequency Amplifier AM-1008/SRT (RFA), Wiring Diagram (Sheets1 and 2)7-255
7-160 Power Supply PP-1094/SRT (LVPS),Schematic Diagram7-257
7-161 Power Supply PP-1094/SRT (LVPS), Wiring Diagram 7-259
7-162 Power Supply PP-1095/SRT (MVPS), Schematic Diagram 7-261
7-163 Power Supply PP-1095/SRT (MVPS), Wiring Diagram 7-263
7-164 Power Supply PP-1096/SRT (HVPS), Schematic Diagram 7-265
7-165 Power Supply PP-1096/SRT (HVPS), Wiring Diagram 7-267
7-166 Mounting MT-1423/SRT, Schematic Dia- gram 7-269
7-167 Electrical Equipment Cabinet CY-1571/ SRT (100 W. Frame), Wiring Dia- gram 7-271
7-168 Electrical Equipment Cabinet CY-1572/ SRT (HLRM Frame), Wiring Dia- gram 7-273
7-169 Electrical Equipment Cabinet CY-1573/ SRT (HVPS Frame), Wiring Dia- gram 7-275
7-170 Antenna Coupler CU-372/SRT, Sche- matic Diagram 7-277
7-171 Antenna Coupler CU-372/SRT, Wiring Diagram (Sheets 1 and 2) 7-279, 7-281
7-172 R-f Tuner TN-229/SRT, Schematic Dia-gram7-282
7-173 R-f Tuner TN-229/SRT, Wiring Dia- gram 7-283
7-174 Transmitter Coupler CU-402/SRT, Sche- matic Diagram 7-285
7-175 Transmitter Coupler CU-402/SRT, Wir- ing Diagram 7-286

LIST OF TABLES

Table No. Title Page Table No. Title Page
7-1 System Trouble-Shooting Chart 7-3
7-2 Preliminary RFO Check by Means of External Oscilloscope 7-10
7-3 RFO Test Point Socket E-2919 7-11
7-4 RFO Front Panel Control Knobs and Respective Subunits 7-13
7-5 Unit 1, R-f Voltage at Test Points 7-15
7-6 Unit 2, R-f Voltage at Test Points 7-20
7-7 Unit 3, S-2053 and AN/USM-29 10 Knob Positions and Adjustments 7-247-8 Unit 3, S-2052 and AN/USM-29 100Knob Positions and Adjustments 7-25
7-9 Uni+. 3. S-2051 and AN/USM-29 1KKnob Positions and Adjustments7-25
7-10 Un't 5, R-f Voltage at Test Points 7-28
7-11 Unit 6, R-f Voltage at Test Points 7-31
7-12 Unit 6, 10-Kc Step Oscillator Adjust- ments 7-33
7-13 Unit 6, 10-Kc Step Filter Adjustments 7-34
7-14 Unit 7, R-f Voltage at Test Points 7-38
7-15 Unit 8, R-f Voltage at Test Points 7-41
7-16 Unit 8, 100-Kc Step Oscillator Adjust- ments 7-43
7-17 Unit 8, 100-Kc Step Filter Adjustments 7-44
7-18 Unit 9, R-f Voltage at Test Points 7-45
7-19 RFO, Final Output Frequencies and (AA), (®B), (F) and (6) Knob Positions 7-46
7-20 Un:- 9, 100-Kc Step Filter Adjustments 7-46
7-21 Unit 9, 5-Mc Step Filter Adjustments 7-49
7-22 Unit 10, R-f Voltage at Test Points 7-49
7-23 Unit 10, 1-Mc Step Filter Adjustments 7-51
7-24 Unit 11A, R-f Voltage at Test Points 7-52
7-25 Unit 11B, R-f Voltage at Test Points 7-53
7-26 Unit 11B, 100-Kc Step Filter Adjust- ments 7-56
7-27 Unit 11B, 1-Mc Step Filter Adjustments 7-57
7-28 Unit 11C, R-f Voltage at Test Points 7-57
7-29 Unit 11C, 100-Kc Step Filter Adjust- ments 7-60
7-30 Unit 11C, 1-Mc Step Filter Adjustments .. 7-61
7-31 Indications of Failure and ProbableFaults in the LLRM Audio Circuits 7-72
7-32 Indications of Failure and Probable Faults in the LLRM Keying Circuits 7-73
7-33 Indications of Failure and ProbableFaults in the LLRM Power Supplies 7-73
7-34 Indications of Failure and Probable Faults in the HLRM 7-79
7-35 Typical RFA Test Meter Readings 7-81
7-36 Indications of Failure and Probable Faults in the LVPS 7-96
7-37 Indications of Failure and Probable Faults in the MVPS 7-97
7-38 MVPS Voltages Measured at the RFA Voltmeter 7-97
7-39 Indications of Failure and Probable Faults in the HVPS 7-99
7-40 Antenna Tuning Equipment Trouble- Shooting Chart 7-108
7-41 R-f Tuner Trouble Location Chart 7-121
7-42 Tube Characteristics 7-128
7-43 Winding Data 7-131

SECTION 7
 CORRECTIVE MAINTENANCE

1. INTRODUCTION.

This section contains information required for the repair of Radio Transmitting Sets AN/SRT-14, 15 and 16.

Note

The AN/SRT-14A, 15A and 16A are nonmagnetic versions of the AN/SRT-14, 15 and 16 respectively. As the nonmagnetic versions vary from the standard types only in the material used for cabinet panels, all information on the corrective maintenance of the AN/SRT-14, 15 and 16, as set forth in the following section, applies equally as weli for the AN/SRT-14A, 15A and 16A.

Note

Where, throughout this section, reference is made to either low level radio modulator or high level radio modulator, it should not be
interpreted as meaning the technique of modulation known as grid modulation or low level modulation, but rather as referring to the operating power level.

Maintenance personnel must be prepared to repair and align units that have failed in operation. The source of the trouble must be located, the defect remedied, and the equipment restored to operating condition. The following paragraphs describe the theory of localization of faults and system trouble-shooting procedures, and contain detailed instructions for troubleshooting and repair of the various units of this equipment.

Maintenance personnel must try to find the source of the trouble causing equipment failure, particularly when the trouble is a recurrent one. The recurrence of a fault usually indicates that the effect, not the cause, has been remedied.

FAILURE REPORTS

"Report each failure of the equipment, whether caused by a defective part, wear, improper operation, or an external cause. Use ELECTRONIC FAILURE REPORT form DD787. Each pad of the forms includes full instructions for filling out the forms and forwarding them to the Bureau of Ships. However, the importance of providing complete information cannot be emphasized too much. Be sure that you include the model designation and serial number of the equipment (from the equipment nameplate), the type number and serial number of the major unit (from the major unit nameplate), and the type number and reference designation of the particular defective part (from the instruction book). Describe the cause of the failure completely, continuing on the back of the card if necessary. Do not substitute brevity for clarity. And remember - there are two sides to the failure report --
"YOUR SIDE"
Every FAILURE REPORT is a boost for you:

1. It shows that you are doing your job.
2. It helps make your job easier.
3. It insures available replacements.
4. It gives you a chance to pass your knowledge to every man on the team.

"NAVY SIDE"

The Bureau of Ships uses the information to:

1. Evaluate present equipment.
2. Improve future equipment.
3. Order replacements for stock.
4. Prepare field changes.
5. Publish the information.

Always keep a supply of failure report forms on board. You can get them from the nearest District Publications and Printing Office."

WARNING

OPERATION OF THIS EQUIPMENT INVOLVES THE USE OF HIGH VOLTAGES WHICH ARE DANGEROUS TO LIFE. OB. SERVE SAFETY REGULATIONS AT ALL TIMES. DO NOT CHANGE TUBES OR MAKE ADJUSTMENTS INSIDE EQUIP. MENT WITH HIGH VOLTAGE ON. DO NOT USE "BATTLE SHORT" (10) FOR BYPASSING INTERLOCKS. NEVER MEASURE POTENTIALS IN EXCESS OF 1,000 VOLTS BY MEANS OF FLEXIBLE TEST LEADS OR PROBES.

2. THEORY OF LOCALIZATION.

The manner in which the equipment operates or fails to operate often indicates the source of trouble. Knowledge of the control circuits is most important for the localization of faults. Therefore, the technician should familiarize himself with the simplified power and control schematics, figures 7-114 through 7-119. The sequence of the operations that result in the establishment of a frequency is accompanied by visual panel indications.

The order in which the visual indications appear is shown in table 7-1, together with the probable sources of trouble. This chart shows the sequence of operations between turning on the power and going on the air with the carrier, and will assist maintenance personnel in localizing a fault.

3. TROUBLE-SHOOTING THE TRANSMITTER BAY.

a. GENERAL.-Radio Transmitting Sets AN/SRT14, 15 and 16 are manually operated.

The system trouble-shooting chart, table 7-1, lists visual indications of transmitter bay operation. The heavy blocks tell what is to be observed, and the heavy paths between these blocks describe the indication that should be obtained when the transmitter bay is operating properly, from the time that main power is applied to the time that the carrier is keyed on the air. Indications of proper operation are listed in the general order in which they occur. Each indication along the heavy path is evidence of proper operation only if all preceding indications have been obtained. However, it should be noted that some of the indications may occur simultaneously. If the proper indication is not obtained, the lighter blocks name the unit (or units) in which trouble may exist. The technician should then refer to the trouble-shooting information for that particular unit.

Note

If the proper indication fails to occur, first check the indicating component.

The transmitter bay may be operated without radiating an r-f carrier from the antenna. A dummy load,
type DA-91/U, is used to permit the transmitter to be operated at full power during test and maintenance procedures. This load is connected to the cable from the transmitter that terminates in $\mathrm{P}-3314$, normally connected to J-3201 in the Transmitter Coupler CU-402/SRT, to the " N " type coaxial receptacle on the dummy load. The transmitter can thus be completely isolated from the remainder of the equipment.

b. TEST EQUIPMENT REQUIRED.

(1) MULTIMETER ME-25A/U.--0 to $1,000 \mathrm{v}$ $\mathrm{ac} / \mathrm{dc}$ in 7 ranges; 0 to $1,000 \mathrm{ma}$ in 6 ranges; 0 to 1,000 megohms in 6 ranges.
(2) OSCILLOSCOPE OS-8A/U.—Sensitivity, 0.1 v (RMS)/in.; response, $\pm 3 \mathrm{db}$ from 30 cps to 2 mc .
(3) FREQUENCY METER AN/USM-29 OR AN/FRM-3. 15 kc to 26 mc in 10 -cps steps; accurate to within 0.0001 percent $\pm 4 \mathrm{cps} ;(\pm 1 \mathrm{cps}$ in 1 mc $\pm 4 \mathrm{cps})$.
(4) RECEIVER TYPE RBA, RBB, RBC SERIES OR EQUIVALENT.-Frequency coverage: 15 kc to $500 \mathrm{kc} ; 0.5$ to $4.0 \mathrm{mc} ; 4.0$ to 27.0 mc .
(5) AUDIO OSCILLATOR TS-382A/U.-20 to $200,000 \mathrm{cps}, \pm 2$ percent; output, 0 to 100 mw .
(6) DUMMY LOAD DA-91/U.-600 watt; air cooled.
(7) SIGNAL GENERATOR, RF, AN/URM-25. - 10 kc to 50 mc ; output, 2 v maximum.
(8) AMMETER, DC, NAVY TYPE 60107 OR MULTIMETER AN/PSM-4.—0 to $1,000 \mu \mathrm{a}$, in 5 ranges; accuracy, ± 2 percent.
(9) RESISTANCE BRIDGE, ZM-4/U.-1 to 10 megohms; accuracy, ± 0.15 percent.
(10) RADIO FREQUENCY BRIDGE, NAVY TYPE 60094.-Range 400 kc to 60 mc ; resistance, $0-1,000$ ohms ± 1 percent; reactance, $0-5,000$ ohms at 1 $\mathrm{mc}, \pm 2$ percent.
(11) VARIABLE RESISTOR, TYPE RVINATFE105B PER MIL-R-94A OR EQUIVALENT.-1 meg linear taper potentiometer.
c. LOCATING FAULTY UNIT.-Because each function of the transmitter bay is contained in a separate drawer, with facilities to extend the drawer and bypass the accompanying interlock, it is possible to maintain operation of the system and thereby simplify servicing. Defective operation can be traced to one drawer or another by noting the failure of one of its functions. The systematic location and repair of faults may be summarized as follows:
(1) determine which unit the fault is in;
(2) using the trouble location chart, servicing block diagram, schematic diagram, or the voltage and resistance chart, examine the unit in detail to determine which component failed and why;
(3) replace the defective component or components, or adjust correctly;
(4) check the equipment thoroughly.

TABLE 7-1. SYSTEM TROUBLE-SHOOTING CHART

ABBREVIATIONS OF MAJOR UNITS USED IN THE SYSTEM TROUBLE SHOOTING CHART.	
RFA	RAOIO FREQUENCY AMPLIFIER, (AM-1008/SRT)
LLRM	Low level radio modulator, (mo-229/srt)
RFO	RAOIO FREQuencr OSCILLATOR, (0-275/SRT)
LVPS	Low voltage power supply, (PP-1094/SRT)
MVPS	MEDIUM VOLTAGE POWER SUPPLY, (PP-1095/SRT)
HVPS	HIGH VOLTAGE POWER SUPPLY, (PP-1096/SRT)
HLRM	high level radio mooulator, (md-230/srt)
MTG	bASE MOUNT (MT-1423/SRT)
ATU	antenna tuning equipment

TABLE 7-1. SYSTEM TROUBLE-SHOOTING CHART (Cont'd)

TABLE 7-1. SYSTEM TROUBLE-SHOOTING CHART (Cont'd)

table 7-1. SYSTEM TROUBLE-SHOOTING CHART (Cont'd)

TABLE 7-1. SYSTEM TROUBLE-SHOOTING CHART (Cont'd)

4. TROUBLE-SHOOTING AND REPAIR OF THE MAJOR UNITS.

The units of the transmitter bay are discussed in the following paragraphs. Where warranted, a servicing block diagram, a schematic diagram, and a voltage and resistance chart accompany the discussion.
a. REMOVAL OF MAJOR UNITS.-Removal of major units in the transmitter bay can be accomplished as follows:

Step 1. Loosen captive screws on unit drawer front panel by means of hex wrench mounted on the low voltage power supply (LVPS) front panel. Pull chassis forward until inner slide latch hits stop on front of rail. To remove chassis from cabinet frame, remove two screws, one on each inner rail, that are now accessible. These screws are retainers for the inner slide latch in case of failure of latch spring.

Step 2. Now depress the latch on each inner slide and pull the chassis forward to clear the projection on the front of the rail.

Step 3. Disconnect associated cables and plugs from the chassis. Posts have been provided on the front of the transmitter cabinet to support the cabinet interconnecting plugs in the event of complete removal of a major unit. These posts support the plug when the major unit extension cable is used. Refer to Section 3 for the unit extension cable assembly instructions.

CAUTION

THE CHASSIS IS NOW FREE TO BE RE-MOVED ENTIRELY FROM THE CABINET. PERSONNEL REMOVING CHASSIS SHOULD NOW BE PREPARED TO SUPPORT THE ENTIRE WEIGHT OF THE CHASSIS.

Step 4. Pull the chassis forward until the inner slide disengages from the front rail roller, and the chassis will be completely free from the cabinet.

Step 5. Remove the outer protective cover panels by loosening the fasteners mounting the panels to the chassis assembly.
b. REPLACEMENT OF MAJOR UNITS.-Replace the unit drawer in the cabinet by reversing the sequence of the steps indicated for the removal of a major unit (paragraph 4a).

Step 1. Push the drawer in slowly until the drawer stops midway into position. Care must be taken to prevent drawer from hitting the interconnecting plug attached to the associated supporting post.

Step 2. Replace screws on inner rails. Remove interconnecting plug from its supporting post and connect to the receptacle provided on the rear of the drawer.

Step 3. Depress both left and right stops on drawer slides, and push the drawer in until it is properly seated into position.

Step 4. Tighten all the captive screws on the front panel.

Note

In the event a unit drawer is replaced by a new unit, it may be necessary to realign the support pins at the rear of the cabinet. If misalignment exists when installing a new unit drawer, refer to figure 7-90 and perform the following steps:

Step 1. Loosen the support pins at the rear of cabinet associated with drawer.

Step 2. Loosen the screws supporting the drawer front panel.

Step 3. Slide drawer in cabinet until properly seated.

Step 4. Tighten the rear support pins and all screws on the front panel.

5. RADIO FREQUENCY OSCILLATOR O-275/SRT (RFO), TROUBLE SHOOTING.

The radio frequency oscillator (RFO) is comprised of 14 plug-in units and a chassis consisting of a mounting rack for the 14 subunits. A frequency is set up by rotating knobs to the desired frequency in conjunction with the table mounted on the RFO front panel door to determine settings of (AA) and (B8) knobs. Figure 7-1 represents the RFO simplified block diagram.

When a frequency is set up but there is no RFO output as indicated on the radio frequency amplifier (RFA) VOLTMETER, with switch (1) in RF IN position and EXCITATION control (22) fully clockwise, one or more of the RFO subunits or the cabinet interconnecting cable may be faulty. If the RFO output fails during transmission, the CARRIER ON light will remain ON, but the RFA panel mounted VOLTMETER with switch (J) in the RF IN position will show zero output. The VOLTMETER should show an output of from 2 to 5 volts, depending on the setting of the EXCITATION control (27), also on the RFA front panel (figure 7-73).

If the RFA VOLTMETER shows no RFO output, perform the following procedure to localize the fault to a particular RFO subunit. When the faulty subunit is located, use the individual schematic diagram and voltage chart to locate the faulty component.

Note

To determine that the lack of RFO output is not due to the low level radio modulator (LLRM) keying circuit, check for output at RFO test socket E-2919 KEY V. IN (figure 7-6). With TEST KEY (T) in the center position, Multimeter ME-25A/U should read approximately -30 volts. With TEST KEY (T) operated, the meter should now read zero volts.

After it has been determined that the LLRM keying circuit is operating properly, and there is still no RFO output, perform the following steps:

Step 1. Check units 11A (Z-2626), 11B (Z-2651), and 11 C (Z-2801) by setting up three different fre-quencies-the first frequency in the range of 0.3 mc to 6 mc , the second frequency within 6 mc to 16 mc , and the third frequency within 16 to 26 mc , according to the settings of BAND knob ©. If only the second and third frequencies give an RFO output as indicated
on the RFA VOLTMETER with switch (J) in RF IN position, unit $11 \mathrm{~A}(\mathrm{Z}-2626)$ is probably at fault. If only the first and third frequencies give an RFO output, unit 11B (Z-2651) is probably at fault. If only the first and second frequencies give an RFO output, unit 11C (Z-2801) is probably at fault.

Step 2. Check for an RFO output during FSK and FAX operation. Place SERVICE SELECTOR switch (1) on the low level radio modulator (LLRM) front panel in the FSK and FAX positions alternately.

Figure 7-1. Radio Frequency Oscillator O-275/SRT, Block Diagram

$3: 1$

10:1

Figure 7-2. Typical Lissajous Patterns
If there is no RFO output during FSK operation, the radio frequency oscillator, unit 12 , is probably at fault. If there is no RFO output from any of the output units, make the oscilloscope checks indicated in table $7-2$ to locate the faulty unit:

Note

To check the frequency of any signal fed to the oscilloscope, use Lissajous patterns and try to get the smallest frequency ratio possible, preferably a $1: 1$ ratio. See figure 7-2 for typical Lissajous patterns.

Step 3. Check the $100-\mathrm{kc}$ output of the crystal oscillator by means of an external oscilloscope such as the $\mathrm{OS}-8 \mathrm{~A} / \mathrm{U}$ or equivalent, connected to the 100

KC XTAL jack on the RFO front panel or by means of the WWV frequency check as indicated in paragraph $5 c$.

Note

The oscilloscope checks only the presence of an output from unit 1. It does not check the accuracy of the frequency.

Step 4. Check the 90 - to $100-\mathrm{kc}$ output of unit 3 by means of the ZERO BEAT INDICATOR, or with the oscilloscope (OS-8A/U or equivalent) connected to the INT. OSC. jack on the RFO front panel with ZERO ADJ switch (2) in the INT. OSC. position (paragraph 5g).

Step 5. Check the $10-\mathrm{kc}$ output of unit 6 with the oscilloscope connected to the 10 KC jack on the front panel of the RFO (paragraph $5 n$).

Step 6. Check the 210- to $300-\mathrm{kc}$ output of the phase-locked oscillator in unit 6 with the oscilloscope connected to the 10 KC STEP jack on the RFO front panel (paragraph $50(1)(e)$).

- Step 7. Check the $1.6-\mathrm{mc}$ to $2.5-\mathrm{mc}$ output of the phase-locked oscillator in unit 8 with the oscilloscope connected to the 100 KC STEP jack on the RFO front panel (paragraph 5s).

Step 8. If only unit 1 gives an output among the signals checked in steps $3,4,5,6$ and 7 , check the regulated filament voltage at test socket E-2919 pin 2 and the regulated +250 volts at test socket $\mathrm{E}-2919$ pin 4 (see table 7-3). Test socket $\mathrm{E}-2919$ is mounted on the left side of the RFO drawer and is accessible without removing the RFO protective panel.

Note

When checking for regulated filament and plate voltages, it is convenient to check all the pins on test socket E-2919.
table 7-2. PRELIMINARY RFO CHECK bY MEANS OF EXTERNAL OSCILLOSCOPE

OSCILLOSCOPE OS-8A/U		LISSAJOUS PATTERN RATIO	setting of rfo knobs (POSITION OF OTHER KNOBS IMMATERIAL)						REFER TO FOLLOWING PARAGRAPHS FOR A detailed check of PROBABLE FAULTS
TO RFO JACK	TO RFO JACK		(c)	(10)	(19)	(1i1)	(1])	**	
10 KC	$100 \mathrm{KC} \mathrm{X-TAL}$	10:1							$5 d$ (1) and 50 (1)
10 KC STEP	$100 \mathrm{KC} \mathrm{X-TAL}$	3:1					9		$5 d(1)$ and 50 (1)
10 KC STEP	10 KC	29:1 TO 21:1					8 to 0		So(1)
100 KC STEP	10 KC STEP	8:1				8	9		$5 s(1)$ and 50 (1)
100 KC STEP	$100 \mathrm{KC} \mathrm{X-TAL}$	25:1 TO 16:1				9 to 0			$5 e(1)$ and 50 (1)
INT. OSC.	$100 \mathrm{KC} \mathrm{X-TAL}$	1:1	9	9	10				$5 h(1)$ and $5 d(1)$
F.S. OSC.	$100 \mathrm{KC} \mathrm{X-TAL}$	1:1						0	$5 e-1(1)$ and $5 h(1)$
F.S. OSC.	INT. OSC.	1:1	9	8	0			200	$5 e-1$ (1) and 5h(1)

[^6]TABLE 7-3. RFO TEST POINT SOCKET E-2919

PIN NO.	READING
1	GND
2	6.3 V A.C. REG
3	6.3 V A.C. UNREG
4	250 V DC REG
5	250 V DC UNREG
6	-24 V AFTER T.D.
7	NC
8	KEY V. IN FROM LLRM

Step 9. Check the RFO subunits in the given order, starting with unit 6 , by measuring the voltages at the test points provided on each unit.

The radio frequency oscillator (RFO) simplified trouble-location diagram, figure 7-120, shows a method of localizing trouble in the RFO. This diagram indicates minimum r-f output measurements at the test points to indicate which unit is at fault.

Heavy blocks identify the unit (or units) and the associated test point. Lighter blocks identify units in which trouble may exist.

If the output of a unit is below the r-f voltage as indicated at the test point, follow the path to the left of the heavy block. If, however, the test point output is normal, then proceed to the right of the heavy block. When trouble has been localized to a unit, refer to the maintenance information pertaining to the particular unit.

Figure 7-3. Radio Frequency Oscillator O-275/SRT and Control-Indicator C-1352/SRT, Front Panel

NOTES
I. MEASUREMENTS TO CHASSIS USING MULTIMETER ME-25A/U. use that scale which will permit the reading to be INDICATED AT MAXIMUM DEFLECTION AND STILL BE WITHIN THE SCALE. FOR EXAMPLE, A NOMINAL 0.5 VOLT READING should be measured on the i volt scale; a nominal ioo volt reading should be measured on the 250 volt scale.
2. TRANSMITTER IN STANDBY.
3. TEST KEY © IN CENTER POSITION.
4. SWITCH (Z) TO INT. OSC. POSITION.

Figure 7-4. RFO, Unit 14 (Z-2901), Voltage and Resistance Chart

CAUTION

Low r-f output at unit 5 or 9 does not necessarily indicate trouble in the particular unit. A decrease in r-f output may be due to the lack of one of the inputs feeding these units.

Therefore, rather than realigning these units for an increase of r-f output, check the inputs fed to the mixer tubes on unit 5 or 9 at the pins on the tube socket itself.

Step 10. Check bandswitch labeled BAND \oplus on the RFO panel for proper output (paragraph 5, step 1), and the cabinet interconnecting cable carrying the r-f output to the RFA.

When the faulty unit is located, use the troubleshooting and repair information for that particular unit.
a. RFO MOUNTING, UNIT 14 (Z-2901), TROUBLE SHOOTING.-The mounting contains the output chassis selector switch S-2996, V-2917, the 6E5 electron-ray tube, ZERO BEAT INDICATOR, fuses, test points, 6.3 v a-c filament supplies, RFO subunit drive mechanisms and the r-f interconnecting cables for the subunits (refer to figures $7-3,7-5$ and $7-10$). When all the RFO subunits are operating properly but there is no indication of an RFO output on the RFA VOLTMETER with switch (J) in position RF IN, and switch (A) to INT position, check the output chassis
selector ($\mathrm{S}-2996$) in the mounting (unit 14) and the r-f cable that connects the RFO output to the RFA.

If a unit is not receiving its input but the unit that supplies this input is operating, check the continuity of the coaxial cable between the units. If a frequency cannot be set up, check the voltage at test socket E-2919 and fuses on the front panel. Table 7-3 lists the RFO test points at socket E-2919 and nominal voltages. Figure $7-121$ is the schematic, figure 7-122, sheets 1 and 2 , the wiring diagrams, and figure $7-4$ the voltage and resistance chart for unit 14.

b. RFO MOUNTING, UNIT 14 (Z-2901), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-The regulated 6.3 -volt a-c filament supply for the RFO is regulated by thermal resistor $\mathrm{R}-2929$ in the primary of the regulated filament supply. This voltage may be checked at 6.3 V A.C. REG. on TEST POINTS socket E-2919, located on the left side of the RFO drawer. This socket is accessible without removing the protective side panel (figure 7-6).

To adjust the regulated filament voltage, remove the protective side panel (left) and adjust potentiometer R-2953, located in the upper left-hand corner of the RFO drawer (figure 7-6).

RANGE ADJ. (R-2919), ZERO ADJ. (R-2916), and F.S. DEVIATION (C.P.S.) control (R-2917) are

Figure 7-5. RFO, Unit 14 (Z-2901) Right Side View, Units Removed
adjusted when unit 12 , radio frequency oscillator ($\mathrm{Z}-2127$), is aligned. For a detailed procedure on the adjustment of the controls associated with unit 12, refer to paragraph $5 e e(1)$.
F.S.K. PHASE MOD control (1) is a function of operation (Section 4, Operation), and is checked when the audio oscillator feedback control in the low level radio modulator (LLRM) is adjusted. Refer to paragraph $6 b(1)(b) 4$.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove the RFO drawer, unit 14, refer to paragraph $4 a$.

To gain access to the RFO subunits, electron eye V-2917, potentiometer R-2953, and bandswitch BAND (F) (S-2996), remove the protective cover plates.

Transformers on unit 14 are located on the right side of the chassis and are made accessible by first removing units 6 ($\mathrm{Z}-2204$), 11B ($\mathrm{Z}-2651$), and 11C ($\mathrm{Z}-2801$) from the mounting (figures $7-5$ and 7-7). The mounting plate supporting these three units must also be removed, by removing 13 machine screws holding it in place.

Subunits operated by means of shafts and/or chain drives and their respective control knobs are listed in table 7-4.

BAND knob © drives switch S-2996, which is part of the RFO mounting, unit 14 , and is not considered a subunit.

TABLE 7-4. RFO FRONT PANEL CONTROL KNOBS AND RESPECTIVE SUBUNITS

KNOBS	$\begin{aligned} & \text { KC © } \\ & 100 \sim \text { (10) } \\ & 10 \sim \text { © } \end{aligned}$	MC © ${ }^{\text {c6 }}$	$100 \mathrm{KC} \oplus$	10 KC (1])	(4)	(88)
$\begin{aligned} & \hline \text { SUB } \\ & \text { UNIT } \end{aligned}$	3	$\begin{aligned} & 11 \mathrm{~B} \\ & \text { (Bot) } \\ & 11 \mathrm{C} \\ & \text { (Bot) } \end{aligned}$	$\begin{gathered} 8 \\ 9 \text { (Bot) } \\ 11 \mathrm{~B} \text { (Top) } \\ 11 \mathrm{C} \text { (Top) } \end{gathered}$	6	9 (Top)	10

To remove bandswitch S-2996, perform the following steps:

Step 1. Set BAND knob \oplus on the RFO front panel to the 16-26 MC position.

Step 2. Remove the four screws supporting S-2996 to the RFO unit 14.

Step 3. Remove the bandswitch, being careful not to damage socket XV-2917, located on the inner front panel.

Step 4. Disconnect wires from bandswitch wafer S-2996A, and remove bandswitch S-2996.

For removing a subunit in the RFO, it is essential at all times that the subunit switch shaft be in position 0 as indicated by the position of red pointer on the subunit shaft. It will be found that when the above condition is met, the flexible coupler (figure 7-6) will be in a position to uncouple and the subunit can be

NAVSHIPS 92121(A)
removed from the mounting (figures $7-6,7-7,7-8$, and 7-9).

All subunit switch shafts are provided with flexible couplers adjacent to the inner front panel, directly behind the associated sprocket (figures 7-6 and 7-7). In the subunit 8 drive mechanism, however, adjustable bearings are provided on its drive shaft to compensate for variations in tolerances; this is a factory adjustment.

To remove a chain (figure 7-10) perform the following steps:

Step 1. Loosen setscrews on adjustable idler associated with chain.

Step 2. Remove keeper.
Step 3. Remove disconnect pin and tubular pin.
Step 4. Remove chain.

Note

In some cases, a chain with an adjustable idler may be removed without disassembly of chain.

1. REMOVAL OF CHAIN DRIVE SUBASSEMBLIES.

a. ADJUSTABLE IDLER O-2922. (See figure 7-10.)-Loosen the two setscrews on the associated idler arm.
b. DRIVER SPROCKET.-To remove a driver sprocket and shaft assembly, loosen setscrews on couplers associated with sprocket to be removed. Move couplers along shaft so that the retaining ring is accessible. Remove the retaining ring directly in the rear of the panel bearing. The sprocket and shaft assembly can now be removed.

Note

Special assembly pliers No. 0 and No. 22 manufactured by Waldes-Kohinoor Inc. are to be used in removing and replacing retaining rings.
c. FIXED IDLER O-2929 AND O-2917. (See figure 7-10.)-Remove retaining ring and slide idler sprocket from its shaft.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace the RFO drawer, unit 14, in the transmitter cabinet, refer to paragraph $4 b$, Replacement of Major Units.

Subassemblies and subunits may be replaced in the mounting (unit 14) by reversing the sequence of steps indicated for the removal of subassemblies and subunits.

Extreme care must be exercised in aligning unit 8 coupling drive shaft when replacing the shaft and coupling assembly. All subunits in the RFO mounting (unit 14) are mechanically coupled to the front panel control knobs by means of two-piece flexible couplers.

Figure 7-6. Radio Frequency Oscillator O-275/SRT, Covers Removed, Left Side View

These couplers compensate for variations in shaft alignment. Unit 8 has no flexible coupler, but is provided with adjustable bearings, to compensate for possible misalignment.
(c) CHAIN DRIVE.-Install a chain on unit 14 mounting in the following manner:

Step 1. Assemble chain (figure 7-10) and refer to Parts Lists, Section 8, for proper amount of links for individual chains.

Step 2. Place chain on sprockets.
Step 3. Adjust idler for proper tension.
Step 4. Tighten setscrews.

Note

Idler and chain tension must always be adjusted prior to tightening adjustable couplers.
c. RADIO FREQUENCY OSCILLATOR, UNIT 1 (Z-2001), TROUBLE SHOOTING.-The radio frequency oscillator (unit 1) has five $100-\mathrm{kc}$ outputs. These r-f outputs can be measured at the test points by means of Multimeter ME-25A/U, or equivalent. (Use the probe for all r-f measurements.) If an output as indicated in table 7-5 is present, it can be assumed that
the oscillator is operating. Check the four other outputs (signals 1a, 1b, 1c, and 1d) of unit 1. See trouble location diagram, figure 7-120.)

TABLE 7-5. UNIT 1, R-F VOLTAGE AT TEST POINTS

OUTPUT	JACK	UNIT	NOMINAL VOLTAGE
1a		2	13.5
1b		5	0.3 min.
1c		8	7.0
1d		13.5	
1e		$100 \mathrm{KC} \mathrm{X-TAL}$	14

To check the r-f outputs of unit 1 , the RFO drawer must be extended all the way out, the interlock bypassed, and OPERATE-STANDBY switch $®$ in STANDBY position.
Output 1e may be checked at front panel jack 100KC X-TAL.
If outputs $1 \mathrm{a}, 1 \mathrm{c}$ and 1 e are present but outputs 1 b and 1 d are not, tube $\mathrm{V}-2003$ (5814) is probably at fault. If none of the outputs of unit 1 are present, check the output of tube $\mathrm{V}-2001$ (5654) by measuring the drive in the cathode follower tube V-2002A (5814).

Figure 7-7. Radio Frequency Oscillator O-275/SRT, Covers Removed, Right Side View

Figure 7-8. Radio Frequency Oscillator O-275/SRT, Covers Removed, Top View

Figure 7-9. Radio Frequency Oscillator O-275/SRT, Bottom View

Figure 7-10. Radio Frequency Oscillator O-275/SRT, Front Panel Removed, Chain Drives

Note

Unit 1 must be placed on an extension test cable before this can be done.

If the oscillator tube $\mathrm{V}-2001$ (5654) is operating, tube $\hat{V}-2002 \mathrm{~A}$ (5814) is probably at fault. If tube V-2001 (5654) is not operating, check the tube and circuit (using the voltage and resistance chart, figure 7-11) and replace the defective component. Figure $7-123$ is the schematic and figure $7-124$ is the wiring diagram. Components in unit 1 are identified in figures 7-12 and 7-14.

d. RADIO FREQUENCY OSCILLATOR, UNIT 1 (Z-2001), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-Only one adjustment should be made on unit 1 . The top slug of inductance L-2001 (figure 7-12) should be adjusted when the output frequency of unit 1 is not 100 kc and whenever tube V-2001 (5654) is replaced.

Step 1. With transmitter in stand-by, switch ® in STANDBY, allow the RFO oscillator ovens to cycle for at least one hour.

Step 2. Tune a receiver (type RBB or equivalent) to 2.5 mc , connected to the ship's receiving antenna.

Step 3. Turn BFO on receiver front panel to "off".

Step 4. Connect a coaxial cable from 100 KC X-TAL jack on RFO front panel to the "T" type BNC connector (see figure 7-13) and terminate connector to the receiver antenna input.

Step 5 . Measure the output signal of the 100 KC X-TAL 25th harmonic, on the receiver signal strength meter, and record.

Step 6. Connect the ship's receiving antenna with a variable resistor type RVINATFE105B per MIL-R94 A or equivalent in series, to the type " T " connector as shown in figure 7-13.

Step 7. Adjust the attenuator so that the signal from WWV is at the same level as recorded in step 5.

Step 8. With connections made as indicated in figure 7 -13, adjust L-2001 on unit 1 (Z-2001) of the RFO, for a zero beat indication. L-2001, on unit 1, is accessible by extending the RFO drawer all the way out and cheating the RFO interlock. Refer to figure 7-12 for location of L-2001.

Step 9. Zero beat indication may be heard through the receiver speaker and observed visually by the indication on the receiver OUTPUT meter. The pointer on the OUTPUT meter will oscillate about the null, the frequency of this oscillation being the test frequency. At high beat frequencies, the meter pointer cannot respond and will remain at the null position. As the zero beat is approached, the pointer on the OUTPUT meter will begin to oscillate rapidly. Then, as tuning L-2001 towards zero beat is continued, pointer
movement slows down to an extremely slow movement or standstill.

Abstract

Note Perform zero beat adjustment only when frequency standard station WWV is not modulating.

In an AN/SRT-16, unit 1 of the other transmitter group may be used, if it is known to be operating properly, in place of the above check against station WWV, by adjusting the top slug of inductance L-2001 until a 1:1 Lissajous pattern is obtained on the oscilloscope. A Lissajous pattern may be obtained by connecting both 100 KC X -TAL outputs to the X and Y axes of the oscilloscope OS-8A/U (or equivalent). If a zero beat cannot be obtained by adjusting the top slug of inductance L-2001, place unit 1 on a subunit extension test cable and adjust the bottom slug of inductance L-2001.

CAUTION

The bottom slug of inductance L-2001 is a factory adjustment and should not be tampered with unless absolutely necessary.

(2) MECHANICAL ADJUSTMENTS.

(a) REMOVAL AND REPAIR.-Unit 1 may be removed by turning the two $1 / 4$-turn cowl fasteners and removing the five cables connected to the chassis. The handle should be used to pull the chassis from the mounting.

CAUTION

When removing unit 1 , pull handle slowly and straight out so as not to bend any of the pins on the connecting plug.

To remove the crystal oven plug-in unit, loosen the two screws holding the metal bracket and remove bracket. The crystal oven can now be removed by pulling it from the socket.
The following steps should be taken to remove the thermostat in the crystal oven plug-in unit:

Step 1. Remove three screws on top rim of oven.
Step 2. Lift off top cover and remove layer of spun glass insulation and crystal cover.

Step 3. Lift out bakelite centering ring and remove three screws around rim of socket end of the oven assembly.

Note

When a Bliley crystal is used in unit 1 , it may be necessary to push out three threaded pins that hold the bakelite ring before removing the bakelite spacer ring. When a James Knight crystal is used, there is a slight opening where the ring fits the aluminum crystal

NOTES
I. ALL MEASUREMENTS TO GROUND UNLESS OTHERWISE INDICATED.
2. READINGS TAKEN WITH MULTIMETER ME-25A/U, VOLTAGE READINGS D-C UNLESS OTHERWISE INDICATED. USE READING TO BE INDICATED AT MAXIMUM DEFLECTION AND STILL BE WITHAN THE SCALE. FOR EXAMPLE AE WOMINAL O. SCALE. FOR EXAMPLE, A NOMINAL 0.5 ON A RNE VOLT SCALE. A NOMINAL 100 VOLT READING SHOULD BE MEASURED ON A 250 VOLT SCALE.
3. TEST KEY (T) IN CENTER POSITION.
4. tRANSMITTER in standor.
5. RFO FREQUENCY SET AT 2 MC. BAND SWITCH FF AT .3-6 MC POSITION.

Figure 7-11. RFO, Unit 1 (Z-2001), Voltage and Resistance Chart
housing which allows the use of a screwdriver to be inserted to permit lifting of the bakelite spacer ring.

Step 4. Carefully remove exterior housing and pad of spun glass insulation.

Step 5. Carefully remove thin strip of spun glass insulation at base of the assembly.

Step 6. The thermostat is now accessible and may be removed. Mark connections so that they may be replaced in the same manner in which they were originally installed.
(b) REPLACEMENT AND ADJUSTMENTS.To replace the crystal oven, plug it into its socket, replace the bracket, and tighten the two screws that attach the bracket to the chassis. The crystal oven has seven pins, two of which are larger than the other five. Make sure pins are lined up properly before replacing oven in its socket. To replace unit 1, line up the two chassis guide holes on unit 1 with the chassis guide pins on unit 14 mounting. Push unit 1 down slowly until it is properly seated in position and tighten the two cowl fasteners. Connect the five cables to the proper jacks on unit 1 .

CAUTION

Do not force unit 1 into position. Forcing may cause the pins on its connecting plug to be damaged.

Note

When replacing unit 1 with a new unit 1 , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

figure 7-12. RFO, Unit 1 (Z-200I), Top View

Figure 7-13. RFO Frequency Check, Test Setup
e. FREQUENCY MULTIPLIER, UNIT 2 (Z-2034), TROUBLE SHOOTING.-The frequency multiplier (unit 2) has five $1-\mathrm{mc}$ outputs. (See trouble location diagram, figure 7-120.)
These r-f outputs can be measured at the test points by means of Multimeter ME-25A/U, or equivalent. . (Use the probe for all r-f measurements.) Table 7-6 indicates r-f measurements at test points on unit 2.
To check the r-f outputs of unit 2 , the RFO drawer must be extended, the interlock bypassed and OPER-ATE-STANDBY switch \circledast placed in STANDBY.

TABLE 7-6. UNIT 2, R-F VOLTAGE AT TEST POINTS

OUTPUT	UNIT	NOMINAL VOLTAGE
2 a	4	8.7
2 b	5	1.2
2 c	6	1.2
2 d	7	8.7
2 e	10	8.7

The one input to unit 2 (signal 1a) cán be checked at J-2038 on unit 2. If only signals $2 e$ and 2 d are present in the output, tube V-2033 (5814) is probably at fault. If only signals $2 b, 2 c$ and $2 a$ are present, tube V-2034 (5814) is probably at fault. If no output signal is present, use the trouble location diagram, figure $7-120$, schematic, figure $7 \div 125$, wiring diagram, figure 7-126, and voltage and resistance chart, figure 7-15.
f. FREQUENCY MULTIPLIER, UNIT 2 (Z-2034), REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.-In unit 2, the six adjustments that can be made are the top and
bottom slugs of Z-2031, Z-2032, and Z-2033. Refer to figures $7-16$ and $7-17$.

WARNING

These six adjustments are factory adjustments and should not be tampered with unless a transformer is replaced or an adjustment has become loose.

Unit 2 is located on the top of the RFO mounting (figure 7-8) and the top slugs of $\mathrm{Z}-2031, \mathrm{Z}-2032$, and Z-2033 may therefore be adjusted without removing unit 2 from the mounting. The RFO drawer must be pulled all the way out and the top protective cover removed in order to make these adjustments.

Step 1. Place equipment in stand-by condition, OPERATE-STANDBY switch \oplus (P in STANDBY position.

Step 2. Bypass the RFO interlock.
Step 3. Connect Multimeter ME-25A/U, or equivalent, to output 2 a , using the r-f probe, and set meter on 15.0 -volt scale.

Step 4. Adjust the top slugs of Z-2031, Z-2032, and Z-2033 for a maximum reading on Multimeter ME-25A/U.

Step 5. Connect unit 2 to a subunit extension test cable and adjust the bottom slugs of Z-2031, Z-2032, and $Z-2033$ for maximum reading on Multimeter ME-25A/U.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 2 may be removed by turning the two $1 / 4$-turn cowl fasteners and removing the six cables connected to the chassis. Use the handle to remove unit 2 from the mounting.

CAUTION

When removing unit 2 , pull handre slowly and straight out so as not to bend any of the pins on its connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS.-To replace unit 2, line up the chassis guide holes on unit 2 with the chassis guide pins on unit 14. Push unit 2 slowly until it is properly seated in position, and tighten the two cowl fasteners. Connect the six cables to the proper jacks on unit 2.

CAUTION

Do not force unit 2 into position. Forcing may cause the pins on its connecting plug to be damaged.

Note

When replacing unit 2 with a new unit 2, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14

Figure 7-14. RFO, Unit 1 (Z-2001), Cover Removed, Botfom View
mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

No adjustments are required on unit 2 unless \mathbf{Z}-2031, Z-2032, or $\mathrm{Z}-2033$ is replaced. When replacing any one of these transformers adjust its top and bottom slugs as indicated in paragraph $5 f(1)$.
g. RADIO FREQUENCY OSCILLATOR, UNIT 3 (Z-2053), TROUBLE SHOOTING.-The interpolation oscillator, unit 3 (figures $7-18,7-19$ and $7-20$), is the most critical unit in the RFO. Extreme care should be taken to prevent changing the variable inductors during servicing. In the event that tests indicate that unit 3 is in need of alignment, always attempt to zero the unit with the INT. OSC. ZERO ADJ. (front panel) as described in paragraph $5 b$ (1) (a). If this control does not bring unit 3 into alignment, check unit 1 alignment as indicated in paragraph $5 d$ (1) before deciding the trouble to be in unit 3.

Unit 3 has two outputs (3 a and 3 b) of 90 to 100 kc in 10 -cps steps. These frequencies are set up manually by means of the RFO front panel knobs (©), (D), and (EE). Unit 3 output frequency can be checked on the ZERO BEAT INDICATOR and adjusted as indicated in paragraph $5 b$ (1) (a).

If there is no output from unit 3, check r-f voltage at jack INT. OSC. on RFO front panel. Use Multimeter ME-25A/U (or equivalent) with r-f probe; the reading should be approximately 0.2 volt. Use the trouble location diagram, figure $7-120$, and refer to unit 3 schematic diagram, figure $7-127$, the wiring diagram, figure $7-128$, and the voltage and resistance chart, figure $7-21$, to locate the fault.

h. RADIO FREQUENCY OSCILLATOR, UNITT 3 (Z-2053), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-All adjustments on unit 3 are factory adjustments with the ex-
ception of INT. OSC. ZERO ADJ. L-2080. The factory adjustments should not be tampered with unless the adjustable component has been changed or complete alignment is required because of poor operation of the unit indicated by Lissajous patterns from frequency comparison and the minimum r-f voltage measurements using the RFO trouble location diagram.

CAUTION

Combinations of precision capacitors are used in assembly Z-2052 and extreme care must be
taken to replace components in Z-2052 so that the combination of capacitors used to replace a component is of the exact same value as the components being replaced.
(a) INTERPOLATION OSCILLATOR ZERO ADJUST L-2080.-Whenever oscillator tube V-2051 is replaced, it generally throws unit 3 out of alignment. The step accuracy of the $1,000-100$ and 10 -cycle switches (S-2051, S-2052 and S-2053 respectively) is retained, and all that need be done is to zero the INT.

NOTES

Figure 7-15. RFO, Unit 2 (Z-2034), Voltage and Resistance Chart

Figure 7-16. RFO, Unit 2 (Z-2034), Top View
OSC. ZERO ADJ. This adjustment can be made without removing the RFO drawer, as follows:

Step 1. Allow oscillator ovens to cycle for one hour (i.e., oven indicators blinking on and off).

Step 2. Place equipment in a stand-by condition, OPERATE-STANDBY switch $\triangle P$ in the STANDBY position.

Step 3. Turn the KC knob © to position 9, the 100-cycle knob (10) to position 9 , and the 10-cycle knob (12) to position 10. This sets the output frequency of unit 3 at 100 kc .

Step 4. Place INT. OSC. - F.S. OSC. switch (2) on the RFO front panel to position INT. OSC.

Step 5. Adjust INT. OSC. ZERO ADJ. (L-2080) on the front panel with an insulated screwdriver to get minimum frequency opening and closing of electron eye 6Es (front panel) and labeled ZERO BEAT INDICATOR. A minimum deviation in deflection is

Figure 7-17. RFO, Unit 2 (Z-2034), Cover Removed, Bottom View
ideal. Refer to Section 2 for detailed electron eye indication.

An alternate means of checking the frequency of unit 3 may be accomplished by means of an external oscilloscope. Use Oscilloscope OS-8A/U, or equivalent. Follow steps 1,2 , and 3 in the preceding frequency check.

Step 1. Connect cable from INT. OSC. jack on the RFO front panel to the vertical input of the oscilloscope.

Step 2. Connect cable from 100 KC X-TAL jack on the RFO front panel to the horizontal input of the oscilloscope.

A 1:1 ratio Lissajous pattern should appear on the oscilloscope (refer to figure 7-2). If not, adjust INT. OSC. ZERO ADJ. until a $1: 1$ pattern that is as nearly stationary as possible is observed on the oscilloscope.
(b) UNIT 3 ALIGNMENT.-The alignment of unit 3 is a critical process and should be undertaken only by the most skilled technical personnel.

Figure 7-18. RFO, Unit 3 (Z-2053), Top Oblique View

NAVSHIPS 92121(A)
AN/SRT-14, 14A, 15, 15A, 16, 16A

Figure 7-19. RFO, Unit 3 (Z-2053), Right Side View
Perform the following procedure to align the interpolation oscillator. These adjustments are to be made at a base depot only and are not intended for field use. For field check of unit 3, refer to paragraph 5 g .
An accurate frequency meter is required to make these adjustments. Frequency Meter AN/USM-29 or the AN/FRM-3 may be used.

CAUTION

These adjustments are factory adjustments and should not be tampered with unless absolutely necessary.

Step 1. Remove unit 3 from mounting (as described in $5 b$ (2) (a) below), place on extension test cables, cheat interlock, and place equipment in STAND. BY condition.

Step 2. Connect unit 3 output (3a) to the input of the AN/USM-29, or equivalent.

Step 3. The AN/USM-29 has a built-in oscilloscope. If an external oscilloscope, such as the OS-8A/U, is used, connect the output of unit 3 to the vertical input and the output of the frequency meter to the horizontal input of the oscilloscope to obtain a Lissajous pattern.

Step 4. Warm up the ovens and filaments at least one hour before making adjustments.

Step 5. Place unit 3 switch S-2051 at position 0, switch S-2052 at position 9, and switch S-2053 at position 10. This will set up a frequency of 91 kc on unit 3.

Step 6. Position the AN/USM-29 frequency selection knobs to $91 \mathbf{k c}$.

Step 7. Adjust INT. OSC. ZERO ADJ. (L-2080) for a 1:1 Lissajous pattern, as observed on the AN/ USM-29 oscilloscope. If a $1: 1$ Lissajous figure cannot be obtained when adjusting $\mathrm{L}-2080$, then $\mathrm{L}-2051 \mathrm{~B}$, the coarse adjustment (at adjustment label 0), must be set so that a $1: 1$ Lissajous pattern may be obtained when L-2080 is approximately in the center of its range.

Note

Adjustment of L-2080 and L-2051B must be made only when the output of unit 3 is 91 kc .
Step 8. Place unit 3 switch S-2051 at position 0 and switch S-2052 at position 9. On the AN/USM-29 set the 1 K knob to position 0 and the 100 knob to position 9.

Step 9. Place both the unit 3 switch S-2053 and the 10 knob of the AN/USM-29 to the positions listed in table 7-7, and adjust the corresponding inductors, labeled on the front of unit 3, for a $1: 1$ Lissajous pattern as observed on the AN/USM-29 oscilloscope. Adjustments must be made in the order given in table 7-7.

TABLE 7-7. UNIT 3, S-2053 AND AN/USM-29 10 KNOB POSITIONS AND ADJUSTMENTS

POSITION OF S-2053 AND 10 KNOB (AN/USM-29)	ADJUSTMENT	ADJUSTMENT LABEL
9	L-2079	9
8	L-2078	8
7	L-2077	7
6	L-2076	6
5	L-2075	5
4	L-2074	4
3	L-2073	3
2	L-2072	2
1	L-2071	1
0	L-2070	0

Step 10. Place unit 3 switch S-2051 to position 0 and switch S-2053 to position 10. On the AN/USM--29 set the 1 K knob to position 0 and the 10 knob to position 10.

Step 11. Place both unit 3 switch S-2052 and the 100 knob of the AN/USM-29 to the positions listed in table 7-8, and adjust the corresponding inductors labeled on the front of unit 3 for a $1: 1$ Lissajous pattern as observed on the AN/USM-29, oscilloscope. Adjustments must be made in the order given in table 7-8.

Step 12. Place unit 3 switch S-2052 to position 9 and switch S-2053 to position 10. On the AN/USM-29, set the 100 knob to position 9 and the 10 knob to position 10.

Step 13. Place both unit 3 switch S-2051 and the 1 K knob of the AN/USM-29 to the positions listed in table $7-9$, and adjust the corresponding inductors labeled on the front of unit 3 for a $1: 1$ Lissajous pattern as observed on the AN/USM-29 oscilloscope. Adjustments must be made in the order given in table 7-9.

TABLE 7-8. UNIT 3, S-2052 AND AN/USM-29 100 KNOB POSITIONS AND ADJUSTMENTS

POSITION OF S-2052 AND 100 KNOB (AN/USM-29)	ADJUSTMENT	ADJUSTMENT LABEL
8	L-2069	8
7	L-2068	7
6	L-2067	6
5	L-2066	5
4	L-2065	4
3	L-2064	3
2	L-2063	2
1	L-2062	1
0	L-2061	0

TABLE 7-9. UNIT 3, S-2051 AND AN/USM-29 1K KNOB POSITIONS AND ADJUSTMENTS

POSITION OF S-205I AND IK KNOB (AN/USM-29)	ADJUSTMENT -	ADJUSTMENT LABEL
1	L-2052	1
2	L-2053	2
3	L-2054	3
4	L-2055	4
5	L-2056	5
6	L-2057	6
7	L-2058	7
8	L-2059	8
9	L-2060	9

Step 14. Recheck INT. OSC. ZERO ADJ. (L-2080) at 91 kc by repeating steps 5 and 6 and adjusting L-2080 for a $1: 1$ Lissajous pattern, if necessary.
(c) T-2051 FILTER ADJUSTMENT.-Unit 3 contains a band-pass filter, T-2051 ($90-100 \mathrm{kc}$), which has two adjustments.

Note

The following adjustments were madé at the factory and should not be tampered with unless the transformer has been replaced or if an adjustment has become loose.

Step 1. Turn switch S-2051 to position 4, switch S-2052 to position 9, and switch S-2053 to position 10. This sets up unit 3 for a $95-\mathrm{kc}$ output.

Step 2. Connect Multimeter ME-25A/U (or equivalent) with r-f probe to test point 3 a J-2054). Connect output 3 a ($\mathrm{J}-2052$) to its own cable on the mounting with an extension test cable.

Step 3. Adjust first the bottom and then the top slug of filter T-2051 to obtain a peak reading on the multimeter. Apply glyptal to the top adjustment screw.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The following procedure should be followed to remove unit 3 from the mounting (unit 14):

Figure 7-20. RFO, Unit 3 (Z-2053), Tube Shelf, Wiring Side

Step 1. Place knobs © (©0) and (©) to position 0. (Red dots on flexible couplers should face upward.)

Step 2. Disconnect the two cables plugged into unit 3.

Step 3. Loosen the four $1 / 4$-turn cowl fasteners that secure unit 3 to the mounting.

Step 4. Using the two handles, pull unit slowly and straight up until plugs and couplers are disengaged.

To reach the switch wafers, oscillator oven and tube sockets, remove the 12 screws holding the top cover plate of unit 3, and remove the cover plate. The left side cover plate may also be removed at this time.

To remove assembly Z-2052, loosen screws and pull straight backwards.

The following steps should be observed to remove oven assembly Z-2051:

Step 1. Remove connections C, D, G and K at top of oven assembly.

Step 2. Remove the two screws supporting the oven assembly at the bottom of unit 3 .

Step 3. Remove the oven assembly far enough from the chassis to disconnect leads to the oven terminal and plate.

Whenever oven Z-2051 is removed and replaced by another oven, $\mathrm{L}-2051 \mathrm{~B}$, mounted on front plate of unit 3 , must also be removed and replaced.

CAUTION

Because of critical circuitry, L-2051B and oven Z-2051 should not be replaced indi-
vidually. When one or the other is replaced, both items (L-2051B and Z-2051) should be replaced as a unit.

When oven assembly Z-2051 has been removed from unit 3, the thermostat (S-2054) in the oven may be removed and replaced as follows:

Step 1. Remove the nine flathead screws holding the terminal end of the oven assembly.

Step 2. Remove the two large flathead screws at the bottom of the oven assembly.

Step 3. Remove melamine box surrounding the oven assembly.

Step 4. Unsolder thermostat leads to terminal lugs "T".

Step 5. Remove and replace thermostat.
Step 6. Reassemble and glyptal all screws.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace the oscillator oven, replace screws on bottom of unit 3 and replace wires on the proper lugs as follows:

$$
\begin{aligned}
& \text { "H"-Gray-green } \\
& \text { "H"-No connection } \\
& \text { "T"-Gray } \\
& \text { "T"-Gray-red }
\end{aligned}
$$

To replace assembly Z-2052, slide it onto the shaft of switch S-2051. The keyway "pip" on the switch wafer
rotor must be lined up with the "pip" on switch wafer rotor of switch S-2051. Replace the four mounting screws and connect the wire.
To replace unit 3, be sure to place red dots on flexible couplers facing upwards, and place ©(1), (20), and (97) front panel knobs on position 0 . At this point, the red indicators on the shafts should be pointing to position 0 .
Line up the two chassis guide holes on unit 3 with the chassis guide pins on unit 14 mounting. Push unit 3 straight down, making sure couplers are mating properly. Properly seat unit 3 in position, and tighten the four cowl fasteners. The top and side covers may be replaced before or after unit 3 is mounted.

CAUTION

Do not force unit 3 into position. Forcing may cause the pins on its connecting plug to be damaged.

Note

When replacing unit 3 with a new unit 3, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.
j. FREQUENCY MULTIPLIER, UNIT 4 (Z-2103), TROUBLE SHOOTING.-The frequency multiplier

Figure 7-21. RFO, Unit 3 (Z-2053), Voltage and Resistance Chart

Figure 7-22. RFO, Unit 4 (Z-2103), Voltage and Resistance Chart
(unit 4) receives a $1-\mathrm{mc}$ signal (approximately 8.0 volts), which can be checked at test point 2a with a multimeter (ME-25A/U or equivalent), using the r-f probe. The output is an 8 -mc signal which can be checked at 4 a (approximately 1.1 volts). If there is no output, use the trouble location diagram, figure 7-120, the schematic diagram, figure $7-129$, the wiring diagram, figure $7-130$, and the voltage and resistance chart, figure 7-22, to locate the faulty component.

k. FREQUENCY MULTIPLIER, UNIT 4 (Z-2103) REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS. - The four adjustments that may be made on unit 4 are the top and bottom slugs of Z-2101 and Z-2102 (figures 7-23 and 7-24).

Note

These four adjustments are made at the factory and should not be tampered with unless one of the transformers has been replaced or if an adjustment has become loose.

Unit 4 is located on the top of the RFO, figure 7-8, and the top slugs of Z-2101 and Z-2102 may therefore be adjusted without removing unit 4 from the mounting. The RFO drawer must be pulled all the way out, and its top protective cover removed in order to make these adjustments.

Note

Do not make these adjustments until units 1 and 2 are properly aligned.

Figure 7-23. RFO, Unit 4 (Z-2103), Top View
Step 1. Pull the RFO drawer out, cheat interlock, and place equipment in stand-by condition, switch $®$ in STANDBY.

Step 2. Connect Multimeter ME-25A/U (or equivalent) with r-f probe to output 4a, using 2.5 -volt scale.

Step 3. Adjust top slugs of Z-2101 and Z-2102 for maximum reading on Multimeter ME-25A/U.

Step 4. Connect unit 4 to an extension test cable, and adjust bottom slugs of $\mathrm{Z}-2101$ and $\mathrm{Z}-2102$ for maximum reading on Multimeter ME-25A/U.

Step 5. Repeat steps 3 and 4 for maximum voltage cutput and seal (glyptal) the top slugs.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 4 may be removed by loosening the two $1 / 4$-turn cowl fasteners and removing the two cables connected to the chassis. Use handle to remove from mounting.

CAUTION

When removing unit 4, pull handle slowly and straight up so as not to bend any of the pins on the connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 4, line up the two chassis guide holes on unit 4 with the chassis guide pins on unit 14 mounting. Push unit 4 down slowly until it is properly seated in position, and tighten the two cowl fasteners. Connect the two cables to proper jacks on unit 4.

CAUTION

Do not force unit 4 into position. Forcing may cause the pins on its connecting plug to be damaged.

Note

When replacing unit 4 with a new unit 4, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14
mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

No adjustments are required on unit 4 unless Z-2101 or $Z-2102$ is replaced. When replacing either one of these transformers, adjust its top and bottom slug as described in paragraph $5 k(1)$.

l. ELECTRONIC FREQUENCY CONVERTER,

 UNIT 5 (Z-2158) TROUBLE SHOOTING.-The electronic frequency converter (unit 5) has five inputs and one output. Signal 2b can be checked at test point 2 b , signal 3a at test point 3 a on unit 3, signal 4a at test point 4a, signal 1 b at test point 1 b (during CW operation CARRIER ON), and signal 12a at test point 12a on unit 12. If no signal is present (during FSK operation), on either test points 1 b or 12 a , check proper operation of relay $\mathrm{K}-2151$ in unit 5. Refer to table 7-10 for nominal r-f voltages at test points. The output signal may be checked at test point 5 a (approximately 1.0 volt). If there is no output, use the trouble location diagram, figure $7-120$, the schematic diagram, figure 7-131, the wiring diagram, figure 7-132, and the voltage and resistance chart, figure $7-25$, to locate the fault.
TABLE 7-10. UNIT 5, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
4 a	1.1
2 b	0.9
5 a	1.0
1 b	0.2 CW, CARRIER ON

m. ELECTRONIC FREQUENCY CONVERTER, UNIT 5 (Z-2158) REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.-The 14 adjustments that can be made on unit 5 are the top and

Figure 7-24. RFO, Unit 4 (Z-2103), Cover Removed, Bottom View

NAVSHIPS 92121(A)
Section
AN/SRT-14, 14A, 15, 15A, 16, 16A
bottom slugs of Z-2151 through Z-2157; refer to figures 7-26 and 7-27.

Note

These 14 adjustments are made at the factory and should not be tampered with unless one
of the transformers is replaced or an adjustment becomes loose.

The RFO drawer must be pulled out, interlock cheated, and the unit must be connected to an extension test cable to make these adjustments. Refer to Section 1 for extension test cable fabrication instructions.

NOTES
I. ALL MEASUREMENTS TO GROUND UNLESS OTHERWISE INDICATED.
2. READINGS TAKEN WITH MULTIMETER ME-25A/U, VOLTAGE READINGS D-C UNLESS OTHERWISE INDICATED. USE THAT SCALE WHICH WILL PERMIT THE READING TO BE INDICATED AT MAXIMUM DEFLECTION AND STILL BE WITHIN THE SCALE. FOR EXAMPLE, A NOMINAL 0.5 VOLT READING SHOULD BE MEASURED ON A ONE VOLT SCALE; A NOMINAL IOO VOLT READING SHOULD' BE MEASURED ON A 250 VOLT SCALE.
3. TEST KEY (T) IN CENTER POSITION.
4. TRANSMITTER IN STANDBY.
5. RFO FREQUENCY SET AT 2 MC. BAND SWITCH (FF) AT .3-6 MC POSITION.

Figure 7-25. RFO, Unit 5 (Z-2158), Voltage and Resistance Chart

Note

Do not make these adjustments until units 1 , 2,3 , and 4 are properly aligned.

Step 1. Pull RFO drawer all the way out and cheat interlock.

Step 2. Connect unit 5 to an extension test cable, and connect cables to following jacks on unit 5: 4a, 2b, 1 b , and 3 a .

Step 3. Place equipment in stand-by condition, switch ${ }^{\oplus}(\mathbb{P}$ in STANDBY.

Step 4. Place knob (©c) at 5 , (D) at 0 , and knob (ED) at 0 (position of other knobs immaterial).

Step 5. Connect Multimeter (ME-25A/U or equivalent) with r-f probe to test point $5 a$ and set meter on the 2.5 -volt scale.

Step 6. Adjust top and bottom slugs of Z 2151 through $\mathrm{Z}-2157$ for maximum reading on Multimeter ME-25A/U. Apply glyptal to the top adjustment screws of Z-2151 through Z-2157.

(2) MECHANICAL ADJUSTMENTS.

(a) REMOVAL AND REPAIR.-Unit 5 may be removed by turning four $1 / 4$-turn cowl fasteners and removing the six cables connected to chassis. Use handles to remove unit 5 from the mounting. Figures 7-26 and 7-27 show the location of all components on unit 5.

CAUTION

When removing unit 5, pull handles slowly and straight up so as not to bend any of the pins on the connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 5; line up guide holes with guide
pins on mounting. Seat unit 5 properly, and tighten cowl fasteners. Connect the six cables to proper jacks on unit 5.

CAUTION

Do not force unit 5 into position. This may cause the pins on its connecting plug to be damaged.

Note

When replacing unit 5 with a new unit 5, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

No adjustments are required on unit 5 unless one of the transformers, $\mathrm{Z}-2151$ through $\mathrm{Z}-2157$, is replaced. Adjustments should be performed as described in paragraph $5 m$ (1).
n. ELECTRONIC FREQUENCY CONVERTER, UNIT 6 (Z-2204), TROUBLE SHOOTING.-The electronic frequency converter (unit 6), figures 7-28 and 7-29, has three inputs and three outputs. Two of the outputs can be checked by means of an external oscilloscope (OS-8A/U or equivalent), enabling an operational check of unit 6 at two points. Signal $6 c$ is the $10-\mathrm{kc}$ output of blocking oscillator tube V-2202A (12AU7), which can be checked by means of an oscilloscope at the 10 KC jack on the RFO front panel. If this signal is not present, tube $\mathrm{V}-2201$ (5654) or $\mathrm{V}-2202$ (12AU7) is probably at fault. Signal 6a is the 210- to $300-\mathrm{kc}$ output of the oscillator stage, which can also be checked by means of an oscilloscope at the 10 KC STEP jack on the front panel of the RFO. If signal 6 a is not present, check tubes V-2203 (5725), V-2204

Figure 7-26. RFO, Unit 5 (Z-2158), Top View

NAVSHIPS 92121(A)
AN/SRT-14, 14A, 15, 15A, 16, 16A

Figure 7-27. RFO, Unit 5 (Z-2158), Cover Removed, Bottom View
(5654), and $\mathrm{V}-2205$ (6AK6). If signals Ga, bc and all of the inputs are present but there is no output (signal Gb), check tubes V-2206 (5725), V-2207 (5725), V-2208 (5654), and V-2209 (5654). Nominal rf voltages may be measured by means of Multimeter ME-25A/U (with ref probe) as indicated in table 7-11.
table 7-11. UNIT 6, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
$\mathbf{1 a}$	7.0
2c	0.9
Sa	0.9
Gb	0.8

Use the trouble location diagram, figure $7-120$, the schematic diagram, figure $7-133$, the wiring diagram, figure $7-134$, and the voltage and resistance chart, figare $7-30$, to locate the faulty component.
o. ELECTRONIC FREQUENCY CONVERTER, UNIT 6 (Z-2204), REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.-All adjustments on unit 6 are factory adjustments with the exceptimon of R-2210 and C-2219 (figure 7-28). The factory adjustments should not be tampered with unless the adjustable component has been changed or complete alignment is required because of poor operation of unit 6 , as determined by the trouble location diagram method outlined in figure 7-120.
(a) R-2210 ADJUSTMENT.-Whenever tube $\mathrm{V}-2202$ is replaced, or a complete alignment of unit 6 is undertaken, potentiometer R-2210 (figure 7-28) must be adjusted as follows:

Note

R-2210 may be adjusted without removing unit 6 from mounting. Unit 1 must be properly aligned before adjusting R-2210.

Step 1. Place equipment in standby condition, switch © in STANDBY. Allow proper warm-up (1 hour) for ovens and filaments.

Step 2. Connect a cable from jack 10 KC on front panel of RFO to vertical input of Oscilloscope OS -8A/U, or equivalent.

Step 3. Connect a cable from jack 100 KC X-TAL on the RFO front panel to the horizontal input of the oscilloscope.

Step 4. Loosen locknut and adjust R-2210 for a stable 10:1 Lissajous pattern on the oscilloscope screen. (Refer to figure 7-2.)

Step 5. Rotate R-2210 clockwise until the pattern breaks up. Turn R-2210 back until the 10:1 pattern reappears. Mark this position on the chassis.

Step 6. Rotate R-2210 counterclockwise until the pattern breaks up again. Turn R-2210 back until the 10:1 pattern reappears. Mark this position on the chassis.

Step 7. Set R-2210 midway between the two marked positions.

Note

If a 10:1 Lissajous pattern cannot be obtained, but one of a different ratio (for instance 9:1 or 11:1), check the values of the components of the RC circuits in the blocking oscillator.
(b) C-2219 ADJUSTMENT.-Whenever mixer tube V-2203, reactance tube V-2204, or oscillator tube V-2205 are replaced, variable capacitor C-2219 (fig-

Figure 7-28. RFO, Unif 6 (Z-2204), S-2201 Cover Removed, Top View
ure 7-29) must be adjusted. C-2219 is adjusted in the following manner:

Note

Unit 1 and $\mathrm{R}-2210$ must be properly aligned before making adjustments of C-2219. C-2219 may be adjusted without removing unit 6 from the mounting.

Step 1. Place equipment in stand-by condition, switch $®$ in STANDBY.

Step 2. After proper warm-up place knob (1) to position 9 (300 kc). Positions of other knobs are immaterial.

Step 3. Connect a cable from 10 KC STEP jack on RFO front panel to the vertical input of Oscilloscope OS $-8 \mathrm{~A} / \mathrm{U}$, or equivalent.

Step 4. Connect a cable from 100 KC X-TAL jack on RFO front panel to the horizontal input of the oscilloscope.

Step 5. Adjust C-2219 for a stable 3:1 Lissajous pattern on the oscilloscope screen.

Step 6. Rotate C-2219 clockwise until the pattern breaks up. Turn C-2219 back until the 3:1 pattern reappears. Mark position of adjustment slot.

Step 7. Rotate C-2219 counterclockwise until pattern breaks up again. Turn C-2219 back until the $3: 1$ pattern reappears. Mark position of adjustment slot.

Step 8. Set C-2219 adjustment slot at a midpoint between the two markings.

Step 9. Zero the interpolation oscillator as described in paragraph $5 b(1)(a)$.

Step 10. Disconnect the cable from 100 KC X-TAL jack and connect the cable between the horizontal input of the oscilloscope and the INT. OSC. jack.

Step 11. Place front panel knobs (ID), (C), and (10) to position 9, and (ET) to position 10.

Step 12. A 3:1 Lissajous pattern should now be observed on the oscilloscope screen. If the correct pattern can be found by rotating the INT. OSC. ZERO ADJ. a balf turn in either direction, unit 6 is on frequency; if it is not, align the $10-\mathrm{kc}$ step switch $\mathrm{S}-2201$ as instructed in paragraph $50(1)(d)$. Do not adjust C-2219 to obtain this 3:1 pattern.

Step 13. If the correct pattern was obtained in step 12, other positions of switch S-2201 may be checked by observing the Lissajous patterns as indicated in table 7-2.

Note

No adjustments should be made in this check. If any switch position does not produce the correct Lissajous pattern, proceed with the alignment of switch S-2201.
(c) T-2202 ADJUSTMENT.-The adjustments of ringing coil $\mathrm{T}-2202$ are factory adjustments and should not be tampered with unless it is replaced or an adjustment becomes loose. Unit 6 must be removed from the mounting and placed on extension test cables for this adjustment. (See paragraph 5o(2)(a).) The top and bottom slugs of $\mathrm{T}-2202$ should be set so that they are turned in an equal distance and touch each other.

For a more efficient alignment, connect an oscilloscope with frequency response characteristics of at least 2 mc between pin 1 of T-2202 and chassis ground, with a $1 / 2$-megohm, $1 / 2$-watt resistor used to isolate the oscilloscope test probe. Adjust first the bottom, then the top slug of T-2202 for maximum positive pulse, with minimum ringing.
(d) STEP OSCILLATOR S-2201 ADJUST-MENTS.-Whenever a complete alignment of the $10-\mathrm{kc}$ step switch S-2201 is required, adjustments $\mathbf{Z - 2 2 0 1}$ and

C-2219 (on top of unit 6 chassis) and inductors L-2204 through L-2212 (adjusted through access holes marked D0 through D8, respectively, at the rear of S-2201) will require adjustment.

Note

The 10-kc step switch adjustments are factory adjustments and should not be tampered with unless absolutely necessary. These adjustments cannot be made until unit 1 , the 10 -kc blocking oscillator, and transformer T-2202 in unit 6 have been properly aligned. Use the special insulated alignment screwdriver provided with the RFO.

The S-2201 adjustments are made in the following manner, with unit 6 removed from the mounting and placed on extension test cables. Allow (1 hour) warm-up for ovens and filaments.

Step 1. Turn S-2201 to position 9 (300 kc).
Step 2. Connect a cable from $100 \mathrm{KC} \mathrm{X-TAL} \mathrm{jack}$ on RFO front panel to the vertical input of Oscilloscope OS-8A/U, or equivalent.

Step 3. Connect a cable from 10 KC STEP jack on RFO front panel to the horizontal input of the oscilloscope and place equipment in STANDBY condition.

Step 4. Set C-2219 to half capacity position (adjustment slot parallel with the two capacitor mounting screws).

Step 5. Adjust Z-2201 for a 3:1 Lissajous pattern.
Step 6. Rotate Z-2201 clockwise until the pattern unlocks, and then counterclockwise until it locks in again.

Step 7. Rotate Z-2201 counterclockwise until the pattern unlocks, and then clockwise until the pattern locks in again. Note the number of turns through the "lock-in" range of the oscillator and set Z-2201 at the midrange point.

Step 8. Disconnect the scope cable to the 100 KC X-TAL jack on RFO front panel, and connect this cable to the 10 KC jack on the front panel.

Step 9. For the positions 8 through 0 of S-2201, use table 7-12. Turn slugs of indicators clockwise until oscillator unlocks, and then turn slowly counterclockwise until the oscillator locks at Lissajous pattern count indicated in table 7-12.

Step 10. Turn slugs counterclockwise until oscillator unlocks, then turn slowly clockwise until the oscillator again locks. Note the number of turns through the "lock-in" range of the oscillator and set the slugs at the midrange point.

Step 11. Glyptal has been applied to all critical adjustments of unit 6. Reapply glyptal to any of these adjustments that have been moved.

TABLE 7-12. UNIT 6, 10-KC STEP OSCILLATOR ADJUSTMENTS

POSITION OF S-2201	ADJUSTMENT	ADJUSTMENT LABEL	LISSAJOUS PATTERN
8	L-2212	D8	$29: 1$
7	L-2211	D7	$28: 1$
6	L-2210	D6	$27: 1$
5	L-2209	D5	$26: 1$
4	L-2208	D4	$25: 1$
3	L-2207	D3	$24: 1$
2	L-2206	D2	$23: 1$
1	L-2205	D1	$22: 1$
0	L-2204	D0	$21: 1$

(e) 10-KC STEP FILTER ADJUSTMENTS.Whenever a component is replaced in the $10-\mathrm{kc}$ step filter circuit, or a complete alignment of unit 6 is required, the 1.21 - to $1.3-\mathrm{mc}$ filter adjustments ($10-\mathrm{kc}$

Figure 7-29. RFO, Unit 6 (Z-2204), Cover Removed, Bottom View
steps), $\mathbf{Z}-2202$ and $\mathbf{Z}-2203$ (located on the top of unit 6 chassis), and variable capacitors $C-2267$ through C-2276 (marked C, and C0 through C8, respectively, at the rear of $\mathrm{S}-2201$) and $\mathrm{C}-2277$ through $\mathrm{C}-2286$ (marked B, and $B 0$ through $B 8$, respectively, at the rear of $\mathrm{S}-2201$) will require adjustment.

Note

The 10-kc step filter adjustments are factory adjustments and should not be tampered with unless absolutely necessary. These adjustments cannot be made unless units 1,2 , and the other sections of unit 6 have been properly aligned.

It is assumed that unit 6 is still removed from the mounting and connected by extension test cables.

Step 1. Place S-2201 to position 9. Positions of other knobs immaterial.

Step 2. Connect Multimeter ME-25A/U (or equivalent) to pin 1 of mixer tube V-2207 and ground, with meter on the 2.5 -volt scale. Place equipment in STANDBY condition.

Step 3. After proper warm-up (1 hour) for ovens and filaments, adjust in sequence $\mathrm{Z}-2202, \mathrm{C}-2267$ (through access hole C), $\mathrm{Z}-2203$, and $\mathrm{C}-2277$ (through access hole B) to obtain a peak reading on the multimeter. Repeat the adjustments until an absolute peak is reached.

Step 4. Place switch S-2201 to position 8, and following the sequence in table 7-13, adjust the corresponding variable filter capacitors, using the special insulated screwdriver, for the remaining positions of switch S-2201. A peak reading should be obtained for each adjustment.
(f) T-2203, T-2204, T-2205 ADJUSTMENT.The $10.4-10.5-\mathrm{mc}$ filter adjustments are the top and bottom slugs of transformers T-2203, T-2204 and T-2205 (figure 7-28) and are adjusted whenever a complete alignment is required or a component in the filter circuit has been replaced.

Note

These are factory adjustments and should not be tampered with unless absolutely necessary. Units 1, 2, 3, 4, 5, and the other sections of unit 6 must be properly aligned before making these adjustments.

Step 1. Connect Multimeter ME-25A/U (or equivalent) to test point $6 \mathrm{~b}(\mathrm{~J}-2211)$, and place equipment in STANDBY condition.

Step 2. Place switch S-2201 (unit 6) to position 5, and the RFO front panel knobs (c), (D0), and (9) to position 0 (positions of other knobs immaterial). This setting will pass a frequency (10.45 mc), through filters $\mathrm{T}-2203, \mathrm{~T}-2204$, and $\mathrm{T}-2205$, which is at the midpoint of the band-pass range.

TABLE 7-13. UNIT 6, 10-KC STEP FILTER ADJUSTMENTS

POSITION OF S-2201	ADJUSTMENT	ADJUSTMENT LABEL
8	C-2276	C8
7	C-2286	B8

Step 3. After proper warm-up (6 hours), adjust first the bottom, then the top slugs of T-2203, T-2204, and T-2205 to obtain a peak reading on the multimeter. Repeat the adjustments until an absolute peak is reached.
(g) 10-KC TRAP ADJUSTMENT.-The adjustment for the $10-\mathrm{kc}$ trap is variable capacitor C-2212.

Note

This is a factory adjustment and should not be tampered with unless absolutely necessary.

Use a calibrated receiver, containing an " S " meter and capable of giving a minimum of $70-\mathrm{db}$ attenuation at 10 kc away from the desired frequency of 10.4 to 10.5 mc . Use attenuators to limit the input to the receiver.

Step 1. Place equipment in STANDBY condition. It is assumed that unit 6 is still removed from the mounting and connected by means of extension test cables.

Step 2. After proper warm-up (1 hour) place switch S-2201 on position 9, the RFO front panel knobs (©) on position 5, and (D0) and (©) on position 0 (positions of other knobs immaterial).

Step 3. Disconnect cable to jack $6 b$ (J-2206) on unit 6 , and in its place connect the input to the receiver.

Step 4. Tune the receiver to the output frequency of unit 6 (10.495 mc).

Step 5. Retune the receiver very slowly for the
notes

1. AL MEASUREMENTS TO GROUND UNLESS
2. READINGS TAKEN WITH MULTMETER

VOLT
A 250 READING SHOLT SHELE
SCALE.
3. TEST KEY © in CENTER POS
4. RFO FREQUENCY SET AT 2 Mc. BAND

next small peak (approximately 70 db down) at a frequency of 10.485 mc .

Step 6. Adjust C-2212 until this peak is at a minimum, as observed on the receiver " S " meter.

Step 7. Tune receiver to 10.505 mc and observe
signal strength on " S " meter. If necessary, adjust C2212 as in step 6 above.

Note

The best possible balance should be obtained between steps 6 and 7.

Figure 7-31. RFO, Unit 7 (Z-2305), Voltage and Resistance Chart

Figure 7-32. RFO, Unit 7 (Z-2305), Top View
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The following steps should be taken to remove unit 6 from the mounting (unit 14):

Step 1. Turn knob (IJ to indicate position 0.
Step 2. Check that red dots on unit 6 coupler are facing outward.

Step 3. Disconnect the six cables plugged into unit 6.

Step 4. Loosen the four $1 / 4$-turn cowl fasteners.
Step 5. Using handles, pull unit 6 slowly and straight out until its plug and coupler are disengaged.

CAUTION

When removing unit 6 , pull handles slowly so as not to damage pins on connecting plug. Do not apply any chemicals to the trimmer capacitors on S-2201.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 6 , set shaft indicator on unit to position 0. Check that knob (II) is in position 0. Push unit 6 in slowly until coupler engages and plug is properly seated. Tighten the four cowl fasteners. Connect the six cables to the proper jacks on unit 6.

CAUTION

Do not force unit 6 into position. Forcing may cause the pins on its connecting plug to be damaged. Be sure that both switch S-2201 and knob (II) indicate the same position.

Note

When replacing unit 6 with a new unit 6 , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment be sure to
tighten the power plug screws and guide bushing nuts.
p. FREQUENCY MULTIPLIER, UNIT 7 (Z-2305), TROUBLE SHOOTING.-The frequency multiplier (unit 7) has two outputs. Signal $7 \mathrm{a}(15 \mathrm{mc})$ can be checked at test point 7 a . Signal $7 \mathrm{~b}(5 \mathrm{mc})$ can be checked at test point 7b. Refer to table 7-14 for nominal r-f voltage at test points.
table 7-14. UNIT 7, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
7 a	1.0
7 b	1.4
2 d	7.5

If only signal 7b is present, check tubes $\mathrm{V}-2303$ (5654) and V-2304 (5654). If only signal 7 a is present, check tube V-2302 (5654). If neither output is present, check tube V-2301 (5654). Use the trouble location diagram, figure $7-120$, the schematic diagram, figure $7-135$, the wiring diagram, figure $7-136$, and the voltage and resistance chart, figure $7-31$, to locate the faulty component.
q. FREQUENCY MULTIPLIER, UNIT 7 (Z-2305), REPAIR AND ADJUSTMENTS.
(1) ELECTRICAL ADJUSTMENTS.-In unit 7, the eight adjustments that may be made are the top and bottom slugs of $\mathrm{Z}-2301, \mathrm{Z}-2302, \mathrm{Z}-2303$, and $\mathrm{Z}-2304$ (figures 7-32 and 7-33).

Note

These eight are factory adjustments and should not be tampered with unless a transformer is replaced or an adjustment becomes loose.

Figure 7-33. RFO, Unit 7 (Z-2305), Cover Removed, Bottom View

Since unit 7 is located on the top of the RFO, the top slugs may be adjusted without removing unit 7 from the mounting. Pull RFO drawer all the way out and remove its top cover.

Note

Do not make these adjustments until units 1 and 2 are properly aligned.

Step 1. Place equipment in stand-by condition, switch © ${ }^{(P P}$ in STANDBY.

Step 2. Connect Multimeter ME-25A/U (or equivalent) to jack 7 b , using 2.5 -volt scale with r-f probe.

Step 3. Adjust top slugs of Z-2301 and Z-2302 for maximum reading on meter.

Step 4. Place unit 7 on an extension test cable, and adjust the bottom slugs of $\mathrm{Z}-2301$ and $\mathrm{Z}-2302$ for a maximum reading on Multimeter ME-25A/U. Refer to Section 1 for extension test cable fabrication instructions.

Step 5. Connect multimeter to jack 7a and leave meter on 2.5 -volt scale.

Step 6. Connect the extension cable to unit 7 and adjust the bottom slugs of Z-2303 and Z-2304, for maximum reading on multimeter. Apply glyptal to the top slugs of $\mathrm{Z}-2301$ through $\mathrm{Z}-2304$.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 7 may be removed by turning the two $1 / 4$-turn cowl fasteners and removing the three cables connected to the chassis. Use handle to remove unit 7 from mounting.

CAUTION

Pull handle slowly and straight up so as not to bend the pins on the connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 7 , line up guide holes on unit with guide pins on mounting. Push down until properly seated, and tighten the two cowl fasteners. Connect three cables to proper jacks on unit 7 .

CAUTION

Do not force unit 7 into position. Forcing may damage the pins on its connecting plug.

No adjustments are required on unit 7, unless Z-2301, $Z-2302, Z-2303$, or $Z-2304$ is replaced. When replacerg any one of these transformers, adjust its top and bottom slugs; refer to paragraph $5 q(1)$.

Note

When replacing unit 7 with a new unit 7 , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure
to tighten the power plug screws and guide bushing nuts.
r. ELECTRONIC FREQUENCY CONVERTER, UNIT 8 (Z-2330), TROUBLE SHOOTING.-The electronic frequency converter (unit 8) has three inputs and two outputs. Input signal 1d can be checked at test point 1d, signal 7 a at test point 7 a , and signal $\mathbf{6 b}$ at test point $\mathbf{6 b}$. Refer to table $7-15$ for nominal r-f voltages at test points. Output signal $8 \mathrm{a}(1.6 \mathrm{mc}$ and 2.5 mc in $100-\mathrm{kc}$ steps) can be checked by means of an oscilloscope or multimeter by connecting to jack 100 KC STEP on the RFO front panel. Output signal $\mathbf{8 b}$ can be checked at test point 8 b . If signal 8 b is present but 8a is not, check tube V-2334 (6AK6).

TABLE 7-15. UNIT 8, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
1 d	13.5
7 a	1.0
6 b	0.7
8 b	1.0
(8a) 100 KC STEP jack	
on RFO panel.	0.8

A stage-by-stage r-f voltage measurement of unit 8 can be made by means of Multimeter ME-25A/U (or equivalent), using the r-f probe. If there is no output, use the trouble location diagram, figure $7-120$, the schematic diagram, figure 7-137, the wiring diagram, figure $7-138$, and the voltage and resistance chart, figure 7-34.

s. ELECTRONIC FREQUENCY CONVERTER, UNIT 8 (Z-2330) REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-All the adjustments on unit 8 are factory adjustments with the exception of $\mathrm{C}-2339$. The factory adjustments should not be tampered with unless the adjustable component has been changed or complete alignment is required because of poor operation of unit 8 as determined by the trouble location method outlined in figure 7-120.
(a) C-2339 ADJUSTMENT.-Whenever V2327, V-2328, or V-2329 is replaced, variable capacitor C-2339 (figure 7-35) must be adjusted in the following manner:

Note

C-2339 may be adjusted without removing unit 8 from the mounting. Unit 1 must be properly aligned before making this adjustment.

Figure 7-35. RFO, Unit 8 (Z-2330), Top View

Step 1. Place switch © in STANDBY.

Step 2. After proper warm-up (1 hour) for ovens and filaments, place frequency selection knob $\Theta \rightarrow$ to position 9. Positions of other knobs are immaterial.

Step 3. Connect a cable from $100 \mathrm{~K} \dot{\mathrm{C}} \mathrm{X}$-TAL jack on RFO front panel to the vertical input of Oscilloscope OS-8A/U (or equivalent).

Step 4. Connect a cable from the 100 KC STEP jack on RFO front panel to the horizontal input of the oscilloscope.

Step 5. Adjust C-2339 for a stable 25:1 Lissajous pattern on the oscilloscope screen.

Step 6. Rotate C-2339 clockwise until the pattern breaks up. Turn C-2339 back until the 25:1 pattern reappears. Mark position of adjustment slot.

Step 7. Rotate C-2339 counterclockwise until the pattern breaks up again. Turn C-2339 back until the 25:1 pattern reappears. Mark position of adjustment slot.

Step 8. Set C-2339 adjustment slot at a midpoint between the two markings.

Step 9. If the correct pattern was obtained in steps $1-9$, other positions of switch S-2326 (knob © \rightarrow) may
be checked by observing the Lissajous patterns as indicated in table 7-2.

Note

No adjustments should be made in this check. If any switch position does not produce the correct Lissajous pattern, proceed with the alignment of switch S-2326.
(b) T-2326 ADJUSTMENT.-The two adjustments of ringing coil T-2326, top and bottom slugs, are factory adjustments and should not be tampered with unless $\mathrm{T}-2326$ is replaced or an adjustment becomes loose. Unit 8 must be removed from the mounting and placed on extension test cables for these adjustments. See paragraph $5 s(2)(a)$.

For a rough adjustment of T-2326, the top and bottom slugs are turned in an equal distance and touch each other.

For a more efficient alignment of T -2326, connect Oscilloscope OS-8A/U (or equivalent) between pins 1 and 4 of T-2326, with a $1 / 2$-megohm, $1 / 2$-watt resistor used to isolate the oscilloscope test probe. Adjust the bottom, then the top slugs of T-2326 for maximum positive pulse with minimum ringing.
(c) S-2326 STEP OSCILLATOR ADJUST-MENTS.-Whenever a complete alignment of the 100 kc step switch, S-2326, is required, adjustments Z-2326 and C-2339 (on top of the unit 8 chassis) and L-2327 through L-2335 (adjusted through access holes marked G0 through G8, respectively, at the front of switch S-2326) will require adjustment.

Note

The $100-\mathrm{kc}$ step switch adjustments are factory adjustments and should not be tampered with unless absolutely necessary. These adjustments cannot be made unless unit 1 and T-2326 (unit 8) are properly aligned.

These adjustments are made in the following manner, with unit 8 removed from the mounting and placed on extension test cables. Allow sufficient warm-up for ovens and filaments (until oven lights cycle 1 hour).

Step 1. Turn S-2326 to position $9(2.5 \mathrm{mc})$.
Step 2. Connect a cable from 100 KC X-TAL jack on RFO front panel to the vertical input of Oscilloscope $O S-8 A / U$, or equivalent.

Step 3. Connect a cable from 100 KC STEP jack (output 8a) to the horizontal input of the oscilloscope, and place equipment in STANDBY condition.

Step 4. Set C-2339 to half capacity position (adjustment slot parallel with the two capacitor mounting screws).

Step 5. Adjust Z-2326 for a 25:1 Lissajous pattern.
Step 6. Rotate Z-2326 clockwise until the pattern unlocks, and then counterclockwise until it locks in again.

Step 7. Rotate Z-2326 counterclockwise until the pattern unlocks, and then clockwise until the pattern locks in again. Note the number of turns through the "lock-in" range of the oscillator and set Z-2326 at the midrange point.

Step 8. For the positions 8 through 0 of S-2326, use table 7-16. Turn slugs of inductors clockwise until oscillator unlocks, then turn slowly counterclockwise until the oscillator locks at Lissajous pattern count indicated in table 7-16.

Step 9. Turn slugs counterclockwise until oscillator unlocks, then turn slowly clockwise until the oscillator locks in again. Note the number of turns through the "lock-in" range of the oscillator and set the slugs at the midrange point.

Step 10. Glyptal has been applied to all critical adjustments of unit 8. Reapply glyptal to any of these adjustments that have been moved.
(d) S-2326 STEP FILTER ADJUSTMENTS.Whenever a component is replaced in the $100-\mathrm{kc}$ step filter circuit, or a complete alignment of unit 8 is re-

Figure 7-36. RFO, Unit 8 (Z-2330), Covers Removed, Bottom View

TABLE 7-16. UNIT 8, 100-KC STEP OSCILLATOR ADJUSTMENTS

POSITION OF S-2326	ADJUSTMENT	ADJUSTMENT LABEL	LISSAJOUS PATTERN
8	L-2335	G8	$24: 1$
7	L-2334	G7	$23: 1$
6	L-2333	G6	$22: 1$
5	L-2332	G5	$21: 1$
4	L-2331	G4	$20: 1$
3	L-2330	G3	$19: 1$
2	L-2329	G2	$18: 1$
1	L-2328	G1	$17: 1$
0	L-2327	G0	$16: 1$

quired, the $16.6-17.5-\mathrm{mc}$ filter adjustments ($100-\mathrm{kc}$ steps), L-2338, L-2339, C-2405, and C-2406 (located on the top of unit 8 chassis), and C-2362 through C-2370 (marked F0 through F8, respectively, at the rear of S-2326), and C-2371 through C-2379 (marked E0 through E8, respectively, at the rear of S-2326) will require adjustment.

Note

The 100 -kc filter adjustments are factory adjustments and should not be tampered with unless absolutely necessary. These adjustments cannot be made unless units $1,2,7$ and the other sections of unit 8 have been properly aligned.

It is assumed that unit 8 is still removed from the mounting and connected by extension test cables.

Step 1. Place S-2326 to position 9. Positions of other knobs immaterial.

Step 2. Connect Multimeter ME-25A/U or equivalent) to pin 7 of mixer tube $V-2331$ and ground, with meter on the 2.5 -volt scale. Place equipment in STANDBY condition.

Step 3. After proper warm-up (until oven lights cycle 1 hour) for ovens and filaments, adjust in sequence $\mathrm{L}-2338, \mathrm{C}-2405, \mathrm{~L}-2339$, and $\mathrm{C}-2406$ (on top of unit 8 chassis) to obtain a peak reading on the multimeter.

Step 4. Place switch S-2326 to position 8, and following the sequence in table 7-17, adjust the corresponding variable filter capacitors, using the special insulated screwdriver, for the remaining positions of switch S-2326. A peak reading should be obtained for each adjustment.
(e) Z-2327, Z-2328, Z-2329 ADJUSTMENT.
-The $27-28$-mc filter adjustments are the top and bottom slugs of transformers $\mathrm{Z}-2327, Z-2328$, and $\mathrm{Z}-2329$ (figures 7-35 and 7-36).

Note

These are factory adjustments and should not be tampered with unless absolutely necessary. Units $1,2,3,4,5,6,7$, and the other sections of unit 8 must be properly aligned before making these adjustments. Allow proper warm-up (until ovens have been cycling for 1 hour) for ovens and filaments.

TABLE 7-17. UNIT 8, 100-KC STEP FILTER ADJUSTMENTS

$\begin{aligned} & \text { POSITION } \\ & \text { OF } \\ & \mathbf{s - 2 3 2 6} \end{aligned}$	ADJUSTMENT	ADJUSTMENT LABEL
8	$\begin{aligned} & \text { C-2370 } \\ & \text { C-2379 } \end{aligned}$	$\begin{aligned} & \text { F8 } \\ & \text { E8 } \end{aligned}$
7	$\begin{aligned} & \text { C-2369 } \\ & \text { C-2378 } \end{aligned}$	$\begin{aligned} & \text { F7 } \\ & \text { E7 } \end{aligned}$
6	$\begin{aligned} & \hline \mathrm{C}-2368 \\ & \mathrm{C}-2377 \end{aligned}$	$\begin{aligned} & \hline \text { F6 } \\ & \text { E6 } \end{aligned}$
5	$\begin{aligned} & \mathrm{C}-2367 \\ & \mathrm{C}-2376 \end{aligned}$	$\begin{aligned} & \text { F5 } \\ & \text { E5 } \end{aligned}$
4	$\begin{aligned} & \mathrm{C}-2366 \\ & \mathrm{C}-2375 \end{aligned}$	$\begin{aligned} & \hline \text { F4 } \\ & \text { E4 } \end{aligned}$
3	$\begin{aligned} & C-2365 \\ & C-2374 \end{aligned}$	$\begin{aligned} & \text { F3 } \\ & \text { E3 } \end{aligned}$
2	$\begin{aligned} & \mathrm{C}-2364 \\ & \mathrm{C}-2373 \end{aligned}$	$\begin{aligned} & \mathrm{F} 2 \\ & \mathrm{E} 2 \end{aligned}$
1	$\begin{aligned} & \mathrm{C}-2363 \\ & \mathrm{C}-2372 \end{aligned}$	$\begin{aligned} & \hline \mathrm{F} 1 \\ & \mathrm{E} 1 \end{aligned}$
0	$\begin{aligned} & \mathrm{C}-2362 \\ & \mathrm{C}-2371 \end{aligned}$	$\begin{aligned} & \hline \text { E0 } \\ & \text { F0 } \end{aligned}$

Step 1. On unit 8, remove cables from receptacles $1 \mathrm{~d}, 7 \mathrm{a}$ and 6 b .

Step 2. Connect the RF OUTPUT X MULT terminal of signal generator AN/URM-25 to jack $\mathbf{6 b}$.

Step 3. Tune the signal generator to 28 mc and energize the transmitter.

Step 4. Connect the a-c probe of Multimeter ME-25A/U to test point 8b (J-2336).

Step 5. With maximum r-f output from the signal generator, adjust bottom slugs of $\mathbf{Z}-2327, \mathbf{Z}-2328$, and $\mathbf{Z}-2329$ (see figure 7-35) for maximum voltage indication on the multimeter.

Step 6. Retune the signal generator to 27 mc and adjust the top slugs of Z -2327, $\mathrm{Z}-2328$, and $\mathrm{Z}-2329$ (see figure 7-35) for maximum voltage indication on the multimeter.

Step 7. Apply glyptal to the top slugs of Z-2327, Z-2328, and Z-2329.
(f) 100-KC TRAP ADJUSTMENT.-The adjustment for the $100-\mathrm{kc}$ trap is variable capacitor C-2335.

Note
This is a factory adjustment and should not be tampered with unless absolutely necessary.

Use a calibrated receiver, containing an " S " meter and capable of giving a minimum of $70-\mathrm{db}$ attenuation at 100 kc away from the desired frequency of 27 to 28 mc . Use attenuators to limit the input to the receiver.

Step 1. Place equipment in STANDBY condition. It is assumed that unit 8 is still removed from the mounting and connected by means of extension test cables.

Step 2. After proper warm-up (until oven lights cycle for 1 hour), place switch S-2326 to position 9, and the RFO front panel knob (JI) to position 5. All other knobs to position 0.

Step 3. Disconnect cable to jack 8b (J-2330) on unit 8, and in its place connect the input to the receiver.

Step 4. Tune the receiver to the output frequency of unit 8 (27.950 mc).

Step 5. Retune the receiver very slowly for the next small peak (approximately 70 db down) at a frequency of 27.850 mc .

Step 6. Adjust C-2335 until this peak is at a minimum.

Step 7. Tune receiver to 28.050 mc and observe signal strength on " S " meter. If necessary, adjust C-2335 as in step 6 above.

Note

The best possible balance should be obtained between steps 6 and 7.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Perform the following procedures to remove unit 8 from the mounting:

Step 1. Turn knob $\Theta+$ to position 0.
Step 2. Disconnect cables connected to unit 8.
Step 3. Loosen cowl fasteners.
Step 4. Pull unit 8 slowly and straight out by the two handles until the plug and coupler are disengaged.

CAUTION

Use care in removing unit 8 from mounting so as not to damage pins on connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 8, set knob $\Theta \rightarrow$ at position 0 . Check that red dot on coupler faces out away from mounting. Be sure shaft indicator (red pointer) on unit 8 is also set on 0 . Line up guide holes on unit 8 with guide pins on unit 14 mounting. Tighten cowl fasteners, and connect cables to proper jacks on unit 8.

CAUTION

Do not force unit 8 into position. Forcing may damage S-2326 coupler or pins on connecting plug.

Note

When replacing unit 8 with a new unit 8 , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.
t. ELECTRONIC FREQUENCY CONVERTER, UNIT 9 (Z-2426), TROUBLE SHOOTING.-The electronic frequency converter, unit 9 (figures $7-37$ and 7-38), has two inputs and one output. Table 7-19 lists the final output frequencies of unit 9 and respective knob positions. The nominal r-f voltage may be measured at the test points on unit 9, by means of Multimeter ME-25A/U, using the r-f probe (table 7-18).

TABLE 7-18. UNIT 9, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE VOLTAGE VARIES APPROXIMATELY SETIING OF KNOB © $A 4$
7b	1.3
8b WITH	
9	0.9

If there is no output, as indicated in table 7-18, use the trouble location diagram, figure 7-120, the :shematic diagram, figure 7-139, the wiring diagram, figure 7-140, the voltage resistance chart, figure 7-39, and output frequency chart, table $7-19$, to locate the fault.

u. ELECTRONIC FREQUENCY CONVERTER, UNIT 9 (Z-2426), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-All the adjustments on unit 9 are factory adjustments and should not be tampered with unless it is absolutely necessary.

Figure 7-37. RFO, Unit 9 (Z-2426), Cover Removed, Left View

TABLE 7-19. RFO, FINAL OUTPUT FREQUENCIES AND ©®, ©, © AND © KNOB POSITIONS

\qquad	UNIT 9		UNIT 10		KNOB (F) POSITION	KNOB	OUTPUT UNIT SELECTED
	KNOB (A4) POSITION S-2426	OUTPUT FREQUENCY (MC)	KNOB POSITION S-2526	\qquad			
0.3-1	0	22-23	10	22		*	
1-2	0	22-23	9	21		*	
2-3	0	22-23	8	20	0.3-6 mc	*	11A
3-4	0	22-23	7	19		*	
4-5	0	22-23	6	18		*	
5-6	1	27-28	10	22		*	
6-7	0	22-23	4	16		6	
7-8	1	27-28	8	20		7	
8-9	0	22-23	3	14		8	
9-10	0	22-23	2	13		9	
10-11	1	27-28	5	17	6-16 mc	0	11 B
11-12	1	27-28	4	16	6-16 mc	1	118
12-13	2	32-33	8	20		2	
13-14	2	32-33	7	19		3	
14-15	2	32-33	6	18		4	
15-16	3	37-38	10	22		5	
16-17	3	37-38	9	21		6	
17-18	3	37-38	8	20		7	
18-19	2	32-33	3	14		8	
19-20	1	27-28	1	8		9	
20-21	3	37-38	5	17		0	
21-22	3	37-38	4	16	16-26 mc	1	11 C
22-23	0	22-23	1	14		2	
23-24	3	37-38	3	14		3	
24-25	3	37-38	2	13		4	
25-26	2	32-33	0	7		5	

* In the $0.3-6$-mc band, the position knob (6) is immaterial.

TABLE 7-20. UNIT 9, 100-KC STEP FILTER ADJUSTMENTS

Position of Pointer on S-2427	ADJUSTMENT	ADJUSTMENT LABEL
8	C-2440	C8
	C-2456	D8
	C-2472	E8
	C-2487	F8
7	C-2439	C7
	C-2455	D7
	C-2471	E7
	C-2486	F7
6	C-2438	C6
	C-2454	D6
	C-2470	E6
	C-2485	F6
5	C-2437	C5
	C-2453	D5
	C-2469	E5
	C-2484	F5
4	C-2436	C4
	C-2452	D4
	C-2468	E4
	C-2483	F4
3	C-2435	C3
	C-2451	D3
	C-2467	E3
	C-2482	F3

TABLE 7-20. UNIT 9, 100-KC STEP FILTER ADJUSTMENTS (Cont'd.)

Position of Poinfer on S-2427	ADJUSTMENT	ADJUSTMENT LABEL
2	C-2434	C2
	C-2450	D2
	C-2466	E2
	C-2481	F2
1	C-2433	C1
	C-2449	D1
	C-2465	E1
	C-2480	F1
0	C-2432	Co
	C-2448	D0
	C-2464	E0
	C-2479	F0

Unit 9 must be placed on a subunit extension test cable and transmitter must be in STANDBY to make these adjustments.

Note

Use the special insulated screwdriver supplied with the RFO for all of the adjustments on unit 9. Do not make these adjustments until units $1,2,3,4,5,6,7$, and 8 are properly aligned.

Paragraph 5 (1)

Step 1. Place unit 9 on extension test cable, and connect following jacks on unit 9: 7 b and 8 b . Refer to Section 1 for extension test cable fabrication instructions.

Step 2. Set the slugs of capacitors C-2431 and C2447 (labeled C and D at the front of $S-2426$) and $\mathrm{C}-2463$ and $\mathrm{C}-2478$ (labeled E and F at the rear of S 2426) at their midposition. Determine the midposition of the slugs by rotating the slugs first clockwise and then counterclockwise, counting the number of turns and setting slug at the midpoint.

Step 3. Set frequency selection knobs as follows: (H1) at 9, (II) at 4, (C) at 5, (D) and (EI) at 0. (Setting of other knobs immaterial.)

Step 4. Set (red pointer) indicator on unit 9 switches as follows: S-2426 at 3 and S-2427 at 9.

Step 5. Connect Multimeter ME-25A/U to test point 9 and place meter on the 2.5 -volt scale, using r-f probe.

Step 6. Adjust the slugs of L-2429, L-2434, L-2439, and L-2444 (labeled C3, D3, E3, and F3, respectively, on S-2426) for a maximum meter reading.

Note

Adjustments labeled C0 through C8 and D0 through D8 are accessible at the front of S-2426 and S-2427. Adjustments labeled E0 through E8 and F0 through F8 are accessible at the rear of S-2426 and S-2427.

Step 7. Turn switch S-2427 on unit 9 to the positions listed in table 7-20 and, for each position, adjust the four corresponding capacitors on S-2427 for a maximum meter reading.

Step 8. Turn $(1+1)$ knob to 4 , (ID) knob to 4, © (C) knob to 5 , and the ((D) and © E_{C} knobs to 0 .

Step 9. Turn the (red pointer) indicator on switch S-2426 (unit 9) to the positions listed in table 7-21 and, for each position, adjust the four corresponding inductors on S-2426 for a maximum reading on the meter.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove unit 9, set knobs (AA) and (B) on the RFO front panel to position 0 . Turn the four $1 / 4$-turn cowl fasteners and

Figure 7-38. RFO, Unit 9 (Z-2426), Covers Removed, Right View

SECTION A-A

Figure 7-39. RFO, Unit 9 (Z-2426), Voltage and Resistance Chart

TABLE 7-21. UNIT 9, 5-MC STEP FILTER ADJUSTMENTS

Position of Pointer on S-2426	ADJUSTMENT	ADJUSTMENT LABEL
2	L-2428	C2
	L-2433	D2
	L-2438	E2
	L-2443	F2
1	L-2427	C1
	L-2432	D1
	L-2437	F1
	L-2442	C0
0	L-2426	D0
	L-2431	E0
	L-2436	F0

remove the three cables connected to the chassis. Use the handles to pull the chassis from the mounting.

CAUTION

Pull handles slowly and straight out so as not to bend the pins on the connecting plug.

To gain access to the tube sockets, first remove the cover plate between the tubes and the jacks. This plate is held to the chassis by six machine screws. To reach the coils and capacitors used in the switching circuits, remove the remaining three cover plates.

CAUTION

Do not apply any chemicals to trimmer capacitors on S-2426 and S-2427.

The chain and sprocket assembly on unit 9 may be removed as follows (refer to figures 7-37 and 7-38):

Step 1. After unit 9 has been temoved from unit 14 mounting, loosen idler assembly $\mathrm{O}-2437$, and remove the three screws supporting the chain and sprocket assembly bracket.

Step 2. Loosen the setscrews in sprocket O-2431.1 on S-2427 switch shaft.

Note

Hex wrenches are mounted in clips on the right side of the RFO drawer. See figure 7-7.

Step 3. Remove assembly from unit 9.
(b) REPLACEMENT AND ADJUSTMENTS. -Replace unit 9 as follows:

Step 1. Set control knobs (AA) and (B8) to position 0.
Step 2. Set red pointer on S-2426 and S-2427 of unit 9 also to position 0.

Step 3. Check that red dots on flexible couplers are facing outward.

Step 4. Line up guide holes and couplers on unit 9 with guide pins and couplers on unit 14.

Step 5. Push unit 9 in slowly until it is properly seated, and couplers are mating properly.

Step 6. Tighten cowl fasteners.
Step 7. Connect the three jacks on unit 9 with proper cables.

CAUTION

Do not force unit 9 into position. Forcing may damage the flexible couplers, shafts, or the pins on the connecting plug.

The chain and sprocket assembly is provided with an adjustable idler (O-2437). This idler should be adjusted to provide proper chain tension and minimize backlash. For lubrication information, refer to Section 6.

Note

When replacing unit 9 with a new unit 9, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

When replacing a filter component in unit 9, adjust the slug as described in paragraph $5 u$ (1).
v. FREQUENCY MULTIPLIER, UNIT 10 (Z2526), TROUBLE SHOOTING.-The frequency multiplier (unit 10) receives a $1-\mathrm{mc}$ signal (2e) from unit 2 which can be checked at test point 2 e on unit 10 . The output of unit 10 can be checked at test point 10 on unit 10 and also at test point $10 \mathrm{a}, 10 \mathrm{~b}$ or 10 c on unit $11 \mathrm{~A}, 11 \mathrm{~B}$ or 11 C , respectively, depending on the position of BAND switch (17. Table 7-22 indicates nominal r-f voltages to be measured at the test points. Use Multimeter ME-25A/U with r-f probe.

TABLE 7-22. UNIT 10, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
2 e	7.5
10	0.5

If there is no output from unit 10 , use the trouble location diagram, figure $7-120$, the schematic diagram, figure 7-141, the wiring diagram, figure 7-142, and the voltage and resistance chart, figure $7-40$, to locate the fault.

> w. FREQUENCY MULTIPLIER, UNIT 10 2526) REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.-All the adjustments on unit 10 are factory adjustments and should not be tampered with unless it is absolutely

Figure 7-40. RFO, Unit 10 (Z-2526), Voltage and Resistance Chart
necessary. Unit 10 must be placed on subunit extension test cables and switch (\square) must be in STANDBY in order to make these adjustments.

Note

Use the special insulated screwdriver supplied with the RFO for all the adjustments on unit 10. Do not make these adjustments unless units 1 and 2 are properly aligned.

Step 1. Place unit 10 on the subunit extension test cable and connect a cable to jack 2 e and jack 10 on unit 10 . Refer to section 1 for extension test cable fabrication instructions.

Step 2. Connect Multimeter ME-25A/U (or equivalent), using the r-f probe, to jack 10 on unit 10 (use 2.5 -volt scale).

Step 3. Using table 7-23, set switch S-2526 pointer as indicated and adjust coils for maximum output as indicated on Multimeter ME-25A/U.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove unit 10 , set knob (®) at position 0 , and check that red dot on unit 10 coupler is facing outward. Remove the two cables connected to unit 10 , and loosen the cowl fasteners.

CAUTION

Pull handles slowly and straight out to remove unit 10 from mounting, being careful not to bend the pins on connecting plug.

To reach tube sockets, remove bottom plate of unit 10. Remove remaining two plates to provide access to the switches. Figures $7-41$ and $7-42$ show the location of all components on unit 10.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 10 set knob (81) at 0 position. Set red pointer on unit 10 shaft to position 0 . Line up guide holes and couplers on unit 10 with guide pins and couplers on unit 14 mounting. Push unit 10 in slowly until it is properly seated, and tighten cowl fasteners. Connect the two cables to the proper jacks on unit 10.

CAUTION

Do not force unit 10 into position. Forcing may damage the couplers or the pins on the connecting plug.

Note

When replacing unit 10 with a new unit 10 , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment be sure to tighten the power plug screws and guide bushing nuts.

TABLE 7-23. UNIT 10, 1-MC STEP FILTER ADJUSTMENTS

FREQUENCY (MC)	POSITION OF S-2526 POINTER	ADJUSTMENT	ADJUSTMENT LABEL
7	- 0	L-2526	F0
		L-2537	E0
		L-2548	D0
		L-2559	C0
		L-2570	B0
8	- 1	L-2527	F1
		L-2538	E1
		L-2549	D1
		L-2560	C1
		L-2571	B1
13	2	L-2528	F2
		L-2539	E2
		L-2550	D2
		L-2561	C2
		L-2572	B2
14	3	L-2529	F3
		L-2540	E3
		L-2551	D3
		L-2562	C3
		L-2573	B3
16	4	L-2530	F4
		L-2541	E4
		L-2552	D4
		L-2563	C4
		L-2574	B4
17	5	L-2531	F5
		L-2542	E5
		L-2553	D5
		L-2564	C5
		L-2575	B5
18	6	L-2532	F6
		L-2543	E6
		L-2554	D6
		L-2565	C6
		L-2576	B6
19	7	L-2533	F7
		L-2544	E7
		L-2555	D7
		L-2566	C7
		L-2577	B7
20	8	L-2534	F8
		L-2545	E8
		L-2556	D8
		L-2567	C8
		L-2578	B8
21	9	L-2535	F9
		L-2546	E9
		L-2557	D9
		L-2568	C9
		L-2579	B9
22	10	L-2536	F10
		L-2547	E10
		L-2558	D10
		L-2569	C10
		L-2580	B10

NOTE: The position of front panel frequency selection knobs does not matter.

Figure 7-41. RFO, Unif 10 (Z-2526), Covers Removed, Bottom Oblique View
x. ELECTRONIC FREQUENCY CONVERTER, UNIT 11A (Z-2626), TROUBLE SHOOTING.-The electronic frequency converter (unit 11A) has two inputs and one output. Input signal 9a can be checked at test point 9a, and signal 10a at test point 10a. Output signal 11a can be checked at test point 11a. Table 7-24 indicates nominal r-f voltage to be measured at the test points. Use Multimeter ME-25A/U with r-f probe.

If there is no output, use the trouble location diagram, figure 7-120, the schematic diagram, figure 7-143, the wiring diagram, figure 7-144, and the voltage and resistance chart, figure $7-43$, to locate the fault.

y. ELECTRONIC FREQUENCY CONVERTER, UNIT 11A (Z-2626), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-The two adjustable components on unit 11 A are $\mathrm{L}-2629$ and L-2630 (figure 7-44).

Note

These are factory adjustments and should not be tampered with unless an inductor is replaced or its adjustment has become loose.

Alignment of unit 11 A will be indicated if there is a substantial reduction of r-f output or no output at the test points when the frequency setting as indicated by the RFO frequency selection knobs is between 0.3 mc and 6.0 mc .

Since unit 11 A is located on the bottom of the RFO mounting (unit 14), L-2629 and L-2630 may be adjusted without removing unit 11 A from the mounting (see figure 7-9).

TABLE 7-24. UNIT $11 A$ R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
9 a	1.5
10 a	0.3
11 a	3.0

Note

Do not make these adjustments until all units except 11B and 11C are properly aligned.

Step 1. Place equipment in stand-by condition, switch $®$ in STANDBY, and TEST KEY (T) in locked up position.

Step 2. Set up a frequency of 6 mc on frequency selection knobs on the RFO front panel.

Step 3. Connect Multimeter ME-25A/U (or equivalent) with r-f probe to test point 11 a and use 2.5 -volt scale.

Step 4. Adjust L-2629 and L-2630 for maximum meter reading and apply glyptal to them.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove unit 11 A , disconnect three cables from chassis, loosen cowl fasteners, and use handle to remove unit 11 A from mounting. Figures $7-44$ and $7-45$ show the location of components of unit 11A.

CAUTION

Pull handle slowly and straight out so as not to bend pins on connecting plug.
(b) REPLACEMENT AND ADJUSTMENTS.To replace unit 11 A , line up the two chassis guide holes on unit 11 A with the two guide pins on unit 14 mounting. Push unit 11 A in slowly until it is properly seated, and tighten the two cowl fasteners. Connect the three cables to the proper jacks on unit 11A.

CAUTION

Do not force unit 11 A into position. Forcing may damage the pins on connecting plug.

No adjustments are required on unit 11 A unless $\mathrm{L}-2629$ or $\mathrm{L}-2630$ is replaced. When replacing an inductor, adjust its slug (see paragraph $5 \boldsymbol{f}(1)$).

Note

When replacing unit 11A with a new unit 11A, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.
z. ELECTRONIC FREQUENCY CONVERTER, UNIT 11B (Z-2651), TROUBLE SHOOTING.-The electronic frequency converter (unit 11B) has two inputs and one output. Nominal r-f voltages may be checked by means of Multimeter ME-25A/U at the test points of unit 11B as indicated in table 7-25.

TABLE 7-25. UNIT $11 B$, R-F VOLTAGE
AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
9 b	1.0
10 b	0.4
11 b	2.4

NOTE: Above voltages can be measured only when BAND knob (円) is in position 6-16 MC.

If there is no output, use the trouble location diagram, figure 7-120, the schematic diagram, figure 7145, the wiring diagram, figure 7-146, and the voltage and resistance chart, figure 7-46, to locate the fault.

aa. ELECTRONIC FREQUENCY CONVERTER, UNIT 11B (Z-2651), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-All adjustments on unit 11B are factory adjustments and should not be tampered with unless absolutely necessary. Connect unit 11B to a subunit extension test cable to make these adjustments. Refer to Section 1 for extension test cable fabrication instructions.

Note

Do not make these adjustments until all RFO units except 11 A and 11 G are properly aligned.

Figure 7-42. RFO, Unit 10 (Z-2526), Covers Removed, Right View

NOTES

1. ALL MEASUREMENTS TO GROUND UNLESS OTHERWISE INDICATED.
2. READINGS TAKEN WITH MULTIMETER ME-25A/U, VOLTAGE READINGS D-C UNLESS OTHERWISE INDICATED. USE THAT SCALE WHICH WILL PERMIT THE READING TO EE INDICATED AT MAXIMUM DEFLECTION AND STILL BE WITHIN THE SCALE. FOR EXAMPLE, A NOMINAL O.5 VOLT READING SHOULD BE MEASURED ON A ONE VOLT SCALE; A NOMINAL 100 VOLT READING SHOULD' θE MEASURED ON A 250 VOLT SCALE.
3. TEST KEY (T) IN UF POSITION.
4. TRANSMITTER IN STANDEY.
5. RFO frequency set at 2 mC. band SWITCH (FF AT .3-6 MC POSITION.

Figure 7-43. RFO, Unif 11 A (Z-2626), Voltage and Resistance Chart

Figure 7-44. RFO, Unit 11 A (Z-2626), Top View

Alignment of unit 11 B will be indicated if there is a substantial reduction (see figure 7-120) of r-f output or no output at test point 11 b , after it has been established that the mixer and amplifier stages (V-2651 through V-2654) are known to be operating properly. RFO front panel knob BAND \mp must be in position 6-16 MC for this check.

Step 1. Set RFO front panel frequency selection knobs for a frequency of 15.94500 mc . This sets switch S-2651 on unit 11B at position 5 and switch S-2652 at 9 .

Step 2. Place unit 11B on a subunit extension cable. Connect jacks 9 b and 10 b on unit 11 B to corresponding cables of unit 14 mounting.

Step 3. Switches $®$ in STANDBY and TEST KEY (T) in locked up position. Set the slugs of capacitors $\mathrm{C}-2660, \mathrm{C}-2687, \mathrm{C}-2710$ and $\mathrm{C}-2737$ (labeled C, D, E , and F , respectively, on $\mathrm{S}-2651$) at their midpositions. Use the special insulated screwdriver and determine the midposition of the slugs by rotating slugs first clockwise then counterclockwise, counting the number of turns and setting slug at the midpoint.

Note

Adjustments on S-2651 and S-2652 are located as follows: C, C0 through C9 and D, D0 through D9 at the front of S-2651; B0 through B8 and C0 through C8 at the front of S-2652; E, E0 through E9 and F, F0 through F9 at the rear of S-2651; D0 through D8 and E0 through E8 at the rear of S-2652.

WARNING

Use the special insulated screwdriver supplied with the RFO to make adjustments labeled C, C0 through C9, D, D0 through D9, and E, E0 through E9 on S-2651 and B0 through B8, C0 through C8, and D0 through D8 on S-2652.

Step 4. Connect Multimeter ME-25A/U to test point $11 b$ and place meter on the 5.0 -volt scale using r-f probe.

Step 5. Adjust the slugs of L-2656, L-2666, L-2680 and L-2690 (labeled C5, D5, E5 and F5, respectively, on $\mathrm{S}-2651$) for a maximum reading on the meter.

Figure 7-45. RFO, Unit 11 A (Z-2626), Cover Removed, Bottom View

TABLE 7-26. UNIT 11B, 100-KC STEP FILTER ADJUSTMENTS
$\left.\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { Position of } \\ \text { Red Pointer } \\ \text { on S-2652 }\end{array} & \begin{array}{c}\text { FREQUENCY } \\ \text { in MC. }\end{array} & \text { ADJUSTMENT } & \text { ADJUSTMENT } \\ \text { LABEL }\end{array}\right]$

After adjustments have been made as indicated in table 7-26, return (red pointer) indicator on S-2652 to position 4. Set S-2551 on unit 11B and knobs (44) and $(B 8$ to the positions shown in table 7-27.

Adjust corresponding inductors for a maximum reading on multimeter. Frequency selection knobs on RFO front panel should be set to the corresponding settings as indicated in table 7-27.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 11B should be removed from the mounting as follows:

Step 1. Set knobs © 11 and (G6) at position 0.
Step 2. Check that red dots on couplers are facing outward from the mounting.

Step 3. Remove the three cables connected to unit 11 B.

Step 4. Loosen cowl fasteners, and use handles to remove unit 11B from the mounting.

CAUTION

Pull handles slowly and straight out so as not to damage the pins on connecting plug and the unit 11B couplers. Do not apply chemicals to trimmer capacitors on S-2652.

WARNING

Before removing unit 11 B or 11 C , remove all power from transmitter group including 110 volts ac supplied to the oven heaters.

To reach tube sockets, remove the cover plate between the jacks and the tubes by removing six machine screws. The remaining three plates may be removed to reach the switch components. Figures 7-47 and 7-48 show the location of all components on unit 11 B .
(b) REPLACEMENT AND ADJUSTMENTS. -To replace unit 11 B , place knobs $\Theta 14$ and (6c) at position 0 . Set shaft indicators (red pointers) on unit 11B to position 0 . Line up guide holes and couplers on unit 11B with guide pins and couplers on unit 14 mounting. Push unit 11B in slowly, making sure that couplers are mating properly, with red dots coinciding. Tighten cowl fasteners and connect cables to proper jacks.

CAUTION

Do not force unit 11B into position. Forcing may damage pins on connecting plug and couplers.

Note

When replacing unit 11B with a new unit 11B, it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

No electrical adjustments are required on unit 11B unless one of the filter components is replaced. When replacing a component, adjust its slug. (See paragraph 5aa (1).)
bb. ELECTRONIC FREQUENCY CONVERTER, UNIT 11C (Z-2801) TROUBLE SHOOTING.-The electronic frequency converter (unit 11C) has two inputs and one output. Nominal r-f voltages may be checked by means of Multimeter ME-25A/U at the test points on unit 11C as indicated in table 7-28.
If there is no output, use the trouble location diagram, figure 7-120, the schematic diagram, figure 7-147, wiring diagram, figure $7-148$, and the voltage and resistance chart, figure $7-49$, to locate the fault.

TABLE 7-27. UNIT $11 \mathrm{~B}, \mathrm{I}-\mathrm{MC}$ STEP FILTER ADJUSTMENTS

Position of Red Pointer		KNOBS		FREQUENCY IN MC.	ADJUSTMENT	ADJUSTMENT LABEL
S-2651	S-2652	(4)	(38)			
4	4	2	6	14.445	L-2655	C4
					L-2665	D4
					L-2679	E4
					L-2689	F4
3	4	2	7	13.445	L-2654	C3
					L-2664	D3
					L-2678	E3
					L-2688	F3
2	4	2	8	12.445	L-2653	C2
					L-2663	D2
					L-2677	E2
					L-2687	F2
1	4	1	4	11.445	L-2652	C1
					L-2662	D1
					L-2676	E1
					L-2686	F1
0	4	1	5	10.445	L-2651	C0
					L-2661	D0
					L-2675	E0
					L-2685	F0
9	4	0	2	9.445	L-2660	C9
					L-2670	D9
					L-2684	E9
					L-2694	F9
8	4	0	3	8.445	L-2659	C8
					L-2669	D8
					L-2683	E8
					L-2693	F8
7	4	1	8	7.445	L-2658	C7
					L-2668	D7
					L-2682	E7
					L-2692	F7
6	4	0	4	6.445	L-2657	C6
					L-2667	D6
					L-2681	E6
					L-2691	F6

cc. ELECTRONIC FREQUENCY CONVERTER, UNIT 11C (Z-2801), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.—All adjustable components on unit 11 C are factory adjusted and should not be tampered with unless absolutely necessary. Connect unit 11 C to an extension test cable to make these adjustments. Refer to Section 1 for extension test cable fabrication instructions.

TABLE 7-28. UNIT llC, R-F VOLTAGE AT TEST POINTS

TEST POINT	NOMINAL VOLTAGE
9 c	1.0
10 c	0.3
11 c	4.5

NOTE: Above voltages can be measured only when BAND knob (F) is in position $16-26 \mathrm{MC}$.

Note

Do not make these adjustments until all RFO units except 11 A and 11 B are properly aligned. Alignment of unit 11 C will be indicated if there is a substantial reduction (see figure 7-120) of r-f output or no output at test point 11 c , after it has been established that the mixer and amplifier stages (V-2801 through V-2804) are known to be operating properly. RFO front panel knob BAND © must be in position 16-26 MC for this check.

Step 1. Set RFO front panel frequency selection knobs for a frequency of 25.94500 mc . This sets switch S-2801 on unit 11C at position 5 and switch S-2802 at 9.

Step 2. Remove unit 11C from mounting and use the subunit extension cable. Connect jacks 9c and 10c on unit 11 C to corresponding cables of unit 14 mounting.

Step 3. Connect Multimeter ME-25A/U to jack

SECTION A-A

Figure 7-46. RFO, Unit 11 B (Z-2651), Voltage and Resistance Chart

Figure 7-47. RFO, Unit 11 (Z-2651), Covers Removed, Top Oblique View

11 e on unit 11c and set meter on 5 -volt scale, using the r-f probe.

Step 4. Switch ® in STANDBY, and TEST KEY (T) in locked up position. Set the slugs of capacitors C-2810, C-2845, C-2865, and C-2887 (labeled B, C, D and E , respectively, on $\mathrm{S}-2801$) at their midpositions. Use the special insulated screwdriver and determine the midposition of the slugs by rotating first clockwise and then counterclockwise, counting the number of turns and setting the slugs at their midposition.

Note

Adjustments on S-2801 and S-2802 are located as follows: B, B0 through B9, C, C0 through $\mathrm{C} 9, \mathrm{~B} 7 \mathrm{~T}$ and C7T at the front of S-2801; A0 through A8 and B0 through B8 at the front of S-2802; D, D0 through D9 and E,

E0 through E9 at the rear of S-2801; C0 through C8 and D0 through D8 at the rear of S-2802.

WARNING

Use the special insulated screwdriver supplied with the RFO to make adjustments labeled B, B 0 through $\mathrm{B} 9, \mathrm{C}, \mathrm{C} 0$ through $\mathrm{C} 9, \mathrm{~B} 7 \mathrm{~T}, \mathrm{C} 7 \mathrm{~T}$, and D, D0 through D9 on S-2801 and A0 through A8, B0 through B8, and C0 through C8 on S-2802.

Step 5. Set knob (A4) at 2 and (B) at 0.
Step 6. Adjust the slugs of L-2806, L-2816, L-2826 and L-2836 (labeled B5, C5, D5 and E5, respectively, on $\mathrm{S}-2801$) for a maximum reading on the meter.

Step 7. Rotate the indicator (red pointer) of switch S-2802 to the positions listed in table 7-29 and
adjust the four corresponding capacitors on S-2802 for a maximum meter reading.

After adjustments have been made as indicated in table 7-29, return indicator on S-2802 to position 4. Set S-2801 on unit 11C and knobs (A4) and (818) to the positions shown in table 7-30.

Adjust corresponding inductors for a maximum reading on multimeter. Frequency selection knobs on RFO front panel should be set as indicated in table 7-30.

TABLE 7-29. UNIT 11 C , 100-KC STEP FILTER ADJUSTMENTS

Position of Red Pointer		FREQUENCY IN MC.	ADJUSTMENT	ADJUSTMENT LABEL
S-2801	S-2802			
5	8	25.845	C-2819	A8
			C-2839	B8
			C-2859	C8
			C-2878	D8
5	7	25.745	C-2818	A7
			C-2838	B7
			C-2858	C7
			C-2877	D7
5	6	25.645	C-2817	A6
			C-2837	B6
			C-2857	C6
			C-2876	D6

TABLE 7-29. UNIT IIC, 100-KC STEP FILTER ADJUSTMENTS (Cont'd)

Position of Red Pointer		FREQUENCY IN MC.	ADJUSTMENT	ADJUSTMENT LABEL
S-2801	S-2802			
5	5	25.545	C-2816	A5
			C-2836	B5
			C-2856	C5
			C-2875	D5
5	4	25.445	C-2815	A4
			C-2835	B4
			C-2855	C4
			C-2874	D4
5	3	25.345	C-2814	A3
			C-2834	B3
			C-2854	C3
			C-2873	D3
5	2	25.245	C-2813	A2
			C-2833	B2
			C-2853	C2
			C-2872	D2
5	1	25.145	C-2812	A1
			C-2832	B1
			C-2852	C1
			C-2871	D1
5	0	25.045	C-2811	A0
			C-2831	B0
			C-2851	C0
			C-2870	D0

Figure 7-48. RFO, Unit IIB (Z-2651), Covers Removed, Right View

TABLE 7-30. UNIT 11C, 1-MC STEP FILTER ADJUSTMENTS

Position of Red Pointer		KNOBS		FREQUENCY IN MC.	ADJUSTMENT	ADJUSTMENT LABEL
S-2801	S-2802	(4)	(8)			
4	4	3	2	24.445	$\begin{aligned} & \mathrm{L}-2805 \\ & \mathrm{~L}-2815 \\ & \mathrm{~L}-2825 \\ & \mathrm{~L}-2835 \end{aligned}$	B4 C4 D4 E4
3	4	3	3	23.445	$\begin{aligned} & \mathrm{L}-2804 \\ & \mathrm{~L}-2814 \\ & \mathrm{~L}-2844 \\ & \mathrm{~L}-2834 \end{aligned}$	$\begin{array}{r} \text { B3 } \\ \text { C3 } \\ \text { D3 } \\ \text { E3 } \end{array}$
2	4	0	1	22.445	$\begin{aligned} & \mathrm{L}-2803 \\ & \mathrm{~L}-2813 \\ & \mathrm{~L}-2843 \\ & \mathrm{~L}-2833 \end{aligned}$	$\begin{array}{r} \mathrm{B} 2 \\ \mathrm{C} 2 \\ \mathrm{D} 2 \\ \mathrm{E} 2 \end{array}$
1	4	3	4	21.445	$\begin{aligned} & \mathrm{L}-2802 \\ & \mathrm{~L}-2812 \\ & \mathrm{~L}-2842 \\ & \mathrm{~L}-2832 \end{aligned}$	B1 C1 D1 E1
0	4	3	5	20.445	$\begin{aligned} & \mathrm{L}-2801 \\ & \mathrm{~L}-2811 \\ & \mathrm{~L}-2841 \\ & \mathrm{~L}-2831 \end{aligned}$	$\begin{gathered} \text { B0 } \\ \text { C0 } \\ \text { Do } \\ \text { E0 } \end{gathered}$
9	4	1	1	19.445	$\begin{aligned} & \mathrm{L}-2810 \\ & \mathrm{~L}-2820 \\ & \mathrm{~L}-2830 \\ & \mathrm{~L}-2840 \end{aligned}$	$\begin{array}{r} \text { B9 } \\ \text { C9 } \\ \text { D9 } \\ \text { E9 } \end{array}$
8	4	2	3	18.445	$\begin{aligned} & \mathrm{L}-2809 \\ & \mathrm{~L}-2819 \\ & \mathrm{~L}-2829 \\ & \mathrm{~L}-2839 \end{aligned}$	B8 C8 D8 E8
7	4	3	8	17.445	$\begin{aligned} & \mathrm{L}-2808 \\ & \mathrm{~L}-2818 \\ & \mathrm{~L}-2828 \\ & \mathrm{~L}-2838 \end{aligned}$	$\begin{array}{r} \mathrm{B} 7 \\ \mathrm{C} 7 \\ \mathrm{D} 7 \\ \text { E7 } \end{array}$
6	4	3	9	16.445	$\begin{aligned} & \mathrm{L}-2807 \\ & \mathrm{~L}-2817 \\ & \mathrm{~L}-2827 \\ & \mathrm{~L}-2837 \end{aligned}$	$\begin{gathered} \text { B6 } \\ \text { C6 } \\ \text { D6 } \\ \text { E6 } \end{gathered}$

Step 8. Set knob (44) at 3, (18) at, 5, © at 16-26 and all others at 0 .

Step 9. Place indicator on S-2801 at 7, and S-2802 at 0 .

Step 10. Connect a calibrated receiver (RBA, RBB, RBC series; see paragraph 3b) tuned to 20 mc , in place of Multimeter ME-25A/U connected to output jack 11c on unit 11C.

Step 11. Adjust traps L-2845 and L-2846 (labeled B7T and C7T, respectively, on S-2801) for a minimum receiver output as indicated on the receiver OUTPUT meter.

Step 12. Disconnect the receiver from output jack 11c and connect the Multimeter ME-25A/U in its place.

Step 13. Set RFO frequency selection knobs to 17.44500 mc .

Step 14. Set S-2801 indicator on unit 11C at position 7 and S-2802 at 4.

Step 15. Adjust L-2808, L-2818, L-2828, and L-2838 (labeled B7, C7, D7 and E7, respectively, on S -2801) for a maximum reading on the meter.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 11 C is removed from the mounting (unit 14) in the same manner as unit 11B (see paragraph $5 a a(2)(a)$).
(b) REPLACEMENT AND ÁDJUSTMENTS. -Unit 11 C is replaced in the same manner as unit 11 B (see paragraph 5 aan(2)(b)).

Note

When replacing unit 11 C with a new unit 11 C , it may be necessary to loosen the power plug mounting screws and the chassis guide bushing nuts to effect proper alignment on unit 14 mounting. After proper alignment, be sure to tighten the power plug screws and guide bushing nuts.

Figure 7-49. RFO, Unit 11 C (Z-2801), Voltage and Resistance Chart

When replacing a filter component, adjust its slug as previously described in paragraph $5 c c(1)$. Figures $7-50$ and $7-51$ show the location of all components in unit 11 C .
dd. RADIO FREQUENCY OSCILLATOR, UNIT 12 (Z-2127), TROUBLE SHOOTING.-The radio frequency oscillator (unit 12), figures $7-52$ and $7-53$, has two outputs. One of these outputs can be checked at the arm of potentiometer $\mathrm{R}-2916$ (figure 7-3) and the other output can be checked by means of the ZERO BEAT INDICATOR when switch (2) on the RFO front panel is in position F.S. OSC. If there is no unit 12 output, check r-f voltage at jack F.S. OSC. or RFO front panel. Use Multimeter ME-25A/U, or equivalent, with r-f probe; the reading should be approximately 10.0 volts. Use the trouble location diagram, figure

7-120, for minimum r-f voltages, and refer to the schematic diagram, figure 7-149, the wiring diagram, figure $7-150$, and the voltage and resistance chart, figure $7-54$, to locate the fault.

$e e$. RADIO FREQUENCY OSCILLATOR, UNIT 12 (Z-2127), REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS_Four adjustments may be made when aligning unit 12. Two are located on unit 12 ($\mathrm{Z}-2126$ and $\mathrm{T}-2126$) (figure 7-52), and two are screwdriver adjustments on the RFO front panel (figure 7-3), F.S.O. ZERO ADJ. (R-2916) and F.S.O. RANGE ADJ. (R-2919).

Note

Oven Z-2126 must be cycling at least one hour before adjustments are made on unit 12 .

Figure 7-50. RFO, Unit 11 C (Z-2801), Covers Removed, Left View

Figure 7-51. RFO, Unit 11C (Z-2801), Cover Removed, Right View
(a) F.S.O. ZERO ADJ. (R-2916) ADJUST-MENT.-F.S.O. ZERO ADJ. control is the fine adjustment for setting the unshifted frequency of unit 12 at 100 kc . Whenever tube V-2126, V-2127, or V-2128 is replaced, this control should be adjusted as follows:

Note

F.S.O. ZERO ADJ. may be adjusted from the front panel. Do not make this adjustment until unit 1 is properly aligned.

Step 1. Place equipment in a stand-by condition, OPERATE-STANDBY switch \oplus in the STANDBY position. Ovens should be on at least one hour.

Step 2. Set controls as follows: F.S. DEVIATION (11) locked at 0 ; F.S.K. PHASE MOD. (1) fully counterclockwise; switch (2) to F.S. OSC.

Step 3. Open the door covering knobs on front panel of the RFO. Adjust R-2916 (at upper right-hand corner labeled F.S.O. ZERO ADJ.) to get minimum frequency opening and closing of electron eye 6E5 mounted on front panel of RFO (ZERO BEAT INDICATOR). A minimum deviation in deflection is ideal. Refer to Section 2, for detailed electron eye indication.

An alternate method of checking the frequency of unit 12 may be accomplished by means of an external oscilloscope. Use Oscilloscope OS-8A/U or equivalent.

Follow steps 1 and 2 in the preceding frequency check.

Step 1. Connect cable from F.S. OSC. jack on the RFO front panel to the vertical input of the oscilloscope.

Step 2. Connect cable from 100 KC X-TAL jack on the RFO front panel to the horizontal input of the oscilloscope.

Step 3. Adjust R-2916, F.S.O. ZERO ADJ., to obtain a 1:1 Lissajous pattern on the oscilloscope. (Refer to figure 7-2.)

Note

If a 1:1 Lissajous pattern cannot be obtained by adjusting F.S.O. ZERO ADJ., pull the radio frequency oscillator (RFO) drawer out, bypass the interlock, and adjust L-2126 (located on the left side of unit 12; see figure 7-52) for a $1: 1$ Lissajous pattern on the oscilloscope. L-2126 is the coarse adjustment and

NAVSHIPS 92121(A)
Section

Figure 7-52. RFO, Unit 12 (Z-21 27), Top View
should be adjusted with the F.S.O. ZERO ADJ. control in its midposition.
(b) F.S.O. RANGE ADJ. (R-2919) ADJUST-MENT.-The F.S.O. RANGE ADJ. control is adjusted so that F.S. DEVIATION (C.P.S.) control \circledast reads the deviation frequency correctly. It is adjusted as follows:

Note

Do not make this adjustment unless ovens have been operating at least one hour. The radio frequency oscillator (RFO) and the low level radio modulator (LLRM) must be properly aligned before making this adjustment.

Step 1. Check zero beat of unit 3; see paragraph 5h(1).

Step 2. Connect cable from 100 KC X-TAL jack on the RFO front panel to the vertical input of Oscilloscope $\mathrm{OS}-8 \mathrm{~A} / \mathrm{U}$, or equivalent.

Step 3. Open the radio frequency amplifier (RFA) drawer, and on the right side (see figure 7-69) disconnect the cable from $\mathrm{J}-1308$, mounted on the IPA assembly.

Step 4. Connect this cable to the horizontal input of the oscilloscope.

Step 5. Adjust NEUTRAL POLAR MARK ($\mathrm{R}-1079$) keying voltage on LLRM to +10 volts.

Step 6. Set up a frequency of 0.399500 mc on the RFO frequency selection knobs.

Step 7. Transmitter controls should be set as follows: SERVICE SELECTOR (U) at FSK; switch (A) to INT.; F.S.K. PHASE MOD. (4) counterclockwise to

Figure 7-53. RFO, Unit 12 (Z-2127), Bottom View

OFF; switch $®$ to STANDBY; TEST KEY \mathbb{P} in "up" position; EXCITATION control (22) clockwise; F.S. DEVIATION control at 500.

Step 8. Place switch (V) on LLRM front panel to the MARK position.

Step 9. Adjust F.S.O. RANGE ADJ. on RFO front panel for a 4:1 Lissajous pattern on the oscilloscope.

Step 10. Reset frequency selection knobs on RFO front panel to 0.400500 mc .

NOTES

I. ALL MEASUREMENTS TO GROUND UNLESS OTHERWISE INDICATED.
2. READINGS TAKEN WITH MULTIMETER ME-25A/U, VOLTAGE READINGS D-C UNLESS OTHERWISE INDICATED. USE THAT SCALE WHICH WILL PERMIT THE READING TO BE INDICATED AT MAXIMUM DEFLECTION AND STILL BE WITHIN THE SCALE. FOR EXAMPLE, A NOMINAL O.5 VOLT READING SHOULD BE MEASURED ON A ONE VOLT SCALE; A NOMINAL 100 VOLT READING SHOULD BE MEASURED ON A 250 VOLT SCALE.
3. TEST KEY (T) IN CENTER POSITION.
4. TRANSMITTER IN STANDBY. SERVICE SELECTOR (U) AT FSK POSITION.
5. RFO FREQUENCY SET AT 2 MC. BAND SWITCH FF AT .3-6 MC POSITION.

Step 11. Adjust (-) LIMIT KEYER OUT control on LLRM front panel for a $4: 1$ Lissajous pattern.

Step 12. Adjust F.S.O. RANGE ADJ., if necessary, so that F.S. DEVIATION control $\pi 1$ reads 500 ± 25.

Note

Setting of the +10 -volt and -10 -volt FSK keying voltages (in the LLRM) should be

Figure 7-54. RFO, Unit 12 (Z-2127), Voltage and Resistance Chart
checked and reset if necessary (refer to paragraph $6 b(1)(b) l$ before adjustment of the F.S.O. RANGE ADJ. control.
(c) T-2126 ADJUSTMENT.-Low r-f output at test point 12 a on unit 12 may indicate that $\mathrm{T}-2126$ should be adjusted. Both the top and bottom slugs of T-2126 are adjusted for maximum output as indicated on Multimeter ME-25A/U, or equivalent, using the r-f probe. It should read approximately 10 to 13 volts.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-Unit 12 (figure $7-8$) may be taken off the mounting by removing four screws, one at each corner of the chassis, and disconnecting the power plug. Replace screws and washers on standoffs while unit 12 is off the mounting so as not to misplace them.

The following steps should be taken to remove oven assembly Z-2126:

Step 1. Remove tubes V-2126, V-2127, and V2128.

Step 2. Remove the screw in the oven retainer strap, fastened to the top of the oven.

Step 3. Remove two screws supporting the retainer strap standoffs at bottom of unit 12 and remove oven retainer strap and standoff assembly.

Step 4. Remove melamine terminal protective cover by removing the two screws on either side of the oven assembly.

Step 5. Remove screws supporting terminal lugs on melamine end plate.

Step 6. Disconnect lugs on bottom of oven and lugs labeled " T ", " T ", and " H " on left side of oven.

Step 7. Remove the four screws supporting oven assembly to chassis.

To remove thermostat S-2054 in oven assembly:
Step 1. Unsolder the two thermostat leads.
Step 2. Remove six remaining flathead screws around edge of oven assembly supporting terminal end plate.

Step 3. Remove the two large flathead screws on top of the oven. This will allow the upper part of the melamine box surrounding the oven assembly to be lifted free of the end plate. It is not necessary to remove this box entirely; merely loosen it from the terminal end plate and slide back toward V-2128.

CAUTION

Do not disturb the adjustment screws (L2126) at the end of the oven assembly.

Step 4. The end terminal board should now be carefully tilted downward toward the chassis. This will allow access to the thermostat.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace oven assembly $\mathrm{Z}-2126$ and thermostat S-2054, reverse the removal procedure as indicated in paragraph $5 e e(2)(a)$.

CAUTION

Do not force unit 12 power plug into position. Forcing may damage the pins on the connecting plug.

No adjustments are required on unit 12 unless a component has been-replaced. When replacing a component, adjust according to procedure indicated in paragraph 5ee(1).

Note

UNIT 13 IS NOT USED IN AN/SRT-14, 15 AND 16.
ff. CONTROL-INDICATOR C-1 352 /SRT, TROUBLE SHOOTING.-The control of the tuning functions accomplished in the Antenna Coupler CU372/SRT and R-F Tuner TN-229/SRT is from the Control-Indicator C-1352/SRT, mounted on the RFO front panel (figure 7-3).

The control-indicator contains seven controls and the indicating meters required to manually tune the antenna tuning equipment; see figures 7-3 and 7-55.

Locating trouble in the control-indicator is accomplished when trouble-shooting the complete antenna tuning equipment (paragraph 16a). A continuity check may be made of the control-indicator wiring, and relay and switch contacts may be cleaned and adjusted. Figure $7-151$ is the schematic and figure $7-152$ the wiring diagram.

gg. CONTROL-INDICATOR C-1352/SRT, REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-The only electrical adjustments required in the control-indicator are potentiometers $R-411$ and $R-413$, used to calibrate POSITION indicator meter $\mathrm{M}-402$.

Calibration of the POSITION indicator meter is as follows:

Step 1. Transmitter in stand-by condition.
Step 2. Depress button (46) labeled DOWN, on control-indicator, until the POSITION indicator meter is at minimum reading.

Step 3. Adjust ZERO ADJ., on control-indicator panel, to read 0 on the POSITION indicator meter.

Step 4. Depress button (AF) labeled UP, on controlindicator, until the POSITION indicator meter is at maximum reading.

Step 5. Adjust FULL SCALE ADJ., on control-indicator panel, to read 100 on the POSITION indicator meter.

Figure 7-55. Control-Indicator C-1352/SRT, Inner View
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The controlindicator may be removed from the RFO front panel as follows:

Step 1. Loosen the knurled screw on the controlindicator panel, allowing the control-indicator to open on its hinge.

Step 2. Remove the four screws supporting the rear panel of the control-indicator to the RFO front panel, and remove the control-indicator from the RFO.

CAUTION

When removing the control-indicator from the RFO, pull unit slowly and straight out so as not to bend any of the pins on the connecting plugs.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace the control-indicator, line up the four holes on the control-indicator with the four threaded holes on the RFO panel. Push the control-indicator in slowly until it is properly seated in position. Replace the four screws supporting the control-indicator rear panel to the RFO panel.

CAUTION

Do not force the control-indicator into position. Forcing may cause the pins on its connecting plugs to be damaged.

6. RADIO MODULATOR MD-229/SRT (LOW LEVEL RADIO MODULATOR, LLRM).

a. TROUBLE SHOOTING.-When a fault has been localized to the low level radio modulator (LLRM), first determine in which circuit the fault exists. To simplify trouble location, the LLRM is divided into three major circuit divisions: audio circuit, keying circuits, and power supply circuits. Refer to the schematic, figure 7-153, wiring diagram, figure 7-154 (sheets 1,2 and 3), servicing block diagram, figure 7-155, and the voltage and resistance chart, figure 7-56.
(1) AUDIO CIRCUITS.-When trouble occurs in the audio circuits of the LLRM, the transmitter will not operate properly during phone operation. If there is no modulation present in the radio frequency amplifier (RFA) output during 100 -watt or 500 -watt operation, use an external oscilloscope ($\mathrm{OS}-8 \mathrm{~A} / \mathrm{U}$, or equivalent) to locate the faulty portion of the audio circuits. The audio output of the LLRM can be observed on the oscilloscope as follows:

(a) RAPID PERCENTAGE MODULATION CHECK.-For routine field percentage modulation check using the ANT. CURRENT meter on the radio frequency amplifier (RFA) front panel, refer to Section 6, table 6-4.
(b) PRECISE PERCENTAGE MODULATION CHECK.-A more precise method of checking the percentage of modulation by means of an external oscilloscope (OS $-8 \mathrm{~A} / \mathrm{U}$, or equivalent) may be accomplished as follows:

CAUTION

Turn both transmitter and oscilloscope off while making the following connections:

Step 1. Couple the r-f output of the transmitter (terminal on the rear of the ANT. CURRENT meter, figure 7-71) to the vertical deflection plates of the oscilloscope.

Note

A minimum amount of r-f coupling is desirable. This may be accomplished by connecting wires to both the ANT. CURRENT meter and the vertical input of the oscilloscope, and loosely coupling these wires without making any metallic connection between the two. Ca pacitive coupling between these wires should be varied as required to provide as near as possible a trapezoidal pattern without phase shift. Figure 7-57 (a, b, c) represents a typical modulation pattern, and (d) shows an ideal trapezoidal pattern.

Step 2. Connect the modulation output jack, J1309 (see figure 7-69), provided for test purposes on the right side of the radio frequency amplifier (RFA) drawer, to the horizontal input jack of the oscilloscope.

Note

All leads from the RFA to the oscilloscope should be properly shielded to minimize crosstalk and phase shift.

Step 3. Place SERVICE SELECTOR switch (1) in PHONE position. Microphone switch (Y) must be in the proper position, the press-to-talk push button on the microphone must be depressed, and the microphonmmust be receiving a voice signal, with the transmitter "on the air".

Step 4. Refer to figure 7-57 for typical percentage modulation waveforms and adjust the $\%$ MOD. control $®$ for 100 percent modulation at audio peaks.

If no output appears on the oscilloscope during the modulation check, turn the equipment off, and disconnect leads from the RFA and oscilloscope.

The following trouble-location steps outline a procedure for localizing trouble by the general process of

(d)

Figure 7-57. Typical Percentage Modulation Patterns
isolating incorrectly operating circuit elements in the audio amplifier chain.

Using oscilloscope OS-8A/U cable W101, connect the vertical input of the oscilloscope to pin 3 of tube V-1004. See figure 7-58.

WARNING

The LLRM uses voltages that are dangerous to life. Extreme caution should be exercised when working with the LLRM drawer pulled all the way out.

No connection is made to the horizontal input of the oscilloscope; use internal sync and adjust for suitable display on the cathode-ray tube.

If no signal appears on the oscilloscope, the fault lies in one or more of the following stages (refer to the LLRM block diagram, figure 7-155):

Preamplifiers V-1001 and V-1002A
Cathode follower V-1002B
Clipper V-1014
Audio amplifier V-1004A
If a signal appears on the oscilloscope, the fault may lie in one or more of the following stages:

Phase inverter V-1003B
Cathode followers V-1005A and V-1005B
Power amplifiers V-1006 and V-1007
AGC rectifier V-1013A
Squelch multivibrator V-1008
Squelch rectifier CR-1002
Limiter V-1013B
To readily determine whether the fault is in the last three stages (squelch circuit), use a clip lead and ground pin 2 on $V-1013 B$ (see figure 7-58), thus disabling the squelch circuit.

Make a stage-by-stage check by connecting a $1,000-\mathrm{cps}$ audio signal to pin C of HANDSET jack (J-1106) on the front panel of the LLRM, figure 7-62. (An audio oscillator such as models LAJ, LAJ-1, LAJ-2, and TS$382 \mathrm{~A} / \mathrm{U}$ may be used, with a signal amplitude of approximately 25 millivolts.) Place carrier "on the air" by grounding pin D of HANDSET jack.

If it has been determined the fault does not exist in the squelch circuit, leave pin 2 of V-1013B grounded, thus keeping the squelch circuit inoperative. The oscilloscope probe, connected to the vertical input jack of the oscilloscope, may now be used to make the stage-by-stage check of the audio circuits.

Step 1. Place ground connection between the oscilloscope and LLRM drawer.

Step 2. Set the oscilloscope on internal sync (no connection on horizontal input).

The audio signal should be visible on the oscilloscope in increasing amplitude as the probe is advanced from the grid to the plate of each audio amplifier (see block diagram, figure 7-155). When a signal is present at the input to a stage and not at the output, that stage is faulty. Table 7-31 will aid the technician in locating a fault in the LLRM audio circuits.
(2) KEYING CIRCUITS.-When trouble occurs in the keying circuits of the LLRM, the transmitter will not operate properly during hand (HAND) keying, machine (MACH) keying and frequency-shift keying (FSK).

The mode of operation as selected by the SERVICE SELECTOR switch (U) will determine the particular keying circuits employed.

In both hand and machine keying, the carrier is turned on the air. At the same time an audio oscillator produces an audio signal for aural monitoring of the keying signal. In frequency-shift keying, signals are produced that control the operation of the frequencyshift oscillator (unit 12) in the radio frequency oscillator (RFO) and can be phase-modulated by an audio signal.

In photo transmission (FAX) the sole function of the LLRM is to connect the FAX input directly to the deviation control R-2917 on unit 14 of the RFO.

Table $7-32$ will aid the technician in locating a fault in the LLRM keying circuits. Refer to the servicing block diagram, figure 7-155, the schematic, figure $7-153$, and the voltage and resistance chart, figure 7-56. The LLRM front panel component locations and unit adjustments are shown in figures 7-62 and 7-63, respectively.
(3) POWER SUPPLY CIRCUITS.-Contained in the LLRM is a +250 -volt regulated power supply. This voltage is supplied to the keying and audio stages.
The -12 -volt power supply provides operating voltage for the carbon microphone.
The antenna bypass transfer circuit consists of relay $\mathrm{K}-1102$ and tube $\mathrm{V}-1023$.

TABLE 7-31. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE LLRM AUDIO CIRCUITS

indication of failure	Probable fault
Carrier undermodulated.	GAIN TO CLIP © ${ }^{(1)}$ maladjusted. If readjustment does not help, check adjustment of \% MOD $\mathbb{}(\mathbb{C}$ control and amplification of audio stages.
Carrier overmodulated.	GAIN TO CLIP © \triangle maladjusted. If readjustment does not help, check adjustment of \% MOD © control and clipper V-1014.
Modulation present with carbon microphone but not with dynamic microphone.	Dynamic microphone, microphone input control switch CARBON DYN \mathbb{C}, or preamplifier V-1001.
Modulation present with dynamic microphone but not with carbon microphone.	Carbon microphone, microphone input control switch CARBON DYN \odot, microphone input transformer T-1103, or -12 -volt power supply.
No sidetone signal or amplitude very low.	SIDETONE control \mathbb{W} maladjusted or sidetone amplifier V -1004B (if modulation is present).
Carrier modulated by noise when press-to-talk push button is depressed (without voice).	Squelch circuit (V-1008 and CR-1002) and SQUELCH TRIG control (L).
Carrier undermodulated and audio signal distorted.	Cathode followers V-1005A and V-1005B. Power amplifiers V-1006, V-1007.
Noise or howling in audio.	Microphonic stage V-1001 and V-1002.

TABLE 7-32. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE LLRM KEYING CIRCUITS

INDICATION OF FAILURE	PROBABLE FAULT
Carrier does not key.	Remote radiophone unit, relays $K-1306$ in the RFA, $K-1101$ and $K-1107$, buffer $\mathrm{V}-1015 \mathrm{~A}$, keying control $\mathrm{V}-1016$, multivibrator $\mathrm{V}-1017$, dumping tube $\mathrm{V}-1015 \mathrm{~B}$, limiter $\mathrm{V}-1018$, and keyer $\mathrm{V}-1019$.
Does not key in HAND, MACH, and FSK positions.	SERVICE SELECTOR switch (1), S-1101, LOCAL-REMOTE switch ©, V-1015, V-1016, V-1017, V-1018 and V-1019. In MACH and FSK service, voltage regulators V-1021 and V-1022.
No monitoring signal in HAND and MACH positions.	Audio oscillator V-1020 and amplifier V-1004.
Screen overload in power amplifier stage (RFA).	Operate reset button \mathbb{K}; if condition still exists check V-1015 and V-1005.
Transmitter keying output garbled.	KEYING RATE switch (s, TIME CONST. ADI. CONTROL ($n n$ preamplifier chassis) and LLRM front panel screwdriver UNIT ADJUSTMENTS.
Keying transients present in RFA output waveform during key operation.	Dumping circuit $\mathrm{V}-1015$ and cathode follower $\mathrm{V}-1005$.

Table 7-33 will aid the technician in locating a fault in the LLRM power supply circuits. Refer to the schematic, figure 7-153, and the voltage and resistance chart, figure 7-56.
b. REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.
(a) AUDIO CIRCUITS.

1. CLIPPER SYM. CONTROL.-The clipper symmetry control is a unit adjustment, adjusted to compensate for differences in plate current characteristics of the speech clipper tube, $\mathrm{V}-1014$, and provide equal positive and negative clipping action; it may be adjusted as follows:
Extend LLRM drawer and remove protective cover plates to make the following connections:

Step 1. SERVICE SELECTOR switch (1) at PHONE position. CARBON-DYN. switch $\mathbb{(1) \text { at CAR- }}$ BON position. AGC ON-OFF switch © at OFF position. GAIN TO CLIP © full clockwise position. SQUELCH TRIG (L) full counterclockwise position. LOCAL-REMOTE $\mathbb{\otimes}$ at LOCAL position.

Step 2. Connect audio signal generator (such as LAJ series) set at $1,000 \mathrm{cps}$ to terminal 3 of trans-
former T-1003, accessible at the bottom of the LLRM drawer, figure 7-59.

Step 3. Connect oscilloscope probe (OS-8A/U, or equivalent) from vertical input of oscilloscope to pin 1 of tube V-1014.

Step 4. Turn transmitter and test equipment on.

CAUTION

VOltages dangerous to life are PRESENT.

Step 5 . Adjust the oscilloscope (OS-8A/U or equivalent) horizontal frequency control so as to display two cycles on the cathode-ray tube.

Step 6. Adjust GAIN TO CLIP control $\mathbb{M}^{(M)}$ until a small amount of clipping of the $1,000-\mathrm{cps}$ signal appears on the oscilloscope. This is evidenced by flattening of the peaks of the $1,000-\mathrm{cps}$ sine wave.

Step 7. Adjust CLIPPER SYM. control for symmetrical clipping on top and bottom of the sine wave, figure 7-60. Readjust control ${ }^{(M)}$ as necessary to maintain the desired signal amplitude.

2. GAIN TO CLIP @ AND SQUELCH

 TRIG. (L) CONTROLS.-The GAIN TO CLIP $@$ con-
TABLE 7-33. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE LLRM POWER SUPPLIES

INDICATION OF FAILURE	
No 250-volt output.	Fuses F-1001 and F-1002, rectifier V-1009, regulators V-1010, V-1011 and V-1012.
Poor regulation.	Regulator V-1010, regulator control V-1011 and voltage regulator V-1012.
No filament voltage.	LLRM filament circuit including F-1002.
No sidetone.	-12 -volt supply.
Bypass transfer circuit does not operate.	Relay K-1102 and tube V-1023 on preamplifier chassis.

trol is a front panel control knob and its adjustment is a function of operation. Section 4 indicates the method for proper adjustment of this control. It should provide clipping action as indicated in figure $7-60$. SQUELCH TRIG. (L) control is also a front panel control knob adjusted as a function of operation. Setting this control adjusts the speech signals to noise level ratio during pauses in speech. Refer to Section 4 for the procedure of adjusting this control during operation.
3. 500 W. AUDIO LEVEL CONTROLThe 500 W . AUDIO LEVEL control is a unit adjustment used as a modulation conpensating control during 500 -watt operation. It is adjusted to provide 100 percent modulation in 500 -watt operation. With $\%$ MOD. control © properly adjusted (see paragraph $6 a(1)$) for 100 -watt operation, the 500 W . AUDIO LEVEL is adjusted to provide 100 percent modulation at the 500 -watt level. Use the percentage modulation adjustment method as outlined in paragraph $6 a(1)$.

(b) KEYING CIRCUITS.

1. NEUTRAL POLAR MARK AND POLAR SPACE CONTROLS.-These controls are unit adjustments and are adjusted by means of an external test circuit, figure 7-61. This test circuit simulates variable voltage source of machine-keying operation. Components required are: a 45 -volt battery, a 50 K potentiometer, and a double-pole, double-throw switch wired as illustrated in figure 7-61.

Step 1. Transmitter at 100 -watt level, switch \oplus at STANDBY; SERVICE SELECTOR switch (0) at MACH; NEUT. POLAR switch © at NEUT.; TEST KEY (T) at center position.

Step 2. Connect output of test circuit between terminal $9 R$ of $S-1101 \mathrm{~A}$ and chassis ground. This terminal (9R) has a gray-red wire connected to it. S-1101A is the first switch wafer of the service selector switch (1). See figure 7-58.

Step 3. Connect Multimeter ME-25A/U, or equivalent, between the KEY V. IN of TEST POINTS

Figure 7-58. Radio Modulator MD-229/SRT (LLRM), Top View

NAVSHIPS 92121(A)
Section

Figure 7-59. Radio Modulator MD-229/SRT (LLRM), Bottom View
socket E-2919 (located on the left side of the RFO, figure 7-6) and chassis ground.

Step 4. With the test circuit output adjusted at zero volts, Multimeter ME-25A/U connected to KEY V. IN should read negative or space condition. Set NEUTRAL POLAR MARK control to full counterclockwise position.

Step 5. Adjust the test circuit output to approximately +28 volts. Slowly advance NEUTRAL POLAR MARK control until the meter just snaps to zero volts, mark condition. Lock NEUTRAL POLAR MARK control.

Step 6. Set NEUTRAL POLAR switch $(B$ to POLAR and POLAR SPACE control to full counterclockwise position.

Step 7. Set test circuit output to +30 volts to insure that keyer is in mark condition, and then set the test circuit output to -30 volts (operate the DPDT switch of test circuit).

Step 8. Slowly advance the POLAR SPACE control until the keyer goes into space condition (negative reading on meter). Lock POLAR SPACE control.
2. (+) LIMIT AND (-) LIMIT CON-TROLS.-The (+) LIMIT and (-) LIMIT unit adjustment controls are the coarse adjustments for the
frequency-shift operation of unit 12 in the RFO. These controls are adjusted to provide a symmetrical fre-quency-shift output as indicated in the RFO unit 12 alignment procedure of paragraph 5ee(1). These limits may be checked at the RFO test points socket E-2919 as follows:

Step 1. With transmitter in stand-by condition, set the SERVICE SELECTOR switch (U) at FSK.

Step 2. Connect multimeter (ME-25A/U, or equivalent) between the VOLTS MARK SPACE of test socket E-2919, on the RFO, and chassis ground (fig. ure 7-6).

Step 3. Check for a reading of approximately -10 volts on meter.

Step 4. Operate switch (v) to MARK and check for approximately +10 volts on meter.

Note

The setting of these controls should be checked when proper results are not obtained in the checking of F.S. DEVIATION control (110), in paragraph $5 e e(1)$.
3. ZERO ADJ. CONTROL.-This control is a unit adjustment and its setting should be checked as follows:

Figure 7-60. Symmetrical Clipping Waveform
Step 1. With the transmitter in stand-by condition set SERVICE SELECTOR switch (1) in HAND position.

Step 2. Remove clipper tube V-1018 (see figure 7-58).

Step 3. Connect meter, ME-25A/U (or equivalent), between pin 1 of $\mathrm{XV}-1018$ and chassis ground. Set meter on +100 -volt scale.

Step 4. Operate TEST KEY (T) to its locked-up position and adjust ZERO ADJ. for a reading of +25 volts on the meter.

Step 5. Return TEST KEY (T) to its normal position and reverse the polarity of the meter. The meter should now read approximately -30 volts (± 10 volts).

Step 6. Set SERVICE SELECTOR switch (1) to the MACH. position. The meter should still read as in step 5.

Step 7. Reverse polarity of meter and operate switch (v) to MARK. The meter should now read as in step 4.

Step 8. Disconnect meter and replace V-1018 and its tube shield.
4. AUDIO OSC. FEEDBACK CONTROL.The AUDIO OSC. FEEDBACK control is a unit adjustment and may be adjusted as follows:

Step 1. Transmitter in stand-by, SERVICE SELECTOR switch (1) at FSK.

Step 2. Connect a 200 -cycle output (LAJ series, or equivalent) to the vertical input of Oscilloscope OS8A/U (or equivalent).

Note

Adjust the audio generator output voltage level to provide approximately 1 -inch deflection on oscilloscope.

Step 3. Using "internal sync", adjust horizontal fine frequency control on Oscilloscope OS-8A/U for a 2-cycle display and adjust vertical gain so that two complete sine waves may be observed, and note the amplitude.

Step 4. Disconnect the external audio oscillator from the oscilloscope, and in its place connect the 200 cycle output of the wobbulator circuit. This output is measured by connecting the vertical input of the oscil-
loscope (OS-8A/U or equivalent) to the white-bluegreen wire of the fourth wafer (counting from front to rear) on the SERVICE SELECTOR switch (1) S1101. (See figure 7-58.)

Note

Keep the same setting of the oscilloscope controls as for the external audio signal generator.

Step 5. Adjust the AUDIO OSC. FEEDBACK control for the same amplitude as noted in step 3.

The 200 -cycle wobbulator output is fed to the F.S.K. PHASE MOD. control (1L) in the RFO (unit 14). Its operation may be observed by connecting the vertical input of the oscilloscope (OS $-8 \mathrm{~A} / \mathrm{U}$, or equivalent) to the arm of this control. Connection may be made by pulling the RFO drawer out, removing unit 6 and placing on extension test cables. Connect vertical input of oscilloscope to terminal 3 of transformer $\mathrm{T}-2916$. Refer to figures 7-5 and 7-121. An increase and decrease of 200 -cps amplitude should be observed as this control is rotated.
5. TIME CONSTANT ADJ. CONTROL.When replacing tube V -1023 in the preamplifier subchassis, it may be necessary to readjust the TIME CONSTANT ADJ. control mounted on this subchassis. This adjustment is a function of operation; for a detailed explanation of its setting, refer to Section 4.

(c) POWER SUPPLY CIRCUITS.

1. 250 V.P.S. CONTROL.-This control is a unit adjustment for the 250 -volt regulated power supply. It provides regulated plate voltage to both the low level radio modulator (LLRM) and the radio frequency oscillator (RFO) and is adjusted in the following manner:

Step 1. Place the equipment in stand-by condition, switch $®$ in STANDBY.

Step 2. Connect meter (ME-25A/U, or equivalent) to either the 250 V.P.S. test jack provided on the LLRM front panel (J-1110), figure 7-62, or at the RFO test point socket, E-2919 (on the left side of the RFO drawer; see figure 7-6).

Step 3. Set the 250 V.P.S. control (figure 7-63) for a 250 -volt reading on the ME-25A/U Multimeter.

Figure 7-61. LLRM Test Circuit for Simulating Keying Signals

Figure 7-62. Radio Modulator MD-229/SRT (LLRM), Front Panel
2. -12-VOLT SUPPLY.-There are no elec. trical adjustments for the -12 -volt supply. The output of this supply may be checked by connecting a meter (ME-25A/U, or equivalent) between pin D of HANDSET jack J-1106 (on LLRM front panel, figure 7-62) and chassis ground.

(2) MECHANICAL ADJUSTMENTS.

(a) REMOVAL AND REPAIR.-To remove the LLRM from the transmitter group cabinet, loosen the four front panel captive screws and pull the LLRM drawer out to its stop. Remove the interconnecting cable at the rear of the drawer and lift the drawer and remove it from the transmitter group cabinet. The preamplifier subchassis may be removed by loosening the four $1 / 4$-turn fasteners and removing the subchassis from the main chassis.

CAUTION

When removing the preamplifier subchassis, pull slowly and straight up so as not to bend any of the pins on the connecting plug.

Note

If necessary, the air gap on the ball gap assembly of relay $K-1106$ should be set for a 0.020 -inch air gap.

WARNING

Short the ball gap assembly to ground before adjusting the air gap.
(b) REPLACEMENT AND ADJUSTMENTS. -To replace the preamplifier subchassis, push down slowly until it is properly seated into position, and tighten the fasteners. The LLRM drawer is replaced as indicated in paragraph $4 b$.

CAUTION

Do not force the subchassis into position. Forcing may cause the pins on its connecting plug to be damaged.

7. RADIO MODULATOR MD-230/SRT, HIGH LEVEL RADIO MODULATOR (HLRM).

a. TROUBLE SHOOTING.-If the carrier is not modulated in PHONE during 500-watt operation, but is modulated during 100 -watt operation, the high level radio modulator (HLRM) is probably faulty. Check the 3000 V and 350 V SCREEN indicator lights. The 350 V SCREEN indicator light will go on only when the press-to-talk push button on the microphone is depressed. If the 350 V SCREEN indicator light does not go on, check connections to terminal board E-1606, relay $K-1601$, and associated circuit in the HLRM subunit chassis. See figures 7-64 and 7-65 for component locations. If the 3000 V indicator light does not go on, check the interconnecting high voltage cable and the high voltage source from the high voltage Power Supply PP-1096/SRT (HVPS). Check the fuses in the HVPS. (See Section 5, table 5-4.) If the TIME DELAY indicator light of the high voltage Power Supply PP-1096/SRT is on, use the VOLTMETER on the

NAVSHIPS 92121(A)
CORRECTIVE
AN/SRT-14, 14A, 15, 15A, 16, 16A
MAINTENANCE

Figure 7-63. Radio Modulator MD-229/SRT Unit Adjustments, Door Opened

Radio Frequency Amplifier AM-1008/SRT (RFA) front panel and VOLTMETER switch (J) to PA E_{b} (5000 V) position, to measure the voltage. If no voltage is present, check HVPS indicator lights H.V. PRIMARY $\phi 1, \phi 2$ and $\phi 3$. If any of these lamps do not light, refer to the HVPS trouble location section, paragraph $11 a$.

If the 3000 V and 350 V SCREEN indicator lamps are on but the HLRM does not operate (no voice modulation in phone during 500-watt operation), check the input signals to audio amplifiers V-1601 and V-1602 at test points GRID 1, V-1601, and GRID 1, V-1602,
provided on the front panel of the HLRM (figure 7-65). If input signals are present, check tubes $V-1601$ and $\mathrm{V}-1602$.

WARNING

THE HLRM USES VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CAUTION MUST BE EXERCISED WHEN WORKING ON THE HIGH LEVEL RADIO MODULATOR (HLRM).

If the bias of -50 volts is not present at the grids of $\mathrm{V}-1601$ and $\mathrm{V}-1602$, check the -50 -volt bias supply. The bias supply consists of a selenium rectifier mounted on the HLRM subunit chassis (figure 7-64) and is connected to the grids of tubes $V-1601$ and V-1602 from terminal board E-1606 terminal No. 8.

Table 7-34 will aid the technician in locating a fault in the HLRM.

The HLRM voltage and resistance chart, figure 7-66, the schematic diagram, figure $7-156$, and the wiring diagram, figure 7-157, can be used to locate the faulty component.

WARNING

Do not measure the high voltage (3,000 volts) present in this drawer. Resistance measurements can be made with all power removed

Figure 7-64. Radio Modulator MD-230/SRT (HLRM), Top View

TABLE 7-34. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE HLRM

indication of failure	probable fault
No modulation in 500 -watt operation.	No high voltage from HVPS. Relay K-1605. $\mathrm{V}-1601$ and $\mathrm{V}-1602$. Relay K-1601 and K-1603.
Input signals present at GRID 1 V-1601 and GRID 1 V-1602 but no modulation.	Tubes V-1601 and V-1602.
No bias at grids of V-1601 and V-1602.	Bias supply in HLRM subunit chassis.
350 V SCREEN does not light, but 3000 V does light.	No high voltage from HVPS. Tubes V-1603, V-1604, and V-1605.

from the HLRM. Before working on the HLRM, short all circuits to ground with a shorting probe.

By removing $\mathrm{V}-1601$ and $\mathrm{V}-1602$, resistance can be measured at the tube sockets.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-None.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove the HLRM from its cabinet, refer to paragraph $4 a$.

All HLRM components, figure 7-64, are accessible from the top of the HLRM drawer. There are no components on the bottom of the HLRM chassis.

To remove tubes $\mathrm{V}-1601$ and $\mathrm{V}-1602$, remove the plate cap clip, loosen the two screws holding the tube
clamp, remove the clamp, and carefully pull the tube out of its socket.

To remove the HLRM subunit chassis, remove the four mounting screws accessible from the bottom of the HLRM drawer.

Disconnect subunit interconnecting cable at terminal board $\mathrm{E}-1606$ and remove subunit chassis.

When using the extension test cable on the HLRM, loosen the screws at the rear of the HLRM drawer supporting J-1601 and J-1602 bracket.

Move bracket up as far as possible and tighten screws at the rear of the HLRM drawer. This will permit use of the extension test cable.
(b) REPLACEMENTS AND ADJUSTMENTS.
-To replace the HLRM drawer, refer to paragraph 4b. To replace tubes $V-1601$ and $V-1602$, and the subunit chassis, reverse the removal procedures.

Figure 7-65. Radio Modulator MD-230/SRT (HLRM), Front Panel

Figure 7-66. HLRM Voltage and Resistance Chart

CAUTION

When using the extension test cable, replace the bracket supporting $\mathrm{J}-1601$ and $\mathrm{J}-1602$ to its proper position before replacing the HLRM drawer.

If the air gap between $E-1601$ and $E-1602$ (on relay $\mathrm{K}-1603$) is out of adjustment, set it for a 0.030 inch air gap.

WARNING

SHORT BALL GAP ASSEMBLY TO GROUND BEFORE ADJUSTING THE AIR GAP.

8. RADIO FREQUENCY AMPLIFIER AM-1008/SRT (RFA).

a. TROUBLE SHOOTING.-When a fault is localized to the RFA, visual indications will aid in locating the faulty circuit. The RFA block diagram is represented in figure 7-67. These indications will vary with the mode of transmission and the power level of the output. Both the VOLTMETER and ANT. CURRENT meters may be used to check the r-f input and output of the RFA, respectively. METER SELECTOR switch (J) should be in the RF IN (5 V) position for checking the input to the RFA, with switch (A) to INT. and control (22) clockwise.

The antenna tuning equipment group may be eliminated as a source of trouble, and the transmitter bay operated without radiating an r-f carrier, by connecting Dummy Load DA-91/U as described in paragraph $3 a$.

If there is an r-f input to the RFA but no r-f output, the fault may be in the low level radio modulator
(LLRM) keying circuits (paragraph $6 a(2)$) as well as in the RFA. The r-f keying voltage from the LLRM can be checked at IPA subassembly terminal board E-1397, terminal 44, located at the top of the RFA drawer. (See figure 7-68.)

With Multimeter ME-25A/U (or equivalent) connected between terminal 44 of terminal board $\mathrm{E}-1397$ and chassis ground, the following voltages should appear:

Operate TEST KEY (T) with transmitter in stand-by condition and PHONE operation; meter should read zero volts; with TEST KEY (T) in center position, meter should now read at least -18 volts.

If the LLRM keying circuit is properly producing this voltage, the intermediate power amplifier (IPA) and the power amplifier (PA) stages should be checked by using the IPA CURRENT and PA CURRENT meters with associated metering selector switches (G) and (${ }^{\text {H. }}$. (See figure 7-73.)

Table $7-35$ is a list of typical readings for all modes of transmission and power levels, with transmitter set at a frequency of 6 mc and TEST KEY (T) operated with the antenna tuning equipment adjusted for the lowest standing wave ratio (SWR).

WARNING

THE RFA USES VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CAUTION MUST BE EXERCISED WHEN WORKING ON THE RFA.

If the power supply operating voltages (as indicated by VOLTMETER readings) are incorrect, check the corresponding power supply.
If the IPA and PA operating voltages are correct, but there is no IPA or PA cathode current, I_{k} (500

TABLE 7-35. TYPICAL RFA TEST METER READINGS

METER	METER SELECTOR SWITCH POSITION		100-WATT OPERATION		500-WATT OPERATION	
			PHONE	CW, FSK, FAX	PHONE	CW, FSK, FAX
VOLT- METER	VOLTMETER (د)	RF IN (5 V) BIAS (500 V) LV (500 V) MV (1000 V) PA $E_{c 2}(1000 \cdot V)$ PA E_{b} (5000 V)	$\begin{array}{r} 2 * \\ -200 \\ 260 \\ 430 \\ 220 \\ 900 \end{array}$	$\begin{array}{r} 2 * \\ -200 \\ 260 \\ 430 \\ 220 \\ 1100 \end{array}$	$\begin{array}{r} 2 * \\ -200 \\ 280 \\ 460 \\ 390 \\ 2300 \end{array}$	$\begin{array}{r} 2 * \\ -200 \\ 280 \\ 470 \\ 400 \\ 2800 \end{array}$
IPA CURRENT	IPA (G)	$\begin{aligned} & I_{\mathrm{c} 1}(5 \mathrm{ma}) \\ & I_{\mathrm{c} 2}(10 \mathrm{ma}) \\ & I_{\mathrm{z}}(500 \mathrm{ma}) \end{aligned}$	$\begin{gathered} 1 \\ 7.5 \\ 60 \end{gathered}$	$\begin{gathered} 1 \\ \\ 7.5 \\ 60 \end{gathered}$	$\begin{array}{r} 1 \\ 9 \\ 60 \end{array}$	1 $\begin{array}{r} 9 \\ 60 \end{array}$
PA CURRENT	PA (H)	$\begin{aligned} & I_{\mathrm{c}_{1}}(50 \mathrm{ma}) \\ & I_{\mathrm{c}_{2}}(100 \mathrm{ma}) \\ & I_{k}(1 \mathrm{~A}) \end{aligned}$	18 68 0.2	$\begin{gathered} 20 \\ 54 \\ 0.2 \end{gathered}$	15 28 0.3	12 16 0.3

[^7]

Figure 7-67. Radio Frequency Amplifier AM-1008/SRT (RFA), Block Diagram
ma) and $I_{k}(1 A)$, check buffer tube $V-1301$ (figure 769) and the LLRM keying circuits as described in paragraph 6a(2).

If the cathode current is absent or low in only one of the stages (IPA or PA), check that stage. If the RFA blower and all of the RFA filaments are not energized, check fuse labeled 3 AMP FILAMENTS AND MOTOR on the RFA front panel.

If an RFA overload occurs, as evidenced by either the PA SCREEN or PA PLATE overload indicator lights going off, check the power amplifier circuit,
using the PA CURRENT meter and switch (H). An RFA overload indication may be caused by an absence of power amplifier plate voltage, or excessive plate or screen dissipation, due to improper setting of the EXCITATION control (22). (See Section 4.)

If the RFA cannot be tuned, refer to the schematic diagram, figure 7-158, and wiring diagram, figure 7159 , and the voltage and resistance diagram, figure $7-70$, to locate the faulty component. When a fault is localized to the RFA control circuits, the control circuits schematics, figures $7-114$ and $7-115$, may be used to trace through the circuits.

Figures 7-67 through 7-77 show the location of all the components in the RFA.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-Section 4 contains complete information for the adjustment of the front panel controls. The following paragraphs describe the adjustment of controls not located on the front panel. To make these adjustments, the RFA drawer must be fully extended from the transmitter group cabinet.

WARNING

THE RFA USES VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CAUTION SHOULD BE EXERCISED WHEN TRANSMITTER IS OPERATING WITH RFA DRAWER EXTENDED.
(a) BUFFER AND IPA CIRCUITS.-Four slugtuned inductors in the buffer circuit, four in the IPA circuit, and a padder capacitor are the electrical adjustments that may be utilized in these circuits. The adjustable inductors for bands 2 to $5 \mathrm{mc}, 5$ to 11 mc , 11 to 19 mc , and 19 to 26 mc are adjusted from the bottom of the RFA drawer, figure 7-72. Padder capacitor C-1304 is located on the right side of the RFA next to IPA tube socket $\mathrm{XV}-1302$, and is accessible when the IPA compartment protective cover plate is removed. (See figure 7-69.) OPERATE-STANDBY switch $®$ is placed in OPERATE for these adjustments.

Note

The four slug-tuned inductors in the buffer and IPA circuits can be adjusted only after replacing a damaged coil, since the adjusting screws for these coils are cut off and glyptal is applied after alignment.

1. 19- TO 26-MC BAND ADJUSTMENTS.The adjustments for the 19 - to $26-\mathrm{mc}$ band are made in the following manner:

Step 1. Set BANDSWITCH selector (C) to the 19-26 MC position.

Step 2. Set up a frequency of 19 mc on RFO front panel knobs.

Step 3. Place switch (A) on RFA panel to INT and operate TEST KEY $(\uparrow$ on the LLRM front panel.

Step 4. Set capacitor C-1304 (figure 7-69) to its midposition.

Note

This adjustment must be made with care, as $\mathrm{L}-1344$ is located directly above $\mathrm{C}-1304$, and may easily be damaged.

Step 5. Set VOLTMETER switch (1) to RF IN (5 V) and adjust EXCITATION control (72) so that VOLTMETER reads at least 2 volts.

Step 6. Set TUNE IPA knob (B) for a setting of 10 on IPA dial.

Step 7. Set IPA switch (G) to $\mathrm{I}_{\mathrm{c} 1}(5 \mathrm{ma})$ and adjust L-1302 for a maximum reading on IPA CURRENT meter.

Step 8. Set PA switch $\left(H\right.$ to $I_{\text {c1 }}(50 \mathrm{ma})$ and adjust $\mathrm{L}-1307$ for a maximum reading on PA CURRENT meter.

Step 9. Set up a frequency of 26 mc on RFO front panel knobs.

Step 10. Retune TUNE IPA control (B) for a maximum reading on PA CURRENT meter. (Dial setting should be around 95.)

Step 11. Adjust C-1304 and rock TUNE IPA control (B) simultaneously until both give a maximum reading on the PA CURRENT meter.

Step 12. Set up a frequency of 19 mc on RFO panel knobs.

Step 13. Retune TUNE IPA control (B) for a maximum reading on PA CURRENT meter.

Step 14. Readjust L-1302 and L-1307 for maximum reading on PA CURRENT meter.

Step 15. Repeat steps 9, 10, and 11.
Step 16. Cut off the protruding portion of the adjusting screw on $\mathrm{L}-1302$ and $\mathrm{L}-1307$, and coat the remaining end with glyptal.
2. 11- TO 19-MC BAND ADJUSTMENTS.The adjustments for the $11-$ to $19-\mathrm{mc}$ band are made in the following manner:

Step 1. Set BANDSWITCH selector (C) to the 1119 MC position.

Step 2. Set up a frequency of 11 mc on RFO front panel knobs.

Step 3. Place switch (A) on RFA panel to INT and operate TEST KEY $(T$ on the LLRM panel.

Step 4. Set TUNE IPA knob (B) to read 10 on IPA dial, then turn IPA switch (G) to $I_{c 1}(5 \mathrm{ma})$ and

Figure 7-68. Radio Frequency Amplifier AM-1008/SRT (RFA), Top View

Figure 7-69. Radio Frequency Amplifier AM-1008/SRT (RFA), Right View, Cover Removed from IPA Subassembly
adjust $\mathrm{L}-1303$ for a maximum reading on IPA CURRENT meter.

Step 5. Set PA switch Θ at $\mathrm{I}_{\mathrm{c} 1}$ (50 ma) and adjust L-1308 for a maximum reading on PA CURRENT meter.

Step 6. Set up a frequency of 19 mc on RFO front panel knobs.

Step 7. Rotate TUNE IPA knob (B) for a maximum reading on PA CURRENT meter. This reading should be equal to or greater than the previous one and should occur before minimum capacity, that is, 100 on IPA dial.

Note

If resonance does not occur before 100 on IPA dial, repeat steps 4 and 5, but in step 4, set IPA dial at a lower dial reading.

Step 8. Cut off the protruding portion of the adjusting screw on $L-1303$ and $L-1308$, and coat the remaining end with glyptal.
3. 5- TO 11-MC BAND ADJUSTMENTS.The adjustments for the 5 - to $11-\mathrm{mc}$ band are made in the following manner:

Step 1. Turn BANDSWITCH control (C) to the 5-11 MC position.

Step 2. Set up a frequency of 5 mc on the RFO front panel knobs.

Step 3. Set switch (A), on RFA front panel, to INT and operate TEST KEY $(T$ on the LLRM front panel.

Step 4. Rotate TUNE IPA knob (B) so that IPA dial reads 12. Adjust L-1304 for a maximum reading on the IPA CURRENT meter, with IPA switch (G) set at $I_{c 1}$ (5 MA).

Step 5. Adjust L-1309 for a maximum reading on the PA CURRENT meter, with PA switch $(\mathcal{A}$ set at $I_{c 1}(50 \mathrm{ma})$.

Step 6. Set up a frequency of 11 mc on the RFO front panel knobs.

Step 7. Rotate TUNE IPA knob (B) for a maximum reading on the IPA CURRENT meter.

Note

Maximum PA CURRENT meter reading should occur before the IPA dial reaches 100 . If it does not, repeat steps 2 through 6 , but in step 4, set the IPA dial at a lower reading.

NOTES

1. ALL MEASUREMENTS TO CHASSIS GROUND, USING MULTIMETER ME-25AIU. USE THE SCALE Which will permit the reading TO BE INDICATED AT MAXIMUM DEFLECTION and still be within the scale. for EXAMPLE A NOMINAL O. 5 VOLT READING SHOULD BE MEASURED ON A I VOLT SCALE; a Nominal 100 Volt reading should be MEASURED ON A 250 VOLT SCALE.
2. KNOBS SET AS FOLLOWS:
H_{cl}
$6 I_{c l}$
J RF IN
C 2-5 MC
A INT
3. UNLESS OTHERWISE INDICATED, TRANSMIT TER AT 100 WAT T LEVEL; FREQUENCY 2.5 MC ; CW OPERATION.
4. WHERE VOLTAGES OR RESISTANCES ON any one pin are the same for two OR MORE OPERATIONS ICW. PHONE, IOO W, 500 W) THE CORRECT VALUE WILL BE INDICATED ONLY ONCE.

+ MEASURED WITH 5000 VOLT ADAPTER. * 100 W CW OR Phone/500 W CW OR Phone.

SECTION C-C

Figure 7-70. RFA Voltage and Resistance Chart

Figure 7-71. Radio Frequency Amplifier AM-1008/SRT (RFA), Left View

Step 8. Cut off the protruding portion of the adjustment screw on L-1304 and L-1309, and coat the remaining end with glyptal.
4. 2- TO 5-MC BAND ADJUSTMENTS.The adjustments for the 2 - to $5-\mathrm{mc}$ band are made in the following manner:

Step 1. Set BANDSWITCH selector (C) to the 2-5 MC position.

Step 2. Set up a frequency of 2 mc on RFO front panel knobs.

Step 3. Place switch (A) on RFA panel to INT and operate TEST KEY $(T$ on the LLRM front panel.

Step 4. Set TUNE knob (B) to read 2.5 on IPA dial, then set IPA switch (G) to $I_{c 1}(5 \mathrm{ma})$ and adjust L-1305 for a maximum reading on IPA CURRENT meter.

Step 5. Set PA switch (A) at $I_{c 1}(50 \mathrm{ma})$ and ad- ${ }^{\prime}$ just L-1310 for a maximum reading on PA CURRENT meter.

Step 6. Set up a frequency of 5 mc on RFO front panel knobs.

Step 7. Rotate TUNE IPA knob (B) for a maximum reading on the PA CURRENT meter. This reading should occur at the lower end of the IPA dial reading. If it does not, repeat steps 2 through 5, but in step 4 set the dial at a slightly lower reading.

Step 8. Cut off the protruding portion of the adjusting screw on L-1305 and L-1310, and coat the remaining end with glyptal.
5. 0.3-TO 0.8-MC AND 0.8- TO 2-MC BAND ADJUSTMENT.-There are no adjustments in the buffer and IPA circuits for the 0.3 - to $0.8-\mathrm{mc}$ and 0.8 - to 2-mc bands.
(b) PA CIRCUIT.-All power amplifier circuit adjustments are on the left side of the RFA, figure 7-71, with the exception of $\mathrm{L}-1337$, located on the bottom of the RFA, figure 7-72, and L-1338, on the top, figures 7-68 and 7-74.

1. C-1319, C-1320, C-1321 ADJUSTMENTS. -Vacuum capacitors $C-1319, C-1320$ and $C-1321$ (figure 7-68) are adjusted in the following manner:

Step 1. Rotate TUNE PA control (D) clockwise until vacuum capacitors $C-1319, C-1320$, and $C-1321$ stop at minimum capacity (minimum engagement of fixed and movable plates).

Step 2. Position the movable plate of each capacitor ($\mathrm{C}-1319, \mathrm{C}-1320, \mathrm{C}-1321$) so that a $1 / 16$-inch space exists between the fixed and movable plates, as observed through the glass envelope.

Note

C-1319 is adjusted by the hex-head setscrew on the adjusting collar, located approximately two inches to the right of gear $\mathrm{O}-1322$ and rack $\mathrm{O}-1343$, both controlling $\mathrm{C}-1319$ (figure 7-75). The hex-head setscrews on the adjusting collars for the adjustment of $\mathrm{C}-1320$ and C-1321 are located about two inches to the left of the respective gear and rack assembly ($\mathrm{O}-1322.1, \mathrm{O}-1343.1$ and $\mathrm{O}-1322.2, \mathrm{O}-$ 1343.2, respectively).
2. $\mathrm{R}-1345$, $\mathrm{R}-1348$ ADJUSTMENT.-Bias adjustments $R-1345$ (100 watt) and $R-1348$ (500 watt) (figure 7-69) are adjusted in the following manner:

Step 1. Place the equipment in stand-by condition, OPERATE-STANDBY switch \oplus at STANDBY.

Step 2. Connect the d-c probe of Multimeter ME-25A/U (or equivalent) to the junction of $\mathrm{L}-1311$
and $\mathrm{R}-1344$. Place Multimeter ME-25A/U on the 250 volt scale, and set meter function selector to minus (-).

Note

The junction of $\mathrm{L}-1311$ and $\mathrm{R}-1344$ is accessible from the right side of the RFA, at the rear, beneath PA tube socket XV-1304. Connect a clip lead to the left side of resistor $\mathrm{R}-1344$ (located across the two insulators). (See figure 7-69.)

WARNING

EXERCISE CARE AS HIGH VOLTAGES ARE PRESENT.

Step 3. Adjust 100-watt bias control R-1345 for a meter reading of -105 volts. $R-1345$ is located on the right side of the RFA (figure 7-69).

Step 4. Place 500-watt booster equipment in operation and actuate CARRIER READY 500 W by pushing switch (E) on the RFA front panel. BANDSWITCH must be in position 2-5 MC or higher, and the door covering the RFO frequency selection knobs must be closed.

Step 5. Adjust 500-watt bias control R-1348 (figure 7-69) for a meter reading of $\mathbf{- 2 0 0}$ volts.

Note

Adjustment of $R-1348$ is not required in the AN/SRT-14.
3. HARMONIC TRAP ADJUSTMENT.The three harmonic trap adjustments, C-1323 and

L-1338 (figures 7-68 and 7-74), and L-1337 (figure $7-72$), are made in the following manner:

Abstract

Note These adjustments are factory adjustments and should not be tampered with unless a component has been replaced.

WARNING

EXTREME CAUTION SHOULD BE EXER-

 CISED WHEN MAKING THESE ADJUSTMENTS AS THEY ARE LOCATED NEAR POINTS OF 1,300-VOLT POTENTIAL.Step 1. Connect the output of the transmitter to Dummy Load DA-91/U. (See paragraph 3a.)

Step 2. With transmitter set up for 100 -watt operation, set RFO knobs for a frequency of 2.5 mc .

Step 3. Set BANDSWITCH (C) to the 2-5 MC position.

Step 4. Tune the transmitter for maximum power output as indicated on the ANT CURRENT meter.

Step 5. Turn the carrier on by operating TEST KEY (T) on the LLRM front panel.

Step 6. Place a pick-up loop of wire connected to a receiver near the PA coil in use (receiver RBA, RBB, or RBC series, or equivalent).

Note

The pick-up loop should be set to pick up sufficient signal without overloading the receiver.

Figure 7-72. Radio Frequency Amplifier AM-1008/SRT (RFA), Bottom View

Figure 7-73. Radio Frequency Amplifier AM-1008/SRT (RFA), Front Panel

Step 7. Tune the receiver to the second harmonic $(5 \mathrm{mc})$ of the transmitter output.

Step 8. Adjust L-1337 for minimum receiver output. L-1337 is accessible at the bottom of the RFA by removing the protective cover plate, figure 7-72.

Step 9. Repeat steps 4 through 8, with an RFO frequency of 4.5 mc and a receiver frequency of 9 mc .

Step 10. Loosen setscrews in either bevel gear O-1307 or O-1356. (See figure 7-75.)

Note

Use the hex wrenches mounted on the right side of RFA drawer (figure 7-69).

Step 11. Adjust capacitor C-1323 to provide a minimum receiver output. Tighten setscrews on bevel gears after adjustment has been completed.

Step 12. For a final alignment at this stage, repeat steps for the adjustment of $\mathrm{L}-1337$.

Step 13. With transmitter conditions the same, set up a frequency of 6.0 mc on the RFO front panel.

Step 14. Set BANDSWITCH (C) to the 5-11 MC position.

Step 15. Tune transmitter for a maximum power output as indicated on the ANT. CURRENT meter.

Step 16. Tune receiver (RBA, RBB, RBC series) to 12.0 mc .

Step 17. Adjust L-1338 for a minimum receiver output. L-1338 is located at the top of the RFA drawer (figures 7-68 and 7-74), and is accessible without removing the protective cover plate.
4. L-1339, L-1340, L-1341, L-1342, L-1329 AND L-1331 ADJUSTMENT.-The iron cores of L1339, L-1340, L-1341, L-1342, L-1329 and L-1331, figure 7-71, are $\mathrm{O}-1319.2, \mathrm{O}-1319.3, \mathrm{O}-1320.2, \mathrm{O}$ 1320.3, $\mathrm{O}-1319.1$, and $\mathrm{O}-1320.1$, respectively (figure $7-71$), and are adjusted so that the distance between the core top surface and the actuating plate bottom surface is as follows (positioning is not critical): $\mathrm{O}-1.320 .1$, $\mathrm{O}-1320.2$ and $\mathrm{O}-1320.3,5 / 8$ inch; $\mathrm{O}-1319.1,3 / 8$ inch, $\mathrm{O}-1319.2$ and $\mathrm{O}-1319.3,3 / 4$ inch.
5. C-1319 COUPLING ADJUSTMENT.Vacuum capacitor C-1319 (figures 7-68 and 7-75) is adjusted for optimum coupling for all bands in the following manner:

Step 1. Connect the output of the transmitter to Dummy Load DA-91/U. Refer to paragraph $3 a$.

Step 2. Set up a frequency of 17.2 mc on the RFO front panel, and tune for maximum transmitter output at the 100 -watt level.

Step 3. Detune the IPA, if necessary, to obtain PA $\mathrm{I}_{\mathrm{c} 1}$ of 15 ma as indicated on PA CURRENT meter.

Step 4. Rotate TUNE PA knob (D) for a maximum output as indicated on the ANT CURRENT meter.

Note

PA $I_{c 2}$ will be maximum at the peak of the r-f output as indicated on the ANT CURRENT meter.

Step 5. While rocking the TUNE PA control (D) for a maximum r-f output, adjust C-1319 using the hexhead setscrew on the adjusting collar, as outlined in paragraph $8 b(1)(b) 1$ to obtain PA $I_{c^{\prime} 2}$ of 60 ma . This completes the adjustment. Coupling will now be optimum for all bands.

(2) MECHANICAL ADJUSTMENTS.

(a) REMOVAL AND REPAIR.-To remove the RFA drawer from the transmitter group cabinet, refer to paragraph 4a. Lubrication instructions are given in Section 6.

1. C-1319, C-1320 AND C-1321.-Vacuum capacitors $\mathrm{C}-1319, \mathrm{C}-1320$ or $\mathrm{C}-1321$ (figures 7-68, 7-75) may be removed in the following manner:

Step 1. Rotate TUNE PA knob (D) on RFA front panel in a counterclockwise direction to indicate 0 on
the PA dial. Vacuum capacitors should be at maximum capacity at this point.

Step 2. Loosen fasteners on protective plate on top of the RFA drawer, and remove cover.

Step 3. The vacuum capacitors are tuned by means of a rack and pinion arrangement. (See figure 7-75.) Rack assembly $\mathrm{O}-1343$ is connected to the movable plate of the vacuum capacitors by the $1 / 4-28$ threaded screw of the rack assembly. The rack assembly is held in place against the pinion gear $\mathrm{O}-1322$ by the rack guide spacer located on the stationary guide shaft, by means of two adjustable collars. Loosen the two setscrews on one of the collars of the particular capacitor assembly to be removed, and slide collar aside. This will permit the rack guide spacer to be moved and the rack can then be lifted from the pinion gear.

Step 4. Loosen the screw that holds the cap ring onto the capacitor cap (located at opposite end of the vacuum capacitor rack assembly, figure 7-68). Remove cap ring connected to the capacitor.

Step 5. Grasping the capacitor firmly in one hand, remove the four mounting screws that hold the capacitor in place, and carefully lift out the capacitor.

CAUTION

When removing a vacuum capacitor, make sure the rack assembly is clear of the pinion gear. Extreme care should be exercised when removing the capacitor so as not to damage the delicate vacuum extrusion point of the glass envelope.

Figure 7-74. RFA, S-1 302 Bandswitch Assembly, Left Oblique View

Figure 7-75. RFA, Power Amplifier (PA), Mechanical Drive System
2. L-1329, L-1331, L-1339, L-1340, L-1341 AND L-1342.-To remove the variable inductors, perform the following steps:

Step 1. With the RFA drawer removed from the transmitter group cabinet, rotate TUNE PA knob (D) on the front panel in a clockwise direction to indicate 100 on the dial, figure 7-73. At this point, the variable inductors will be at minimum inductance, and the core mounting assembly plate will be its uppermost position.

Step 2. Remove top cover plate of the RFA chassis by loosening the fasteners.

Step 3. Loosen the adjusting locknuts associated with the core assembly to be removed. Adjust the locknuts so that the iron core will be all the way up against the core mounting plate assembly. At this point, the iron core will be almost completely disengaged from its associated coil form.

Step 4. Remove the screws on the melamine blocks supporting the coil forms.

Step 5. Remove the melamine blocks from the coil forms, and disconnect wires from the standoffs mounted on the rear of the coil supporting blocks.

Step 6. Remove the coil from the RFA drawer, being particularly careful not to damage the iron core. The iron core may also be removed at this time by completely removing the top adjusting nut and lockwasher.

3. IPA DIAL DRIVE ASSEMBLY.

Step 1. Turn TUNE IPA knob (B) in a clockwise direction, until it stops. IPA dial should point to 0 on the dial.

Step 2. Plates of variable capacitors C-1305 and C-1312 should be fully meshed. If not, loosen setscrews on shaft coupler $\mathrm{O}-1321$, figure $7-76$. Rotate shaft until plates are meshed, and tighten setscrews.

4. PA DIAL DRIVE ASSEMBLY.

Step 1. Rotate TUNE PA dial (D) in a clockwise direction until vacuum capacitors $C-1319, C-1320$ and $\mathrm{C}-1321$ reach minimum capacity (minimum engagement of fixed and movable plates).

Step 2. PA dial should point to 100 on the dial.
The PA dial drive assembly (figure 7-75) is calibrated from 0 to 100 over a 315 -degree range. It consists of three sprockets for the chain drive from knob shaft to dial, and from knob shaft to the right-angle drive assembly. An adjustable idler, $\mathrm{O}-1337$, is provided to minimize lash in the dial drive chain. The drive assembly may be removed in the following manner:

Step 3. Remove the screws supporting the front panel of the RFA drawer.

Step 4. Remove the four screws on the front panel supporting the dial drive mounting plate assembly.

Step 5. The dial drive assembly may be removed from the front panel as a unit. (See figure 7-75.) After the dial drive assembly is off the front panel, the sprockets may be removed by removing either the retaining ring or the pin on the shaft associated with the sprocket. The idler assembly may be removed by loosening the two setscrews on the idler arm assembly and removing it from its shaft assembly.

Figure 7-76. RFA, Intermediate Power Amplifier (IPA), Mechanical Drive System

The lock lever assembly spring may be removed by removing the lock lever arm assembly from its shaft.

The dial assembly plate may be removed by first disconnecting chain $\mathrm{H}-1316$ from the dial sprocket, and then removing the sprocket from its shaft. The dial assembly may now be removed from its shaft.

The sprocket has three slotted holes, 120 degrees apart. These permit a 12 -degree adjustment of the dial, and may be adjusted in the following manner:

Step 1. Loosen the screws on dial sprocket O-1335.

Step 2. Looking at the rear of the dial drive assembly, place the two indentations in the dial plate facing downward. Set dial plate 0 mark at the top center of assembly by means of slotted holes in sprocket so that the dial indentation on the right is directly above lock spider O-1317.

5. HARMONIC TRAP CAPACITOR C-1323.

 -Harmonic trap capacitor C-1323 (figure 7-75) may be removed in the following manner:Step 1. With the RFA drawer removed from the transmitter group cabinet, rotate TUNE PA knob (D) on the front panel so that the setscrews on bevel gear O-1356 of the capacitor assembly are accessible (figure 7-75).

Step 2. Loosen the setscrews in the bevel gear.
Step 3. Remove screws supporting relay K-1303, mounted on the left panel (figure 7-68). Do not remove wires, but swing relay towards the front panel to gain access to the lower left-hand mounting screw of resistor board E-1399.

Step 4. Remove the five screws supporting resistor board E-1399, and carefully move the resistor board away from its mounting panel to provide accessibility to the mounting screws for harmonic trap capacitor C-1323.

Step 5. Disconnect the lead on harmonic trap capacitor $C-1323$, and remove the two screws support-

Figure 7-77. RFA, S-1301 and S-1302 Bandswitch, Mechanical Drive System
ing the capacitor. Hold bevel gear in one hand, and, with the other hand, withdraw the capacitor from the chassis.

6. PA TUNING COUNTERBALANCE AS-

 SEMBLY.-The spring-loaded nonlinear counterbalance assembly, figures 7-68 and 7-75, mounted at the top left rear section of the RFA chassis, is provided to overcome frictional losses in the main PA tuning drive assembly. This main assembly drive tunes the harmonic trap capacitor, the vacuum capacitors, and the variable inductors. A variation in spring tension may be obtained by positioning the $10-32$ screw at the rear mounting plate of the counterbalance assembly. A hole is provided in the shaft, extending through the center of the rear counterbalance mounting plate, so that a screwdriver may be inserted, and the shaft prevented from rotating whenever an increase or decrease in spring tension is necessary. (See figure 7-75.)
CAUTION

Whenever the counterbalance assembly is disassembled, the rear adjustment screw must be removed, in order to release the spring tension in the counterbalance assembly.

Step 1. Remove top cover plate of the RFA chassis by loosening the fasteners. Remove the support angle (the upper left edge of the RFA drawer) by removing three screws from the top, three from the left side, and two from the front panel.

Step 2. Remove spring tension from counterbalance assembly by removing the rear adjustment screw.

Step 3. By means of an offset screwdriver, remove the four screws supporting the counterbalance rear plate assembly.

Step 4. Withdraw the counterbalance assembly from the RFA chassis. The lever arm assembly, pinned to the shaft, will remain on the main drive shaft and also the four counterbalance assembly spacers mounted on the inner rear panel of the RFA chassis.
7. RIGHT ANGLE DRIVE ASSEMBLY.The right angle drive assembly (figure 7-75) provides a means of tuning from one main control, TUNE PA knob (D) on the front panel, the vacuum capacitors, variable inductors and the harmonic trap capacitor.

It consists of an aluminum casting, right angle bracket with shafts, sprockets and a chain provided with an adjustable idler to minimize lash. The arrangement of the chain is such that it provides a means of reversing the direction of rotation from the TUNE PA (D) dial drive assembly to the main drive tuning shaft assembly. The right-angle drive assembly may be removed in the following manner:

Step 1. Remove top cover plate of the RFA chassis by loosening the fasteners. Remove the support angle (the upper left edge of the RFA drawer) by removing three screws from the top, three from the left side, and two from the front panel.

Step 2. Disconnect chain H-1316 from right angle drive assembly to the PA dial drive assembly, by loosening adjustable idler O-1337.

Step 3. Loosen the $4-40$ setscrew, and remove the pin on the shaft coupler connected to the main tuning shaft (figure 7-75).

Step 4. Remove the two hex head screws on the "L" bracket at the top of the right-angle casting and the five mounting screws supporting the right-angle casting to the chassis.

Step 5. Rotate right angle drive assembly 90 degrees to the left, and pull assembly towards the front panel until it is disconnected from the main tuning drive shaft. To remove chain $\mathrm{H}-1305$ and sprocket, loosen the setscrews and remove the pins. A sprocket may be removed with its shaft by removing the shaft retaining ring at the opposite end of the sprocket shaft.

The main PA tuning drive shaft consists of the following mechanical components mounted on the vacuum capacitor tuning base (figure 7-75). Three drive shafts are coupled by means of drive couplers to form a single shaft connecting the right angle drive assembly to the counterbalance assembly.

The upper shaft supports the vacuum capacitor rack guide spacers and collars. This guide shaft (figure 7-71) is fixed and locked in place by two setscrews.

The lower shaft supports the gear and pinion assembly to drive rack $\mathrm{O}-1347$ in the center of the core mounting plate assembly. This shaft is also fixed and locked by two setscrews. Gears and sprockets are fastened on their respective shafts by means of setscrews and pins. There is a provision on the main tuning shaft to adjust the travel of the vacuum capacitors by means of adjustable collars. (Refer to paragraph $8 b(1)(b) 1$.
8. BANDSWITCHES S-1301 AND S-1302. (See figures 7-74 and 7-77.)-If any of the components of bandswitches S-1301 and S-1302 are replaced, it will be necessary to check proper phasing of these switches after reassembly. (Refer to figure 7-77.)

Phasing of bandswitches may be accomplished as follows:

Step 1. Turn BANDSWITCH selector (C) on RFA front panel to the 2-5 MC position. Make sure that the PUSH TO TURN feature is fully released. Contactor arms of switch S-1302 should be centered on No. 3 contact of switch, as observed from the bottom of the RFA drawer.

Step 2. At this point, the detent assembly (on right side of the RFA drawer) should be fully engaged in one of the detent positions. Contactor arms of switch S-1301 should be centered on No. 3 contact of switch, as observed from the right side of the RFA drawer. Remove IPA assembly cover plate if necessary.

Step 3. If S-1301 contactor arm is not on position 3 , loosen the setscrews in coupler $\mathrm{O}-1308$, rotate switch $\mathrm{S}-1301$ to position 3 and tighten setscrews in $\mathrm{O}-1308$. Adjustable idler on chain $\mathrm{H}-1302$ should be set to minimize backlash.

NOTES
I. transmitter operated at 100 watt LEVEL, CW OPERATION.
2. ALL meter readings plus d-c, unless OTHERWISE INDICATED. USE THAT METER SCALE WHICH WILL PERMIT THE READING to be indicated at maximum deflection and still be within the scale. FOR EXAMPLE, A NOMINAL 0.5 VOLT reading should be measured on a I VOLT SCALE; A NOMINAL IOO VOLT reading should be measured on a 250 VOLT SCALE.

Figure 7-78. LVPS, Voltage and Resistance Chart
9. BLOWER MOTOR B-1306.-Remove the RFA blower, figure 7-71, according to the following steps:

Step 1. With RFA drawer removed from the transmitter group cabinet, remove screws supporting rear panel on RFA drawer. Exercise care to remove only the screws supporting this panel.

Step 2. Remove screw supporting L-1313. (See figure 7-68.)

Step 3. Remove the four screws supporting blower motor brackets on RFA rear panel.

Step 4. Remove flexible hose A-1301 between XV-1304 assembly and blower housing (figure 7-72).

Step 5. Carefully remove blower assembly B-1306 from bottom of the RFA drawer.
10. IPA SUBASSEMBLY.-When a component in the IPA subassembly is to be replaced, and the component is inaccessible from the right side of the RFA drawer, remove the IPA subassembly as follows (see figure 7-69):

Step 1. With RFA drawer removed from the transmitter group cabinet, remove the IPA subassembly protective cover.

Step 2. Remove the support angle (the upper right edge of the RFA drawer) by removing two screws on the front panel, four from the top and four from the right side.

Step 3. Loosen setscrews on IPA shaft couplers, $\mathrm{O}-1321$ and $\mathrm{O}-1321.1$, and remove shaft between couplers (figure 7-76).

Step 4. Rotate BANDSWITCH selector (C) to the 2-5 MC position. At this position the red dots on coupler $\mathrm{O}-1308$ will be facing outwards (figure 7-77).

Step 5. Disconnect wire on the right side of the IPA subassembly, and disconnect $\mathrm{P}-1308$ from $\mathrm{J}-1308$ on left side of IPA subassembly (figure 7-69).

Step 6. Remove all screws supporting IPA subassembly to main chassis.

Step 7. If IPA subassembly is to be removed entirely from RFA drawer, wires on both switch S-1378 (figure 7-69) and terminal board $\mathrm{E}-1397$ (figure 7-68) will have to be disconnected.
(b) REPLACEMENT AND ADJUST-MENTS.-To replace the RFA drawer, reverse the removal procedure.

To replace any of the components in the RFA drawer, reverse the removal procedure, and adjust according to the procedures outlined in paragraph $8 b(1)$.

See Section 6 for lubrication instructions.

9. POWER SUPPLY PP-1094/SRT, LOW VOLTAGE POWER SUPPLY (LVPS).

a. TROUBLE LOCATION.-The LVPS receives input power from the ship's supply, and supplies power
to all the other units in the transmitter group except for the crystal oven circuits, which are supplied from a separate 110 -volt a-c source. Table $7-36$ lists the indications of LVPS failure and the probable faults. Use the voltage and resistance chart, figure 7-78, in conjunction with the schematic, figure $7-160$, and wiring diagram, figure $7-161$, to locate the fault.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-There are no electrical adjustments on the low voltage power supply, except the time delay adjustment of relay K-3003, which should be adjusted for a 33 -second time delay. The adjustable cams of relay $\mathrm{K}-3003$ can be adjusted for a time delay of 18 to 46 seconds.

The following voltage checks may be made on the LVPS front panel, permitting power supply output measurements, by means of Multimeter ME-25A/U (or equivalent).

WARNING

DANGEROUS VOLTAGES ARE PRESENT.
(a) Bias voltage supply of -220 volts may be checked on the radio frequency amplifier (RFA) front panel with VOLTMETER switch (1) in position BIAS $(500 \mathrm{~V})$. If there is no reading on the VOLTMETER, use Multimeter ME-25A/U (or equivalent) to check for proper voltage at test point -220 V on front panel of LVPS. If no voltage is present, refer to trouble location chart, table $7-36$, to locate the fault.
(b) The +300 -volt supply may be checked on the RFA with VOLTMETER switch (1) in position LV (500 V). If there is no reading on the meter, use Multimeter ME-25A/U (or equivalent), and check for proper voltage at test point +300 V on front panel of LVPS. If voltage is present at LVPS test point, but not at the RFA VOLTMETER, check interconnecting cable between the units. If no voltage is present, refer to trouble location chart, table 7-36, to locate the fault.
(c) The +250 unregulated voltage, supplied to the RFO, may be checked at test point +250 V on front panel of LVPS. If voltage is present at the test point in the LVPS, but not at test point 250 V. D.C. UNREG. at TEST POINTS socket $\mathrm{E}-2919$ on the radio frequency oscillator (RFO) left side, check interconnecting cable and associated connecting plugs of the transmitter frame. Refer to trouble location chart, table 7-36, to locate the fault.
(d) Refer to the primary power distribution diagrams, figures $7-117$ and 7-118, for proper terminals and relay contacts supplying power to cabinet heaters and blower motors in the transmitter bay.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The low voltage power supply drawer may be removed according to the instructions given in paragraph 4a. All components on the LVPS (figures $7-79,7-80$, and $7-81$)

TABLE 7-36. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE LVPS

INDICATION OF FAILURE	PROBABLE FAULT
CABINET HEATER indicator light does not light when CABINET HEATER switch iND turned on (with EMERGENCY SWITCH ON).	Fuses F-3001, F-3002, or cabinet heater switch S-3002.
MAIN POWER INDICATOR light goes on when START push button is depressed, and goes off when it is released.	Relay K-3001.
Nothing happens when START push button is depressed.	Fuses F-3007, F-3008.
Blowers in mounting do not operate after time delay relay $\mathrm{K}-3003$ is energized.	Relay K-3004, or fuses F-3005, F-3006.
TIME DELAY indicator light does not light approximately 30 seconds after START push button is depressed.	-24-volt supply (relay line), interlocks, fuses $\mathrm{F}-3005, \mathrm{~F}-3006, \mathrm{~F}-3007, \mathrm{~F}-3008$, F-3009, F-3010, or time delay relay $\mathrm{K}-3003$. Check that all drawers in transmitter bay are properly seated. (If unit drawer is extended, check that its interlock is properly cheated.) With transmitter power off, the interlock circuit continuity may be checked at the INT. TEST jacks on LVPS front panel.
$-220 \mathrm{~V}, 250 \mathrm{~V}$ and 300 V indicator lights do not light.	If any one of these lamps is not on, check respective power supply. If TIME DELAY indicator light does not light, check fuse F-3009. If TIME DELAY indicator light is on, check relay $\mathrm{K}-3004$. Note The outputs of the $-220-,+250$ - and +300 -volt supplies can be checked at the test points provided on the LVPS front panel. The output of the +300 -volt supply can be checked with VOLTMETER selector switch (J) on RFA front panel in the LV (500 V) position. The output of the - 220 -volt bias supply can be checked with VOLTMETER selector switch (1) on the RFA front panel in the BIAS (500 V) position. If any output is incorrect, check rectifier and filter for that supply.

Figure 7-79. Power Supply PP-1094/SRT (LVPS), Front Panel

TABLE 7-37. INDICATIONS CF FAILURE AND PROBABLE FAULTS IN THE MVPS

indication of fallure	Probable fault
500 V PRI. or 1300 V PRI. indicator lights do not light during 100 -watt operation.	Relay K-501 and K-503 and its control circuit. Fuse F-502 or F-501.
500 V PRI. indicator light does not light in 500 -watt operation.	Relay K-501 or fuse F-501.
500 V PRI. and 1300 V PRI. indicator lights go on but 500 V OUTPUT and 1300 V OUTPUT indicator lights do not.	Filament circuit protected by fuse F-503.
500 V PRI. and 500 V OUTPUT indicator lights do not light.	Fuse F-501.
500 V PRI. indicator light goes on but 500 V OUTPUT indicator light does not.	+500 -volt rectifier and filter circuit (V-501 and V-502). Note The output of the +500 -volt supply can be checked at the test point 500 V OUTPUT on the MVPS front panel, and also on the RFA front panel with VOLTMETER switch (J) in the MV (1000 V) position.
1300 V PRI. and 1300 V OUTPUT indicator lights do not light.	Fuse F-502 and relay K-503.
1300 V PRI. indicator light goes on, but 1300 V OUTPUT indicator light does not.	+1300 -volt rectifier and filter circuit ($\mathrm{V}-503$ and $\mathrm{V}-504$). The output of the +1300 -volt supply can be checked on the RFA front panel with VOLTMETER switch (1) in the PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$ position.
Keying transients present in RFA output waveform during CW operation.	Dumping circuit in the low level radio modulator, LLRM. See paragraph 6a(2).

are readily accessible, and may be replaced by removing their respective mounting bolts. Plug-in type filter capacitors are secured by means of clamp plates and wing nuts.
(b) REPLACEMENTS.-Refer to paragraph $4 b$ to replace the LVPS drawer.

10. POWER SUPPLY PP-1095/SRT, MEDIUM VOLTAGE POWER SUPPLY (MVPS).

(See figures 7-82, 7-83 and 7-84.)
a. TROUBLE LOCATION.-Table 7-37 lists indications of failure and probable faults in the medium voltage power supply (MVPS). The voltage and resistance chart, figure $7-85$, in conjunction with the schematic, figure $7-162$, and wiring diagram, figure $7-163$, may be used to locate the faulty component.

WARNING

THE MVPS USES HIGH VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CAUTION SHOULD BE EXERCISED WHEN WORKING ON THE MVPS.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-There are no electrical adjustments on the medium voltage power supply.

Table 7-38 lists MVPS voltages to be checked by means of the VOLTMETER on the radio frequency amplifier (RFA) front panel for both 100- and 500watt operation.

TABLE 7-38. MVPS VOLTAGES MEASURED AT THE RFA VOLTMETER

POSITION OF KNOB (1) (RFA)	100-WATT OPERATION (VOLTS)	$\begin{aligned} & \text { 500-WATY } \\ & \text { OPERATION } \\ & \text { (VOLTS) } \end{aligned}$
MV (1000 V)	500	500
PA $\mathrm{E}_{\mathrm{c}_{2}}(1000 \mathrm{~V})$	300	500
PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$	1300	3000
PA E_{b} (5000 V)	1050	2400
(Knob (U) on LLRM to PHONE)		

WARNING

THE MVPS USES HIGH VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CAUTION SHOULD BE EXERCISED WHEN WORKING ON THE MVPS.
(a) The +500 -volt supply may be checked on the RFA front panel by means of the VOLTMETER and associated selector switch (J) in the MV (1000 V)

Figure 7-80: Power Supply PP-1094/SRT (LVPS), Top View

Figure 7-81. Power Supply PP-1094/SRT (LVPS), Bottom View

TABLE 7-39. INDICATIONS OF FAILURE AND PROBABLE FAULTS IN THE HVPS

INDICATION OF FAILURE	PROBABLE FAULT
TIME DELAY indicator light does not light 30 seconds after BOOSTER EMERGENCY SWITCH (SS) is turned on.	Fuses $\mathrm{F}-1504, \mathrm{~F}-1505$, or time delay relay $\mathrm{K}-1504$.
HV PRIMARY $\phi 1, \phi 2$ and $\phi 3$ indicator lights do not light when all 500 -watt operation conditions have been met.	Input circuit: relay $\mathrm{K}-1502$, fuses $\mathrm{F}-1501, \mathrm{~F}-1502$ and $\mathrm{F}-1503$.
One of the HV PRIMARY indicator lights does not light, and the other two light dimly.	Open line in circuit in which unlit indicator light is connected. If HV PRIMARY $\phi 1$ is not lit, check $\mathrm{F}-1501$; $\phi 2, \mathrm{~F}-1502$; and $\phi 3, \mathrm{~F}-1503$.
HV PRIMARY indicator lights go on but 3000 V indicator light in HLRM does not.	$+2400 /+3000$-volt rectifier circuit ($V-1501$ through $V-1506$). Note The output of the $+2400 /+3000$-volt supply can be checked by the VOLTMETER in the RFA, with VOLTMETER switch (I) in the PA E_{b} (5000 V) position during 500-watt operation.

position for both 100 -watt and 500 -watt operation (table 7-38). When there is no reading at both the MV (1000 V) and PA $\mathrm{E}_{\mathrm{c} 2}(1000 \mathrm{~V})$ positions on the RFA VOLTMETER, check the +500 -volt output by means of Multimeter ME-25A/U (or equivalent). A test point has been provided on the front panel of the MVPS, labeled 500 V OUTPUT, for the purpose of checking the +500 -volt output of the MVPS. If there is voltage present at the test point on the MVPS front panel, but no indication on the RFA VOLTMETER, check the continuity of the interconnecting cable in the transmitter frame. If the interconnecting plug and cable are found to be good, refer to the trouble location chart, table 7-37, to locate the fault.
(b) The $+1,050 /+1,300$-volt supply may be checked by means of the VOLTMETER on the RFA front panel with associated selector switch (J) in position PA $\mathrm{E}_{\mathrm{b}}(5000 \mathrm{~V})$. Do not check these high potentials by means of an external voltmeter. If there is high voltage in the MVPS as indicated by the 1300 V OUTPUT lamp, and no indication of high voltage output on the RFA voltmeter, turn off all power supplies, and make a continuity check of the high voltage interconnecting cable. If the high voltage interconnecting cable is found to be good, refer to the trouble location chart, table 7-37, to locate the fault.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The medium voltage power supply drawer may be removed from the transmitter bay by following the procedure in paragraph $4 a$.

All components and fuses are readily accessible when the MVPS drawer has been pulled all the way out (figure 7-83).
(b) REPLACEMENT.-Refer to paragraph $4 b$ to replace the MVPS drawer.

11. POWER SUPPLY PP-1096/SRT, HIGH VOLTAGE POWER SUPPLY (HVPS).

a. TROUBLE LOCATION.-Table 7-39 lists indications of failure and probable faults in the HVPS. The voltage and resistance chart, figure 7-86, in conjunction with the schematic, figure $7-164$, and wiring diagram, figure 7-165, may be used to locate the faulty component.

WARNING

THE HVPS USES HIGH VOLTAGES THAT ARE DANGEROUS TO LIFE. EXTREME CARE SHOULD BE EXERCISED WHEN WORKING ON THE HVPS.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-All links on E-1503 and E-1504 must be properly set for the ship's supply. (See Section 3, figure 3-13.)
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-The HVPS is removed from its cabinet in the same manner as the other drawers, as indicated in paragraph 4a. Figures $7-87$ and $7-88$ show the location of components in the HVPS.
(b) REPLACEMENT.-To replace the HVPS drawer, reverse the removal procedure as indicated in paragraph 46.

12. MOUNTING MT-1423/SRT (BASE MOUNT)

a. TROUBLE LOCATION.-If the blowers do not rotate when the START push button of MAIN POWER switch $®$ is depressed, and time delay relay $\mathrm{K}-3003$ has energized, check the -24 -volt supply, relay K-3004 and fuses F-3007, F-3008. See table 7-36 and power distribution diagram, figure 7-117.

Figure 7-82. Power Supply PP-1095/SRT (MVPS), Front Panel

Figure 7-83. Power Supply PP-1095/SRT (MVPS), Top View

Figure 7-84. Power Supply PP-1095/SRT (MVPS), Botfom View

Abstract

Note In the AN/SRT-16, operation of the right or left transmitter group will energize the blowers in the mounting. If the blowers do not operate when one of the transmitter groups is being used, try using the other transmitter group. If the blowers now operate, the trouble is in the low voltage power supply (LVPS), and not in the mounting.

If the CABINET HEATER indicator light does not light when the CABINET HEATER switch © in closed, check fuses F-3001 and F-3002 in the LVPS. Figure $7-166$ is the schematic for the base mount.

Note

In the AN/SRT-16, CABINET HEATER switch (110) on either of the LVPS front panels will operate their respective cabinet heaters and associated indicator lamps.
b. REPAIR AND ADJUSTMENT.
(1) ELECTRICAL ADJUSTMENTS.-None.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To gain access to air filters $\mathrm{O}-706, \mathrm{O}-707$, and $\mathrm{O}-708$ (figure 7-89), remove the front panel of the mounting at the base of the cabinet by loosening the four captive screws that hold the panel in place.

To clean the air filters, refer to Section 6.

To reach heating elements HR-701 through HR-704 and blowers B-701 and B-702, the cabinets on top of the mounting must be taken off.

Blower assemblies B-701 and B-702 (figure 7-89) may be removed as follows:

Step 1. Remove the clamp assembly.
Step 2. Loosen clamps $\mathrm{H}-702$ and $\mathrm{H}-703$, and remove blower connector $\mathrm{O}-709$.

Step 3. Loosen air duct clamp assembly H-705. and disconnect ground strap.

Step 4. Disconnect leads to blower motor, and remove blower assembly B-701. Blower assembly B-702 is removed in the same manner.
(b) REPLACEMENT.-To replace any part of the mounting, reverse the removal procedure.

13. CABINET, ELECTRICAL EQUIPMENT CY1571/SRT (100-WATT FRAME ASSEMBLY).

(See figures 7-90 and 7-91.)
a. TROUBLE LOCATION.-If a unit operates when the test cable (Section 3) is used, but does not operate when properly seated in the cabinet, the extensible cable assembly and the mating connectors for that drawer should be checked. If there is no input power to the transmitter group, and all unit fuses are known to be good, check filters $\mathrm{Z}-601$ and $\mathrm{Z}-602$. If there is no power to the RFO oven circuits and fuse $\mathrm{F}-2918$ is good, check filters Z-603 and Z-604. Figure 7-167 is the wiring diagram for the transmitter group cabinet.

NOTES

I. USE MULTIMETER ME-25A/U SCALE WHICH WILL PERMIT The reading to be INDICATED AT MAXIMUM DEFLECTION AND Still be within the scale, for example a nominal o. VOLT reading should be measured on the i volt SCALE; A NOMINAL ioo volt reading Should be measured on the 250 volt SCALE.
2. UNLESS OTHERWISE INDICATED, TRANSmitter at ioo wat t level, service selector switch (1) in hand position, test key (T) in center position, d-c voltage reading.

* CW or phone/cw or phone with test KEY (T) IN OPERATION POSITION.
**CW OR Phone, same readings with (T) in CENTER POSITION OR IN OPERATING position.
+ MEASURED WITH 5000 VOLTAGE ADAPTER.
++ high voltage, danger, do not measure.

Figure 7-85. MVPS, Voltage and Resistance Chart

' notes

1. use that scale of multimeter me-25a/u WHICH WILL PERMIT THE READING TO BE INDICATED AT MAXIMUM DEFLECTION AND STILL be within the scale. for example A NOMINAL 0.5 VOLT READING SHOULD BE A NAL 100 VOLT READING SHOULD BE
MEASURED ON THE 250 VOLT SCALE
2. TRANSMITTER AT 500 WATT LEVEL. TRANSMITTER AT SOL WAT LEEELOL SWITCH (©) AT HAND osition, test key e in center. POSITION, UNLESS OTHERWISE INDICATED. 3. WHERE VOLTAGES OR RESISTANCES ON ANY Ne PIN ARE THE SAME CW, PHONE, TEST OR MORE OPERATIONS CWI., NHOES KEY KEY © IN CENTER POSITION, TEST KEY
IT IN OPERATING POSITION) THE CORRECT VaLUE OPERATING POSITION) THE CORRE
VAICATED ONLY ONCE.

* cw or phone/cw or phone with test KEY (T) in operating position.
+ MEASURED with 5000 volt ADAPTER.

notes

1. USE THAT SCALE OF MULTIMETER ME-25A/ WHICH WILL PERMIT THE REAOING TO BE INOICATED AT MAXIMUM OEFLECTION AND
STILL BE WITHIN THE SCALE. FOR EXAMPL A NOMINAL O.5 VOLT READING SHOULO BE MEASURED ON THE I VOLT SCALE; A. NOMINAL 100 VOLT READING SHOULOD BE
measureo on the 250 volt scale.
2. TRANSMITTER AT 500 WATT LEVEL SERVICE SELECTOR SWITCH © AT HANO
POSITION, TEST KEY © IN CENTER POSITION, UNLESS OTHERWISE INOICATED. 3. WHERE VOLTAGES OR RESISTANCES ON ANY
ONE PIN ARE THE SAME FOR THE TWO OR MORE OPERATIONS ICW., PHONE, TEST KEY © IN CENTER POSITION, TEST KEY VALUE WILL BE INOICATEO ONLY ONCE.

* CW or phone icw or phone with test
key © in operating position.
MEASURED WITH 5000 VOLT ADAPTER.

Figure 7-87. Power Supply PP-1096/SRT (HVPS), Front Panel

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-None.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To reach the terminal boards and r-f interference filters, the medium voltage power supply (MVPS) must be removed. Remove the protective cover plate to gain access to the terminal boards. (See figure 7-91.) To remove the cable supports and extensible spring assemblies, loosen two screws on supporting clamp, and remove assembly (figure 7-90). It is not necessary to remove clamp block from the cabinet to remove the cable supports.

Note

When working on the interconnecting cables, rail assemblies, and associated equipment on the rear of the cabinet, remove the side panels for greater accessibility.

WARNING

SHIP'S POWER IS ALWAYS PRESENT ON THE TERMINAL BOARDS. TO REMOVE THIS VOLTAGE, POWER MUST BE TURNED OFF AT THE SHIP'S DISTRIBUTION PANEL.
(b) REPLACEMENT. - Reverse the removal procedure to replace a part in the transmitter group cabinet. Figures $7-90$ and $7-91$ show the location of components in the transmitter group cabinet.
14. CABINET, ELECTRICAL EQUIPMENT CY-1572/SRT (HLRM CABINET).
a. TROUBLE LOCATION.-The extensible connecting cable assembly should be checked for continuity when the high level radio modulator (HLRM) does not operate with the interconnecting cables properly seated on the unit.

WARNING

SHIP'S POWER IS ALWAYS PRESENT ON TERMINAL BOARDS. POWER MUST BE TURNED OFF AT THE SHIP'S DISTRIBUTION PANEL TO REMOVE THIS VOLTAGE.

See figure 7-168 for the high level radio modulator cabinet wiring diagram.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-None.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove the extensible cable support and spring assembly, loosen two screws on the supporting clamp, and remove assembly. It is not necessary to remove the clamp block from the cabinet to remove the cable supports.

Remove the terminal board cover to reach the terminal boards. Removing the side panels of the HLRM cabinet will make the extensible cable assembly, ter-

Figure 7-88. Power Supply PP-1096/SRT (HVPS), Top View

Figure 7-89. Mounting MT-1423/SRT, Top View
minal boards and the rail assemblies more accessible. Figure 7-92 shows the location of components in the HLRM cabinet.
(b) REPLACEMENT.-To replace a part of the HLRM cabinet, reverse the removal procedure.

15. CABINET, ELECTRICAL EQUIPMENT CY-1573/SRT (HVPS CABINET).

a. TROUBLE LOCATION.-The extensible connecting cable assembly should be checked for continuity when the high voltage power supply (HVPS) does not operate with the interconnecting cables properly seated on the unit. When there is no three-phase power to the HVPS, and the HVPS fuses are known to be good, check r-f interference filters $Z-1401, Z-1402$ and Z-1403; located at the bottom of the HVPS frame.

WARNING

SHIP'S POWER IS ALWAYS PRESENT ON TERMINAL BOARDS. TO REMOVE THIS VOLTAGE, POWER MUST BE TURNED OFF AT THE SHIP'S DISTRIBUTION PANEL.

See figure 7-169 for the high voltage power supply cabinet wiring diagram.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-None.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-To remove the extensible cable support and spring assembly, loosen two screws on the supporting clamp and remove assembly. It is not necessary to remove the clamp block from the cabinet to remove the cable supports.
Remove the terminal board cover to reach the terminal boards. Removing the side panels of the HVPS cabinet will make the extensible cable assembly, terminal boards, and the rail assemblies more accessible. Figure 7-93 shows the location of components in the HVPS cabinet.
(b) REPLACEMENT.-To replace a part in the HVPS cabinet, reverse the removal procedure.

16. ANTENNA TUNING EQUIPMENT.

a. SYSTEM TROUBLE SHOOTING.-The antenna tuning equipment consists of Radio Frequency Tuner TN-229/SRT and Antenna Coupler CU-372/SRT. Control-Indicator C-1352/SRT and Transmitter Coupler CU-402/SRT are also used with the antenna tuning equipment but are part of Transmitter Group OA684/SRT.

The antenna tuning equipment should provide a standing wave ratio (SWR) of better than 4:1. Section 4 , in conjunction with the antenna tuning chart mounted on the RFO panel of the transmitter, indicates switch and control settings for the antenna tun-
ing equipment at different transmitter frequencies when a 35 -foot whip antenna is used. If their settings do not provide a proper SWR, use the antenna tuning equipment trouble-shooting chart, table 7-40, to localize the probable source of trouble to a specific unit. It is assumed, in the following trouble location procedures, that the transmitter bay is operating satisfactorily; the primary concern is with defects within the antenna tuning equipment.

The trouble-shooting chart, table 7-40, is to be used by observing visual indications of the control-indicator

Figure 7-90. Electrical Equipment Cabinet CY-1571/ SRT (100 W. Frame), Units Removed, Front View
unit and aural indications of motor noises in the r-f tuner and antenna coupler, without the aid of test equipment.

When trouble has been localized to a particular unit, refer to the trouble location information for that unit. If a defect or trouble is located, or a suspected defect or trouble is indicated, then the testing and alignment instructions for a particular unit are to be followed to locate the suspected defective component or stage.

> Note
> A visual inspection of each unit should be made. Check all plugs, receptacles, wiring, solder joints and grounds. Plugs and receptacles should be tightly connected. Adapters on first extrusion cables should be securely fastened by the setscrews. (After inspection, replace tape on adapters.) Make sure that no short or open circuits exist in the wiring and that all solder joints and grounds are secure.
b. TEST AND ALIGNMENT.-The test and alignment instructions in the succeeding paragraphs are to be followed only after the trouble location procedure has indicated a defective unit or subassembly.

Refer to figure 7-116 for a simplified control circuit of the r-f tuner and antenna coupler. Reference should also be made to unit schematics, wiring diagrams and component identification illustrations.

17. TRANSMITTER COUPLER CU-402/SRT (LOAD ADJUST UNIT).

(See figure 7-94.)
a. TROUBLE LOCATION.-The Transmitter Coupler CU-402/SRT (load adjust unit) function is to improve the impedance match between the radio frequency amplifier and the antenna tuning equipment. If all of the transmitter and antenna tuning operations have been followed, and a proper standing wave ratio (SWR) cannot be obtained, trouble may exist in the transmitter coupler, provided it has been determined that the antenna coupler and r-f tuner are operating properly as determined by the trouble-shooting chart, table 7-40.
Autotransformer T-3201, switches S-3201 (N) and S-3202 ($/ 4$, and r-f ammeter M-3201 comprise the impedance matching circuit. If switches (1) and $)$ do not operate properly at all of the settings, the impedance matching circuit components and the contacts on the switch wafers should be checked for continuity.

Standing wave ratio (SWR) monitor Z-3201 detects and monitors the transmission line SWR in conjunction with Control-Indicator C-1352 SRT, mounted on the radio frequency oscillator front panel.

When a proper SWR cannot be obtained, and the components in the control-indicator, antenna coupler, and r-f tuner are known to be functioning properly, trouble may exist in the SWR monitor Z-3201 circuit.

TABLE 7-40. ANTENNA TUNING EQUIPMENT TROUBLE-SHOOTING CHART

CONDITIONS	NORMAL INDICATIONS	PROBABLE SOURCE OF ABNORMAL INDICATIONS
Rotate TRANSFORMER knob (ac).	Motor noise in r-f tuner.	Motor B-303 in r-f tuner.
Rotate ANTENNA COUPLER LOADING knob (®0).	Motor noise in antenna coupler.	Motor B-3501 in antenna coupler.
Indication on POSITION meter.	0 to 100 depending on position of r-f tuner sliding short. Motor noise.	Potentiometer R-301. Drive motor B-301 in r-f tuner.
Operate ANTENNA TRANSFER switch (16).	Motor noise in antenna coupler.	Motor B-3502 in antenna coupler.
Indication on SWR BALANCE meter.	LOW or HIGH, depending on SWR.	SWR monitor circuit Z-3201 in transmitter coupler.
Rotate SWR CALIBRATE knob (4).	Greater indication approaching position 2:1.	R-410, R-412; R-414, R-415 and R-416 in control-indicator unit.
ANTENNA TRANSFER switch (사) to TUNER IN.	TUNER IN indicator lamp I-401 lights.	ANTENNA TRANSFER SWITCH (ABC) TUNER IN indicator lamp I-401.
Depress UP switch (A) and then DOWN switch (1).	POSITION meter indicates up (towards 100) and down (towards 0) position.	Main drive motor B-301. Clutch-brake assembly $\mathrm{O}-301$ in r-f tuner.
Depress UP switch (1).	One-way scanning time from $\mathbf{0}$ to 100 on POSITION meter should be approximately 22 seconds.	Main drive motor B-301. Clutch-brake O-301 adjustment.
Depress UP switch (4) and SLOW switch 사 simultaneously.	One-way scanning time from 0 to 100 on POSITION meter should be approximately 52 seconds.	Main drive motor speed limiting governor S-307. R-302 and C-301 in governor circuit of B-301 in r-f tuner.

(1) ELECTRICAL ADJUSTMENTS. - Standing wave ratio (SWR) monitor $\mathrm{Z}-3201$ in the transmitter coupler is a critical electrical component. If possible, it should be replaced as a unit when it is known to be faulty. However, if replacements are not available, and operation is essential, an experienced technician, with adequate test facilities, may use the following procedure to repair unit Z -3201.

CAUTION

Repair should not be attempted by inexperienced personnel or without adequate test facilities, as these procedures are outlined for base depot use only.

Note

When soldering components in Z-3201, hold leads with a heat conducting device, such as pliers, to avoid damage to $\mathrm{Z}-3201$ due to heat. Replace components in exactly the same physical location as the original part to assure constant distributed capacity in circuit.
Switches S-3201 ©, S-3202 and transformer $\mathrm{T}_{-} 3201$ may be checked by making a continuity check, using Multimeter ME-25A/U (or equivalent), in conjunction with the schematic, figure 7-174, and wiring diagram, figure 7-175.

Figure 7-91. Electrical Equipment Cabinet CY-1571/ SRT (100 W. Frame), Cover Removed Showing Terminal Boards

Figure 7-92. Electrical Equipment Cabinet CY-1572 / SRT (HLRM Frame), Side Covers Removed, Top View

Figure 7-93. Electrical Equipment Cabinet CY-1573/SRT (HVPS Frame), Side Covers Removed, Top View
(a) VOLTAGE DIVIDER R-3201.-Whenever a component is replaced in voltage divider R-3201, the following procedure must be observed:

Note

Protect resistors from heat when soldering.
Step 1. On Resistance Bridge ZM-4/U, measure resistance from point E (figure 7-174) to point F. This value must be between 3,875 and 4,280 ohms. Correct if necessary by changing the 510 -ohm resistor nearest to point E .

Step 2. Measure resistance of each of the arms (1,000 -ohm resistors, point F to point G, and point F to point H on figure 7-174). Resistance of each arm must be within 3,800 or $\mathbf{4 , 2 0 0}$ ohms. Resistance of arm F to G must be within 120 ohms of resistance of arm F to H . To correct, change resistor in either arm nearest to point G or H .
(b) R-3206 AND R-3207.-Whenever R-3206 or R-3207 is replaced, the selection of these components must be determined with the following test equipment:

R-f source, 50 watts at 3.0 mc . The AN/SRT-14, 15 and 16 may be used as an r-f source, by detuning the radio frequency amplifier (RFA) to provide the required r-f output.
Dummy Load DA-91/U.
Two test potentiometers consisting of 500 -ohm, $1 / 2$ watt potentiometers, good at 3.0 mc (Centralab Model 1 Hi-Torque Radiohm, or equivalent) in series with 100 -ohm $1 / 2$-watt resistors.

D-c Microammeter, Navy type 60107.

Four-pole two-position (4PDT) switch, assembled with two 5,100 -ohm, $1 / 2$-watt and one $100-\mathrm{ohm}, 1 / 2$ watt fixed resistors, assembled as shown in figure 7-95.
Proceed as follows to replace R-3206 and R-3207:
Step 1. Connect test potentiometer assemblies (500ohm potentiometer and 100 -ohm fixed resistor) for R-3206 and R-3207, keeping lead length as short as possible. Adjust potentiometer to near maximum resistance.

Step 2. Feed approximately 50 watts rf at 3.0 mc into monitor at A with Dummy Load DA-91/U on

Figure 7-94. Transmitter Coupler CU-402/SRT, Side Covers Removed, Right Inner View
output at B and 4PDT switch in REFL position. Adjust potentiometer in place of $\mathrm{R}-3207$ to give minimum output from terminal C as indicated on microammeter. This should be less than 5 microamperes and as close to zero as possible:

Step 3. Reverse monitor connections, feeding approximately 50 watts rf at 3.0 mc into monitor at B with Dummy Load DA-91/U at A, and 4PDT switch in INC position. Adjust potentiometer in place of R-3206 to give minimum output from terminal D as indicated on microammeter. This should be less than 5 microamperes and as close to zero as possible. Remove test potentiometer assemblies and measure resistance of each on Resistance Bridge ZM-4/U. Replace each with selected fixed resistor whose actual resistance is within 1 percent of the respective value measured. This may necessitate paralleling two $1 / 2$-watt resistors, in which case select one resistor whose measured resistance is slightly above (within 35 ohms) the required value. Determine parallel resistance necessary to bring total resistance to required value as follows:

$$
\mathbf{X}=\frac{\mathrm{AB}}{\mathrm{~A}+\mathrm{B}}
$$

where
$\mathrm{A}=$ resistance available
$B=$ total resistance required
$\mathbf{X}=$ parallel resistance
Choose for X a $1 / 2$-watt resistor whose value is as close to X as possible within 10 percent below calculated value.
(c) TRANSFORMER T-3202 LOADING CIRCUIT (R-3202, R-3203 AND R-3204, R-3205).-The selection of these resistor combinations (R-3202, R3203 and $R-3204, R-3205$) should be such that they will be within 1 ohm of each other, as measured by means of Resistance Bridge ZM-4/U.
(d) MATCHING PROCEDURE FOR CRYSTAL DIODES.-Use the following test equipment for matching crystal diodes:

CAUTION

Repair should not be attempted by inexperienced personnel, or without adequate test facilities, as these procedures are outlined for base depot use only.

Signal generator, 0.3 and 26.0 mc , AN/URM-25 (or equivalent).

Multimeter ME-25A/U, (or equivalent)
D-c Microammeter, Navy type 60107 (or equivalent)
$5,600-\mathrm{ohm} \pm 5 \%, 1 / 2$-watt fixed carbon resistor $0.15 \mu \mathrm{f}$ fixed, $200-\mathrm{vdcw}$, paper capacitor

Note

Before matching, crystals, must be aged by heating at $100^{\circ} \mathrm{C}$. $\left(212^{\circ} \mathrm{F}\right.$.) and maintain this temperature for one hour.

Figure 7-95. Standing Wave Ratio (SWR) Monitor Alignment, Test Setup

Step 1. Connect equipment as shown in figure 7-96.

Step 2. Apply maximum r-f voltage from the AN/URM-25, as indicated in figure 7-96, with crystal diode in place. Measure and record d-c current on microammeter, Navy Type 60107, to nearest 5 microamperes. Compare the diode currents at 0.3 mc , and then compare the diode currents at 26 mc . Keep the AN/URM-25 output the same at both 0.3 mc and 26 mc.

Step 3. Select pairs of crystals for CR-3201 and CR-3202 that are within 10 microamperes at both 0.3 mc and 26.0 mc .
(e) FINAL TEST TO BE PERFORMED WHEN SWR MONITOR Z-3201 IS REPLACED IN TRANSMITTER COUPLER CU-402/SRT.-The following additional test equipment is required:

RG-8/U, $1 / 4$ and $1 / 8$ wavelength cables, constructed as follows:

Cut $3 / 8$ wavelength of cable for 2.0 mc (122 feet), 8.0 mc (30.5 feet) and $25.0 \mathrm{mc}(9.75$ feet). Cut $1 / 3$ off total length of $3 / 8$ wavelength cables and term-

Figure 7-96. Crystal Matching, Test Setup
inate each cable. Measure $1 / 4$ wavelength cable with Radio Frequency Bridge, Navy Type 60094 (or equivalent), shifting frequency slightly to determine point of " O " reactance-perform for each frequency ($1 / 8$ wavelength cable will be correct for same frequency). Use these frequencies in the test. Attach proper connectors as required.

R-f source, 50 watts at $2.0,8.0$, and 25.0 mc . (The AN/SRT-14, 15 or 16 may be used, by detuning RFA stages.)

Dummy Load DA-91/U. Four required, with proper connectors to connect four in parallel.

Refer to figure 7-95, and proceed as follows:
Set r-f source in turn to each frequency determined for cable lengths (nominally 2, 8, and 25 mc). Perform the following at each frequency, using four dummy loads in parallel:

Step 1. With load directly on monitor r-f output (B of Z-3201), 4PDT switch in REFL position, read current on microammeter. Switch 4PDT to INC position and read microammeter. Calculate standing wave ratio (SWR) and record.

$$
S W R=\frac{I N C+R E F L+106}{I N C-R E F L}
$$

Step 2. Insert $1 / 8$ wavelength cable between monitor and load and proceed as in step 1.

Step 3. Insert $1 / 4$ wavelength cable between monitor and load and proceed as in step 1.

Step 4. Insert $3 / 8$ wavelength cable between monitor and load and proceed as in step 1.

Limits: Indicated SWR must be between 3:1 and 6:1.
(2) MECHANICAL ADJUSTMENTS.-There are no mechanical adjustments in Transmitter Coupler CU-402/SRT.
(a) REMOVAL AND REPAIR.-The transmitter coupler, figure $7-94$, may be removed from the mounting bracket as follows:

Step 1. Disconnect cables to J-3201, J-3202, and J-3203.

Step 2. Remove screws supporting shock mounts to mounting bracket.

All components in the transmitter coupler are accessible by removing both side panels on unit.
(b) REPLACEMENT.-To reassemble the transmitter coupler, reverse the disassembly procedures. No lubrication is necessary in the transmitter couplers.

18. ANTENNA COUPLER CU-372/SRT.

(See figure 7-97.)
a. TROUBLE LOCATION.
(1) GENERAL.-After isolating trouble to the antenna coupler by using the antenna tuning equipment trouble location chart, table 7-40, a further check of the antenna coupler may be performed to localize the trouble to either the bypass section or the loading section of the antenna coupler.

A circuit check of the antenna coupler may be accomplished as a bench test by supplying 115 volts ac and 24 volts dc to actuate the switches in the antenna coupler, and checking for continuity through the switch contacts.

Figure 7-97. Antenna Coupler CU-372/SRT, with Housing and Shock Mounts

Figure 7-98. Antenna Coupler CU-372/SRT, Mechanical Drives

It is not necessary to disassemble the antenna coupler for these circuit checks, as measurements and connections are made directly at the pins on the receptacles of the antenna coupler assembly. Refer to the schematic, figure 7-170, and witing diagram, figure 7-171, sheets 1 and 2.
(2) TROUBLE SHOOTING THE ANTENNA COUPLER BYPASS SECTION, SWITCH ASSEMBLY S-3514, AND SWITCH S-3512.

Power requirements: 115 volts ac, 24 volts dc.
Step 1. Connect one side of 115 volts ac to pin V of J-3504.

Step 2. Connect other side of 115 volts ac to pin U of J-3504 and check for continuity by connecting Multimeter ME-25A/U between FROM SWR MONITOR and TO ANTENNA terminals of the antenna coupler. Zero ohms indicates continuity between contacts 1 and 4 of switch S-3512.

Step 3. Check for continuity between pins A and B of $\mathrm{J}-3502$. This indicates that switch $\mathrm{S}-3507$ is operating properly.

Step 4. Check for open circuit between pins C and \mathbf{N} of $\mathrm{J}-3502$. No reading on the multimeter indicates switch $\mathrm{S}-3510$ is operating properly.

Step 5. Apply 24 volts dc to pin M of J-3502 and the antenna coupler ground terminal, thereby operating relay $\mathrm{K}-3501$. At this point, with 115 volts ac still connected to pin U of J-3504, motor B-3502 should rotate switch S-3512.

Step 6. Check for continuity between TO RF TUNER and FROM SWR MONITOR terminals of the antenna coupler. Zero ohms indicates that contacts 3 and 4 of S-3512 are properly shorted by S-3512 rotor.

Step 7. Check for continuity between pins A and B of J-3502. This checks switch S-3507.

Step 8. Check for continuity between pins C and \mathbf{N} of J-3502. This checks switch S-3510.
(3) TROUBLE LOCATION OF THE ANTENNA COUPLER LOADING SECTION, SWITCH ASSEMBLY S-3513, AND SWITCH S-3511.

Power requirements: 115 volts ac.

Note

The following steps to be performed only after step 5 of paragraph $18 a(2)$ has been completed.

Step 1. Connect one side of 115 volts ac to pin V of J-3501.

Step 2. Connect other side of 115 volts ac to pin A of J-3504. Motor B-3501 should actuate rotor of switch S-3511.

Step 3. Connect Multimeter ME-25A/U (or equivalent) between TO ANTENNA and FROM RF TUNER terminals of the antenna coupler. Zero ohms at this point will indicate continuity between contacts 1 and 2 of switch S-3512 and contacts $1 A$ and $2 B$ of switch S-3511.

Step 4. Apply 115 volts ac to pin F of J-3504. Zero ohms, as indicated on the multimeter, shows continuity between contacts $2 \mathrm{~A}, 4 \mathrm{~A}, 6 \mathrm{~A}$ and 1 B of switch S-3511.

Step 5. Apply 115 volts ac to pin E of J-3504. Meter should still show zero ohms. This checks contacts 2B, 4B, 3A, and 1 A of switch S-3511.

Step 6. Apply 115 volts ac to pin C of J-3504. The meter should now read infinity (no reading). This checks capacitor $\mathrm{C}-3501$. A meter reading would indicate a possible shorted capacitor, $\mathrm{C}-3501$. At this point disconnect meter lead at FROM RF TUNER terminal and connect instead to the antenna coupler ground. No reading on meter indicates that capacitors C-3502 and C-3503 are not shorted.

Note

Remove meter lead from ground and return to FROM RF TUNER terminal.

Step 7. Apply 115 volts ac to pin D of J-3504. Zero ohms on the meter indicates that contacts $2 \mathrm{~B}, 6 \mathrm{~B}$, 1 A , and 5A of S-3511 are properly engaged with rotor of S-3511.

Figure 7-99. Antenna Coupler CU-372/SRT, Junction Box Assembly

Step 8. Apply 115 volts ac to pin B of J-3504. No reading on meter indicates that capacitor $C-3501$ is not shorted. At this point, contacts $4 \mathrm{~A}, 6 \mathrm{~A}, 1 \mathrm{~B}, 6 \mathrm{~B}$, $2 A$, and $3 B$ are engaged by $S-3511$ rotors.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-There are no electrical adjustments in the antenna coupler.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-If the results of the trouble location procedures indicated in paragraph $18 a$ point to a defective component or adjustment in the antenna coupler, the disassembly procedures should be followed step by step.

WARNING

ANTENNA COUPLER CU-372/SRT IS PRESSURIZED WITH PREPURIFIED DRY NITROGEN. IF DISASSEMBLY OF THE UNIT, OTHER THAN THE MOUNTING EQUIPMENT OR THE JUNCTION BOX ASSEMBLY, IS REQUIRED, THE PRESSURE MUST FIRST BE RELEASED. THIS IS ACCOMPLISHED BY PULLING EXHAUST RELIEF VALVE STEM O-3542 (FIGURE 7-97) AND RELEASING THE GAS WITHIN THE UNIT UNTIL PRESSURE GAUGE I-3501 READS ZERO PSI.

CAUTION

The antenna coupler weighs approximately 100 pounds. Provide adequate support when working on the unit. During disassembly, keep the unit away from moisture, dirt or other foreign matter.

1. REMOVAL OF UNIT FROM SHOCK MOUNT BASES.

(See figure 7-97.)
Step 1. Remove all grounding straps and interconnecting cables from the antenna coupler assembly.

Step 2. Remove the 16 screws supporting the four shock mounts to their bases.

CAUTION

Handle the antenna coupler with care so as not to damage any of the components, which protrude from either end of the unit. The unit must be removed from permanent location and brought into a protected work area if complete disassembly is to be performed.

2. REMOVAL OF JUNCTION BOX.
 (See figure 7-99.)

Step 1. Remove the 12 screws supporting the ring which clamps the junction box assembly to the housing.

Figure 7-100. Antenna Coupler CU-372/SRT, less Housing

Step 2. Disconnect plug P-3501 from connector J-3507, mounted on housing, by unscrewing the coupling ring.

Step 3. A circuit check of wiring in the junction box may be accomplished by referring to the wiring diagram, figure 7-171 (sheet 2).

Nofe

To remove $\mathrm{J}-3502$ or $\mathrm{J}-3504$, the receptacles must be unsoldered from the junction box assembly.

3. REMOVAL OF HOUSING.

(See figure 7-97.)
Step 1. Discharge dry nitrogen gas in the unit by pulling the stem on relief valve $0-3542$ until pressure gauge $\mathrm{I}-3501$ reads zero. Valves $\mathrm{O}-3542$, $\mathrm{O}-3543$ and pressure gauge I- 3501 may be removed by unscrewing them from the top end plate.

Note

Place register marks on both housing and end plate to facilitate reassembly.

Figure 7-101. Cross Section of S-3514 Assembly
Step 2. Remove the 12 screws supporting the end plate at the top of the unit.

Step 3. The housing and unit may be separated by axially removing one from the other. Note that the housing remains mounted in the shock mount assemblies. At this point the inner components of the antenna coupler are accessible (figure 7-100).

Step 4. Receptacles and terminals may be removed from the top end plate of the unit by unsoldering leads and loosening coupling nut or screws fastening receptacle to end plate. "O" rings, associated with receptacles, may also be removed.

4. REMOVAL OF LOADING SECTION FROM UNIT.

(See figures 7-98 and 7-99.)
Step 1. Unsolder sleeve (figure 7-100) and slide sleeve back on conductor.

Step 2. Loosen cable cap on cable W-3502.
Step 3. Two laced cables, which run from J-3507 through two of the hollow supports to terminal board TB-3501, must be disconnected from the terminal board.

Note

Color coding of wires on both sides of terminal board TB-3501 are identical, thereby facilitating reconnections.

Step 4. Remove the hex nuts on the four tie rods.

CAUTION

The sections should be separated axially; be careful all components clear one another.
5. DISASSEMBLY OF BYPASS SECTION. -If trouble location procedures indicate trouble with the bypass switch or drive mechanism, a step-by-step disassembly procedure must be followed. Refer to figures 7-98 and 7-100.

Step 1. Separate switch assembly S-3514 and melamine plate from S-3512 switch form by removing the four tie rods supporting the melamine plate.

Step 2. At this point, stator contacts on switch form of S-3512 may be removed and replaced by using the special tool, $\mathrm{H}-3503$, mounted on the unit (figure $7-100$). Contact button assemblies may be removed, allowing contact $\mathrm{E}-3501$ or spring $\mathrm{O}-3502$ to be replaced. See contact button assembly detail of figure 7-98.

Step 3. S-3514 assembly may be removed from the melamine plate by removing the screws in S-3514 assembly spacers.

Step 4. Spur gears O-3530 and O-3518 and their associated cams may be removed by knocking out the pins and loosening the setscrews.

Step 5 . Switches actuated by the cams and their actuators may be removed by first disconnecting the wires to the switch and then removing the screws supporting the switch to the mounting plate.

Step 6. Relay K-3501 is removed by unsoldering the leads and removing the four screws which mount the relay to the mounting plate.

Step 7. With the spur gear, O-3518, and the cams removed on S-3514 assembly, motor B-3502 may be removed and replaced. The hub, on motor B-3502 shaft, must be removed in order to replace motor B-3502, by knocking out the drive pin (figure 7-101) and loosening the setscrew.
6. DISASSEMBLY OF LOADING SEC-TION.-If trouble location procedures of paragraph

Figure 7-102. Antenna Coupler CU-372/SRT, Loading Section
$18 a$ indicate trouble exists in the loading section switch or drive mechanism, a step-by-step disassembly procedure should be followed. Refer to figures 7-98 and 7-100.

Step 1. Separate switch assembly S-3513 and melamine plate from S-3511 switch form by removing the end caps supporting the melamine plate to the four hollow supports.

Step 2. Contact buttons on S-3511 switch form may be removed and replaced by means of the special tool, $\mathrm{H}-3503$, mounted on melamine plate. (See figure 7-100.)

Step 3. Switch assembly S-3513 is removed in the same manner as switch assembly S-3514. (See paragraph 18b(2)(a)5, step 4.)

Step 4. All the components in switch assembly S-3513 and S-3511 switch rotors are removed in the same manner as components in switch assembly S-3514 and S-3512 switch rotor. (See paragraph $18 b(2)(a) 5$, steps 5, 6 and 8.)
7. REMOVAL OF VACUUM CAPACITOR

C-3501 AND COIL L-3503.-If trouble location pror

Figure 7-103. R-F Tuner TN-229/SRT, with Housing and Shock Mounts

Figure 7-104. R-F Tuner, Test Setup
cedures indicate trouble with vacuum capacitor $\mathrm{C}-3501$ or coil L-3503, a step-by-step disassembly procedure should be followed. (Refer to figures 7-100 and 7-102.)

Step 1. Loosen the end caps, figure 7-100, to allow the four hollow supports to be unthreaded from the bottom plate. The bottom plate and components mounted on it can now be hinged back on the three cables that pass through the hollow supports. (See figure 7-102.)

Step 2. Loosen setscrews on each of the eight terminal post nuts. This allows the coil and vacuum capacitor assembly to be separated from the switch form and melamine plate.
(b) REPLACEMENT AND ADJUSTMENTS. -All replaceable parts, assemblies and subassemblies of the antenna coupler are reassembled and replaced in reverse order from the procedures outlined in paragraph $18 b(2)(a)$. The following general points in reassembly and replacement should be particularly noted:

1. Align register marks inscribed during disassembly procedures.
2. All setscrews, etc., which were fixed with glyptal should have glyptal reapplied to them prior to reassembly.
3. Stake both ends of replaced drive pins.
4. When replacing valves, cable terminals or pressure gauge on the end plate, recoat the threads with sealing compound.
5. If the tape has been removed from $W-3501$ and $W-3502$, it must be rewrapped with polyethylene electrical tape.
6. When reassembling or replacing components, refer to Section 6 for lubrication information.
(c) BYPASS SECTION ALIGNMENT.-Proper meshing of spur gears $\mathrm{O}-3530$ and $\mathrm{O}-3518$ is indicated when switches mounted on S-3514 switch as-

sembly are as follows: S-3507 and S-3510 actuated, and S-3509 not operated. When cams are in this position, S-3512 switch rotor should be in a position to connect contact buttons 1 and 2 together, and 3 and 4 together. S-3512 rotor contacts should be in exact center of contact button on S-3512 switch form, as observed through holes in switch form.

The cam adjacent to spur gear $\mathrm{O}-3518$ is replaced and adjusted so that the center of the high side of the cam is in position to fully actuate switch S-3510 when switch S-3507 is actuated and switch S-3509 is not operated.

The cam next to $\mathbf{O}-3518$ is installed so that switch S-3507 is actuated when $\mathrm{S}-3512$ rotor is in exact center of contact button on S-3512 switch form.

The cam adjacent to S-3514 assembly mounting plate is installed so that switch S-3509 is not operated when switch S-3510 actuator is in the center of the high side of cam and S-3510 is actuated.

As a final check of proper synchronization of the bypass switch drive mechanism, the antenna coupler should be checked for both electrical and mechanical performance according to the procedures outlined in paragraph 18a.
(d) LOADING SECTION ALIGNMENT.Proper alignment of spur gears O-3529 and O-3531 is indicated when cam nearest drive motor $\mathrm{B}-3501$ is in a position where roller actuator of switch S-3506 is fully relaxed and at the lowest part of the notch in the cam. At this position, rotor of switch S-3511A should be engaged in the center of contact buttons $2 \mathrm{~A}, 4 \mathrm{~A}$, and $6 A$ and rotor of switch $S-3511 B$ should be engaged in the center of contact buttons $1 \mathrm{~B}, 3 \mathrm{~B}$, and 5B, as observed through holes in S-3511 switch form.

The cam adjacent to spur gear $\mathrm{O}-3529$ is adjusted so that roller actuator of switch S-3503 is fully relaxed and at the bottom of the notch in the cam when the rotor of switch $\mathrm{S}-3511 \mathrm{~A}$ is engaged 'in the center of contact buttons $1 \mathrm{~A}, 3 \mathrm{~A}$, and 5 A , and the rotor of switch $\mathrm{S}-3511 \mathrm{~B}$ is engaged in the center of contact buttons $2 \mathrm{~B}, 4 \mathrm{~B}$, and 6 B on $\mathrm{S}-3511$ switch form as observed through holes in S-3511 switch form.

As a final check of proper synchronization of the loading switch drive mechanism, the antenna coupler should be checked for both electrical and mechanical performance according to the procedures outlined in paragraph 18a.
(e) PURGING AND PRESSURIZING.-After the antenna coupler is completely reassembled, the unit must be purged to eliminate moisture that may have accumulated during corrective maintenance procedures. The following steps are not for routine preventive maintenance where pressurization is required because of normal leakage, but rather for repressurizing when the unit has been opened for repair or adjustment purposes. The following equipment is required:

Cylinder of prepurified dry nitrogen
Regulator valve and gauges

Hose with proper fittings to connect needle valve of pressurizing equipment to the antenna coupler intake valve.

Refer to figure 7-109 for a typical pressurization and purging setup.

Step 1. Attach the hose from needle valve (1) to intake valve (2) of the unit to be purged and open cylinder valve (7).

Step 2. Adjust regulator valve (3) to deliver approximately 10 to 15 psi . Note total psi of cylinder at gauge (4).

Step 3. Open exhaust relief valve (5) on the unit by inserting tool in hole provided on the valve stem, pull stem against valve spring tension, and hold it in this position during purging.

Step 4. Purge the unit until the pressure gauge (4) shows a drop of 100 psi from total psi of cylinder noted in step 2.

Step 5. Release the stem on relief valve (5) and allow the prepurified dry nitrogen to enter until gauge (6) on the unit reads 20 psi.

19. RADIO FREQUENCY TUNER TN-229/SRT.

(See figure 7-103.)
a. TROUBLE LOCATION.
(1) GENERAL.-After isolating trouble to the r-f tuner, with the use of the antenna tuning equipment trouble-shooting chart, table 7-41, a further check of the r-f tuner may be performed to localize the trouble to either the main drive and sliding short section or the impedance transformer switch drive, motor B-303.

TABLE 7-41. R-F TUNER TROUBLE LOCATION CHART

J-301		$\begin{aligned} & \text { RESISTANCE } \\ & \text { IN } \\ & \text { OHMS } \end{aligned}$	probable source OF ABNORMAL INDICATIONS
$\begin{gathered} \text { FROM } \\ \text { PIN } \end{gathered}$	$\begin{aligned} & \text { TO } \\ & \text { PIN } \end{aligned}$		
E	G	10 K	Position indicator R-301
E	F	*	Position indicator R-301
F	G	*	Position indicator R-301
0	N	17	Clutch-brake coil L-303
W	X	200	Main drive motor B-301
W	Y	200	Main drive motor B-301
X	Y	400	Main drive motor B-301
V	U	300	Blower motor B-302
V	T	800	Blower motor B-302
U	T	1200	Blower motor B-302
W	V	0	Centrifugal governor S-307
K	L	0	Thermostatic switch S-305 Centrifugal switch S-306

* Depends upon position of $\mathbf{R}-301$.

A circuit check of the r-f tuner may be accomplished as a bench test by supplying 115 volts ac, and 24 volts dc to actuate the main drive mechanism and switches in the r-f tuner and checking for continuity through switch contacts and coils.

It is not necessary to disassemble the r-f tuner for these preliminary circuit checks. All measurements and connections are made directly at the pins on the receptacles of the r-f tuner assembly.

Refer to the trouble location chart, table 7-41, the schematic, figure 7-172, and the wiring diagram, figure 7-173.
(2) TROUBLE-SHOOTING THE MAIN DRIVE ASSEMBLY OF THE R-F TUNER.-As a preliminary trouble location check of the r-f tuner, use the trouble location chart, table $7-41$, to localize probable source of trouble by means of abnormal resistance readings.

The following represents a more detailed method of localizing trouble in the r-f tuner after circuit checks have been made as indicated in table 7-41.

Power requirements: 115 volts ac, 24 volts dc.
Refer to figure 7-104 for test setup schematic, and connect a $6-\mu \mathrm{f}, 200-\mathrm{vdcw}$ paper capacitor as indicated.

For purposes of a bench test to check main coil L-302 and sliding short assembly, substitute the drive motor phase shift capacitor (mounted in the controlindicator unit) with a $6-\mu \mathrm{f}, 200-\mathrm{vdcw}$ paper dielectric capacitor across pins X and Y of $\mathrm{J}-301$ (figure 7-104).

Connect a double-pole, double-throw switch, Multimeter ME-25A/U (or equivalent), 115 volts ac and 24 volts dc to the pins on J-301 of the r-f tuner as shown in figure $7-104$, r-f tuner test setup diagram.

Operate the DPDT switch; main drive motor B-301 will operate, and the sliding short assembly will travel to the end of coil L-302, causing limit switch to operate, actuating clutch-brake $\mathrm{O}-301$. Reversing the DPDT switch will cause the sliding short assembly to reverse direction. Scanning speed and direction may be checked by observing the pointer movement of Multimeter ME-25A/U. Set multimeter on the proper resistance scale so that position indicator potentiometer R-301 reads from zero to 10,000 ohms.

To check continuity of main coil L-302, connect Multimeter ME-25A/U (or equivalent), using lowest resistance scale, to $W-301$ and the r-f tuner ground terminal. $\mathbf{W}-301$ is the first extrusion cable at the top of the r-f tuner assembly, figure 7-103.

Note

Zero adjust Multimeter ME-25A/U accurately, as full resistance of coil L-302 is only 0.5 ohm.

Operate the DPDT switch so that the sliding short runs alternately to the top and bottom of L-302, and note deviation in reading of multimeter.

Reading should vary from zero ohms to approximately 0.5 ohm . A large variation of multimeter pointer movement would indicate a possible damaged coil, L-302, or a defective sliding short assembly.

Figure 7-106. R-F Tuner TN-229/SRT, Less Housing
(3) TROUBLE-SHOOTING IMPEDANCE TRANSFORMER SWITCH S-308
(See figure 7-105.)
Step 1. Apply 115 volts ac to pin V of J-301 on r-f tuner.

Step 2. Connect Multimeter ME-25A/U (or equivalent) between $\mathrm{J}-303$ and the first extrusion cable extending from the r-f tuner assembly, W-301. (See figure 7-103.)

Step 3. Apply other side of 115 volts ac to pin M of J-301. This will actuate motor $\mathrm{B}-303$, driving switch S-308. At this point the multimeter should show continuity (zero ohms). This checks main coil L-302, coupling coil L-301 and contacts 2 and 4, of S-308.

Step 4. Disconnect 115 volts ac from pin M of $\mathrm{J}-301$, and connect to pin J of $\mathrm{J}-301$. This will actuate motor B-303, rotating switch S-308. Multimeter'should show continuity (zero ohms), between J-303 and r-f tuner ground. This checks contacts 1 and 2 of S-308.

b. REPAIR AND ADJUSTMENT.

(1) ELECTRICAL ADJUSTMENTS.-There are no electrical adjustments in the r-f tuner.
(2) MECHANICAL ADJUSTMENTS.
(a) REMOVAL AND REPAIR.-If the results of the trouble location procedures indicated in paragraph $19 a$ point to a defective component or adjustment in the r-f tuner, the disassembly procedures must be performed in the sequence described. However, in most cases, it will not be necessary to disassemble the unit completely for routine maintenance or replacement of a faulty circuit element. Familiarity with the disassembly procedure will enable the technician to perform the minimum required disassembly to have access to the defective part, since several steps in the procedure may be eliminated. A considerable degree of maintenance may be performed by merely removing the bottom housing from the r-f tuner, which exposes the main drive motor, blower motor, switch drive, clutch-brake assembly, governors, thermostatic switch, terminal boards, position potentiometer, and limit switches (figures 7-107 and 7-108).

If the defective component cannot be reached by removing the bottom housing, the top must then be removed as described in paragraph $19 b(2)(a) 3$. The contact fingers of the shorting ring and slide wire assembly may then be checked, if desired. Impedance transformer Z-301 is accessible when the bottom housing (paragraph $19 b(2)(a) 2)$ and drive assembly (paragraph $196(2)(a) 4)$ are removed from the r-f tuner.

Figure 7-107. R-F Tuner TN-229/SRT, Drive Section, Clutch Side

Figure 7-108. R-F Tuner TN-229/SRT, Drive Section, Air Duct Side

The r-f tuner trouble location chart, table 7-41, should be consulted to localize the defect to a particular assembly or part. Reference to the input end (bottom) of the r-f tuner indicates the end where the motors and r-f input cable ($\mathrm{J}-303$) are located. The output end (top) is the opposite end where the first extrusion r-f output cable to the antenna coupler is attached. Except for a periodic overhaul for lubrication purposes, it is not necessary to disassemble the r-f tuner beyond the point rèquired for correction of the difficulties indicated during trouble shooting. Every two years it is necessary to overhaul the r-f tuner completely, except for the drive shafts, in order to repack and lubricate the bearings as indicated in Section 6. A special wrench is provided in the r-f tuner for removal of contact buttons in switch assembly S-308.

WARNING

R-F TUNER TN-229/SRT IS PRESSURIZED WITH PREPURIFIED DRY NITROGEN. IF DISASSEMBLY OF THE UNIT, OTHER THAN THE MOUNTING EQUIPMENT, IS REQUIRED, THE PRESSURE MUST FIRST BE RELEASED. THIS IS ACCOMPLISHED BY PULLING THE STEM ON RELIEF VALVE O-353 (FIGURE 7-103) AND RE-

LEASING THE GAS WITHIN THE UNIT UNTIL THE PRESSURE GAUGEI-301 READS ZERO PSI.

1. REMOVAL OF UNIT FROM SHOCK MOUNT BASES.

(See figure 7-103.)
Step 1. Remove all grounding straps and interconnecting cables from the r-f tuner.

Step 2. Remove the 16 screws supporting the shock mounts to their bases.

Note

The unit must be removed from permanent location and brought into a protected work area if complete disassembly is to be performed. Provide adequate support when working on the unit. During disassembly keep the unit away from moisture, dirt or other foreign matter.

CAUTION

The r-f tuner weighs approximately 135 pounds. Handle with care so as not to damage any of the components which protrude from either end of the unit.

2. REMOVAL OF INPUT END (BOTTOM) HOUSING.

(See figure 7-103.)
Step 1. Discharge dry nitrogen gas in the unit by operating the relief valve $\mathrm{O}-353$ and releasing the gas until pressure gauge $I-301$ reads zero psi. Valves $\mathrm{O}-353, \mathrm{O}-309$ and pressure gauge $\mathrm{I}-301$ may be removed by unscrewing them from the input end plate.

Note

Place register marks on bottom housing, input end plate, and center ring, to facilitate reassembly.

Step 2. Remove the 12 screws supporting the ring which clamps the input end (bottom) housing at the center of the r-f tuner assembly.

Step 3. Remove the 12 screws supporting the input end plate at the bottom of the unit.

Step 4. Bottom housing and unit may be separated by axially removing one from the other. Shock mounts are still mounted on the housing and may be removed at this time, if necessary. At this point, the inner components of the r-f tuner input end are accessible. See figures $7-107$ and 7-108.

Step 5. Receptacles may be removed from the input end plate of the unit by removing screws or loosening coupling nut fastening receptacle to the input end plate. " O " rings and gaskets associated with receptacles may also be removed.

Figure 7-109. Typical Pressurization and Purging Setup

3. REMOVAL OF OUTPUT END (TOP) HOUSING.

(See figure 7-103.)
Step 1. Discharge dry nitrogen gas in the unit by operating relief valve $\mathrm{O}-353$ and releasing the gas until pressure gauge $\mathbf{I}-301$ reads zero psi.

Note

Place register marks on top housing, output end plate and center ring, to facilitate reassembly.

Step 2. Remove the 12 screws supporting the ring which clamps the output end (top) housing at the center of the r-f tuner.

Step 3. Remove the eight screws supporting the output end plate at the top of the unit.

Step 4. Top housing and unit may be separated by axially removing one from the other.

CAUTION

When removing top housing from unit, exercise care so as not to bend any of the contacts on the shorting ring assembly.

Shock mounts are still mounted to housing, and may be removed at this time, if necessary. Removal of the housing will provide access to all the main coil and sliding short assembly components (figure 7-106).

Step 5. The top end plate and the first extrusion connector W-301 may be removed from the unit by pulling the connector from the insert at the top end of the coil form.

4. REMOVAL OF COMPONENTS IN

 DRIVE SECTION.-The major components of the r-f tuner drive section are mounted within a machined casting, figures 7-107 and 7-108.If trouble location procedures indicate trouble in the impedance transformer switch assembly or the main coil drive mechanism, a step-by-step disassembly procedure must be followed. For component location, refer to figures 7-106, 7-107, and 7-108.

Components mounted on the machined casting are accessible by removing their mounting screws and disconnecting associated wires.

Main coil drive motor B-301 and impedance transformer Z-301 with switch assembly S-308 are mounted within the drive section casting and must be removed according to the following sequence:

Step 1. The input end plate at the bottom of the unit may be removed by disconnecting the coaxial cable connector to $\mathrm{J}-303$ and removing the three retaining rings supporting the input end plate to the three hex standoffs.

Step 2. Remove screws mounting limit switch S303 to the casting without removing wires.

Step 3. Remove four screws mounting terminal board TB-301 to the casting. It is not necessary to disconnect wires from terminal boards.

Step 4. Remove four screws supporting thermostatic switch $\mathrm{S}-305$ to the casting.

Step 5. Remove two screws supporting position indicator potentiometer $\mathrm{R}-301$ to the casting.

Step 6. Remove three screws supporting drive motor B-301 extension shaft to the casing.

Step 7. Remove two nuts on threaded studs supporting the clutch-brake assembly $\mathrm{O}-301$ to the casting.

Step 8. Remove four screws mounting terminal board TB-302 to the casting.

Step 9. Remove all cable clamps supporting the wiring harness to the casting.

Step 10. Unsolder wires connected to R-302 and C-301, mounted on the casting, directly above terminal board TB-302.

Step 11. Remove blower assembly, including air ducts and mounting plate, together with the wiring harness from the casting within the r-f tuner drive section.

5. REMOVAL AND DISASSEMBLY OF IMPEDANCE TRANSFORMER SWITCH ASSEMBLY.

(See figure 7-108.)

Step 1. Unsolder coaxial cable terminated in slide wire insulator, POINT 1 of figure 7-106.

Step 2. Remove nuts and mounting plates supporting racks $\mathrm{O}-321$ and $\mathrm{O}-322$ to the shorting ring assembly.

Step 3. Remove four screws supporting the drive section casting to the center ring of the r-f tuner.

Step 4. Remove six screws supporting the main coil and shorting ring assembly to the center ring of the r-f tuner.

Step 5. Remove main coil and shorting ring assembly from the drive section of the r-f tuner.

CAUTION

Before separating the center ring from the drive section, register marks must be placed on the center ring and drive section casting. The center ring must be properly oriented when unit is reassembled.

Step 6. Remove four screws from bracket supporting the impedance switch assembly to the casting.

Step 7. Unsolder leads between impedance transformer Z-301 and contact buttons of switch S-308; see POINT 2 on figure 7-108. Remove assembly from casting.

Step 8. Impedance switch assembly housing is removed by removing the three screws on the top supporting the housing to the bracket and three screws on the bottom supporting the housing and bearing alignment plate (figure 7-105).

Step 9. Switches actuated by the cam and their actuators may be removed by first disconnecting the wires to the switch and then removing the screws supporting the switch to the mounting plate (figure 7-105).

Step 10. The cam may be removed by unscrewing the two flathead screws supporting the cam to the motor shaft (figure 7-105).

CAUTION

Place register marks on cam and motor shaft for proper orientation when replacing cam on motor B-303 shaft.

Step 11. At this point, the stator contacts on melamine plate may be removed and replaced by using the special tool, H-302, mounted within the r-f tuner.

Step 12. To gain access to motor B-303 mounting screws, remove melamine plate and unsolder leads between S-308 contacts and coaxial connectors on assembly.

Step 13. Remove four screws supporting motor B-303 to the assembly.

Step 14. Impedance transformer $\mathbf{Z}-301$ may be removed by removing the four screws on the bracket supporting the transformer to the casting.
6. REMOVAL OF SHORTING RING ASSEMBLY.
(See figures 7-105 and 7-106.)
Step 1. Remove slide wire and guide wire by loosening nuts at the insulator post and guide ring assembly.

Step 2. To remove guide ring assembly, remove two screws supporting ring to the coil form.

Step 3. Unsolder connection between the top of the coil and the output connector, W-301, at the top of the unit.

Step 4. Shorting ring and coil may be separated by axially removing shorting ring from the top end of the coil form.
(b) REPLACEMENT AND ADJUSTMENTS. -All replaceable parts, subassemblies, and assemblies of the r-f tuner are reassembled and replaced in reverse order from the procedures outlined in paragraph $19 b(2)(a)$. The following general points in reassembly and replacement should be particularly noted:

Step 1. Align register marks inscribed during disassembly procedures.

Step 2. All setscrews, etc., which were fixed with glyptal should have glyptal reapplied to them prior to reassembly.

Step 3. Stake both ends of replaced drive pins.
Step 4. When replacing cable terminals, valves or pressure gauge on the end plate, recoat the threads with sealing compound.

Step 5 . When reassembling or replacing components, reference should be made to Section 6 for lubrication information.

Step 6. Wherever registry marks have been placed, according to disassembly instructions, care must be exercised when replacing to line up register marks for proper orientation of component.

1. CLUTCH-BRAKE UNIT ADJUSTMENT.

-When the r-f tuner is disassembled for overhaul and lubrication purposes, clutch-brake unit $\mathrm{O}-301$ should be checked and adjusted to maintain an air gap of 0.008 inch. The function of the brake in the clutch-brake unit is to prevent overtravel of the shorting ring when releasing either the UP © (A) or DOWN © (AC button on the control-indicator unit. Braking time is a function of air gap existing between the driver plate and the braking face of the brake winding housing (see detail in figure 7-105).

Air gap within the clutch-brake unit is adjusted by rotating the lower housing within the upper housing of the unit. Each position of the locking hole in the lower housing represents air gap adjustments in increments of 0.004 inch, and two sets of locking screw tapped holes in upper housing permit 0.002 -inch adjustments.

Step 1. Remove locking screws supporting lower housing to upper housing.

Step 2. With clutch-brake unit removed from casting (paragraph $19 b(2)(a) 5$, steps 6 and 7), unscrew lower housing completely from upper housing. Remove any dirt or other foreign matter that may have accumulated on the clutch and brake mating surfaces. Use dry cleaning solvent P-S-661b, Type II. After cleaning, replace lower housing by screwing it in the upper housing.

Step 3. Rotate lower housing clockwise until it reaches its limit. At this point there is zero air gap between driven and driving plates.

Step 4. Rotate lower housing counterclockwise for 0.008 -inch air gap (two holes in lower housing), and replace locking screws.
2. CONTACTS, BEARINGS AND GAS-KETS.-If either main coil L-302 or coupling coil L-301 is damaged, rewinding of the coils will be necessary. Refer to table 7-43, Winding Data.

Inspect the contacts on the shorting ring assembly to be sure they make firm contact with main coil L-302 and the top housing when assembled. All shorting ring contacts and the inner surface of the top housing should be cleaned prior to reassembly.

The slide wire contact assembly should be adjusted to provide firm contact against the slide wire. The slide wire lock nut on the guide ring post should be tightened firmly.

Clean all gears, racks, rollers, and bearings, and lubricate in accordance with the lubrication instructions and materials specified in Section 6.

Check shorting ring assembly over the entire range of travel. Binding may indicate improper alignment of shorting sleeve or racks.

Replace any gaskets or " O " rings that appear worn or cracked.

CAUTION

Exercise care not to pinch or shear gaskets and " O " rings when reassembling the r-f tuner.

Ball bearings may be removed, when located on a shaft, by applying pressure on their inner races. When located in holes, they may be removed by pressing on their outer races.

3. PURGING AND PRESSURIZING.—After

 the r-f tuner is completely reassembled, the unit must be purged to eliminate moisture that may have accumulated during corrective maintenance procedures. The following steps are not for routine preventive maintenance, where pressurization is necessary because of normal leakage, but rather for repressurizing when the unit has been opened for repair or adjustment purposes. The following equipment is required:Cylinder of prepurified dry nitrogen; regulator valve and gauges; hose with proper fittings to connect needle valve of pressurizing equipment of the r-f tuner intake valve.

Refer to figure 7-109 for a typical pressurization and purging setup.

Step 1. Attach hose from needle valve (1) to intake valve (2) of unit to be purged, and open cylinder valve (7).

Step 2. Adjust regulator valve (3) to deliver approximately 10 to 15 psi. Note total psi of cylinder at gauge (4).

Step 3. Open exhaust relief valve (5) on unit by inserting tool in hole provided on the valve stem, pull stem against valve spring tension, and hold it in this position during purging.

Step 4. Purge unit until pressure gauge (4) shows a drop of 100 psi from total psi of cylinder noted in step 2.

Step 5. Release stem on relief valve (5) and allow the prepurified dry nitrogen to enter until gauge (6) on unit reads 20 psi. (Increase regulator valve (3) output to provide 20 psi in r-f tuner as indicated by gauge (6) on unit.)

20. MAINTENANCE OF RELAYS.

Relay contacts must be kept in good condition to maintain satisfactory operation. Dust and pitted contacts are the principal causes of relay trouble. The presence of undue sparking between contacts is an indication of trouble. Burnishing and cleaning of the contacts will usually clear up most relay troubles.
a. CONTACT BURNISHING.-Contact burnishing should always be done with a suitable burnishing tool. Never use a file. To burnish, rub the burnisher back and forth between the contacts two or three times. When burnishing normally open contacts, press the contacts together manually to give a slight pressure on the blade of the burnisher; for normally closed contacts, the spring tension will provide sufficient pressure.

CAUTION

When burnishing contacts, take care not to jar the springs out of adjustment or to change the air gaps. Also take care not to lose the bushing between contact arms.
b. CONTACT CLEANING.-Relay contacts should be cleaned with dry cleaning solvent P-S-661b, type II, in the following manner: dip the flat end of a clean toothpick in the cleaning solvent to a depth of onequarter inch, and deposit the liquid on the contacts while holding the contacts slightly separated. Rub the flat end of the toothpick back and forth two or three times between the contacts, while exerting a slight pressure against the sides of the toothpick. The liquid will soften any deposit that may have collected on the contacts, and the rubbing will remove it. The contacts
should now be flushed with a small amount of cleaning solvent taken up on the clean point of the toothpick. The end of the toothpick used for rubbing should not be used during this operation. Flush the sides as well as the top of the contacts, to prevent the deposit of loosened dirt upon the contact surface.

Note

On a relay where the separation or location of the contacts is such that it is not practicable to insert a toothpick, burnishing alone will be satisfactory.

21. COMPONENT CHARACTERISTICS.

a. ELECTRON TUBES.-Table 7-42 lists the rated tube characteristics for all types of vacuum tubes used in the AN/SRT-15. This data does not represent maximum or recommended operating conditions, but represents the conditions under which the tube is tested to determine whether or not it is satisfactory after manufacture. After longer service, tubes will show substantial reduction (up to 20 percent) in transconductance and emission under the standard test conditions. By making an allowance for normal decrease in transconductance or emission, and normal increase in gas rectifier cathodeanode drop, tubes with excessively low performance levels may be detected.

Note

All tubes of a given type supplied with the equipment shall be consumed prior to employment of tubes from general stock.

(a)

(b)

Figure 7-110. Bridging Defective Transformer Winding

TABLE 7-42. TUBE CHARACTERISTICS

TUBE TYPE	filament voltage (V)	FILAMENT CURRENT (A)	Plate voltage (V)	$\begin{aligned} & \text { GRID } \\ & \text { BIAS } \\ & \text { (V) } \end{aligned}$	SCREEN VOLTAGE (V)	PLATE CURRENT (MA)	SCREEN CURRENT (MA)	A-C PLATE RESISTANCE (OHMS)	VOLTAGE AMPLIFICATION FACTOR (MU)	TRANSCONDUCTANCE (MICROMHOS)		EMISSION	
										Normal	Minimum	$\begin{gathered} \text { Is } \\ \text { (MA) } \end{gathered}$	$\begin{aligned} & \text { Test } \\ & \text { Volt } \end{aligned}$
0A2	-	-	Anode supply: 185 V dc MIN.				Starting voltage: 185 V dc min. Operating voltage: 150 V dc approx.				Operating 5 ma min . current: 30 ma max.		
0B2	-	-	Anode supply: 133 V dc min.				Starting voltage: 133 V dc min. Operating voltage: 108 V dc approx.				Operating 5 ma min. current: $\quad 30$ ma max.		
3B28	2.5	5	Peak inverse voltage: Output current: 250 ma max. 11 KV max/anode current of 1 A max.									5000	14.0
4-400A	5.0	14.1	2500	-67.5	500	160			5.25			$\begin{aligned} & 7000 \\ & \text { min. } \end{aligned}$	2500
4D21	5.0	6.5	2500	-71.5	500	50			5.85			$\begin{aligned} & 4000 \\ & \mathrm{~min} . \end{aligned}$	2500
5R4WGB	5.0	2	Plate voltage: 850 V ac* Output current: 140 ma dc min .				Peak inverse voltage: 2800 V max.					225*	75*
6AG5	6.3	0.3	250	0	150	7	2	800,000		5000	4000	$\begin{array}{r} 25 \\ \min . \end{array}$	10
6AG7	6.3	0.65.	300	-3	150	30	6.5	130,000		1700	9200	$\begin{array}{r} 180 \\ \min . \end{array}$	20
6AK6	6.3	0.15	180	-9	180	15	2.5	200,000		2250	1900		
6AS7G	6.3	2.5	135*	0*		125*		280	2*	7000*	5800*	75*	10*
6E5	6.3	0.3	250	-4		5.3	Target voltage: 250 V dc max. Target current: 3.1 ma dc					$\begin{aligned} & 15 \\ & \min . \end{aligned}$	30
12AU7	12.6	0.15	250*	-8.5*		10.5*		7700	17*	2200*	1750*		
5651	.		Starting voltage: 115 V dc min. Operating voltage: 87 V dc approx.					Operating current: 1.5 ma (min.) to 3.5 ma (max.)					
5654	6.3	0.175	120	-2	120	7.5	2.5	340,000		5000	3750		
5687	6.3	0.9	120*	-2		34		2000	20*	11000	8000	$\begin{array}{r} 125 \\ \min . \end{array}$	15
5725	6.3	0.175	120	-2	120	5.2	3.5			3200	2500		
5726	6.3	0.3	Plate voltage 117 V ac*			Peak inverse voltage: 260 V max. Output current: 9 ma dc max.*						40*	10*
5751	12.6	0.175	250*	-3*		1.1		58,000	70*	1200	900		
5814	12.6	0.175	250*	-8.5*		10.5*		6250	19.5*	2200*	1750*		
5933	6.3	0.9	750	-32	300	60	5						
6201	6.3	0.3	250	$\begin{aligned} & \hline 200 \\ & \text { ohms } \\ & \mathbf{R}_{\mathbf{x}} \end{aligned}$		10		10,900	60	5500			

b. CRYSTAL DATA.-Radio Frequency Oscillator Z-2001 (crystal oscillator, unit 1) is a crystal-controlled dscillator. A schematic of the crystal oscillator circuit is shown in figure 7-93. Following are the characteristics of the crystal and its oven:
Crystal oscillator frequency 100 kc
Combined accuracy and stability of crystal and oven over ambient temperature range of $-20^{\circ} \mathrm{C}$. $\left(-4^{\circ} \mathrm{F}\right.$.) , to $65^{\circ} \mathrm{C}$. $\left(149^{\circ} \mathrm{F}\right.$.) (and 30% to 95% relative humidity) is within 0.0005%.
Oven operating temperature $70^{\circ} \mathrm{C}$. $\left(158^{\circ} \mathrm{F}\right.$.)
Oscillator accuracy 0.00011%
Oven dimensions
Overall height
4-5/8 inches
Óverall diameter 3-3/4 inches
Diameters of oven pins
Pins 2, 3, 4, 5, and 6 0.125 inch

Pins 1 and 7 0.156 inch
c. WINDING DATA.-Table 7-43 lists all the wirewound electrical components except resistors, in the AN/SRT-15, and pertinent data to permit emergency repair of them in the field. The diagrams, listed by number in the "Diagram" column of table 7-43, follow the table and start on page 7-156. At the bottom of each page of table 7-43 a footnote references the page or pages on which the diagrams appear.
d. EMERGENCY MEASURES.-There may be occasions when a technician or operator must resort to emergency measures to keep the equipment in operation. A few such methods are described in the following paragraphs.

(a)

(b)

Figure 7-111. Alternate Method of Bridging Transformer Windings

Figure 7-112. Emergency Repair of Audio Transformer

Some of the procedures described may require a certain amount of "cut-and-try". It must be borne in mind, too, that parts which are repaired or bridged must be replaced as soon as possible to restore complete normal functioning of the equipment.

Note

Operators should not resort to these measures unless authorized.
(1) TRANSFORMER WINDINGS. (See figures 7-110 and 7-111.)-The simplified schematics of figures 7-110 and 7-111 illustrate two methods of emergency repair which may be tried when a transformer winding opens or burns out. Figure 7-110 shows a method which may be used when capacitors are available.

The resistor used in a defective primary may be a value between 50,000 and 150,000 ohms; in a defective secondary the resistor value may range from 500,000 to 2 megohms.

For audio frequencies, the capacitor value may be 0.1 to 0.5μ f.

In figure 7-111, a method of bridging is shown when a capacitor is not available. A few turns of insulated wire are placed around the undamaged winding and then connected to the plate or grid, as applicable. Some adjustment may be required to give the desired coupling.
(2) AUDIO TRANSFORMERS. (See figure 7-112.) - A tapped audio transformer may be temporarily repaired by placing two resistors of equal value in the secondary, as illustrated.
(3) BRIDGING DEFECTIVE STAGE. (See figure 7-113.)-When the procedures described in the two preceding paragraphs do not produce satisfactory results, it is possible to bridge an entire stage. This method is shown in figure 7-113.
(4) FIXED RESISTORS.-The value of a carbon resistor will decrease when overheated. Should this condition become permanent, the resistor value may be increased by scraping or filing the resistor until the approximate value is obtained. Use care in filing and scraping, and keep a constant check on the changing value. Be sure the removal of insulation does not cause a short.

Figure 7-113. Bypassing a Defective Stage

Wire-wound resistors may be repaired, temporarily, by clamping the broken spot or bridging it with solder or wire. Although the overall value will be somewhat less than the original, circuit function should be restored.
(5) VARIABLE RESISTORS.-Faulty operation of variable resistors and potentiometers is usually caused by poor contact, wear and dirt.

The part is cleaned with dry-cleaning solvent 14 F SNSN G51-S-4718-10, and then polished with an ordinary pencil eraser, preferably one not too gritty. Carefully adjust the tension of the moving arm, if necessary, to get a better contact.

When a variable resistor is too badly worn to repair, a fixed resistor should be substituted. This resistor is finally chosen after different values are tried in the circuit. The resistor that gives the best results under these emergency conditions should be the one used.

A wire-wound variable resistor may be repaired by slipping a metal tab under or over the break or by clamping. In this case, too, the value will be somewhat lower but circuit function should be restored.
(6) CHOKES AND COILS.-When a coil or choke becomes useless through corrosion, or if repair or bridging is impractical, it may be rewound.
Remove the wire on the coil form, carefully noting the number of turns and the manner of winding. Rewind with new wire of the same size and insulation on the old coil form. Table 7-43 may be consulted in cases where no emergency exists.
(7) TUBES.-In some cases, a stage may be bridged, as described in paragraph $3 e(3)$, if a tube replacement is not immediately available.

Power amplifier tube V-1304 (4-400A) in the radio frequency amplifier output stage may be replaced with
a type 5D21, if available, provided operation is limited to the 100 -watt level.
(8) INTERLOCK BATTLE SHORT. (See figure 7-79.)-In case of failure of the drawer interlocks, INTERLOCK BATTLE SHORT switch (10 is provided on the front panel of Low Voltage Power Supply PP-1094 /SRT (LVPS). When placed in the ON position, it bypasses all the interlock switches on the drawers.

Note

INTERLOCK BATTLE SHORT switch ©
is to be used only in emergencies.
(9) R-F TUNER EMERGENCY SWITCHES.Although there is no interlock in the r-f tuner, two switches are provided to prevent operation of the equipment at 500 watts under the following conditions:
(a) CENTRIFUGAL SWITCH.-If, for some reason, r-f tuner blower motor B-302 fails, its centrifugal switch S-306 will open and prevent 500-watt operation.
(b) THERMAL SWITCH.-When the temperature in the r-f tuner rises to $150^{\circ}-115^{\circ} \mathrm{C}$. $\left(200^{\circ}-\right.$ $240^{\circ} \mathrm{F}$.), thermal switch S-305 will open and prevent 50 -watt operation.

These safeguards are provided in the r-f tuner at the high (500-watt) level while still not preventing operation at the low (100-watt) level.
(10) CHEATERS.-With a drawer partially pulled out of its inner compartment, the interlock may be bypassed through the "cheater" switch mounted on the left side of the chassis, towards the rear. The hardrubber rod of the switch is pushed in to close the circuit.

TABLE 7-43. WINDING DATA

1. All wires are AWG copper wire unless otherwise specified.
2. In "wire size" column, $\mathrm{E}=$ enamel

$$
\begin{aligned}
& \mathrm{F}=\text { fiber, synthetic } \\
& \mathrm{R}=\text { resin } \\
& \text { Formex }=\text { synthetic resin } \\
& \quad \text { (brand) } \\
& \mathrm{CSC}=\text { cotton, single } \\
& \text { covered } \\
& \mathrm{SSC}=\text { silk, single covered }
\end{aligned}
$$

3. In "DC resistance" column, Low $=$ less than one ohm.
IMPREGNATION: MOISTURE AND FUN GUS PROOFING OF COILS.

Note

All varnish shall be moisture and fungus resistant per MIL-V-173A.

To obtain an even coating, dipping and draining of parts should be done in opposite directions. After the treatment is complete, the coating must be dry and hard on all portions of the coil and form; all surfaces must be free of bubbles, foreign matter and dents.

METHOD I

Perform the sequence of operations as called for in the winding data.

1. Clean all surfaces of coil form with dry cleaning solvent (P-S-661b, TYPE II)
Bake for $1 / 2$ hour at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$
Remove from oven and allow to cool at room temperature
2. Wind coil.

Bake for 1 hour at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Remove from oven and allow to cool to $55^{\circ} .66^{\circ} \mathrm{C}$ $\left(130^{\circ}-150^{\circ} \mathrm{F}\right)$.
3. Immerse in mixed varnish.

Air dry for 10 minutes.
Bake for 1 hour at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Allow to cool to $55^{\circ}-66^{\circ} \mathrm{C}\left(130^{\circ}-150^{\circ} \mathrm{F}\right)$

general notes

4. Brush on mixed varnish.

Air dry for 10 minutes after brushing.
Bake for 1 hour at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Allow to cool to $55^{\circ}-66^{\circ} \mathrm{C}\left(130^{\circ}-150^{\circ} \mathrm{F}\right)$.
5. Brush on unmixed varnish.

Air dry for 10 minutes after brushing.
Bake for 1 hour at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
6. Immerse in mixed varnish in vacuum.

Air dry for 10 minutes.
Bake for 8 hours at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$.
Allow to cool to $55^{\circ}-66^{\circ} \mathrm{C}\left(130^{\circ}-150^{\circ} \mathrm{F}\right)$
Unmixed varnish shall be Insl-X \#U-86-T varnish.
Mixed varnish shall be a mixture of 100 parts Insl-X \#U-86-T varnish to 86 parts thinner \#80.

METHOD II

1. Remove oil and grease with dry cleaning solvent (P-S-661b, TYPE II).
2. Dry in oven or with infrared light at $100^{\circ} \mathrm{C}$ ($212^{\circ} \mathrm{F}$) long enough to substantially dehydrate the material (not less than two hours)
3. Allow to cool to $+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
4. Spray, brush, or dip (depending on the size and shape of the piece), using one of the following baking varnishes:

Insl-X \#95T
Insl-X \#85T
Insl-X \#85-IT
Mass \& Waldstein Durad \#524
5. Dry in air for 10 minutes
6. Bake in $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ for a maximum of 30 min utes.
7. Allow to cool to $+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.
8. Repeat step 4.
9. Dry in air for 10 minutes.
10. Bake at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ for a minimum of 1 hour.

NOTE 1: Insl-X No 95T, as sold commercially, has a 43% solid content. To obtain the required 25% mixture add 0.86 part thinner.
NOTE 2: Phenolic parts which require no additional assembly shall be treated with -95T. Parts which are subjected to assembly of metal parts; such as eyelets, rivets, screws, etc., shall be treated with 85 T or $85-$ IT.
NOTE 3: When the coating material is at the proper specified viscosity, each coat should be from 1 to 1.5 mils thick.

METHOD III

Oven temperature for following procedures shall be $70^{\circ}-100^{\circ} \mathrm{C}\left(158^{\circ}-212^{\circ} \mathrm{F}\right)$.

1. After winding, bake 2 hours.
2. Apply a coat of varnish to the hot coil, thinned 3 parts of varnish to 1 part Xylol.
3. Air dry at least 30 minutes, and bake in oven at least 1 hour.
4. While coil is hot, apply second coat, full strength; air dry at least 15 minutes and bake at least 1 hour. Varnish to be applied liberally to all accessible surfaces of wire (and other portions as specified) for both coats.

METHOD IV

1. Place in oven for 2 hours at $150^{\circ} \mathrm{C}\left(300^{\circ} \mathrm{F}\right) *$ to dry.
2. Let cool at room temperature for approximately 15 minutes.
3. Vacuum impregnate in Dow-Corning \#996-varnish or equivalent.
4. Place in oven for 4 hours at $150^{\circ} \mathrm{C}\left(300^{\circ} \mathrm{F}\right) *$.
5. Repeat steps 3 and 4 two more times, but dip instead of impregnate.

* For L-1333, dry at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$

DESIGNATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \text { D-C } \\ & \text { RESISTANCE } \\ & \text { (Ohms) } \end{aligned}$	IMPED. ANCE RATIO	HIPOT A-C VOLTS	. REMARKS
T-501	NL-980846-1	(6)	Primary (1-2) Secondary (3-5)	$\begin{aligned} & \text { \#13F } \\ & \# 23 F \end{aligned}$	150 1720 ct at 860	Low		$\begin{aligned} & 1500 \mathrm{~V} . \\ & \text { rms Pri. } \\ & 2300 \mathrm{~V} . \\ & \text { rms Sec. } \end{aligned}$	Power transformer plate type: rated at 360 VA. Terminals 1 and 2: 110 volts $\pm 10 \%$ input (primary) $60 \mathrm{cps} \pm 5 \%$. Terminals 3 and 5: 1240 volts at 414 ma (center tapped); regulation 5% max. Electrostatic shield between primary and secondary. Hermetically sealed.
T-502	NL-980849-1	(7)	$\begin{array}{\|ll} \text { Primary } & (1-2) \\ \text { Secondary \#3 } & (8-9) \\ \text { Secondary \#2 } & (6-7) \\ \text { Secondary \#1 } & (3-5) \end{array}$	$\begin{aligned} & \# 23 \mathrm{~F} \\ & \# 17 \mathrm{~F} \\ & \# 11 \mathrm{~F} \\ & \# 11 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 293 \\ & 171 / 2 \\ & 7 \\ & 7 \text { ct at } 31 / 2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & \text { Low } \\ & \text { Low } \\ & \text { Low } \end{aligned}$	1500 V	$\begin{aligned} & 1500 \mathrm{~V} . \\ & \text { rms Pri. } \\ & 5200 \mathrm{~V} . \\ & \text { rms Sec. } \end{aligned}$	Power transformer, filament type: terminals 1 and 2 , input (primary) : 110 volts $\pm 10 \%$ $60 \mathrm{cps} \pm 5 \%$, sec. \#3 (8 and 9): 6.3 volts at 2 amp , sec. \#2 (6 and 7) : 2.5 volts at $10 \mathrm{amp}, \mathrm{sec}$. \#1 (3 and 5) : 2.5 volts at 10 amp, term. \#4 is center tap; regulation 10% max. Electrostatic shield between primary and secondary. Hermetically sealed.
T-503	NL-980848-1	(8)	Primary Secondary	$\begin{aligned} & \text { \#13F } \\ & \# 27 \mathrm{~F} \end{aligned}$	144 tapped at 113 3310 ct at 1655	Low 220		$\begin{aligned} & 1500 \mathrm{~V} . \\ & \text { rms } \\ & 4250 \mathrm{~V} . \\ & \text { rms } \end{aligned}$	Power transformer step-up; Primary: 110 V. rms $\pm 10 \%, 60 \mathrm{cps} \pm 5 \%$. Secondary: 2480 V. rms ct at 190 ma full primary; or 3160 V. irms ct at 230 ma tapped primary. Regulation 5% max; electrostatic shield between primary and secondary; hermetically sealed.
				RAD	ODULATOR MD	-229/SRT			
L-1001	NL-980616-1	(5)	Single winding, single layer.	\#30F	2740	168 max		1850	Input reactor: Inductance: 5 hy min. at 200 ma. Frequency: 100-120 cps. Hermetically sealed.
L-1005	NL-980617-1	(5)	Single winding, single layer.	\#17F	335	1.25		1500	Input reactor: Inductance: 0.1 hy to 0.4 hy at 1.5 to 0.1 amp . Frequency: $100-120 \mathrm{cps}$. Hermetically sealed.
T-1001	$\begin{aligned} & \text { NL-982185- } \\ & 1^{* *} \end{aligned}$	(9)	Primary (1-2) Secondary \#1 (3-5) Secondary \#2 (6-7)	$\begin{aligned} & \hline \# 21 \mathrm{E} \\ & \# 30 \mathrm{E} \\ & 2-\# 17 \mathrm{E} \end{aligned}$	$\begin{aligned} & 251 \\ & 2360 \text { ct at } \\ & 1180 \\ & 6 \end{aligned}$	2.2 199 Low		$\begin{aligned} & 1500 \\ & 2000 \\ & 1500 \end{aligned}$	Plate transformer: Primary (1-2): 110 volts $\pm 10 \%$, $50-60$ cps. Secondary \#1 (3-5): 1000 volts, 150 ma, terminal 4 is center tap. Secondary \#2 (6-7) : 2.5 volts at 4.75 amp. Regulation 5\% max. Hermetically sealed. Electrostatic shield between primary and secondary windings.
T-1002	NL-980606-1	(10)	Primary (1-2) Secondary \#1 (3-5) Secondary \#2 (6-7) Secondary \#3 (8-10) Secondary \#4 (11-12)	$\begin{aligned} & \# 21 \mathrm{~F} \\ & \# 16 \mathrm{~F} \\ & \text { \#15F } \\ & \# 16 \mathrm{~F} \\ & \# 18 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 280 \\ & 17 \text { ct at } \\ & 81 / 2 \\ & 17 \\ & 17 \text { ct at } \\ & 81 / 2 \\ & 131 / 2 \end{aligned}$	2.2 Low Low Low Low		Primary: 1500 V test. Other windings: 1850 V test.	Filament transformer: Primary (1-2): 110 volts $\pm 10 \%, 50-60$ cps. Secondary \#1 (3-5): 6.3 volts, 2.8 amp , terminal 4 ct . Secondary \#2 (6-7): 6.3 volts, 4.25 amp . Secondary \#3 (8-10): 6.3 volts, 3 amp; terminal 9 ct. Secondary \#4 (11-12): 5 volts, 2 amp. Secondary \#5 (13-14): 15

* For diagrams (5) and (6) through (10), see page 7-156.
** Later production models use NL-901614-1.

DESIGNATION SYMBOL	FTL DWG NUMBER	$\begin{gathered} \text { DIA- } \\ \text { GRAM* } \end{gathered}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$	REMARKS
$\begin{aligned} & \mathrm{T}-1002 \\ & \text { (cont'd.) } \end{aligned}$			Secondary \#5 (13-14) Secondary \#6 (15-17)	\#25F \#20F	$391 / 2$ 46 tapped at $431 / 2$	Low Low			volts, 0.3 amp . Secondary \#6 (15-16) : 16.5 volts. Secondary \#6 (15-17) : 17.5 volts, 1 amp. Regulation: secondaries $1-4$ is 10%, 5 and 6 is 5% max. Hermetically sealed. Electrostatic shield between primary and secondary windings.
T-1003	NL-980977-1	(11)	Primary (1-3) Secondary (4-5)	$\begin{aligned} & \text { \#29E } \\ & \text { \#42E } \end{aligned}$	273 tapped at 68 4911	$\begin{array}{r} 6.5 \\ 1840 \end{array}$	$\begin{gathered} 333: 1 \\ \text { or } \\ 5714: 1 \end{gathered}$	1000	AF input transformer: Primary (1-3) impedance: 600 ohms. 35 ohm tap (1-2). Secondary (4-5) impedance: 200,000 ohms. Frequency response: 100 cps to $5 \mathrm{kc} \pm 1 / 2$ db. Maximum level: 18 db . Distortion: $1 / 2$ percent max. Hermetically sealed.
T-1004	NL-980978-1	(12)	Primary (P-P) Secondary No. 1 (G-G) Secondary No. 2 (0-10K)	\#31E \#31E \#32E	2144 tapped at 1072 1148 ct at 574 3494 tapped at 3348, 3203	84 81 410	4.2:1 1:2.4	Primary (P-P): 1500 Secondary No. 1 : 2100 Secondary No. 2: 3700	AF modulation transformer: Primary (P-P) : 4200 ohms with 120 ma balanced. Secondary No. 1: 1000 ohms over-all with 20 ma balanced. Secondary No. 2: 8000, 9000 and 10,000 ohms with 140 ma unbalanced. Frequency response: 100 to $15 \mathrm{kc} \pm 1 / 2 \mathrm{db}$. Distortion: 1% max. Hermetically sealed.
T-1005	NL-980979-1	(13)	Primary (1-2) Secondary (3-4)	$\begin{aligned} & \text { \#43E } \\ & \# 38 E \end{aligned}$	$\begin{aligned} & 6132 \\ & 1672 \end{aligned}$	$\begin{aligned} & 3600 \\ & 2600 \end{aligned}$	25:1	$1500 \mathrm{~V}$ Pri. and Sec.	AF plate coupling transformer: Primary (1-2) : 15,000 ohms with 8 ma dc. Secondary (3-4): 600 ohms. Max level: +25 dbm. Frequency response: 200 to 4500 cps $\pm 1 / 2 \mathrm{db}$. Distortion: 5\% max. Hermetically sealed.
Z-1001	NL-980974-1	(14)	Dual Terminals 1-2 Terminals 2-3	$\begin{aligned} & \# 36 E \\ & \# 33 E \end{aligned}$	$\begin{aligned} & 2123 \\ & 1269 \end{aligned}$	$\begin{array}{r} 250 \\ 192 \\ 58 \end{array}$		600	Low pass filter: Impedance: $\mathbf{1 0 , 0 0 0}$ ohms input and output. Cutoff: 6000 cps . Max insertion loss: 0.5 db . Max level: +3 db . Hermetically sealed.
RADIO FREQUENCY AMPLIFIER AM-1008/SRT									
E-1309	NL-980955-1	(15)	Single winding, single layer, spaced $1 / 16$ in. apart.	\#18 bare, tinned copper wire, 9 in. long	7				Parasitic suppressor: wire wound around a 330 -ohm, 1 -watt resistor.

* For diagrams (10) through (15) see pages 7-156 and 7-157.

TABLE 7-43. WINDING DATA (Cont'd)

DESIGNATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM } \end{aligned}$	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { (Ohms) } \end{gathered}$	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
L-1301	NL-981864-1	(16)	Three pies, single universal winding; unshielded; ceramic form (NS-3-W-02-08) per JAN-I-8.	10/ı̂1 E SSC Litz	Pie 1: 100 turns Pie 2: 100 turns Pie 3: approx 90 turns (See "Remarks")				RF coil: pie 3 contains enough wire to produce inductance of $700 \mu \mathrm{~h} \pm 5 \%$. Winding is clockwise when viewed from top (Pie 1). Q: 50 min . at 790 kc . Impregnate per method 2.
L-1302	$\begin{aligned} & \text { NL-980705- } \\ & 2-4 \end{aligned}$	(17)	Single winding, single layer, space wound; unshielded; ceramic form Millen \#69046.	No. 14 single Formex	6 double spaced				RF coil: inductance: $0.38 \mu \mathrm{~h} w /$ slug withdrawn. Q: 100.0 min . at $\mathbf{2 5 . 0} \mathbf{~ m c}$. Impregnate per method 3 .
L-1303	$\begin{aligned} & \text { NL-980705- } \\ & 2-3 \end{aligned}$	(17)	Single winding, single layer; close wound; unshielded; ceramic form Millen \#69046.	No. 14 single Formex	10				RF coil: inductance: $0.82 \mu \mathrm{~h} w /$ slug withdrawn. Q: 90.0 min . at 25.0 mc . Impregnate per method 3 .
L-1304	$\begin{aligned} & \text { NL-980705- } \\ & 2-2 \end{aligned}$	(17)	Single winding, single layer; close wound; unshielded, ceramic form Millen \#69046.	No. 20 single Formex	18				RF coil: inductance: $2.5 \mu \mathrm{~h} \mathrm{w} / \mathrm{slug}$ withdrawn. Q: 70.0 min . at 7.9 mc . Impregnate per method 3.
L-1305	$\begin{aligned} & \text { NL-980705- } \\ & 2-1 \end{aligned}$	(17)	Single winding, single layer; close wound; unshielded; ceramic form Millen \#69046.	No. 26 single Formex	47				RF coil: inductance $14.0 \mu \mathrm{~h} \mathbf{w} /$ slug withdrawn. Q: 50.0 min . at 2.5 mc . Impregnate per method 3.
L-1306	NL-982818-1	(18)	Single, universal winding, one pie, unshielded; ceramic form.	No. 36 single nylon	397	28			RF coil: inductance: 2.5 mh at 125 ma . Impregnate per method 4.
L-1307	Same as L-1302								
L-1308	Same as L-1303								
L-1309	Same as L-1304								
L-1310	Same as L-1305								
L-1311	NL-982759-1	(19)	Single winding, five pies, universal wound; unshielded; ceramic form.	No. 36E single nyIon	332 per pie; (total turns1660)	100			RF coil: inductance: $10.0 \mathrm{mh} \pm 5 \%$ at 0.125 amp D.C. Freq: $0.3-26 \mathrm{mc}$. Impregnate per method 4.

TABLE 7-43. WINDING DATA (Cont'd)

DESIG- NATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO		REMARKS
L-1313	NL-982571-1	(20)	Single winding, four layers, bank wound, unshielded; texolite \#1422 form.	No. 26E CSC	113 feet to fill space indicated in diagram	6		"	RF coil: Inductance: $0.45 \mathrm{mh}+10 \%-5 \%$ at 300 ma . $\mathrm{Q}: 35 \mathrm{~min}$. at 0.79 mc . Freq: $\mathbf{0 . 8 - 2}$ mc. Impregnate per method 3.
L-1314	NL-982758-1	(21)	Single winding, single layer, helix; unshielded; ceramic form Ohmite type Z-7.	No. 32 bare copper wire	192	4.6			RF coil: Inductance: $85 \mu \mathrm{~h}+20-0^{\circ} \mu \mathrm{h}$ at 0.5 $\mathrm{mc}, 1.0 \mathrm{amp} . \mathrm{Q}: 100 \mathrm{~min}$. at 2.5 mc . Freq: 2.0 mc . Impregnate per method 4 .
L-1315.	NL-982757-1	(22)	Single winding, single layer, helix; unshiel ded; ceramic form Ohmite type Z-14.	\#33E	130	3.08			RF coil: Inductance: $44.0 \mu \mathrm{~h}$ at $0.6 \mathrm{amp} . \mathrm{Q}$: 80.0 min . at 4.0 mc . Freq: $\mathbf{1 1 . 2 6 ~ m c . ~ I m - ~}$ pregnate per method 4.
L-1316	NL-983952-1	(22)	Single winding, single layer, close wound; unshielded; ceramic form Ohmite type Z-14.	No. 28E B \& S	90				RF coil: Inductance: $26.0 \mu \mathrm{~h} \pm 5 \%$ at 2.5 mc , 1.2 amp . $\mathrm{Q}: 85 \mathrm{~min}$. at 5 mc . Freq: $11-26$ mc Impregnate per method 3.
L-1317	NL-982110-3	(23)	Single winding, single layer; unshielded; threaded ceramic form.	3/16 in. O.D. by 0.032 in. wall, silver plated, $1 / 2$ HD copper tubing	$71 / 2$				RF coil : Inductance: $1.7 \mu \mathrm{~h}$.
L-1318	NL-982109-3	(24)	Single winding, single layer; unshielded; threaded ceramic form.	$1 / 8 \mathrm{in}$. O.D. by 0.032 in. wall, silver plated, $1 / 2$ HD copper tubing	11				RF coil : Inductance: $3.2 \mu \mathrm{~h}$.
L-1319	NL-982108-3	(25)	Single winding, single layer; unshielded; threaded ceramic form.	No. 14 silver clad copper wire	17		.		RF coil : Inductance: $8 \boldsymbol{\mu}$ h.
L-1320	NL-982107-3	(25)	Single winding, single layer; unshielded; threaded ceramic form.	No. 18 silver clad copper wire	43				RF coil : Inductance: $44 \mu \mathrm{~h}$.
L-1323	NL-982114-3	(26)	Single winding, single layer; unshielded; threaded ceramic form.	3/16 in. by 0.032 in. wall, silver plated, $1 / 2$ HD copper tubing	41/2, adj. tap 5/8 turns from finish				RF coil: Inductance: $0.85 \mu \mathrm{~h}$.
L-1324	NL-982113-3	(27)	Single winding, single layer; unshielded; threaded ceramic form.	$1 / 8$ in. by 0.032 in. wall silver plated, $1 / 2$ HD copper tubing	61/2, adj. tap $11 / 4$ turns from finish	,			RF coil : Inductance : $1.6 \mu \mathrm{~h}$.

TABLE 7-43. WINDING DATA (Cont'd)

DESIGNATION SYMBOL	FTL DWG NUMBER	$\begin{array}{\|c\|} \hline \text { DIA- } \\ \text { GRAM } \end{array}$	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { (Ohms) } \end{gathered}$	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-c } \\ & \text { VOLTS } \end{aligned}$	REMARKS
L-1325	NL-982112-3	(28)	Single winding, single layer; unshielded; threaded ceramic form.	No. 14 silver clad copper wire	11 tapped at $1,1 \frac{1}{4}$, $11 / 2$ turns from start				RF coil: Inductance: $7.4 \mu \mathrm{~h}$.
L-1327	NL-982111-3	(28)	Single winding, single layer; unshielded; threaded ceramic form.	No. 18 silver clad copper wire	27 tapped at $31 / 8,4$ and $41 / 8$ turns from start				RF coil : Inductance: $24 \mu \mathrm{~h}$.
L-1329	$\begin{aligned} & \text { NL-981966- } \\ & 2-4 \end{aligned}$	(29)	Single winding, single layer, unshielded; phenolic form.	No. 20 single Formex	56 tapped at 6 turns from start				RF coil: Inductance: $52 \mu \mathrm{~h}$ at 2.5 mc . Q : 125.0 min. Impregnate per method 3.
L-1331	$\begin{array}{\|l} \text { NL-981966- } \\ 2-3 \end{array}$	(30)	Single winding, single layer, unshielded; phenolic form.	No. 26 single Formex	130 tapped at 10 turns from start				RF coil: Inductance: $245 \mu \mathrm{~h}$ at 790 kc . Q: 110.0 min . Impregnate per method 3.
L-1332	Same as L-1306								
L-1333	NL-982572-1	(31)	Single winding, four pies, tapered; universal wound; unshielded, ceramic form, JW Miller \#4551.	No. 28 CSC	720	10			RF coil: Inductance: 4.0 mh at 0.6 amp . Q : 20 min . at 0.15 mc . Freq: 0.3 to 0.8 mc . Impregnate per method 4.
L-1334	NL-981865-1	(32)	One pie, CW, single, universal wound, unshielded; ceramic form (NS-3-W-02-08) per JAN-I-8.	No. $10 / 41 \mathrm{E}$ Litz SSC	70 approx. (See "Remarks")				RF coil: An inductance of $90 \mu \mathrm{~h} \pm 5$ percent is required. Q: 50 min at 790 kc . The number of turns is decided by the total inductance. Impregnate per method 2.
L-1335	Same as L-1301								
L-1336	Same as L-1334								
L-1337	$\begin{array}{\|l} \text { NL-980705- } \\ 2-5 \end{array}$	(17)	Single winding, single layer, close wound; unshielded; ceramic form Millen \#69046.	No. 26E	35				RF coil: Inductance: $10 \mu \mathrm{~h} w /$ slug withdrawn. Q: 75.0 min . at 2.5 mc ; Impregnate per method 3.
L-1338	$\begin{array}{\|l} \text { NL-980705- } \\ 2-6 \end{array}$	(17)	Single winding, single rayer, close wound; unshielded; ceramic form Millen \#69046.	No. 20E	16				RF coil: Inductance: $2.25 \mu \mathrm{~h} \mathbf{w} /$ slug withdrawn. Q: 100.0 min . at 7.9 mc . Impregnate per method 3.

TABLE 7-43. WINDING DATA (Cont'd)

DESIG NATION SYMBOL	fTL DWg NUMBER	$\begin{array}{\|l\|} \text { DIA- } \\ \text { GRAM* } \end{array}$	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \text { D-C } \\ & \text { RESISTANCE } \\ & \text { (Ohms) } \end{aligned}$	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
L-1339	$\begin{aligned} & \text { NL-981966- } \\ & 2-2 \end{aligned}$	(29)	Single winding, single layer; unshielded; phenolic form.	No. 20 single Formex	56				RF coil: Inductance: $52 \mu \mathrm{~h} . \mathrm{Q}: 125.0 \mathrm{~min}$. at 2.5 mc ; impregnate per method 3.
L-1340	Same as L-1339								
L-1341	$\underset{2-1}{\text { NL-981966 }}$	(30)	Single winding, single layer, unshielded; phenolic form.	No. 26 single Formex	130				RF coil : Inductance: $245 \mu \mathrm{~h}$. Q: 110.0 min . at 790 kc ; impregnate per method 3.
L-1342	Same as L-1341								
L-1343	NL-980624-1	(5)	Single winding, multilayer.	\#30E	3571	200		Insulated for 3000 volts inst.	Reactor, filter choke; Inductance: 10 hy at 150 ma . Power level: 12 W . Frequency: 100 to 5000 cps . Load impedance: $\mathbf{7 0 0 0}$ ohms. To operate at sea level. Hermetically sealed.
L-1344	Same as L-1311								
L-1345	NL-901613-1	(33)	Single winding, single layer, air core.	\# 16 soft, bare, tinned copper wire	4				RF coil : Inductance: $0.1 \mu \mathrm{~h}$.
T-1302	NL-980605-1	(34)	3 windings. Primary (1-2) Secondary \#1 (3-4) Secondary \#2 (5-7)	$\begin{aligned} & \text { \#19F } \\ & \# 12 \mathrm{~F} \\ & \# 10 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 284 \\ & 14 \\ & 11 \mathrm{ct} \mathrm{at} \\ & 51 / 2 \end{aligned}$	$\begin{aligned} & 1.3 \\ & \text { Low } \\ & \text { Low } \end{aligned}$		$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \mathrm{~V} \end{aligned}$	Power transformer, step-down: Primary: 110 V rms $\pm 10 \%, 60 \mathrm{cps} \pm 5 \%$ Sec. $\# 1: 6.3 \mathrm{~V}$ at 6.5 amp . Sec \#2: 5.0 V at 14.5 amps , term. 6 is ct. Electrostatic shield between primary and secondary windings. Hermetically sealed.
L-1501	NL-980881-1	(5)	Single winding, single layer.	POWER SUPPLY PP-1096/SRT					
				\#24	1100	25		6400	Reactor: Swinging choke. Inductance: 8 hy to 2 hy at 600 to 10 ma DC. Frequency: 300 cps. Hermetically sealed.
T-1501	NL-980883-1	(36)	Primary \# 1 (1-2) Primary \#2 (3-4) Secondary \#4 (5-6) - Secondary \#3 (7-8) Secondary \#2 (9-10) Secondary \#1 (11-12)	$\begin{aligned} & \# 26 \mathrm{~F} \\ & \# 26 \mathrm{~F} \\ & \# 12 \mathrm{~F} \\ & \# 12 \mathrm{~F} \\ & \# 12 \mathrm{~F} \\ & \# 8 \mathrm{~F} \end{aligned}$	425 425 5 5 5 5	$\begin{gathered} 11.8 \\ 12.7 \\ \text { Low } \end{gathered}$		Primary 1500 V Other windings 5200 V	Filament transformer: 440 volt operation, 50/60 cyc: Primary, connect terminals 2 and 3. 220 volt operation: Primary, connect terminal 1 to 3 and connect terminal 2 to 4. Secondary No. 4 (5-6) : 2.5 volts, 5 amp . Secondary No. 3 (7-8) : 2.5 volts, 5 amp. Secondary No. 2 (9-10) : 2.5 volts, 5 amp . Secondary No. 1 (11-12): 2.5 volts, 15 amp. Electrostatic shield between primary and secondary windings. Hermetically sealed.

[^8]TABLE 7-43. WINDING DATA (Cont'd)

DESIG- nation SYMBOL	FTL DWG NUMBER	$\begin{array}{\|c\|} \text { DIA- } \\ \text { GRAM * } \end{array}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
T-1502	NL-980880-1	(37)	Phase 1, 2, 3 : Primary \#1 Primary \#2 Secondary	$\# 20 \mathrm{~F}$ \#20F \#25F	177 tapped at 33,66 177 1490	1.2 1.2 42		$\begin{aligned} & 1500 \\ & 1500 \\ & 7000 \end{aligned}$	Three phase plate transformer: Primary: 220 V or 440 V rms, 3 phase, 3 wire delta, $50-60 \mathrm{cps}$; Pri. \#1: 220 V. Pri. \#2: 220 V. To operate from 220 V connect the 2 coils of each phase in parallel; for 440 V connect the 2 coils of each phase in series. Secondary: 1835 V rms at 518 VA per phase or 2260 V rms at 425 VA per phase; pri. \& sec. values same for all 3 phases. Regulation: 5\%. Electrostatic shield between pri. \& sec. windings. Open core.
T-1601	NL-980976-1	(38)	Two windings: Primary P1-P2 Secondary 0-8K	RADIO MODULATOR MD-230/SRT				$\begin{aligned} & 7500 \\ & 7500 \end{aligned}$	High level modulator: Primary (P1-P2): 22,000 ohms w/130 ma balanced. Secondary: $\mathbf{8 , 0 0 0}$ ohms $\mathbf{w} / 340 \mathrm{ma}$. Taps at 6,000 and 7,000 ohms. 355 watts, unbalanced. Frequency response: 100 cps to $4.5 \mathrm{kc} \pm 1$ db with specified load. Distortion: 2\% max. Output 355 watts unbalanced, Hermetically sealed.
				$\begin{aligned} & \text { \#28E } \\ & \# 28 \mathrm{E} \end{aligned}$	$\begin{aligned} & 5200, \text { ct at } \\ & 2600 \\ & 1880, \\ & \text { tapped at } \\ & 1577,1300 \end{aligned}$	$\begin{gathered} 315 \\ 96 \end{gathered}$	275:1		
T-1602	NL-980873-1	(39)	4 windings: Primary \#1 (1-2) Primary \#2 (3-4) Secondary \#1 (5-7) Secondary \#2 (8-10)	$\begin{aligned} & \# 29 \mathrm{~F} \\ & \# 29 \mathrm{~F} \\ & \# 32 \mathrm{~F} \\ & \# 10 \mathrm{~F} \end{aligned}$	$\begin{array}{\|l} 710 \\ 710 \\ 274, \text { ct at } \\ 137 \\ 17, \text { ct at } \\ 81 / 2 \end{array}$	$\begin{gathered} 28 \\ 32 \\ 27 \\ \text { Low } \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \\ & 1500 \\ & \\ & 1500 \end{aligned}$	Filament transformer: Primaries: 220 V or $440 \mathrm{~V}, 60$ cycles, single phase. For 220 volts operation: Join terminals 1 to 3 and terminals 2 to 4. For 440-volt operation: Join terminals 2 to 3 . Secondary (5-7): 82 volts, at 2.5 VA, ct. Secondary (8-10): 5 volts at 13 amp , ct. Electrostatic shield between primary and secondary windings. Hermetically sealed.
				RADIO FREQUEN	NCY OSCILLAT	OR O-275/SR			
L-2001	$\begin{aligned} & \text { NL-960140- } \\ & 14-1 \end{aligned}$	(40)	Two pies, one winding, universal, untapped; shielded; plastic form.	No. 38EF	420 per pie	34			RF coil: Inductance: $1700 \mu \mathrm{~h}$ at 1000 cps without slug, 3.65 to $7.1 \mathrm{mh} \mathrm{w} /$ slug tuning. Impregnate per method 1 , steps 1,2 , 4, 4.
L-2002	$\begin{aligned} & \text { NL-960090- } \\ & 14-19 \end{aligned}$	(41)	Single universal winding; one pie. Unshielded bakelite form Cam. bridge Thermionic \#ES-184.	No. 38 EF	540	34		-	RF coil: Inductance: $1340 \mu \mathrm{~h}$ at 0.25 mc with out slug, 1700 to $2400 \mu \mathrm{~h} w /$ slug tuning; min. Q: 20. Impregnate per method 1, steps $1,2,4,4$.
L-2051A	NL-960085-3	(42)	Single winding, six layer, bank wound; max. coil $\lg 11 / 16$ in.; unshielded; ceramic form.	No. 5/36 EF2 Litz	170 tapped at 29,119	$\begin{aligned} & \hline \pm 10 \% \\ & \text { O-C, } 3.45 \\ & \text { O-K, } 0.57 \\ & \text { K-G, } 1.85 \\ & \text { G-C, } 0.95 \end{aligned}$			RF coil: Inductance: $432.5 \mu \mathrm{~h} \pm 1 \%$ when mtd in Z-2051. $457.5 \pm 1 \%$ in air at 100 kc. Impregnate per method 1, \|steps 1, 2, 6, 3, 3, 3.

DESIGNATION SYMBOL	FTL DWG NUMBER	$\underset{\text { GRAM. }}{\text { DIA. }}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
L-2051B	NL-960187-2	(43)	Single winding, unshielded H.L. Crowley Crolite 29 ceramic form.	No. 23R	24-42 (See Remarks)				RF coil: Each coil must be chosen to make its accompanying impedance ($\mathrm{Z}-2051$) resonate at $100 \mathrm{kc} \pm 0.005 \%$. The capacity will vary from $735 \mu \mu \mathrm{f}$ (24 turns) to $891 \mu \mu \mathrm{f}$ 42 turns). Impregnate per method 1, steps 1, 2, 3, 3.
L-2052	NL-960086-2	(44)	Single winding, single layer, unshielded ceramic form. H.L. Crowley Crolite \#29.	No. 23R	23				RF coil: Inductance: $3.95 \mu \mathrm{~h}$ (in air) without slug; 4.2 to $5.4 \mu \mathrm{~h}$ with slug tuning. Q : 115 at 7.9 mc . Impregnate per method 1 , steps $1,2,3,3$.
L-2053	Same as L-2052								
L-2054	Same as L-2052								
L-2055	Same as L-2052								
L-2056	Same as L-2052					*			
L-2057	Same as L-2052								
L-2058	Same as L-2052								
L-2059	Same as L-2052								
L-2060	Same as L-2052								
L-2061	$\begin{aligned} & \text { NL-960120- } \\ & 2-4 \end{aligned}$	(45)	Single winding, single layer, unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 22 EF2	13				RF coil: Inductance: $0.62 \mu \mathrm{~h}$ at 25 mc in air without slug; $0.67 \mu \mathrm{~h}$ to $1.2 \mu \mathrm{~h}$ with slug tuning. Impregnate per method 1 , steps 1 , 2, 4, 4, 5.
L-2062	$\begin{aligned} & \text { NL-960120- } \\ & 2-3 \end{aligned}$	(45)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 22 EF2	121/2				RF coil: Inductance: $0.62 \mu \mathrm{~h}$ at 25 mc in air without slug; $0.67 \mu \mathrm{~h}$ to $1.2 \mu \mathrm{~h}$ with slug tuning. Impregnate per method 1 , steps 1 , 2, 4, 4, 5.
L-2063	Same as L-2061								
L-2064	Same as L-2062								
L-2065	Same as L-2061								
L-2066	Same as L--2062								
L-2067	Same as L-2061								
L-2068	Same as L-2062								
L-2069	Same as L-2061								

* For diagrams (43) through (45) see pages 7-158 and 7-159.

TABLE 7-43. WINDING DATA (Cont'd)

DESIGNATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$	WINDING	WIre SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPED. ANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$. REMARKS
L-2207	$\begin{array}{\|l} \text { NL-960090-- } \\ 14-15 \end{array}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 5/41 EF2 Litz	88	2.1			RF coil: Inductance: $49 \mu \mathrm{~h}$ at 1.25 mc without slug. $52 \mu \mathrm{~h}$ to $83 \mu \mathrm{~h}$ with slug tuning. Min. Q : 45. Impregnate per method 1 , steps 1, 2, 4, 4.
L-2208	Same as L-2207								
L-2209	$\begin{array}{\|l} \text { NL-960090- } \\ 14-18 \end{array}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 34 EF2	76	1.8			RF coil: Inductance: $35 \mu \mathrm{~h}$ at 2.5 mc without slug. $38 \mu \mathrm{~h}$ to $66 \mu \mathrm{~h} w /$ slug tuning. Min. Q: 15. Impregnate per method 1 , steps 1 , 2, 4, 4.
L-2210	Same as L-2209			.					
L-2211	$\begin{aligned} & \text { NL-960090- } \\ & 14-14 \end{aligned}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 5/41 EF2 Litz	69	1.6			RF coil : Inductance: $29 \mu \mathrm{~h}$ at 2.5 mc without slug. $32 \mu \mathrm{~h}$ to $53 \mu \mathrm{~h} w /$ slug tuning. Min. Q : 40. Impregnate per method 1 , steps 1 , 2, 4, 4.
L-2212	Same as L-2211								
L-2215	Same as L-2201								
L-2216	Same as L-2201								
L-2301	NL-961903-1	(50)	Single winding, close wound on powdered iron form notched (Stackpole type ICS).	No. 28E	36	0.141			RF coil: Inductance: $10 \mu \mathrm{~h} \pm 10 \%$; Q: 50 minimum. Impregnate per method 1 , steps 1, 2, 3, 3, 5.
L-2302	$\left\lvert\, \begin{aligned} & \text { NL-960147- } \\ & 1-2 \end{aligned}\right.$	(51)	Single universal winding; one pie; unshielded; phenolic form, Cambridge Thermionic \#LPB-3-120F.	No. 38 EF	191	7.5		,	RF coil: Inductance: $120 \mu \mathrm{~h} \pm 5 \%$ at 1000 cps in air.
L-2303	Same as L-2302								
L-2326	Same as L-2302								
L-2327	$\begin{array}{\|l} \text { NL-960090- } \\ 14-17 \end{array}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 38 EF2	36	1.7			RF coil: Inductance: $7.4 \mu \mathrm{~h}$ at 5 mc without slug. $8.0 \mu \mathrm{~h}$ to $15.6 \mu \mathrm{~h}$ with slug tuning. Min. $\mathrm{Q}: 40$. Impregnate per method 1 , steps $1,2,4,4$.
L-2328	Same as L-2327								

TABLE 7-43. WINDING DATA (Cont'd)

DESIGNATION SYMBOL	FTL DWG NUMBER	\| DIA-	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPED- ANCE RATIO	HIPOT A-C VOLTS	REMARKS
L-2329	$\begin{aligned} & \text { NL-960090- } \\ & 14-20 \end{aligned}$	(52)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 38 EF	36	1.6			RF coil: Inductance: $5.8 \mu \mathrm{~h}$ at 5.0 mc without slug. 6.1 to $11.5 \mu \mathrm{~h}$ with slug tuning. Min. $Q: 50-60$. Impregnate per method 1 , steps 1, 2, 4, 4.
L-2330	Same as L-2329								
L-2331	$\begin{aligned} & \mathrm{NL}-960090- \\ & 14-22 \end{aligned}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 38 EF2	27	1.25			RF coil: Inductance: $4.3 \mu \mathrm{~h}$ at 5.0 mc without slug. $4.5 \mu \mathrm{~h}$ to $8.6 \mu \mathrm{~h}$ with slug tuning. Min. $Q: 40$. Impregnate per method 1 , steps $1,2,4,4$.
L-2332	Same as L-2331				-				
L-2333	$\begin{aligned} & \text { NL-960090- } \\ & 14-21 \end{aligned}$	(49)	Single, universal winding; one pie; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 38 EF2	22	1.0			RF coil: Inductance: $3.1 \mu \mathrm{~h}$ at 5.0 mc without slug. $3.3 \mu \mathrm{k}$ to $6.0 \mu \mathrm{~h}$ with slug tuning. Min. Q: 35. Impregnate per method 1, steps $1,2,4,4$.
L-2334	Same as L-2333								
L-2335	Same as L-2333\|								
L-2336	$\left\lvert\, \begin{aligned} & \text { NL-960147- } \\ & 1-1 \end{aligned}\right.$	(51)	Single, universal winding; one pie; unshielded; phenolic form, Cambridge 'Thermionic \#LPB-3-63F.	No. 38 EF	138	5.5		.	RF coil: Inductance: $63 \mu \mathrm{~h} \pm 5 \%$ at 1000 cps in air.
L-2337	Same as L-2336								
L-2338	$\begin{aligned} & \text { NL-960140- } \\ & 14-32 \end{aligned}$	(53)	Single winding, single layer; shielded; plastic form.	No. 32 EF2	10		.		RF coil: Inductance: $1.19 \mu \mathrm{~h}$ at 12.5 mc without slug. Min. Q : 75. Impregnate per method 1 , steps $1,2,4,4$.
L-2339	$\begin{aligned} & \text { NL-960140- } \\ & 14-33 \end{aligned}$	(53)	Single winding, single layer, shielded; plastic form.	No. 32 EF2	10				RF coil: Inductance: $1.19 \mu \mathrm{~h}$ at 12.5 mc without slug. Min. Q: 75. Impregnate per method 1 , steps $1,2,4,4$.
L-2340	Same as L-2302								
L-2426	$\begin{aligned} & \mathrm{NL}-960090- \\ & 14-1 \end{aligned}$	(54)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 30 EF2	8				RF coil: Inductance: $0.53 \mu \mathrm{~h}$ at 12.5 mc without slug. $0.56 \mu \mathrm{~h}$ to $0.95 \mu \mathrm{~h}$ with slug tuning. Min. Q : $\mathbf{5 0 - 5 5}$. Impregnate per method 1 , steps $1,2,4,4$.
L-2427	$\begin{aligned} & \text { NL-960090- } \\ & 14-5 \end{aligned}$	(55)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 28 EF2	7	.			RF coil: Inductance: $0.40 \mu \mathrm{~h}$ at 12.5 mc without slug. $0.45 \mu \mathrm{~h}$ to $0.70 \mu \mathrm{~h}$ with slug tuning. Min Q : 40-55. Impregnate per method 1 , steps $1,2,4,4$.

[^9]| DESIGNATION SYMBOL | FIL DWG NUMBER | $\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$ | WINDING | WIRE SIIE | TURNS | $\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { (Ohms) } \\ \hline \end{gathered}$ | IMPEDANCE RATIO | HIPOT A-C VOLTS | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L-2428 | $\begin{aligned} & \text { NL-960090- } \\ & 14-3 \end{aligned}$ | (55) | Single winding; single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184. | No. 22 EF2 | 5 | | | | RF coil: Inductance: $0.21 \mu \mathrm{~h}$ at 25 mc without slug. $0.23 \mu \mathrm{~h}$ to $0.34 \mu \mathrm{~h}$ with slug tuning. Min Q : 60-70. Impregnate per method 1 , steps $1,2,4,4$. |
| L-2429 | $\begin{aligned} & \text { NL-960090- } \\ & 14-4 \end{aligned}$ | (55) | Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184. | No. 22 EF2 | 4 | | | | RF coil: Inductance: $0.16 \mu \mathrm{~h}$ at 25 mc without slug. $0.17 \mu \mathrm{~h}$ to $0.25 \mu \mathrm{~h}$ with slug tuning. Min. Q : 50-65. Impregnate per method 1 , steps $1,2,4,4$. |
| L-2430 | Same as L-2302 | | | | | | | | |
| L-2431 | Same as L-2426 | | | | | | | | |
| L-2432 | Same as L-2427 | | | | | | | | |
| L-2433 | Same as L-2428 | | | . | | | | | |
| L-2434 | Same as L-2429 | | | | | | | | |
| L-2435 | Same as L-2302 | | | | | | | | |
| L-2436 | Same as L-2426 | | | | | | | | |
| L-2437 | Same as L-2427 | | | | | | | | |
| L-2438 | Same as L-2428 | | | | | | | | |
| L-2439 | Same as L-2429 | | | | | | | | |
| L-2440 | Same as L-2302 | | | | | | | | |
| L-2441 | Same as L-2426 | | | | | | | | |
| L-2442 | Same as L-2427 | | | | | | | | |
| L-2443 | Same as L-2428 | | | | | | | | |
| L-2444 | Same as L-2429 | | | | | | | | |
| L-2445 | Same as L-2302 | | | | | | | | |
| L-2446 | Same as L-2302 | | | | | | | | |
| L-2526 | $\begin{aligned} & \text { NL-960090- } \\ & 14-12 \end{aligned}$ | (49) | Single, universal winding; one pie; unshielded; bakelite form, Cam. bridge Thermionic \#ES-184. | No. 38 EF2 | 22 | 1.0 | | | RF coil: Inductance: $3.1 \mu \mathrm{~h}$ at 5.0 mc without slug. $3.3 \mu \mathrm{~h}$ to $6.0 \mu \mathrm{~h}$ with slug, tuning. Min. Q: 35. One term. grounded. Impregnate per method 1 , steps $1,2,4,4$. |
| L-2527 | $\begin{aligned} & \text { NL-960090- } \\ & 14-6 \end{aligned}$ | (54) | Single winding, single layer, unshielded; bakelite form, Cambridge Thermionic \#ES-184. | No. 38 EF | 17 | | | | RF coil: Inductance: $2.1 \mu \mathrm{~h}$ at 7.9 mc without slug. $2.4 \mu \mathrm{~h}$ to $4.2 \mu \mathrm{~h}$ with slug tuning. Min. Q: 45-50. Impregnate per method 1, steps $1,2,4,4$. |

D	DESIG- NATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { (Ohms) } \end{gathered}$	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$	REMARKS
	L-2528	$\begin{array}{\|l} \text { NL-960090- } \\ 14-8 \end{array}$	(54)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 32 EF	12				RF coil: Inductance: $0.93 \mu \mathrm{~h}$ at 7.9 mc without slug. $1.0 \mu \mathrm{~h}$ to $1.9 \mu \mathrm{~h}$ with slug tuning. Min. Q : 45. Impregnate per method 1 , steps $1,2,4,4$.
	L-2529	$\begin{aligned} & \text { NL-960090- } \\ & 14-9 \end{aligned}$	(54)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 32 EF2	10				RF coil: Inductance: $0.75 \mu \mathrm{~h}$ at 12.5 mc without slug. $0.80 \mu \mathrm{~h}$ to $1.40 \mu \mathrm{~h}$ with slug tuning. Min. Q : 60-65. Impregnate per method 1 , steps $1,2,4,4$.
	L-2530	Same as L-2426								
	L-2531	Same as L-2426								
	L-2532	Same as L-2426								
	L-2533	Same as L-2426								
	L-2534	Same as L-2427								
	L-2535	Same as L-2427								
	L-2536	$\begin{aligned} & \text { NL-960090- } \\ & 14-2 \end{aligned}$	(56)	Single winding, single layer; unshielded; bakelite form, Cambridge Thermionic \#ES-184.	No. 22 EF2	7				RF coil: Inductance: $0.31 \mu \mathrm{~h}$ at 25 mc without slug. $0.33 \mu \mathrm{~h}$ to $0.55 \mu \mathrm{~h}$ with slug tuning. Min. Q : 70-75. Impregnate per method 1 , steps $1,2,4,4$.
	L-2537	Same as L-2526								
	L-2538	Same as L-2527								
	L-2539	Same as L-2528								
	L-2540	Same as L-2529								
	L-2541	Same as L-2426								
	L-2542	Same as L-2426								
	L-2543	Same as L-2426								
	L-2544	Same as L-2426								
	L-2545	Same as L-2427								
	L-2546	Same as L-2427								
	L-2547	Same as L-2536								
	L-2548	Same as L-2526								
	L-2549	Same as L-2527								
	L-2550	Same as L-2528								

* For diagrams (54) and (56) see page 7-159.

TABLE 7－43．WINDING DATA（Cont＇d）

DESIG－ NATION SYMBOL	FTL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM } \end{aligned}$	WINDING	WIRE SIZE	TURNS	DC RESISTANCE （Ohms）	IMPED． ANCE RATIO		REMARKS
L－2551	Same as L－2529								
L－2552	Same as L－2426								
L－2553	Same as L－2426								
L－2554	Same as L－2426								
L－2555	Same as L－2426								
L－2556	Same as L－2427								
L－2557	Same as L－2427								
L－2558	Same as L－2536								
L－2559	Same as L－2526								
L－2560	Same as L－2527								
L－2561	Same as L－2528								
L－2562	Same as L－2529								
L－2563	Same as L－2426｜								
L－2564	Same as L－2426								
L－2565	Same as L－2426								
L－2566	Same as L－2426｜								
L－2567	Same as L－2427｜								
L－2568	Same as L－2427								
L－2569	Same as L－2536｜								
L－2570	Same as L－2526								
L－2571	Same as L－2527								
L－2572	Same as L－2528								
L－2573	Same as L－2529								
L－2574	Same as L－2529								
L－2575	Same as L－2426｜								
L－2576	Same as L－2426							．	
L－2577	Same as L－2426								
L－2578	Same as L－2427								
L－2579	Same as L－2427								．

IVNIDİO

DESIGNATION SYMBOL	FL DWG NUMBER	$\left.\begin{gathered} \text { DIA. } \\ \text { GRAM* } \end{gathered} \right\rvert\,$	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D-C } \\ \text { RESISTANCE } \\ \text { (Ohms) } \\ \hline \end{gathered}$	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
L-2828	Same as L-2528								
L-2829	Same as L-2529								
L-2830	Same as L-2529								
L-2831	Same as L-2426								
L-2832	Same as L-2426								
L-2833	Same as L-2426								
L-2834	Same as L-2427								
L-2835	Same as L-2427								
L-2836	Same as L-2536								
L-2837	Same as L-2528								
L-2838	Same as L-2528								
L-2839	Same as L-2529								
L-2840	Same as L-2529								
L-2841	Same as L-2426								
L-2842	Same as L-2426								
L-2843	Same as L-2426								
L-2844	Same as L-2427								
L-2845	Same as L-2658								
L-2846	Same as L-2658								
T-2051	$\begin{aligned} & \text { NL-960140- } \\ & 14-5 \end{aligned}$	(57)	Two windings, 2 pies, universal wound; shielded; plastic form.	No. 38 EF2	420 each, Pri. and Sec.	38 each Pri. and Sec.			RF transformer: can has no core. Inductance: Pri. and Sec. each $2170 \mu h$ at 1000 cps. Min. Q: 50. Impregnate per method 1 , steps 1, 2, 4, 4.
T-2126	$\begin{aligned} & \text { NL-960140- } \\ & 14-8 \end{aligned}$	(57)	Two windings, 2 pies, universal wound; shielded; plastic form.	No. 38 EF2	420 each, Pri. and Sec.	38 each, Pri. and Sec.		.	RF transformer: Same as T-2051 except for mounting.
T-2201	NL-960048-1	(13)	Two windings. Primary (1-2) Secondary (3-4)	Pri: 40F Sec: 37E	Pri: 448 Sec: 896	Pri: 10,000 Sec: 44,000	10:44	$\begin{aligned} & 2000 \mathrm{~V} . \\ & \text { Pri. } \\ & \text { and } \\ & \text { Sec. } \end{aligned}$	Pulse transformer: repetition freq: 10,000 cps. Pulse width: 10-20 cps. Pri.: 0.5 hy at 3 V, 1000 cps. Peak signal voltage: Pri.: 110 V neg, 10 V pos; Sec.: 225 V positive. Average current in primary: 5 ma DC. Leading edge of pulse $4 \mu \mathrm{sec}$. max. for a 225 V. pulse. Hermetically sealed.

TABLE 7-43. WINDING DATA (Cont'd)

DESIGNATION SYMBOL	FIL DWG NUMBER	$\begin{aligned} & \text { DIA- } \\ & \text { GRAM* } \end{aligned}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$	REMARKS
T-2202	$\begin{aligned} & \text { NL-960140- } \\ & 14-16 \end{aligned}$	(58)	Two windings, universal wound, two pies, coils touch each other; shielded; plastic form.	No. 34 EF2	160 each, Primary and Secondary	5.1	1:1		RF transformer: Inductance: Primary and Secondary each $230 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. $Q: 25$ at 0.79 mc . Impregnate per method 1, steps 1, 2, 4, 4.
T-2203	$\begin{aligned} & \text { NL-960140- } \\ & 14-19 \end{aligned}$	(59)	Two windings, single layer; shielded; plastic form.	No. 32 EF2	19 each Primary and Secondary		1:1		RF transformer: Inductance: Primary and Secondary each $2.8 \mu \mathrm{~h}$ at 7.9 mc without slug and can. Min. Q: 80. Impregnate per method 1, steps 1, 2, 4, 4.
T-2204	Same as T-2203								
T-2205	Same as T-2203								
T-2326	$\begin{aligned} & \text { NL-960140- } \\ & 14-27 \end{aligned}$	(60)	Two windings, universal, two pies, coils touch each other; shielded; plastic form.	No. 7/41 EF2, Litz	$\begin{aligned} & 38 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	0.79	1:1		RF transformer: Inductance: Pri. \& Sec., each $16 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 45 at 2.5 mc . Impregnate per method 1, steps 1, 2, 4, 4.
T-2916	UTC 89564-A Dwg \# SH-5722	(13)	Two windings: Primary (1-2) Secondary (3-4)	$\begin{aligned} & \# 42 \mathrm{~F} \\ & \# 44 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 3750 \\ & 7500 \end{aligned}$	$\begin{array}{r} 730 \\ 3300 \end{array}$	1:4	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	AF transformer: Primary: impedance 15,000 ohms, 4 ma. Secondary: impedance 60,000 ohms. Freq range: 40 to $15,000 \mathrm{cps} \pm 2$ db ; max level 0 db .
T-2920	NL-980604-1	(61)	Two windings: Primary (1-2) Secondary (3-4)	$\begin{aligned} & \text { \#26F } \\ & \# 19 F \end{aligned}$	$\begin{aligned} & 399 \\ & 46 \end{aligned}$	$\begin{gathered} 5.8 \\ \text { Low } \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	Filament transformer: Pri: $60 \mathrm{~V} \pm 10 \%$, 50/60 cps. Sec.: 6.3 V at 2.4 amp . Regulation : 9% max. Electrostatic shield between primary and secondary windings. Hermetically sealed.
T-2921	NL-980603-1	(6)	Two windings: Primary (1-2) Secondary (3-5)	$\begin{aligned} & \# 24 F \\ & \# 12 F \end{aligned}$	$\begin{aligned} & 378 \\ & 23, \text { ct at } \\ & 111 / 2 \end{aligned}$	$\begin{gathered} 5.0 \\ \text { Low } \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	Filament transformer: Pri.: 110 V rms $\pm 10 \%$, $50 / 60 \mathrm{cps}$. Sec.: 6.3 V at 9.5 amp , ct. (4) Regulation: 10% max. Electrostatic shield between primary and secondary windings. Hermetically sealed.
T-2922	NL-960398-1	(61)	Two windings: Primary (1-2) Secondary (3-4)	$\begin{aligned} & \text { \#32F } \\ & \# 20 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 1030 \\ & 69 \end{aligned}$	$\begin{gathered} 52 \\ \text { Low } \end{gathered}$		$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	Filament transformer: Pri.: 110 V rms $\pm 10 \%$; 50/60 cps. Sec.: 6.3 V . at 2.0 amp . Regulation: 18% max. Electrostatic shield between primary and secondary windings. Hermetically sealed.
Z-2031	$\begin{array}{\|l} \text { NL-960140- } \\ 14-2 \end{array}$	(62)	Two windings, universal, 2 pies; shielded; plastic form.	\#7/41 EF2 Litz	$\begin{aligned} & 78 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	1.86	1:1		RF transformer: Inductance: Pri. \& Sec. each $75 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 1.25 mc . Includes capacitors C-2034 \& C-2035. Peak freq. 500 kc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2032	$\begin{aligned} & \text { NL-960140- } \\ & 14-3 \end{aligned}$	(62)	Two windings, universal, 2 pies; shielded; plastic form.	\#7/41 EF2 Litz	$\begin{aligned} & 78 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	1.86	1:1		RF transformer: Inductance: Pri. \& Sec. each $75 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 1.25 mc . Includes capacitors C-2039 \& C-2040. Peak freq. 1 mc . Impregnate per method 1 , steps $1,2,4,4$.

DESIG- NATION SYMBOL	FIL DWG NUMBER	$\begin{gathered} \text { DIA- } \\ \text { GRAM } \end{gathered}$	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \text { D-C } \\ & \text { RESISTANCE } \\ & \text { (Ohms) } \end{aligned}$	IMPEDANCE RATIO	$\begin{aligned} & \text { HIPOT } \\ & \text { A-c } \\ & \text { vOITS } \end{aligned}$	REMARKS
Z-2033	$\begin{aligned} & \text { NL-960140- } \\ & 14-4 \end{aligned}$	(62)	Two windings, universal, 2 pies; shielded; plastic form.	\#7/41 EF2 Litz	$\begin{aligned} & 78 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	1.86	1:1		RF transformer: Inductance: Pri. \& Sec. each $75 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 1.25 mc . Includes capacitor C-2041. Peak freq. 1 mc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2101	$\begin{aligned} & \text { NL-960140- } \\ & 14-6 \end{aligned}$	(63)	Two windings, single layer; shielded; plastic form.	\#34 EF2	41 each Pri. \& Sec.		1:1		RF transformer: Inductance: Pri. \& Sec. each $8.4 \mu \mathrm{~h}$ at 3.95 mc without slug and can. Min. Q: 75. Includes capacitors C-2103 \& C-2104. Peak freq. 4 mc . Impregnate per method 1, steps 1, 2, 4, 4.
Z-2102	$\begin{aligned} & \text { NL-960140-- } \\ & 14-7 \end{aligned}$	(59)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 19 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $2.8 \mu \mathrm{~h}$ at 7.9 mc without slug and can. Min. Q: 80. Includes capacitor C-2107. Peak freq. 8 mc . Impregnate per method 1 , steps 1, 2, $4,4$.
Z-2151	$\begin{aligned} & \text { NL-960140- } \\ & 14-9 \end{aligned}$	(62)	Two windings, universal, 2 pies; shielded; plastic form.	\#7/41 EF2 Litz	$\begin{aligned} & 78 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	1.86	1:1		RF transformer: Inductance: Pri. \& Sec. each $75 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 1.25 mc . Includes capacitors C-2155 \& C-2156. Peak freq. 1.1 mc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2152	$\begin{aligned} & \text { NL-960140- } \\ & 14-10 \end{aligned}$		Same as Z-2151, incl C-2157 \& C-2158						
Z-2153	$\begin{aligned} & \text { NL-960140- } \\ & 14-11 \end{aligned}$	(62)	Two windings, universal, 2 pies; shielded; plastic form.	\#7/41 EF2 Litz	$\begin{aligned} & 78 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$	1.86	1:1		RF transformer: Inductance: Pri. \& Sec. each $75 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 1.25 mc . Includes capacitors C-2159 \& C-2160. Peak freq. 1.2 mc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2154	$\begin{aligned} & \mathrm{NL}-960140- \\ & 14-12 \end{aligned}$		$\begin{aligned} & \text { Same as Z-2153; incl } \\ & \text { C-2161 \& C-2162 } \end{aligned}$						
Z-2155	$\begin{aligned} & \text { NL-960140- } \\ & 14-13 \end{aligned}$	(64)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 19 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $2.8 \mu \mathrm{~h}$ at 7.9 mc without slug and can. Min. Q: 80. Includes capacitors C-2165 \& C-2166. Peak freq. 9.2 mc . Impregnate per method 1, steps 1, 2, 4, 4.
Z-2156	$\begin{aligned} & \text { NL-960140- } \\ & 14-14 \end{aligned}$	(64)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 19 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $2.8 \mu \mathrm{~h}$ at 7.9 mc without slug and can. Min. Q: 80. Includes capacitor C-2176. Peak freq. 9.2 mc . Impregnate per method 1, steps $1,2,4,4$.
Z-2157	$\begin{aligned} & \text { NL-960140 } \\ & 14-15 \end{aligned}$		$\begin{aligned} & \text { Same as Z-2153; incl } \\ & \text { C-2179 \& C-2180 } \end{aligned}$						

* For diagrams (59), (62), (63), and (64) see page 7-160.

DESIGNATION SYMBOL	FIL DWG NUMBER	$\begin{gathered} \text { DIA- } \\ \text { GRAM } \end{gathered}$	WINDING	WIRE SIZE	TURNS	D-C RESISTANCE (Ohms)	IMPEDANCE RATIO	HIPOT A-C VOLTS	REMARKS
Z-2201	$\left\lvert\, \begin{aligned} & \text { NL-960140- } \\ & 14-17 \end{aligned}\right.$	(65)	Single winding, universal, one pie; shielded; plastic form.	\#7/41 EF2 Litz	250	6.5			RF coil: Inductance: $410 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 70 at 0.79 mc . Includes capacitor C-2218. Impregnate per method 1 , steps $1,2,4,4$.
Z-2202	$\begin{aligned} & \text { NL-960140- } \\ & 14-18 \end{aligned}$	(66)	Single winding, universal, one pie; shielded; plastic form.	\#7/41 EF2 Litz	56	1.3			RF coil: Inductance: $36 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 50 at 2.5 mc . Includes capacitor C-2230. Impregnate per method 1, steps 1, 2, 4,4.
Z-2203	$\begin{aligned} & \text { NL-960140- } \\ & 14-22 \end{aligned}$		$\begin{aligned} & \text { Same as } \\ & \mathbf{C - 2 2 3 4} \end{aligned}$						
Z-2301	$\begin{aligned} & \text { NL-960140- } \\ & 14-23 \end{aligned}$	(63)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 33 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance; Pri. \& Sec. each $5.5 \mu \mathrm{~h}$ at 3.95 mc without slug and can. Min. Q: 70. Includes capacitors C-2303 \& C-2304. Peak freq. 5 mc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2302	$\left\lvert\, \begin{aligned} & \text { NL-960110- } \\ & 14-24 \end{aligned}\right.$	(63)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 33 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $5.5 \mu \mathrm{~h}$ at 3.95 mc without slug and can. Min. Q: 70. Includes capacitor C-2307. Peak freq. 5 mc . Impregnate per method 1 , steps 1, 2, $4,4$.
Z-2303	$\begin{array}{\|l} \text { NL-960140- } \\ 14-25 \end{array}$	(67)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 10 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $1.19 \mu \mathrm{~h}$ at 12.5 mc without slug and can. Min. Q: 75. Includes capacitors C-2317 \& C-2318. Peak freq. 15 mc . Impregnate per method 1 , steps $1,2,4,4$.
Z-2304	$\begin{aligned} & \text { NL-960140- } \\ & 14-26 \end{aligned}$	(67)	Two windings, single layer; shielded; plastic form.	\#32 EF2	$\begin{aligned} & 10 \text { each } \\ & \text { Pri. \& Sec. } \end{aligned}$		1:1		RF transformer: Inductance: Pri. \& Sec. each $1.19 \mu \mathrm{~h}$ at 12.5 mc without slug and can. Min. Q: 75. Includes capacitor C-2321. Peak freq. 15 mc . Impregnate per method 1, steps 1, 2, 4, 4.
Z-2326	$\begin{aligned} & \hline \begin{array}{l} \text { NL-960140- } \\ 14-28 \end{array} \end{aligned}$	(66)	Single winding, universal, one pie; shielded plastic form.	\#7/41 EF2 Litz	51	1.24			RF coil: Inductance: $31 \mu \mathrm{~h}$ at 1000 cps without slug and can. Min. Q: 50 at 2.5 mc . Includes capacitor $\mathbf{C}-2340$. Impregnate per method 1 , steps $1,2,4,4$.
Z-2327	$\begin{aligned} & \hline \text { NL-960140- } \\ & 14-29 \end{aligned}$	(68)	Two windings, single layer; shielded; plastic form.	\#32 EF2	61/2 each Pri. \& Sec.		1:1		RF transformer: Inductance: Pri. \& Sec. each $0.66 \mu \mathrm{~h}$ at 12.5 mc without slug and can. Min. Q: 55. Includes capacitors C-2383 \& C-2384. Impregnate per method 1 , steps 1, 2, 4, 4.
Z-2328	$\begin{aligned} & \text { NL-960140- } \\ & 14-30 \end{aligned}$		Same as Z-2327; incl C-2387 \& C-2388						

[^10]| DESIG-
 NATION
 SYMBOL | FTL DWG NUMBER | $\begin{gathered} \text { DIA- } \\ \text { GRAM } \end{gathered}$ | WINDING | WIRE SIZE | TURNS | D-C RESISTANCE (Ohms) | IMPEDANCE RATIO | $\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$ | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Z-2329 | $\begin{aligned} & \text { NL-960140- } \\ & 14-31 \end{aligned}$ | (68) | Two windings, single layer; shielded; plastic form. | \#32 EF2 | 61/2 each Pri. \& Sec. | | 1:1 | | RF transformer: Inductance: Pri. \& Sec. each $0.66 \mu \mathrm{~h}$ at 12.5 mc without slug and can. Min. Q: 55. Includes capacitor C-2391. Impregnate per method 1 , steps $1,2,4,4$. |
| | | | | POWER | SUPPLY PP-1094 | 094/SRT | | | |
| L-3001 | NL-980692-1 | (5) | Single winding, single layer. | \#28F | 2300 | 85 | | 1850 | Reactor: swinging choke; inductance 3 to 12 hy at 230 to 23 ma . Freq: 100-120 cps. Hermetically sealed. |
| L-3002 | NL-980680-1 | (5) | Single winding, single layer. | \#29F | 3000 | 135 | | 1700 | Reactor: swinging choke; inductance 10 to 40 hy at 125 to 12.5 ma . Freq: $100-120 \mathrm{cps}$. Hermetically sealed. |
| L-3003 | NL-980679-1 | (69) | Terms. 1-2
 (Input section)
 Terms. 2-3
 (Filter section) | $\begin{aligned} & \text { \#28F } \\ & \text { \#28F } \end{aligned}$ | $\begin{aligned} & 1730 \\ & 1190 \end{aligned}$ | 60 35 | | $\begin{aligned} & 1850^{`} \\ & 1850 \end{aligned}$ | Reactor: Dual filter choke; input section; inductance 2 to 10 hy at 230 to 23 ma DC, Filter section; 2 hy at 230 ma DC, Freq: $100-120$ cps. Hermetically sealed. |
| T-3001 | NL-982565-1 | (70) | Primary (1-2)
 Sec. \#1 (3-7)
 Sec. \#2 (8-9)
 Sec. \#3 (10-11)
 Sec. \#4 (12-13)
 Sec. \#5 (14-18)
 Sec. \#6 (19-21) | $\# 14 \mathrm{E}$ $\# 14 \mathrm{E}$
 \#14E
 \#18E
 \#18E
 \#18E
 \#25E
 \#30E | 144
 88 tapped
 at 77, 44,
 11
 7
 7
 1150
 tapped at
 1078, 575,
 72
 800 ct at
 400 | $\begin{gathered} \text { Low } \\ \text { Low } \\ \text { Low } \\ \text { Low } \\ \text { Low } \\ 33 \end{gathered}$ | | $\begin{aligned} & 1500 \\ & 1500 \\ & \\ & 1500 \\ & 1500 \\ & 1500 \\ & 2700 \\ & \\ & \\ & 1500 \end{aligned}$ | Power transformer: Pri: $110 \mathrm{~V} \pm 10 \%$, 50/60 cps. Sec. \#1 (3-7): $64 \mathrm{~V}, 3 \mathrm{amp}$ (4-6) 48 V , ct. Sec. \#2: $5.0 \mathrm{~V}, 2 \mathrm{amp}$. Sec. \#3: $5.0 \mathrm{~V}, 2 \mathrm{amp}$. Sec. \#4: $5.0 \mathrm{~V}, 2 \mathrm{amp}$. Sec. \#5 (14-18): $840 \mathrm{~V}, 230 \mathrm{ma}(15-17): 740$ V, ct. Sec. \#6: 590 V, 125 ma, ct. Electrostatic shield between primary \& secondary windings. Hermetically sealed. |
| | | | | TRANSMITEE | ER COUPLER CuI | CU-402/SRT | | - | |
| T-3201 | $\begin{aligned} & \text { NL-901601- } \\ & 14 \end{aligned}$ | (71) | Single winding, multilayer wound; toroidal core 0.001 in. thk Allegheny Mumetal hydrogen annealed after winding. | 0.021 in. thk silver pl copper sheet, tapered $1 / 2$ in. to $3 / 16$ in. Term G is at $1 / 2$ in. wd end | $\begin{aligned} & 7 \text { tapped at } \\ & 6,5,3 \end{aligned}$ | | | | Impedance transformer: Impedance at 1.0 mc (G-1) $370+\mathrm{j} 100$ ohms, $(1-2) 170+\mathrm{j}$ 45 ohms, (2-3) $42+$ j 10 ohms, (3-4) $42+$ j 10 ohms. Turns insulated by electrical tape. |

[^11]| DESIGNATION SYMBOL | FLI DWG NUMBER | GIA- | WINDING | WIRE SIZE | TURNS | D-C RESISTANCE (Ohms) | IMPED. ANCE RATIO | $\begin{aligned} & \text { HIPOT } \\ & \text { A-C } \\ & \text { VOLTS } \end{aligned}$ | REMARKS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T-3202 | NL-961094-1 | (72) | Single winding, single layer, close toroidal wound; core 0.001 in. thk Allegheny Mumetal hydrogen annealed after winding; shielded. | \#24 Triple coated formex wire | 10 ctat 5 | | | | RF transformer: Impedance: $330+$ j 240 ohms at $1.0 \mathrm{mc} 800+\mathrm{j} 330$ ohms at 3.0 mc. Turns insulated by fiberglass tape. Grounding strap is ct. |
| | | | | ANTENNA | COUPLER | -372/SRT | | | |
| L-3501 | p/o L-3503 | (73) | Single winding, bank wound on silicone bonded fiberglas form. | \#85-86 Litz wire, double silk enamel | 79 | | | | RF coil: $1 \mathrm{mh} \pm 10 \%$ at 250 kc . |
| L-3502 | p/o L-3503 | (74) | Single winding, bank wound on silicone bonded fiberglas form. | \#85-36 Litz wire, double silk enamel | 58 | | | | RF coil: $700 \mathrm{mh} \pm 10 \%$ at 790 kc . |
| L-3503 | D-2011139 | (75) | Two windings, bank wound on silicone bonded fiberglas form. | | | | | | RF transformer: consists of L-3501 and L-3502. |

TABLE 7-43. WINDING DATA

(1)		$\begin{gathered} 10 \\ \frac{3}{3} \\| \\ \frac{1}{=} \\ 3 \end{gathered}$		
(6)	(7)	(8)	(9)	
PRI sec (11)	(12)	(13)	(14)	

旁				coll	$\frac{5_{0}^{8}}{5}$
				$\underbrace{(8)}_{0}$	(20)
-		(ex	皿iplill	$\sqrt[6]{9}$	

(

TABLE 7-43. WINDING DATA

(59)	(60)	(61)	(62)	(63)
(64)	(65)	(66)	(67)	(68)
 (69)				(73)
(74)		(75)		

COAXIAL INTERCONNECTIONS
FOR RFO UNIT 14, (Z-290I)

$\begin{aligned} & \text { CABLE } \\ & \text { TAG NO. } \end{aligned}$	cable TYPE	FROM		то	
		UNIT	CONN	UNIT	CONN
10	RG-58/U	1	J-2003	2	J-203t
lb	"	1	J-2002	5	J-2153
1 c	"	1	J-2004	6	J-2201
Id	$"$	1	J-2001	8	J-2326
1 e	"	1	J-2005	*	J-2931
2a	"	2	J-2034	4	J-2101
2b	"	2	J-2032	5	J-2152
2 c	"	2	J-2033	6	J-2204
2 d	"	2	J-2035	7	J-2301
2 e	*	2	J-2036	10	J-2526
30	*	3	J-2052	5	J-2155
3b	"	3	J-2051	*	J-2933
40	"	4	J-2102.	5	J-2151
214	"	*	S-2917 (C)	*	$\begin{aligned} & C R-2920 \\ & E-2930 \end{aligned}$
5 a	"	5	J-2156	6	J-2205
60	"	6	J-2203	*	J-2930
6 b	"	6	J-2206	8	J-2329
6 c	"	6	J-2202	*	J-2929
70	"	7	J-2303	8	J-2328
7 b	"	7	J-2302	9	J-2427
8 a	${ }^{\prime \prime}$	8	J-2327	*	J-2932
8b	"	8	J-2330	9	J-2426
9	"	9	J-2428	*	S-2996 B-7
90	"	114	J-2626	*	S-2996 B-9
9 b	${ }^{\prime}$	11 B	J-2652	*	S-2996 B-11
9 c	"	11 C	J-2802	*	S-29968-1
10	"	10	J-2527	*	S-2996 C-7
10a	${ }^{\prime \prime}$	11 A	J-2627	*	S-2996 c-9
10 b	"	11 B	J-2651	*	s-2996 c-11
10 c	RG-58/U	11 C	J-2801	*	S-2996 C-1
11	RG-62/U	*	J-2928	*	S-2996 D-7
110	"	11 A	J-2628	*	S-2996 D-9
11 b	"	118	J-2653	*	S-2996 D-11
116	RG.62/U	110	J-2803	*	S-2996 D-1
12 a	RG-58/U	12	J-2126-T	5	J-2154
236	RG-58/U	*	J-2931	*	$\begin{aligned} & C-2927 \\ & E-2930 \end{aligned}$
237	RG-58/u	12	J-2126-U	*	J-2934

* denotes frame mounted connector

Figure 7-122. RFO, Unit 14 (Z-2901), Wiring Diagram (Sheet 2 of 2)

Figure 7-124. RFO, Unif 1 (Z-2001), Wiring Diagram

WIRE NO.	DESCRIPTION
1	NO. 20 AWG SOLIO SINGLE CONDUCTOR, 1000 V INSULATION
2	NO. 20 AWG STRANDED SINGLE CONDUCTOR, 1000 V INSULATION
3	NO. 22 AWG STRANDED SINGLE CONDUCTOR, 1000 V INSULATION
4	NO. 20 AWG STRANDED SINGLE CONDUCTOR, MOOV INSIULATION (SHIELDED)
ALL OTHERS	NO. 20 AWG SOLID COPPER TINNED (BUS) WIRE

Figure 7-1 26. RFO, Unit 2 (Z-2034), Wiring Diagram

Figure 7-127. RFO, Unit 3 (Z-2053), Schematic Diagram

шоибр! बи!

Figure 7-129. RFO, Unit 4 (Z-2103), Schematic Diagram

WIRE NO.	DESCRIPTION
1	N. 20 AWG STRANDED SINGLE CONDUCTOR, 1000
2	NO. 22 INSULATION
AWG STRANDED SINGLE CONOUCTOR,	
ALL	NO.20 AWULATION
OTHERS SOLID COPPER, TINNED (BUS)	
WIRE.	

Figure 7-130. RFO, Unit 4 (Z-2103), Wiring Diagram
CORRECTIVE
MAINTENANCE

WIRE NO.	DESCRIPTION
1	NO. 20 AWG STRANDED SINGLE CONDUCTOR 1000V INSULATION (SHIELDED AS INDICATED)
2	NO. 22 AWG STRANDED SINGLE CONDUCTOR 1000V INSULATION
ALL OTHERS	NO. 20 AWG SOLID COPPER TINNED (BUS) WIRE

Figure 7-132. RFO, Unit 5 (Z-2158), Wiring Diagram

Figure 7-136. RFO, Unit 7 (Z-2305), Wiring Diagram

CORRECTIVE

WIRE NO	DESCRIPTION
1	NO. 18 AWG STRANDED SINGLE CONDUCTOR, 1000 V . INSULATION.
2	NO. 20 AWG STRANDED SINGLE CONDUCTOR, IOOO V. INSULATION.
3	NO. 22 AWG STRANDED SINGLE CONDUCTOR, 1000 V . INSULATION.
ALL	NO. 20 AWG SOLID COPPER, TINNED (BUS) WIRE.

Figure 7-144. RFO, Unit 11A (Z-2626), Wiring Diagram
CORRECTIVE
MAINTENANCE

Figure 7-150. RFO, Unit 12 (Z-2127), Wiring Diagram

Figure 7-151. Control-Indicafor C-1352/SRT, Schematic Diagram

$\underset{\substack{\text { corenctive } \\ \text { mentivances }}}{ }$

Figure 7-154. Radio Modulator MD-229/SRT (URM), Wiring Diagram (Sheet 2 of 3)

Wmen 0 O.	ossapriou
60,6	
	NO. 20 AWG STRANDED CONDUCTOR, 5000V IN
	No, Ane sremed smit
13, 178	

Figure 7-166. Mounting MT-1423/SRT, Schematic Diagram

mee no.	oscraprow
	2os
	Noibe
${ }^{24,285}$	
225, 23, 232	NO. 16 AWG STRANDED SINGLE CONDUCTOR, 5000 V INSULATION (SHELDED)
244,245	NO. 20 AWG STRANDED SINGLE CONDUCTOR, 2500 V INSULATION (SHIELDED)
${ }^{235}$	Teflow coax es-v/4,
25, 25 , 25, 25, 25, 290	

 5

$\sim_{\text {support assembly }}^{\text {thru cable }}$

wire no.	description
301, 319	NO. 16 AWG STRANDED SINGLE CONDUCTOR, 2500 V INSULATION
$\begin{aligned} & 302,303,306,307 \\ & 351 \end{aligned}$	NO. 18 AWG STRANDED SINGLE CONDUCTOR, 250OV INSULATION
304, 305	no. 20 awg stranded single CONOUCTOR, 2500V INSULATION
308, 311, 312	No. 22 awg stranded single CONDUCTOR, 2500 V INSULATION
316, 317, 318	No. 16 awg stranded single conouctor, 5000V INSULATION (SHIELDED)
309, 310	no. 22 awg stranded single CONDUCTOR, 2500V INSULATION (SHIELDED)
352	NO. 18 AWG SOLID COPPER, tinned (bus) wire

ores
SHIELD GROUND ARE NO. 20 awg STRANDED
abeviation
$\underset{\text { CLEAR }}{\text { CLR }}$
TAN CLEA TAN
ground terminal on j-1403 and J-1404
CONNECTOR ASSEMELY.

Figure 7-170. Antenna Coupler CU-372/SRT, Schematic Diagram

Figure 7-171. Anfenna Coupler CU-372/SRT, Wiring Diagram (Sheet 2 of 2)

Figure 7-172. R-F Tuner TN-229/SRT, Schematic Diagram

Figure 7-174. Transmitter Coupler CU-402/SRT, Schematic Diagram

Figure 7-175. Transmitter Coupler CU-402/SRT, Wiring Diagram

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance

LIST OF TABLES

Table No. Title Page Table No. Title Page
8-1 Weights and Dimensions of Spare Parts Boxes 8-2
8-2 List of Major Units 8-3
8-3 Table of Replaceable Parts 8-4
Radio Frequency Tuner TN-229/SRT 8-5
Control-Indicator C-1352 /SRT 8-14
Power Supply PP-1095/SRT 8-18
Electrical Equipment Cabinet CY-1571/SRT, CY-1571A 8-25
Mounting MT-1423/SRT 8-33
Radio Modulator MD-229/SRT 8-35
Radio Frequency Amplifier AM-1008/SRT 8-59
Electrical Equipment Cabinet
CY-1573/SRT, CY-1573A/SRT 8-92
Electrical Equipment Cabinet CY-1572 /SRT 8-94
Electrical Equipment Cabinet
CY-1572A/SRT 8-95
8-97
Power Supply PP-1096/SRT 8-97
Radio Modulator MD-230/SRT 8-104
Radio Frequency Oscillator O-275/SRT 8-110
Power Supply PP-1094/SRT 8-240
Transmitter Coupler CU-402 /SRT 8-249
Installation Kit MK-230/SRT-14 8-252
Installation Kit MK-231/SRT-14A 8-252
Installation Kit MK-232 /SRT-15 8-255
Installation Kit MK-233/SRT-15A 8-255
Installation Kit MK-234/SRT-16 8-259
Installation Kit MK-235/SRT-16A 8-259
Antenna Coupler CU-372 /SRT 8-262
Main Test Cable Accessories 8-270
8-4 Maintenance Parts Kit 8-273
8-5 Cross Reference Parts List 8-274
8-6 Color Codes and Miscellaneous Data 8-277
8-7 List of Manufacturers 8-278

TABLE 8-1. WEIGHTS AND DIMENSIONS OF SPARE PARTS BOXES
EQUIPMENT SPARES

SHIPPING BOX DENTIFICATION	OVERALL DIMENSIONS			VOLUME	WEIGHT	QUANTITY		
				$\begin{array}{\|c} \text { SRT- } \\ 14 \end{array}$		$\begin{array}{\|c\|c} \text { SRT- } \\ 15 \end{array}$	$\underset{16}{\text { SRT- }}$	
	HEIGHT	WIDTH	DEPTH					
ANTENNA COUPLER CU-372/SRT	8	7	7	. 2	2.5	1	1	2
MODULATOR-POWER SUPPLY GROUP OA-685/SRT	22	18	13	2.9	106	-	1	1
MOUNTING MT-1423/SRT	13	11	11	. 9	9	1	2	2
RADIO FREQUENCY TUNER TN-229/SRT	17	12	11	1.3	24	1	1	2
TRANSFORMER, POWER, STEP--UP: T-1502	19	15	14	2. 3	88	-	1	1
*TRANSMITTER GROUP OA-684/SRT	29	23	20	7.7	130	1	1	2

NOTE:

1. Shipping weights and dimensions are exactly the same as above.
2. *Equipment spares for the Control Indicator C-1352/SRT and Transmitter Coupler CU-402/SRT are included in this box.

TABLE 8-2. LIST OF MAJOR UNITS

SYMBOL GROUP	QUANTITY				NAME OF MAJOR UNIT	$\begin{gathered} \text { AN } \\ \text { NOMENCLATURE } \end{gathered}$	STANDARD NAVY STOCK NUMBER
	$\begin{array}{\|c} \hline \text { AN/SRT- } \\ 14 \end{array}$	-15	-16	$\underset{\text { QTY }}{\text { GROUP }}$			
301-399	1	1	2		RADIO FREQUENCY TUNER	TN-229/SRT	F16-T-98018-8760
$\begin{gathered} 2001-2999, \\ 401-499 \\ 501-599 \\ 601-699 \\ 1001-1299 \\ 1301-1399 \\ 3001-3099 \\ 3201-3299 \end{gathered}$	1	1	2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	*TRANSMITTER GROUP, consisting of: RADIO FREQUENCY OSCILLATOR -CONTROL INDICATOR POWER SUPPLY *ELECTRICAL EQUIPMENT CABINET RADIO MODULATOR RADIO FREQUENCY AMPLIFIER POWER SUPPLY TRANSMITTER COUPLER	OA-684/SRT O-275/SRT C-1352/SRT PP-1095/SRT CY-1571/SRT MD-229/SRT AM-1008/SRT PP-1094/SRT CU-402/SRT	$\begin{array}{r} \text { F16-T-42951-1008 } \\ \text { \#F16-T-42951-1009 } \\ \text { F16-O-53250-7644 } \\ \text { F16-C-89543-8001 } \\ \text { F16-P-67929-2998 } \\ \text { F16-C-10654-6564 } \\ \text { \#F16-C-10654-6563 } \\ \text { F16-M-42274-2541 } \\ \text { F16-A-33460-1003 } \\ \text { F16-P-68408-2451 } \\ \text { F16-C-92096-1C08 } \end{array}$
701-799	1	2	2		MOUNTING	MT-1423/SRT	F16-R-400984-104
$\begin{aligned} & 1401-1499 \\ & 1401-1499 \\ & 1501-1599 \\ & 1601-1699 \end{aligned}$		1	1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	*MODULATOR-POWER SUPPLY GROUP, consisting of: *ELECTRICAL EQUIPMENT CABINET *ELECTRICAL EQUIPMENT CABINET POWER SUPPLY RADIO MODULATOR	OA-685/SRT CY-1573/SRT CY-1572/SRT PP-1096/SRT MD-230/SRT	$\begin{array}{r} \text { F16-M-43561-1008 } \\ \text { \#F16-M-43561-1009 } \\ \text { F16-C-10642-8234 } \\ \text { \#F16-C-10642-8233 } \\ \text { F16-C-10642-8235 } \\ \text { \#F16-C-1042-8236 } \\ \text { F16-P-67998-7157 } \\ \text { F16-M-42280-3102 } \end{array}$
3501-3599	1	1	2		ANTENNA COUPLER	CU-372/SRT	F16-C-91733-5588
3301-3399	1				ACCESSORIES INSTALLATION KIT INSTALLATION KIT	$\begin{aligned} & \text { MK-230/SRT-14 } \\ & \text { MK-231/SRT-14A } \end{aligned}$	$\begin{array}{r} \text { N16-M-384502-0436 } \\ \text { \#N16-M-384502-0437 } \end{array}$
3301-3399		1			InSTALLATION KIT InSTALLATION KIT	$\begin{aligned} & \text { MK-232/SRT-15 } \\ & \text { MK-233/SRT-15A } \end{aligned}$	$\begin{array}{r} \text { N16-M-384502-0438 } \\ \text { \#N16-M-384502-0439 } \end{array}$
3301-3399			1		INSTALLATION KIT INSTALLATION KIT	$\begin{aligned} & \text { MK-234/SRT-16 } \\ & \text { MK-235/SRT-16A } \end{aligned}$	$\begin{gathered} \text { N16-M-384502-0440 } \\ \text { \#N16-M-384502-0441 } \end{gathered}$
3601-3699					MAIN TEST CABLE ACCESSORIES	-	

NOTE:

1. *Indicates available in non-magnetic version with existing nomenclature. Modified to show suffix ' A ' e.g.OA-684A/SRT, CY-1572A/SRT for non-magnetic version.
2. \#Indicates non-magnetic stocknumber.
3. The main test cable accessories are part of each installation kit. For clarity and accessibility they are grouped individually.
4. Control Indicator C-1352/SRT is part of Radio Frequency Oscillator O-275/SRT.

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description ,	Locating Function
-	F16-T-42951-1008	TRANSMITTER GROUP, OA-684/SRT: c/o RADIO FREQUENCY AMPLIFIER AM-1008/SRT, RADIO MODULATOR MD-229/SRT, RADIO FREQUENCY OSCILLATOR 0-275/SRT, POWER SUPPLY PP-1094/SRT, POWER SUPPLY PP-1095/SRT, ELECTRICAL EQUIPMENT CABINET CY-1571/SRT, TRANSMTTTER COUPLER CU-402/SRT; mtg blocks under the cabinet are expendable, for permanent installation blocks are removed and the transmitter group is mtd on MOUNTING MT-1423/SRT; all components are contained in drawers on roller rails inside the cabinet except for TRANSMITTER COUPLER CU-402/SRT; same as TRANSMITTER GROUP OA-684A/SRT except for cabinet; $o /$ a dimen 26-17/32 in. d, 16-1/8 in. wd, 55-3/8 in. h; p/o AN/SRT-14, 15, 16; w/o spapes; CBTL part/dwg NL-982844-2-2	
	F16-T-42951-1009	TRANSMITTER GROUP, OA-684A/SRT: c/o RADIO FREQUENCY AMPLIFIER AM-1008/SRT, RADIO MODULATOR MD-229/SRT, RADIO FREQUENCY OSCILLATOR 0-275/SRT, POWER SUPPLY PP-1094/SRT, POWER SUPPLY PP-1095/SRT, ELECTRICAL EQUIPMENT CABINET CY-1571A/SRT, TRANSMITTER COUPLER CU-402/SRT; mtg blocks under the cabinet are expendable, for permanent installation blocks are removed and the transmitter group is mtd on MOUNTING MT-1423/SRT; all components are contained in drawers on roller rails inside the cabinet except for TRANSMITTER COU̇PLER CU-402/SRT; this group same as TRANSMITTER GROUP OA-684/SRT except that it has nonmagnetic cabinet; o/a dimen 26-17/32 in. d, 16-1/8 in. wd, 55-3/8 in. h; p/o AN/SRT-14A, 15A, 16A; w/o spares; CBTL part/dwg NL-982844-2-3	
	F16-M-43561-1008	MODULATOR-POWER SUPPLY GROUP, OA-685/SRT: 1, 000 ohms modulator input impedance at $1,000 \mathrm{cyc} ; 6,000$ ohms modulator output impedance at 1,000 cyc, taps at 8,000 ohms and 10,000 ohms; 320 w modulator power output; $\pm 6 \mathrm{db}$ frequency response from 170 to $4,800 \mathrm{cyc}$; output supplied from power supply $+3,000 \mathrm{v}$ DC, 0.340 amp or $+2,400 \mathrm{v}$ DC, 0.550 amp as selected; AC operating power requirements 220 v AC or 440 v AC, 60 cyc , three ph (one ph for Radio Modulator); DC operating power requirements -24 v DC; nine receptacle type term, 4 jacks, 1 bushing, 2 term strips; mitg blocks under cabinet are expendable, for permanent installation blocks are removed and the units are mtd on MOUNTING MT-1423/SRT; group c/o RADIO MODULATOR MD-230/SRT, POWER SUPPLY PP-1096/ SRT, ELECTRICAL EQUIPMENT CABINET CY-1572/SRT, ELECTRICAL EQUIPMENT CABINET CY-1573/SRT; same as MODULATOR-POWER SUPPLY GROUP OA-685A/SRT except for cabinets; all components are contained in drawers on roller rails inside the cabinets; o/a dimen 25-31/32 in. d, 16-1/8 in. wd, 18-1/4 in. h; p/o AN/SRT-15, 16; w/o spares; CBTL part/ dwg NL-982845-1-2	
	F16-M-43561-1009	MODULATOR-POWER SUPPLY GROUP, OA-685A/SRT: 1, 000 ohms modulator input impedance at $1,000 \mathrm{cyc} ; 6,000$ ohms modulator output impedance at 1,000 cyc, taps at 8,000 ohms and 10,000 ohms; 320 w modulator power output; $\pm 6 \mathrm{db}$ frequency response from 170 to $4,800 \mathrm{cyc}$; output supplièd from power supply $+3,000 \mathrm{v}$ DC, 0.340 amp or $+2,400 \mathrm{v}$ DC, 0.550 amp , as selected; AC operating power requirements 220v AC or 440 v AC, 60 cyc , three ph (one ph for Radio Modulator); DC operating power requirements -24 v DC; nine receptacle type term, 4 jacks, 1 bushing, 2 term strips; mtg blocks under cabinet are	,

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
301-399	F16-T-98018-8760	expendable, for permanent installation blocks are removed and the units are mtd on MOUNTING MT-1423/SRT; group c/o RADIO MODULATOR MD-230/SRT, POWER SUPPLY PP-1096/ SRT, ELECTRICAL EQUIPMENT CABINET CY-1572A/SRT, ELECTRICAL EQUIPMENT CABINET CY-1573A/SRT; same as MODULATOR•POWER SUPPLY GROUP OA-685/SRT except that it has non-magnetic cabinets; all components are contained in drawers on roller rails inside the cabinets; o/a dimen $25-31 / 32$ in. d, 16-1/8 in. wd, $18-1 / 4 \mathrm{in}$. h; p/o AN/SRT-15A, 16A; w/o spares; CBTL part/dwg NL-982845-1-3 TUNER, RADIO FREQUENCY, TN-229/SRT: tunes by means of inductive coupling to variable helical transmission line; frequency range .3 mc to 26 mc ; two piece drawn aluminum case; grey painted finish; 4 term, connector and cable extrusion type, located at top and bottom; o/a dimen $42 \mathrm{in} . \mathrm{lg}, 16$ in. wd, 13-1/2 in. h; mtd by means of brackets; clamp type shock mtg; pressure tight case, nominal 25 psi; w/o spares; p/o AN/SRT 14, 15, 16; CBTL part/dwg J-2010763	
A-301	N17-M-75228-6690	MOUNT, RESILIENT: round mtg; 40-60 lb load rating; 3 in . sq. by $1-1 / 2 \mathrm{in} . \mathrm{h}$ o/a; natural rubber cushion, irregular shapef $3 / 8 \mathrm{in} .-16$ coarse thd center core; mild steel case; four 0.266 in . diam holes 2-1/2 in. c to c; CAYU part 2060T6; CBTL part/dwg A-2010941-3	Shock Mount
A-302		Same as A-301	Shock Mount
A-303		Same as A-301	Shock Mount
A-304		Same as A-301	Shock Mount
B-301	N17-M-61750-1806	MOTOR, ALTERNATING CURRENT: 4 pole, squirrel cage, induction, low inertia control; 115v AC, 60 cyc, $2 \mathrm{ph}, 7 \mathrm{w}$ max output, 0.20 amps per phase at max output; locked torque $13.5 \mathrm{oz}-\mathrm{in}$; double end shaft, 1000 rpm w/load, motor can be reversed; totally enclosed; self-cooled; rated ambient temp $-55^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$, temp rise $65^{\circ} \mathrm{C}$ over $55^{\circ} \mathrm{C}$ ambient for continuous operation; straight flatted shaft one end, tapered shaft opposite end; 4-1/4 in. lg excluding shaft by 2-5/8 in. wd by $3-3 / 16 \mathrm{in}$. h o/a, 0.236 in . diam shaft, shaft extends $9 / 16$ in. on taper end and $1 / 2 \mathrm{in}$. on round end; 4 solder lug term; four 0.026 in . diam mtg holes on corners $3-1 / 4 \mathrm{in}$. diam at each end; per spec BuShips 16M14RE; CDA type part SS-FPE49-10-1; CBTL part/dwg B2010774; p/o B-304	Tuning Drive Motor
B-302	For Reference Only	FAN, CENTRIFUGAL: duplex; electric motor operated, nonportable; guarded; 3500 rpm nominal, single $\mathrm{ph}, 50 / 60 \mathrm{cps}$, 115 v AC (RMS); o/a dimen 3-11/16 in. h, 6-5/16 in. lg, $4-3 / 32 \mathrm{in}$. wd; 46 CFM (duplex) displacement at 3500 rpm ; single speed; direct drive; CCW \& CW rotation; 1-3/8 in. by . $1-11 / 32$ in. outlet (duplex) on bottom; steel, black enamel finish; panel mtg, 4 holes 0.166 in . diam on 2 in . by $1-1 / 4 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$ for each flange; dynamically balanced wheel; mfr to withstand extreme temp, shock, \& vibration; sealed ball bearings, class H insulation; CCBN Model DRFP, type KD202, Series 110AS-RA2; CBTL part/dwg C-2011027; c/o B-306, 0-319, 0-320 and impeller housing; p/o B-305	General Ventilation
B-303	N17-E-39071-3797	ELECTROMAGNETIC ACTUATOR: rotary type moving element; rotary motion produced, approx $3 / 4$ degree arc stroke with 6 lb . in. torque; 120 impulses per sec max; $115 \mathrm{v}, 60$ cyc AC	Z-301 Switch Drive

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
B-303 (cont)		operating voltage, 150 w full load input power, non-polarized, coil ungrounded; 2 flexible wire lead term, $12 \mathrm{in} . \mathrm{lg} ; \mathrm{o} / \mathrm{a}$ dimen $3-19 / 64 \mathrm{in}$. lg including $1-1 / 8 \mathrm{in}$. shaft projection, 2 in. wd, 2 in. h; four no. 8-32 thd mtg holes irregularly spaced as indicated by bosses; operates at $125^{\circ} \mathrm{C}$ ambient temp; CCDD Model AM-200 per CBTL part/dwg C-2011052; p/o S-308	
B-304	Assemble from Component Parts	SUB-ASSEMBLY: SPST; 0.20 amp per phase, 115 v AC, 2 ph ; gibsiloy and fine silver contacts; uncased mechanism; o/a dimen 6-1/4 in. lg, 3-3/32 in. h, 2-3/4 in. end; sub-assembly mounts by means of four 0.206 diam mtg holes equally spaced on 3.25 in. B. C. ; CBTL part/dwg C-2010875; c/o B-301 and S-307	Tuning Drive Motor and Governor
B-305	N17-B-21188-8824	FAN, CENTRIFUGAL: two impellers on shaft; direct drive; straight carbon steel blades; CW and CCW; welded housing, black enamel; flanged discharge outlet; electric motor, 115v AC, $50 / 60 \mathrm{cyc}, 1 \mathrm{ph}, 3500 \mathrm{rpm}$, guarded enclosure, ball bearings; o/a dimen $7 \mathrm{in} . \lg , 3-11 / 16 \mathrm{in} . \mathrm{h}, 4-1 / 32 \mathrm{in} . \mathrm{wd}$; panel mtd, 8 holes 0.166 in. diam on 2 in. by $1-1 / 4$ in. $\mathrm{mtg} / \mathrm{c}$ for each flange; motor $\mathrm{w} /$ centrifugal switch; nonsparking; CBTL part/dwg D-2010882; c/o B-302 and S-306	Blower w/Protective Switch
B-306	For Reference Only	MOTOR, ALTERNATING CURRENT: capacitor run induction motor; 115 v AC, $50 / 60 \mathrm{cps}$, single ph , 18 w full load; 3500 rpm nominal; single take-off, reversible in rotation; closed frame; ambient temp range $-28^{\circ} \mathrm{C}$ to $+120^{\circ} \mathrm{C}$ for continuous operation; shaft flatted at both ends; o/a dimen 2-7/16 in. lg excluding shaft, 2-1/2 in. h, 2-3/4 in. wd; 0.2496 in . diam shaft extends $1-1 / 16 \mathrm{in}$. from both sides of frame; 4 flexible wire lead term; 4 mtg holes equally spaced no. $8-32 \mathrm{NC}-2$ tapped $1 / 4 \mathrm{in}$. d on 1.25 in . B. C. (at both ends); CCBN Series 110AS-RA2; p/o B-302	Blower Motor
C-301	N16-C-99999-1170	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style no. 18 MBCA Ref Dwg Group 1; 470, $000 \mathrm{mmf} ;-15+25 \%$ tolerance; 600 v DCW; designed to operate between $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$; hermetically sealed cylindrical metal case, $2-1 / 8 \mathrm{in}$. $\mathrm{lg}, 3 / 4 \mathrm{in}$. diam o/a dimen excluding term; 2 glass to metal seal term located in center at each end; Astron X-250 impregnation; no internal ground connections; 2 wire leads, AWG no. 20 extending $2-5 / 8 \mathrm{in}$. from each end of body; designed specifically for operation up to and incl $125^{\circ} \mathrm{C}$ without derating; CBWO type AQF-6-47; CBTL part/dwg A-2011168	S-307 Governor Filtering
E-301	N17-T-28253-3576	INSULATOR, STANDOFF: molded, asbestos filled, melamine; 14, 000v DC breakdown voltage; bifurcated type with no. 4-40 thd brass, cad pl stud mtd in center of hex base stud, extends 7/32 in. below base; o/a dimen $5 / 8 \mathrm{in}$. h excluding mtg stud by $1 / 4 \mathrm{in}$. wd at base and $3 / 16 \mathrm{in}$. wd at top; mtg hardware c/o 1 brass, cad pl hex nut $1 / 4 \mathrm{in}$. wd with no. 4-40 thd; CCCK type 755	Tie Point
E-302	N17-C-81587-8340	CONTACT, ELECTRICAL: contact includes conduction point, 1 point, solid rivet, silver, dimen 0.245 in . diam, 0.187 in . h ; phosphor bronze, silver pl finish; o/a dimen $0.906 \mathrm{in} . \mathrm{lg}$, 0.375 in . OD; contact inserted and soft soldered on 1 end, other end slotted (6 slots); spring mtd; CBTL part/dwg A-2011100; p/o S-308	Contact, p/o S-308
E-303			Contact, p/o S-308

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-315	N17-C-85902-5376	CONTACT SET: collector ring; makes contact $\mathrm{w} /$ main coil; ring brass \& aluminum, contacts silver \& copper; c/o ring, 32 finger strip, 32 contact strip; of a dimen $9-3 / 4$ in. OD by 1.250 in. wd by $5-5 / 8 \mathrm{in}$. D ; ring, finger strip, and contact strip spot welded together; CBTL part/dwg C-2011199; p/o E-314	Contact for L-302
E-316	Shop Manufacture	CONTACT, ELECTRICAL: u/w L-302; laminated silver and beryllium copper; spring leaf type; irregular shaped; 1-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{h}, 1 / 2 \mathrm{in}$. wd, 0.010 in . thk of a dimen; 2 mtg holes 0.250 in . diam spaced 0.500 in . c to c ; CBTL part/dwg A-2011191	L-302 Sliding Contact
E-317	N17-T-24601-1453	CHAMBER, CABLE TERMINAL: single hole, straight type; o/a dimen $2-7 / 16 \mathrm{in}$. lg by $1-5 / 8 \mathrm{in}$. across flats incl hex coupling nut; cylindrical $\mathrm{w} /$ hex flange $1-1 / 2$ in. across flats; steel, 1 in. $-11-1 / 2$ N. P. thd at both ends; tapered silicone rubber bushing insert; 0.875 in. diam max cable opening; watertight; CCH type CGB397; CBTL part/dwg B-2010834	Cable Terminal for W-301
E-318		Same as E-312	Contact, p/o Shorting Sleeve
H-301	Low Failure Item	GLAND: silicone rubber; OD 24 degree taper, $3 / 4$ in. OD at large end, $1 / 2 \mathrm{in}$. diam at smaller end, $5 / 8 \mathrm{in}$. wd, $3 / 16 \mathrm{in}$. ID; CBTL part/dwg A-2010840	p/o J-303
H-302	Low Failure Item	WRENCH: c/o $1 / 4 \mathrm{in}$. hex stem, cup 13/16 in. OD and two $1 / 2$ in. lg by 0.625 in . diam pins; cold rolled steel, nickel pl; 7/8 in. \lg by $13 / 16 \mathrm{in}$. diam, o/a dimen; 0.750 diam by 90° countersunk opening in cup; $1 / 8$ in. diam hole thru cup 7/32 in. from stem end; CBTL part/dwg A-2011489	Special Wrench for Contact Button Assy
I-301	N17-G-99999-0329	GAUGE, PRESSURE, DIAL INDICATING: dial and pointer type; 0 to 30 psi ; single reading; 1-1/2 in. dial size; black pointer; brass case, black enamel finish, 1-5/8 in. OD by $1-17 / 32 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; equipment $\mathrm{mtd} ; 5 / 8 \mathrm{in} . \lg$ pipe with $1 / 8 \mathrm{in}$. pipe thd $3 / 8$ in. lg; CBTL part/dwg A2010896	Gas Pressure Indicator
J-301	N17-C-99999-1184	CONNECTOR, RECEPTACLE, ELECTRICAL: 6 size 12 contacts, 24 size 16 contacts, male, round; polarized; 3 in . sq by $1-15 / 64 \mathrm{in} . \mathrm{lg}$, o/a dimen; size 12 contacts rated at 35 amp , size 16 contacts $20 \mathrm{amp}, 200 \mathrm{v}$ DC, 150v AC (RMS); box mtg receptacle, straight type, cylindrical, steel, grey enamel-cad pl finish; vitreous insulator inserts fused to pins and shells; 2 in . -18 thd ; 4 mtg holes $9 / 32 \mathrm{in}$. diam spaced 2.375 in . c to c, panel mtg, hermetically sealed; c/o CED type GS02-32-8P001 with CBTL flange soldered to it; CBTL part/dwg A-2010843	Control Cable Connector
J-302	N17-C-99999-1185	CONNECTOR, RECEPTACLE, ELECTRICAL: 24 size 16 contacts, male, round; polarized; 2-1/2 in. sq by $1-15 / 64 \mathrm{in} . \mathrm{lg}$ o/a dimen; contacts rated $22 \mathrm{amp}, 70 \mathrm{v}$ DC, 50 v AC (RMS); box mtg receptacle, straight type, cylindrical, steel, grey enamelcad pl finish; vitreous insulator inserts fused to pins \& shell; $1-1 / 2 \mathrm{in} .-18$ thd; 4 mtg holes $9 / 32 \mathrm{in}$. diam spaced 1.875 in . c to c ; panel mtg , hermetically sealed; c/o CED type GSO2-24-28P-001 with CBTL flange soldered to it! CBTL part/dwg A-2010844	Control Cable Connector
J-303	N17-C-99999-1178	CONNECTOR, RECEPTACLE, ELECTRICAL: single contact, female, round at each end; straight type; o/a dimen $2 \mathrm{in} . \mathrm{sq}$ by $4-1 / 16 \mathrm{in} . \mathrm{lg} ; 500 \mathrm{v}$ peak rating; RF connector, 52 ohms	R. F. Input

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-303		nominal impedance, non-constant frequency impedance characteristic; cylindrical shape w / sq mtg flange, brass, cad pl; c/o P-302 and J-304 electrically connected to each other w/ brass pin insert, H-301 and coupling nut; synthetic resin dielectric insert; 4 mtg holes 0.257 in . diam w/1. $437 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; brass hex coupling nut $1-1 / 2 \mathrm{in}$. across flats; 1-1/4 in. -18 thd at J-304 and, $5 / 8$ in. -24 thd at P-302 end; weatherproof; CBTL part/dwg B-2010916	
J-304	N17-C-99999-1186	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round at each end; straight type; 2-1/2 in. lg by 2 in . sq , o/a dimen; 5 kilovolts peak rating; RF connector, 50 ohm nominal impedance, non-constant frequency impedance characteristics; cylindrical shape w / sq mtg flange; brass, cad pl, silver pl inner conductor; 4 mtg holes 0.257 in . diam spaced 1.437 in . c to $\mathrm{c} ; 1-1 / 4 \mathrm{in}-$.18 thd at both ends; panel mtg; weatherproof; type UG-287/U except for pl; CBTL part/dwg B-2010849; p/o J-303	p/o J-303
J-305	N17-C-99999-1195	CONNECTOR, FEMALE CONTACT: spring sleeve type contacts, phosphor bronze; straight type; 1-1/8 in. lg excluding screw and flat washer, $3 / 8 \mathrm{in}$. OD, o/a dimen; round body, nickel pl finish; no. 10-32 thd screw mtg; CEJ type 106-72	Termination
L-301	Shop Manufacture	COIL, RADIO FREQUENCY: 1 turn, 0.144 diam stock, copper conductor, silver clad, 1 winding, single layer wound, unshielded, 7.250 in . ID, 7.538 in . OD; 2 solder lug type term, 2 mtg contacts; CBTL part/dwg D2010915	L-302 Coupling Coil
L-302	N16-C-76678-9991	COIL, RADIO FREQUENCY: 141.875 turns of 0.064 diam copper wire, silver clad; wound on silicone bonded fiberglass coil form; 20-5/16 in. lg, 5.625 in . diam o/a; six 0.228 mtg holes counterbored $15 / 32 \mathrm{in}$. diam by $1 / 8 \mathrm{in}$. d, equally spaced 60° apart on 5.625 in . B.C.; CBTL part/dwg D-2010768	Main Tuning Coil
L-303	For Reference Only	ELECTROMAGNET: 24v DC; 3.3 amps max current rating; cold rolled steel material of core; 900 turns of wire in coil, 15. 7 ohms DC resistance; o/a dimen 1-7/8 in. diam by 0.936 in. lg excluding mtg studs; two no. 8-32 thd mtg studs $\mathrm{w} / \mathrm{hex}$ nuts located in back 180° apart and extending $5 / 8 \mathrm{in}$. from case; two no. 27 flexible wire, high temperature leads $\left(120^{\circ} \mathrm{C}\right)$ extending 10 in . from case; CBTL part/dwg A-2010642; p/o O-301	Clutch-Brake Coil
0-301	N17-C-53332-6980	CLUTCH, MAGNETIC: single friction face type; 24v DC; 3.3 amps max; 1000 rpm max speed; 2-5/8 in. OD by 7-3/4 in. lg o/a; mtd by two no. 8-32 thd studs 1.250 in . c to c; adjustable nut setting determines air gap; when L-303 in energized drive is disengaged; CBTL part/dwg C2010630; c/o L-303, O-302 thru O-308, adjustable nut, brake plate and shaft assembly	For Accurate Positioning of Main Coil Sliding Contacts
0-302	For Reference Only	SPRING: helical compression type; 0.035 diam spring steel wire, cad pl; 1-1/2 in. lg by 0.304 in . OD; 12 turns; RH turns; squared ends; CBTL part/dwg A2010639; p/o O-301	For Magnetic Clutch Shaft
0-303	$\begin{aligned} & \text { G77-B-991-15023- } \\ & 0000 \end{aligned}$	BEARING, ball: single row radial; unshielded; light duty; 0.1875 in . bore, 0.5632 in . OD, 0.217 in . wd; 6 balls; grease packed; ABEC-1 std tol; flanged; CCAE part F3; p/o O-301	For Magnetic Clutch Shaft
O-304	Low Failure Item	WORM, gear: hardened steel, polished; helical teeth; RH; 5 teeth; 32 pitch single thd, 0.438 in . pitch diam; 0.1875 in . bore with 0.500 in . straight face, $2-5 / 16 \mathrm{in}$. o/a $\lg ; 14-1 / 2^{\circ}$ pressure angle; c/o CHH no. HLTH gear and CBTL tubing assem- . bled; CBTL part/dwg A2010640; p/o O-301	p/o Magnetic Clutch Shaft

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-305 O-306	$\begin{aligned} & \text { G77-B-115-01209- } \\ & 0000 \end{aligned}$	Same as 0-303, p/o 0-301 BEARING, ball: single row radial; unshielded; light duty; 0.750 in . bore, 0.6250 in . OD, 0.3125 in . wd; 8 balls; grease packed; ABEC-1 std tol; non-filling slot type; CCAE part S8K; p/o O-301	p/o Magnetic Clutch p/o Magnetic Clutch
O-307	$\begin{aligned} & \text { G77-B-111-00810- } \\ & 0000 \end{aligned}$	BEARING, ball: single row radial; unshielded; extra small type; 0.3150 in . bore, $0.8661 \mathrm{in} . \mathrm{OD}, 0.2756 \mathrm{in} . \mathrm{wd} ; 7 \mathrm{balls} ;$ grease packed; not American Standards Association size; nonfilling slot type; CBAM part 38; p/o O-301	p/o Magnetic Clutch
O-308	Low Failure Item	GEAR, helical: hardened steel, polished; helical teeth; RH; 8 teeth; 16 diametrical pitch, 0.500 in. pitch diam; 0.635 in. OD, 0.250 in . bore, 0.500 in . wd; straight face; $14-1 / 2^{\circ}$ normal pressure angle; $3 / 32$ in. by $1 / 16$ in. keyway; CBH part H1608R; p/o O-301	p/o Magnetic Clutch
O-309	Low Failure Item	VALVE, air: charge valve for nitrogen; brass, nickel pl; incl $1 / 2 \mathrm{in} . \lg$ dome cap; 1-5/16 in. lg less cap by $7 / 16 \mathrm{in}$. hex flange; $1 / 8$ in. I. P. thd at one end; CCDC part 1468 A8	Gas Intake
O-310	Low Failure Item	SPRING: helical compression type; contact spring; . 0254 in. diam beryllium copper wire, silver $\mathrm{pl} ; 0.906 \mathrm{in} . \lg$ by 0.170 in. OD; 17 turns; RH turns; square ends; CBTL part/dwg A2010781; p/o S-308	u/w E-302
O-311		Same as O-310, p/os-308	u/w E-303
O-312		Same as O-310, p/o S-308	u/w E-304
O-313		Same as O-310, p/o S-308	u/w E-305
O-314		Same as O-303, p/o S-308	Shaft Bearing for S-308
O-315	N17-B-99999-0035	BAR, ACTUATOR, ELECTRICAL SWITCH: stainless steel; irregular shape, w/oil impregnated bronze roller, $3 / 16$ in. diam; o/a dimen, 1-3/32 in. $\mathrm{lg}, 0.915 \mathrm{in}$. $\mathrm{h}, 11 / 32 \mathrm{in}$. wd excluding mtg screws; two 0.130 in . diam mtg holes located 0.96 in. c to c ; side mtg, winterized, used with micro switch V3-1; $w /$ two no. $4-40$ by $5 / 8 \mathrm{in}$. round head machine screws, two no. 4-40 std hex nuts, two lockwashers; p/o S-308; CMU type JV-5	Actuator for S-301
O-316		Same as O-315, p/o S-308	Actuator for S-302
O-317	Low Failure Item	SPRING: helical extension type; for weight plates of S-306; 0.018 in. diam tinned music wire; 0.120 in . diam less end hooks, 0.695 in. lg; approx 16 turns; RH; parallel hook term; CBTL part/dwg A2011241	Spring for Weight Plates of Centrifugal Assembly
O-318	Low Failure Item	BALL, positioning: nylon; $1 / 4 \mathrm{in}$. round; one 0.635 in . diam hole thru center; used for positioning of contact in centrifugal switch S-306; CBTL part/dwg A2010894	For Centrifugal Assy Contact Position
O-319	Low Failure Item	IMPELLER, centrifugal: multiblade; forward curve vanes; steel, cad pl plus iridite; CW motion; o/a dimen 2 in. diam by $31 / 32$ in. wd; single inside hub, $1 / 4$ in. bore; mtd by two no. 8-32 thd by $1 / 8$ in. \lg Allen head cup point set screws; CCBN part no. 2402-04, dwg no. MC-10270; p/o B-302	p/o B-302

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-320	Low Failure Item	IMPELLER, centrifugal: multiblade; forward curve vanes; steel, cad pl plus iridite; CCW motion; o/a dimen 2 in . diam by $31 / 32 \mathrm{in}$. wd; single inside hub, $1 / 4 \mathrm{in}$. bore; mtd by two no. 8-32 thd by $1 / 8 \mathrm{in} . \lg$ Allen head cup point set screws; CCBN part no. 2402-05, dwg no. MC-10271; p/ o B-302	p/o B-302
0-321	Low Failure Item	GEAR: rack for spur gear; steel, nickel pl; drive for coil; spur teeth; 20 pitch; $21-1 / 8 \mathrm{in} . \lg$ by $3 / 8 \mathrm{in}$. wd bỳ $3 / 8 \mathrm{in}$. h o/a; straight face; no. 10-32 thd $9 / 16 \mathrm{in} . \mathrm{lg}$ at one end; 45° and 30° chamfer at approx $16 \mathrm{in} . \mathrm{lg} ; 14-1 / 2$ degree pressure angle; CBH part L-509 modified; CBTL part/dwg B2010685	Drive for Main Coil Shorting Contacts
0-322	Low Failure Item	GEAR: rack for spur gear; steel, nickel pl; drive for coil; spur teeth; 20 pitch; $21-1 / 8 \mathrm{in} . \lg$ by $3 / 8 \mathrm{in}$. wd by $3 / 8 \mathrm{in}$. h o/a; straight face; no. 10-32 in. thd $9 / 16 \mathrm{in} . \mathrm{lg}$ at one end; 30° chamfer at opposite end of thd; 14-1/2 degrees pressure angle; CBH part L-509 modified; CBTL part/dwg B2010686	Drive for Main Coil Shorting Contacts
0-323		Same as 0-308	Drives Magnetic Clutch
0-324		Same as 0-307	For Main Drive Shaft
0-325		Same as 0-307	For Main Drive Shaft
0-326		Same as 0-307	For Drive Motor Extension Shaft
0-327		Same as 0-306	For Drive Motor Extension Shaft
0-328		Same as 0-315	Actuator for S-303
0-329		Same as 0-315	Actuator for S-304
0-330	$\begin{aligned} & \text { G77-B-111-00602- } \\ & 0000 \end{aligned}$	BEARING, ball: single row radial; unshielded; extra small type; 0.2362 in . bore, 0.7480 in . OD, 0.2362 in . wd; 6 balls; grease packed; not American Standard Association size; nonfilling slot type; CBAM part 36	For Main Drive Shaft
0-331		Same as 0-330	For Main Drive Shaft
0-332		Same as 0-330	For Main Drive Shaft
0-333		Same as 0-330	For Main Drive Shaft
0-334		Same as 0-330	For Main Drive Shaft
0-335		Same as 0-330	For Main Drive Shaft
0-336		Same as 0-330	For Main Drive Shaft
O-337		Same as 0-330	For Main Drive Shaft

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-305	N17-S-70023-6851	SWITCH, THERMOSTATIC: SPDT; stainless steel case; 2-9/16 in. diam, 13/16 in. h, o/a dimen; operating temp, range $95^{\circ} \mathrm{C}$ to $110^{\circ} \mathrm{C} ; 120 \mathrm{v} \mathrm{AC}, 12 \mathrm{amp} ; 3$ screw type term located on top; mtd by flange $\mathrm{w} /$ four $5 / 32 \mathrm{in}$. diam mtg holes spaced equally on 2-3/16 in. diam; thermo snap control; CSQ type C4370-13	500 w Operation Interlock Protection
S-306	For Reference Only	SWITCH, CENTRIFUGAL: represents the switch section of B-305; c/o centrifugal assembly, O-318, SPDT switch including E-309, E-310 and E-311; approx 1-5/8 in. lg, 3-1/4 in. ho/a; three 0.166 in . mtg holes counterbored 11/32 in. diam by $3 / 32$ in. d on a 2.875 in . B. C.	500 w Operation Interlock Protection
S-307	Low Failure Item	SWITCH, CENTRIFUGAL, ELECTRICAL: SPST; gibsiloy and fine silver; $115 \mathrm{v}, 0.20 \mathrm{amp}$ per phase, $2 \mathrm{ph}, \mathrm{AC}$; principal parts consist of left and right rotor contacts, rotor plate; approx $1-1 / 2 \mathrm{in}$. diam by 7/8 in. wd o/a; 2 solder lug type terminals, located on front of switch; three 0.166 in . diam mtg holes equally spaced on 2.062 in . diam B.C.; CBTL part/dwg B2010874; p/o B-304	To Reduce Scanning Speed
S-308	Assemble from Component Parts	SWITCH SECTION ASSEMBLY, ROTARY: 4-3/8 in. lg, 4-5/8 in . wd, $5-1 / 16 \mathrm{in}$. h less cable term; four 0.312 mtg holes spaced 2-1/2 in. by 1-1/16 in. c to c; CBTL part/dwg D2011090; c/o B-303, S-301, S-302, E-302 thru E-305, O-310 thru 0-316 and TB-303	Z-301 Switch
TB-301	For Replacement Use N17-B-78038-4127	TERMINAL BOARD: molded melamine; 14 double screw type term; barrier type; 5-7/8 in. $\mathrm{lg}, 7 / 8 \mathrm{in}$. wd, $13 / 32 \mathrm{in} . \mathrm{h}$ o/a; four 0.160 in . diam mtg holes two on each end, $5-5 / 8 \mathrm{in}$. c to c on lg, 5/16 in. c to c on wd; spade type; CJC part 14-140-W-A	For Drive Assy
TB-302		Same as TB-301	For Drive Assy
TB-303	For Replacement Use N17-B-77636-3916	TERMINAL BOARD: molded phenolic compound; includes 4 double screw type term; barrier type; o/a dimen 2-1/8 in. lg , $7 / 8 \mathrm{in}$. wd, $13 / 32 \mathrm{in}$. h ; four 0.160 in . diam mtg holes, two on each end, $1-7 / 8 \mathrm{in}$. c to c on \lg by $5 / 16 \mathrm{in}$. c to c on wd ; term \& screws brass, nickel pl; CJC type 4-140-A; p/o S-308	p/o S-308
W-301	For Replacement Use N15-C-12200-775	CABLE, RADIO FREQUENCY: 52 ohms nominal impedance, 29. 5 mmf nominal capacitance per ft, 14000 v (RMS) max voltage rating; single, solid inner conductor, copper, 0.250 in. diam; polyethylene dielectric; no outer jacket or wire braid; 29/32 in. diam, 9 in. lg o/a dimen; MII type RG-19/U (modified); CBTL part/dwg A-2010836	R. F. Output
Z-301	N17-T-99999-0426	TRANSFORMER, IMPEDANCE: single winding; 7 turns; tapped at 6 turns; wound with 0.0125 in . thk soft copper strip; silver pl; tempered per FED SPEC. QQ-C-501a; turns insulated by fiberglass tape; w/o adjustable taps; 3-3/8 in. diam, 1-5/8 in. h incl term; toroidal core; core wound of 0.001 in. thk Allegheny Mumetal, hydrogen annealed after winding; clamp mtd ; three wire lead type term $\mathrm{w} /$ term lug 0.3 mc to 2 mc ; CBTL part/dwg B-2011212	Impedance Transformer
401-499	F16-C-89543-8001	CONTROL-INDICATOR, C-1352/SRT: provides remote and manual control of ANTENNA COUPLER CU-372/SRT and RADIO FREQUENCY TUNER TN-229/SRT; positioning meter MIL type MR26W100DCUAR, SWR meter CV model 1521 class 52; AC operating power requirements $110 \mathrm{v}, 60 \mathrm{cyc}$, single ph, DC operating power requirements $250 v$ regulated and $-24 v$; drawn	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
I-401	N17-L-6491-55	LAMP, INCANDESCENT: 28v, 0.035 amp ; Ref Dwg Group 7, special 952 base w/5/16 in. -32 NEF-2 thread and knurled sleeve, T-1-3/4, clear, green color plastic cap, one tungsten C-21 filament; $3 / 4 \mathrm{in}$. max o/a h; over 25 hrs rated life; any burning position; CG type 320G, dwg 165-22-327E	Tuner In
K-401	N17-R-99999-0850	RELAY, ARMATURE: 2C, MBCA Ref Dwg Group 4; DPDT, single break, $150 \mathrm{v}, 15 \mathrm{amp}$; 1 winding, 1 inductive winding, DC, 164 ohms, 24v operating voltage, 0.146 amp , operating current; 6 term for contacts, 2 term for coil; 1-15/16 in. lg, 1-5/8 in. wd, 1-1/2 in. h; mts by means of four no. 6-32 in. tapped holes $1-5 / 16 \mathrm{in}$. by $1 / 2 \mathrm{in}$. c to c ; fast operate, fast release, high temperature coil, open frame; CBTL part/dwg A-2011223; same as $K-3501$	Control Ground Antenna Coupler
M-401	N17-M-99999-0173	METER, MICROAMMETER: panel mtd; DC; marked 'SWR Balance", low to 0 to high CW inscription range; round, steel, style no. 15, MBCA Ref Dwg Group 27; flange 2.695 in. .diam, 0.38 in. thk, 2.21 in. body diam, 1.405 in . body depth from mtg surface, excluding term; 333 micro-amp current required for full scale deflection to the left; 333 micro-amp current required for full scale deflection to the right; magnetically shielded; green band on "low" side of " 0 " marking; red band on "high" side of " 0 " marking, white background; three 0.125 in. diam mtg holes on 1.22 in. radius spaced 120° apart; 2 solder lug type term; CV model 1521, class 52 ; CBTL part/dwg A-2011089	SWR Indicator
M-402	For Replacement Use N17-M-18962-6420	METER, MICROAMMETER: panel mtd; DC; marked 'POSITION", 0 to 100 microamperes, graduated in increments of 2 microamperes; round, metal case, style no. 26 Ref Dwg Group 27; 2.695 in . OD of mtg flange, 2.210 in . body diam, 1.405 in . body depth from mtg surface; o/a dimen $2.067 \mathrm{in} . \lg , 2.695 \mathrm{in}$. diam; 2. 5% of full scale max error; shielded, black scale markings on white background; self-contained; three no. 4-40 NC-2 round head black screws w/nut and lockwashers for mtg, spaced 120° apart on a 1.22 in. radius; 2 solder lug term located on back spaced 1 in . c to c; CV model 1521, sealed and ruggedized per spec MIL-M-10304, type MR26W100DCUAR; CBTL part/dwg B-2011227	Position Indicator
P-401	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in}$. h excluding contacts \& term; w/partially enclosed plastic shell; polarized; non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in \lg and 0.460 in . c to c in. wd ; CPH type 26-159-16	Power Connector
$\begin{aligned} & \mathrm{P}-402 \\ & \mathrm{R}-401 \end{aligned}$		Same as P-401 Not Used	Power Connector
R-402	N16-R-99999-0853	RESESTOR, FIXED, WIRE WOUND: not in MBCA Ref Dwg Group 2; non-inductive winding; 10 ohms, $\pm 5 \%$ tolerance; 25 w power dissipation, $200^{\circ} \mathrm{C}$ max continuous operating temp; body dimen excluding mtg and term, 1-1/16 in. lg, 1-1/16 in. wd, 9/16 in. h; silicone coating, resistant to moisture and salt spray; 2 wire lead type term, 7/16 in. lg ; 2 mtg flanges with $1 / 8 \mathrm{in}$. diam holes at diagonally opposite ends of body, on 23/32 in. by 25/32 in. centers; die-cast, black anodized radiator finned housing; CBZX type RH-25; CBTL part/dwg A2011169-1	Brake Current Limiter

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & R-403 \\ & \text { thru } \\ & R-405 \end{aligned}$		Not Used	
R-406	For Replacement Use N16-R-50569-940	RESISTOR, FIXED, COMPOSITION: 75, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF753K	Divider
R-407	N16-R-50481-461	RESISTOR, FIXED, COMPOSITION; 47, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF473K	Divider
R-408	N16-R-50678-818	RESISTOR, FIXED, COMPOSITION: 150, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF154K	Multiplier
R-409	N16-R-49940-816	RESISTOR, FIXED, COMPOSITION: 1200 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF122K	Damper
R-410	N16-R-50182-438	RESISTOR, FIXED, COMPOSITION: 6200 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF622J	SWR Divider
R-411	N16-R-87679-4540	RESISTOR, VARIABLE: composition element; 1 section, 10,000 ohms, $\pm 10 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ " U " taper, $1500,3800,6300,8700$ ohms resistance at $20,40,60$ and 80% rotations respectively; 3 solder lug type term; metal case, enclosed 1-1/16 in. diam, 9/16 in. d; round, corrosion resistant metal shaft, slotted for screwdriver adjustment, 1/4 in. diam by $5 / 8 \mathrm{in} . \lg$, normal torque, w/shaft locking device; contact arm insulated, no "off" position; mtd by bushing, $3 / 8$ in. - 32 NEF-2 thd $1 / 2 \mathrm{in}$. lg; CBZ type JLU 1031 -SD4040L type J	Zero Adjustment
R-412	N16-R-49921-349	RESISTOR, FIXED, COMPOSITION: 1000 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF102J	SWR Divider
R-413	N16-R-88009-4505	RESISTOR, VARIABLE: composition element; 1 section, 100,000 ohms, $\pm 10 \% ; 2.25 \mathrm{w}$ nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at $50 \% \mathrm{CW}$ rotation; special taper, CBZ " U " taper, $15000,38000,63000,87000$ ohms resistance at 20,40 , 60 , 80% rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, $9 / 16 \mathrm{in}$. d; round corrosion resistant metal shaft, slotted for screwdriver adj; $1 / 4 \mathrm{in}$. diam by $5 / 8 \mathrm{in}$. lg , normal torque, w/shaft locking device; contact arm insulated, no "off" position; mtd by bushing, 3/8 in. - 32 NEF-2 thd $1 / 2$ in. lg; CBZ type JLU 1041 -SD4040L type J	Full Scale Adjustment
R-414	N16-R-50011-438	RESISTOR, FIXED, COMPOSITION: 2200 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF222J	SWR Divider
R-415		Same as R-412	SWR Divider
R-416	N16-R-50237-815	RESISTOR, FIXED, COMPOSITION: 8200 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF822K	Multiplier
S-401		Not Used	
S-402	N17-S-74692-4506	SWITCH, TOGGLE: DPDT; per spec JAN-S-23; JAN type ST52P	Antenna Transfer Switch
S-403	N17-S-99999-0593	SWITCH, ROTARY: 1 section; 7 positions, max number of switching positions possible; non-'pile-up" type, single pole, 4 throws $\mathrm{w} / \mathrm{adj}$. stops, 125 v AC, 5 amp ; bronze contacts,	Transformer Selector

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{C}-505 \\ & \text { E-501 } \\ & \text { thru } \\ & \mathrm{E}-503 \end{aligned}$	N16-C-49197-3878	CAPACITOR, FIXED, PAPER DIELECTRIC: $2 \mathrm{mf} \pm 10 \%$; 600v DCW; per spec JAN-C-25; JAN type CP53B1EF205K Not used	Timing Circuit for K-504
E-504	Low Failure Item	TERMINAL BOARD: general purpose; 8 brass, silver pl solder lug term; $1 / 8 \mathrm{in}$. thk melamine glass board; $2-5 / 8 \mathrm{in}$. \lg by $1-3 / 4 \mathrm{in}$. wd by $9 / 16 \mathrm{in}$.h o/a; two 0.169 in . diam mtg holes $2-1 / 8 \mathrm{in}$. c to c ; CBTL part/dwg NL-900055-1 less item 1	Component Mounting
E-505	Low Failure Item	TERMINAL BOARD: general purpose; 8 brass, silver pl solder lug term; $1 / 8 \mathrm{in}$. thk melamine glass board; 2-5/8 in. lg by $1-3 / 4 \mathrm{in}$. wd by $9 / 16 \mathrm{in} . \mathrm{h}$ o/a; two 0.169 in . diam mtg holes 2-1/8 in. c to c ; CBTL part/dwg NL-983948-1 less item 1	Component Mounting
$\begin{aligned} & \mathrm{E}-506 \\ & \text { thru } \\ & \mathrm{E}-511 \end{aligned}$		Not Used	
E-512	Low Failure Item	TERMNAL BOARD: melamine glass sheet, incl 6 fuse clip term; w/o barriers; o/a dimen 5-13/16 in. $\mathrm{lg}, 3-3 / 8 \mathrm{in}$. wd , 2 in . thk; one SS bracket for mtg w/three 0.221 diam mtg holes 1-1/2 in. c to c; CBTL part/dwg NL-981084-2	Component Mounting
F-501	N17-F-14690-5910	FUSE, CARTRIDGE: 5 amp , 250 v AC ; time delay, 150% for $0-1$ minute, 300% for 6 sec minimum; ferrule type, silver pl ; $1-1 / 2 \mathrm{in} . \mathrm{lg}, 0.406 \mathrm{in}$. diam; fiber body; one time; noa-indicating; vibration resistant; per spec. MIL-F-15160A; MIL type FO9G6R00B	Single Phase Protection 500v Power Supply Plate
F-502		Same as F-501	Single Phase Protection (1050-1300) v Power Suppiy Plate
F-503	N17-F-14690-5775	FUSE, CARTRIDGE: 1 amp , 250v AC; time delay; 150% for $0-1$ minute, 300% for 6 sec minmum; ferrule type, silver pl ; $1-1 / 2 \mathrm{in} . \mathrm{lg}, 0.406 \mathrm{in}$. diam; fiber body; one time; non-indicating; vibration resistant; per spec. MIL-F-15160A; MIL type FO9G1R00B	T-502 Protection
H-501	Low Failure Item	SLIDE, chassis: left hand, c/e inner and outer slide, front latch, ball spacer w/stainless steel bails, and pin stop; corrosion resisting steel, electropolisir finish; 23-1/8 in. lg closed, $1-5 / 8 \mathrm{in}$. h , $9 / 16 \mathrm{in}$, wad o / a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-* / 2$ in. c so c, two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes spaced 1 ir. c to clocated on back end; CBTL part/dwg NL-900@37-12-2	For MVPS Chassis
H-502	Low Failure Item	SLIDE, chassis: right hand; c/o inner and outer slide, front latch, ball spacer w/stainless steel ballis, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, $1-5 / 8 \mathrm{in}$. h, $9 / 16$ ir. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 8$ in. c to c; two $1 / 4 \mathrm{in} .-28$ NF-2 thd mtg holes, 1 in. c to cated on back end; CBTL part/dwg NL-900037-12-1	For MVPS Chassis

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-503	N16-C-301129-741	CLAMP, tube: stainless steel; c/o strap and bracket; 1-3/8 in. diam by $15 / 16 \mathrm{in}$. h o/a; CAIS type 926C-3 dwg no. 1263	Clamp for V-501
H-503. 1		Same as H-503	Clamp for V-502
H-503. 2		Same as H-503	Clamp for V-503
H-503. 3		Same as H-503	Clamp for V-504
I-501	N17-L-3917-300	LAMP, INCANDESCENT: 125v DC, 6 w; MBCA Ref Dwg Group 7, double contact bayonet candelabra base, S-6, clear, 1 tungsten filament, C-7A; 1-13/16 in. max o/a h; over 25 hrs rated life; any burning position; CAYZ type no. 6S6DC-125	T-501 Power Indicator 500 v Power Supply Plate
I-502		Same as I-501	T-503 Power Indicator (10501300) v Power Supply Plate
I-503	G17-L-6806-130	LAMP, GLOW: neon, $105-125 \mathrm{v}, 1 / 25 \mathrm{w}$; MBCA Ref. Dwg Group 7, single contact bayonet candelabra base, T-3-1/4, clear, orange-red glow; 1-3/16 in. max o/a h; CG type NE-51	Indicator 500v Supply
I-504		Same as I-503	Indicator (10501300) v Supply
J-501	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$; excluding contacts and term; w/ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in \lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	Inter-Unit Wiring
J-502		Same as J-501	Inter-Unit Wiring
J-503	N17-I-59705-1251	INSULATOR, FEEDTHRU: brass; silver pl; 15/16 in. lg, 5/8 in. o/a diam; CNA type XS-7 modified; CBTL part/dwg NL-900095-1	Medium Voltage Output
J-504	N17-C-99999-1196	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric red nylon; 29/32 in. lg, $5 / 16 \mathrm{in}$. wd incl hex coupling nut o/a dimen; 1000v peak; w/inclosing shell, cylindrical shape, brass, nickel pl ; not polarized, 1 hole, $1 / 4 \mathrm{in}$. diam; 1/4-32 in. thd on receptacle for mating w /coupling nut; CARO part 225A	+500v Test Point
K-501	N17-R-65155-6222	RELAY, ARMATURE: contact arrangement 2C, Ref Dwg Group $4,115 \mathrm{v}$ AC, $5 \mathrm{amp} ; 1$ inductive winding, 140 ohms DC, 24 v operating voltage, 0.130 amps operating current; 2 term on contact, 2 term on coil; continuous duty; 1-3/4 in. lg by 1 in . wd by $2-1 / 16 \mathrm{in}$. h o/a dimen; mtd by six no. 6-32 tapped mtg holes $3 / 4 \mathrm{in}$. c to c, 2 holes on one side, four on bottom; CSD type no. 218XBX; CBTL part/dwg NL-982577-1	T-501.Pri. Contactor 500v Power Supply
K-502		Same as K-501	T-503 Pri. Tap Transfer Phone CW and other Control Functions

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
K-503	N17-R-65144-1150	RELAY, ARMATURE: contact arrangement 4A2B, MBCA Ref Dwg Group 4, single break; 1 inductive winding, $24 v$ DC operating voltage; 2 term on contact, 2 term on coil; continuous duty; $2-1 / 2 \mathrm{in} . \lg , 1 \mathrm{in} . \mathrm{wd}, 1-7 / 8 \mathrm{in} . \mathrm{h}$ o/a dimen; mtd by means of 4 no. 6-32 tapped holes, $3 / 4 \mathrm{in}$. horizontal centers, $7 / 8 \mathrm{in}$. vertical centers; CSD type 218, frame part no. 218DXB103, dwg no. 17593; CBTL part/dwg NL-982599-1	T-503 Pri. Contactor 500v Power Supply and other Control Functions
K-504	N17-R-65657-9950	RELAY, ARMATURE: contact arrangement 2A1B, MBCA Ref Dwg Group 4, A normally open, B normally closed, single break, AC-DC, contact form A uncoded rated 300v DC at 0.3 amp, contact forms A and B of code 24 rated at $4.0 \mathrm{amp} ; 1 \mathrm{in}-$ ductive winding, 20, 000 ohms DC, 220v DC operating voltage; 6 term on contact, 2 term on coil; continuous duty; $2-1 / 4 \mathrm{in}$. lg by $1-1 / 16$ in. wd by 1-3/4 in. h o/a dimen; mtd with 2 no. 6-32 tapped holes, $3 / 4$ in. c to c ; impregnated coil and pile-up; CRY type J part no. G-49556; per BuShips spec. 40T9; CBTL part/ dwg NL-981040-1	300v Make-Break
L-501	N16-R-29026-7751	REACTOR: filter choke; one section; three hy at 0.414 amp DC; 35 ohms DC resistance; 2250v RMS test voltage; hermetically sealed, steel case; 3-23/32 in. diam, 4-1/2 in. $\lg \mathrm{o} / \mathrm{a}$; four 0.201 in . diam mtg holes, on 3 in . by $3 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ on $3-23 / 32$ in. sq mtg flange; two solder lug type term on insulators $1 / 2$ in. \lg by $7 / 16 \mathrm{in}$. OD o/a, located on mtg surface; CUT part/ dwg F-3586, Rev. 2; CBTL part/dwg NL-980824-1	Filter 500v Power Supply
L-502	N16-R-29923-9036	REACTOR: swinging choke; one section; 3 hy min o/a inductance, $0.050 \mathrm{amp} \mathrm{min} \mathrm{DC}, 15 \mathrm{hy} \mathrm{max} \mathrm{o/a} \mathrm{inductance}$, \max DC; 40 ohms DC resistance; 2250v RMS test voltage; hermetically sealed, steel case; o/a dimen, 4-15/32 in. OD, 5-1/2 in. h ; four 0.288 in . diam mtg holes on $3-9 / 16 \mathrm{in}$. by 3-9/16 in. $\mathrm{mtg} / \mathrm{c}$ on $4-15 / 32 \mathrm{in}$. sq mtg flange; two solder lug type term on insulators $1 / 2 \mathrm{in} . \lg$ by $7 / 16 \mathrm{in}$. OD o/a, located on mtg surface; CUT part/dwg F-3584, Rev. 2; CBTL part/dwg NL-980823-1	Filter 500v Power Supply
L-503	N16-R-29190-5576	REACTOR: filter choke; one section; 8 hy o/a inductance, 0.230 amp DC; 125 ohms DC resistance; 5200v RMS test voltage; hermetically sealed, steel case; o/a dimen, 3-9/32 in. lg by $3-1 / 32$ in. wd by $4-1 / 2 \mathrm{in}$. h; four no. $8-32$ thd by $15 / 32$ in. lg mtg studs on $2-3 / 8 \mathrm{in}$. by $2-11 / 16 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; two solder lug type term located on mtg surface on insulators $13 / 16 \mathrm{in}$. lg by 9/16 in. OD o/a; CUT part/dwg F-3590-1, Rev. 1; CBTL part/ dwg NL-980851-1	Filter (1050-1300) v Power Supply
L-504	N16-R-29955-1082	REACTOR: swinging choke; one section; 8 hy min o/a inductance, $0.050 \mathrm{amp} \mathrm{min} \mathrm{DC}, 40 \mathrm{hy}$ max o/a inductance, 0.230 amp DC; 140 ohms DC resistance; 5200v RMS test voltage; hermetically sealed, steel case; o/a dimen, $3-3 / 4 \mathrm{in}$. $\lg , 3-3 / 4 \mathrm{in}$. wd, 4-9/16 in. h; four no. 10-32 thd by $19 / 32 \mathrm{in}$. lg mtg studs on $2-7 / 8 \mathrm{in}$. by 3 in . $\mathrm{mtg} / \mathrm{c}$; two solder lug type term located on mtg surface on insulators $7 / 8 \mathrm{in}$. \lg by $9 / 16 \mathrm{in}$. OD o/a; CUT part/dwg F-3588-1, Rev. 2; CBTL part/dwg NL-980850-1	Filter (1050-1300) v Power Supply
M-501	N17-M-32915-3251	METER, TLME: elapsed time indicator; synchronous selfstarting electric motor, $1 / 6 \mathrm{rpm}$; electro-mechanical control; direct reading; automatic start and stop; 2-1/2 in. h, 2-1/8 in. wd, $2-3 / 64 \mathrm{in}$. d o/a; 5 rotating drum counters each calibrated 0 to 9 ; w/window opening face; operates from 115 v , 60 cyc line; synchronized; two 0.132 in . diam mtg holes spaced $1-7 / 8 \mathrm{in}$. c to c ; total registry of counter is 9999.9 hours, figures on first	Total Hours Filament

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating. Function
$\begin{aligned} & \text { M-501 } \\ & \text { (cont) } \end{aligned}$		four drums in black and on last drum in red; flush mtg; CHP type 5701-1/6	
M-502		Same as M-501	Total Hours Plate
0-501	N17-C-800934-501	CLIP, ELECTRICAL: grid plate style 7, MBCA Ref Dwg Group 37; brass, cad pl; 1-3/8 in. lg, 1/2 in. wd; CNA type no. 12	Plate Cap for V-501
0-502		Same as 0-501	Plate Cap for V-502
O-503		Same as 0-501	Plate Cap for V-503
O-504		Same as 0-501	Plate Cap for V-504
0-505	N17-C-804784-201	CLIP, ELECTRICAL: resistor; spring temper phosphor bronze; silver pl ; $3 / 4 \mathrm{in} . \lg$ by $7 / 8 \mathrm{in}$. wd by $1-7 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen; 31 to $60 \mathrm{amps}, 250 \mathrm{v} ; 15 / 64 \mathrm{in} . \mathrm{mtg}$ hole; used as resistor clip; Navy dwg RE28AA116F, type no. 28003; p/o E-512	p/o Terminal Board
0-505. 1		Same as O-505, p/o E-512	p/o Terminal Board
0-505. 2		Same as O-505, p/o E-512	p/o Terminal Board
0-505. 3		Same as O-505, p/o E-512	p/o Terminal Board
0-505. 4		Same as O-505, p/o E-512	p/o Terminal Board
0-505. 5		Same as O-505, p/o E-512	p/o Terminal Board
0-506	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish; ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \mathrm{lg}$, 1/4 4 in . wd, 0.125 in . thk o/a dimen; CCCS dwg A-9019.9-1 (Revision \#3); p/o H-501	p/o Chassis Slide
O-506. 1		Same as O-506; p/o H-502	p/o Chassis Slide
0-507	Low Failure Item	SPRING: helical compression type; 0.032 in. diam music wire per NAVY spec. 22W11C; 3/8 in. h, $1 / 2 \mathrm{in}$. diam o/a; 3-1/2 turns, RH or LH wound; first and last $3 / 4$ turns are flat; cad pl; CBTL part/dwg NL--900018-1; u/w H-501	Stop Button Spring for Chassis Slide
0-507. 1		Same as ©-507; u/w H-502	Stop Button Spring for Chassis Slide
0-508	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: lower; c/o rectangular, corrosion resisting steeI, electropolish finish; ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; $10.844 \mathrm{in} . \lg , 1 / 4$ in. wd, 0.125 in. thk o/a dimen; CCCS dwg A-9019.9-2 (Revision \#3); p/o H-501	p/o Chassis Slide
O-508. 1		Same as O-508; p/o H-502	p/o Chassis Slide
0-509	Low Failure Itex	SPRING: loop type; for latch; 0.038 in . diam corrosion resisting steel spring whre; 2-1/2 in. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{ho} \mathrm{o}$ a; one end semi-hcok type, one end open; irregular shape; CBTL part/dwg NL-900991-1: p/o H-501	For Latch in Chassis Slide
0-509. 1		Same as - 509 ; $\mathrm{p} / \mathrm{oH}-502$	For Latch in Chassis Slide

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-510	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 conductor $1 / 4$ H, 0.025 in . thk strip per MIL-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8 in. lg, 15/16 in. h; CBTL part/ dwg NL-900142-1; p/o S-501	For Contact in S-501
R-501	N16-R-62072-5515	RESISTOR, FIXED, WIRE WOUND: 10,000 ohms, $\pm 5 \%$; 50 w ; per spec JAN-R-26A; JAN type RW13F103	Bleeder 500v Power Supply
R-502	N16-R-62108-3201	RESISTOR, FIXED, WIRE WOUND: 14, 000 ohms, $\pm 5 \%$; 50 w ; per spec JAN-R-26A; JAN type RW13F143	$\begin{aligned} & \text { Bleeder (1050-1300) } \\ & \text { v Power Supply } \end{aligned}$
$\begin{aligned} & \mathrm{R}-503 \\ & \text { thru } \\ & \mathrm{R}-512 \end{aligned}$		Not Used	
R-513		Same as R-502	Bleeder (1050-1300) v Power Supply
R-514	N16-R-50930-811	RESISTOR, FIXED, COMPOSITION: 820, 000 ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF824K	Dropping Resistor for I-503
R-515	N16-R-50787-231	RESISTOR, FIXED, COMPOSITION: 390,000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF394K	Dropping Resistor for I-504
R-516		Same as R-515	Dropping Resistor for I-504
R-517		Same as R-515	Dropping Resistor for I-504
R-518	N16-R-50715-231	RESISTOR, FIXED, COMPOSITION: 220, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF224K	Dropping Resistor for I-504
R-519	N16-R-50202-511	RESISTOR, FIXED, COMPOSITION: 6, 800 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF682K	Dropping Resistor for K-504
R-520		Same as R-519	Dropping Resistor for K-504
R-521		Same as R-519	Dropping Resistor for K-504
R-522		Same as R-519	Dropping Resistor for K-504
R-523	N16-R-49923-531	RESISTOR, FIXED, COMPOSITION: 1000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF102K	Timing Circuit for K-504
S-501	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; double pole single throw, male and female type, beryllium copper alloy strip contact; thermosetting plastic molding body; 1-1/2 in. lg by $1-1 / 2 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. thk o/a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in . apart; interrupts 24 v DC; CBTL part/dwg NL-900059-2	Interlock Switch
T-501	N17-T-77122-3519	TRANSFORMER, POWER, STEP-UP: hermetically sealed steel case; 110 v AC, 60 cyc $\pm 5 \%$, input single ph; one output winding, $1240 \mathrm{v}, 0.414 \mathrm{amp}$ DC center-tapped; primary test voltage of 1500 v RMS, secondary test voltage 2300 v RMS; Robertson potting compound; 5 in . max lg by 4-1/2 in. max wd	500v Power Supply Plate Supply

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE, PARTS

TABLE 8-3 TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Ferce	Name and Description	Locating Function
A-602	Low Failure Item	RAIL, assembly: right hand; c/o rail, rear latch, 4 rollers, 4 roller shafts; corrosion resisting steel, electropolish finish; o/a dimen 17-1/2 in. $\mathrm{lg}, 1 \mathrm{in} . \mathrm{h}, 0.390 \mathrm{in} . \mathrm{wd}$; three no. 10-24 tapped mtg holes, spaced 4.093 in . and $9.438 \mathrm{in} . \mathrm{c}$ to $\mathrm{c} ; \mathrm{CBTL}$ part/dwg NL-900369-12-1	For MVPS Chassis
A-603		Same as A-601	For LLRM Chassis
A-604		Same as A-602	For LLRM Chassis
A-605		Same as A-601	For RFA Chassis
A-606		Same as A-602	For RFA Chassis
A-607		Same as A-601	For RFO Chassis
A-608		Same as A-602	For RFO Chassis
A-609		Same as A-601	For LVPS Chassis
A-610		Same as A-602	For LVPS Chassis
E-601	N17-B-78039-6369	TERMINAL BOARD: molded melamine board; 14 double screw type term; barrier type; 6-7/8 in. $\mathrm{lg}, 1-1 / 8 \mathrm{in} . \mathrm{wd}, 1 / 2 \mathrm{in}$. h o/a; four 0.175 in . diam mtg holes, two on each end, spaced 6-9/16 in. c to c on $\lg , 27 / 64 \mathrm{in}$. c to c on wd; CJC type $14-$ 141-B	External Cable Connector
E-602	:	Same as E-601	External Cable Connector
E-603	For Replacement Use N17-B-78038-4120	TERMINAL BOARD: molded melamine board; 14 double screw type term; barrier type; 5-7/8 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 13 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen; four 0.160 in . diam mtg holes two on each end, $5-5 / 8 \mathrm{in}$. c to c on $\mathrm{lg}, 5 / 16 \mathrm{in}$. c to c on wd; CJC type 14-140-B	Base Mount Cable Connector
E-604		Same as E-603	Cable to Antenna Tuning Unit
E-605		Same as E-603	Cable to Antenna Tuning Unit
E-606	N17-B-77987-4697	TERMINAL BOARD: molded melamine board; 12 double screw type term; barrier type; $5-1 / 8 \mathrm{in} . \lg , 7 / 8 \mathrm{in} . \mathrm{wd}, 13 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen; four 0.160 in . diam mtg holes two on each end, 4-7/8 in. c to c on $\mathrm{lg}, 5 / 16 \mathrm{in}$. c to c on wd; CJC type 12-140-B	Inter-Unit Wiring Connector
E-607		Same as E-606	Inter-Unit Wiring Connector
E-608	Low Failure Item	TERMDNAL BOARD: molded thermosetting plastic body; 3 term; no. 8-32 thd, stud type, barrier type; 4-3/16 in. lg, $2-1 / 8 \mathrm{in}$. wd, $25 / 32$ in. h o/a; four 0.193 in . diam mtg holes, two on each end, spaced $3-3 / 4$ in. c to c on $\lg , 1-7 / 16$ in. c to c on wd; CBTL part/dwg NL-900240-2	High Voltage Connector PA; LLRM Output
E-609	Shop Manufacture	CONTACT, ELECTRICAL: brass contactor, silver pl finish; press-fitted into a hard rubber body; 1/2 in. thk, 23/32 in. wd, $1-1 / 2 \mathrm{in} . \mathrm{h}$ o/a dimen; two 0.128 in . diam mtg holes located on side spaced $3 / 4 \mathrm{in}$. c to c and two 0.128 in . diam mtg holes counterbored 5/16 in. located in front spaced 1-1/16 in. c to c for universal mtg; CBTL part/dwg NL-900138-1	u/w Interlock Switch S-1306 RFA

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Forse	Name and Description	Locating Function
E-610		Same as E-609	u/w Interlock Switch S-1104 LLRM
E-611		Same as E-609	u/w interlock Switch S-2919 RFO
E-612		Same as E-609	u/w Interlock Switch S-3006 LVPS
E-613		Same as E-609	u/w Interlock Switch S-501 MVPS
H-601	Low Failure Item	HANGER, CABLE: extensible cable support w/cable clips; $3 / 4 \mathrm{in}$. diam of cable accommodated; 0.020 in . thk by $13 / 16 \mathrm{in}$. wd dimen of spring extensible cable blank; material of metallic parts brass, carbon spring steel; cad pl finish; c/o 16 cable clips riveted to spring extensible cable blank w/spring stiffener at one end; designed to support and permit lateral movement of cable; two 0.312 in . diam mtg holes at one end spaced $3 / 4 \mathrm{in}$. c to c and two 0.180 in . diam holes on other end spaced 0.375 in. c to c for fastening to connector receptacle housing; CBTL part/dwg NL-901230-12	For MVPS Chassis
H-602	Low Failure Item	HANGER, CABLE: extensibie cable support w/cable clips; $3 / 4 \mathrm{in}$. diam of cable accommodated; 0.020 in . thk by $13 / 16$ in. wd dimen of spring extensible cable blank; material of metallic parts brass, carbon spring steel; cad pl finish; c/o 15 cable clips riveted to spring extensible cable biank w/spring stiffener at one end; designed to support and permit lateral movement of cable; two 0.312 in . diam mtg holes at one end spaced $3 / 4 \mathrm{in}$. c to c and two 0.180 in . diam holes on other end spaced 0.375 in . c to c for fastening to connector receptacle housing; CBTL part/dwg NL-900898-12	For RFO Chassis
H-603		Same as H-601	For LLRM Chassis
H-604		Same as H-601	For RFA Chassis
H-605		Same as H-601	For LVPS Chassis
J-601	N17-C-99999-2016	CONNECTOR, RECEPTACLE, ELECTRICAL: c/o double row of 8 sliding contacts per row, female; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}$, $9 / 16 \mathrm{in} . \mathrm{h}$; polarized; nonlocking; $5 \mathrm{amp}, 600 \mathrm{v}$ DC; mtd by two 0.125 in. diam holes in diagonal corners, spaced 2.024 in . c to c in lg , and 0.460 in . c to c in wd; CPH 26-190-16-1	Receptacle for J-1301
J-602		Same as J-601	Receptacle for J-1302
J-603		Same as J-601	Receptacle for J-1101
J-604		Same as J-601	Receptacle for J-1102
J-605		Same as J-601	Receptacle for J-1103
J-606		Same as J-601	Receptacle for J-2916

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-607		Same as J-601	Receptacle for J-2917
J-608		Same as J-601	Receptacle for J-2918
J-609		Same as J-601	Receptacle for $J-3001$
J-610		Same as J-601	Receptacle for J-3002
. J-611		Same as J-601	Receptacle for J-3003
J-612		Same as J-601	Receptacle for J-501
J-613		Same as J-601	$\underset{\substack{\text { R-502 } \\ \text { Receptacle } \\ \text { for }}}{ }$ $\mathrm{J}-502$
MS-601	Low Failure Item	CLOTH, wire: brass wire; no. 20 mesh; wire diam 0.016 in .; octagon shape; $8-3 / 8 \mathrm{in}$. by $8-3 / 8 \mathrm{in}$. o/a dimen; CBTL part/ dwg NL-981532-2	Screen for Top Cover
MS-601. 1		Same as MS-601	Screen for Top Cover
MS-602	Low Failure Item	CLOTH, wire: brass wire; no. 20 mesh; wire diam $0.016 \mathrm{in} . ;$ edges folded over $5 / 16 \mathrm{in}$. and tin dipped; eight 0.169 in . diam holes equally spaced around edge of screen; $10-3 / 8 \mathrm{in} . \lg$ by 1-19/32 in. wd o/a; CBTL part/dwg NL-925383-1	Screen for Bottom Louver
MS-603	Low Failure Item	CLOTH, wire: brass wire; no. 20 mesh; wire diam 0.016 in.; edges folded over $5 / 16 \mathrm{in}$. and tin dipped; ten 0.169 in . diam holes equally spaced around edge of screen; 10-3/8 in. lg by 4-11/32 in. wd o/a; CBTL part/dwg NL-925382-1	Screen for Middle Louver
MS-604	Low Failure Item	CLOTH, wire: brass wire; no. 20 mesh; wire diam 0.016 in. ; edges folded over $7 / 16 \mathrm{in}$. and tin dipped; twelve 0.169 in . diam holes equally spaced around edge of screen; 10-1/2 in. by 10-5/16 in. o/a; CBTL part/dwg NL-925381-2	Screen for Top Louver
0-601	Low Failure Item	SHAFT, roller: rear; monel cold drawn; 13/32 in. lg by 17/32 in. diam o/a; CBTL part/dwg NL-900366-1; p/o A-601	p/o Rail Assy
0-601. 1		Same as 0-601, p/o A-602	p/o Rail Assy
0-601.2		Same as 0-601, p/o A-603	p/o Rail Assy
O-601. 3		Same as O-601, p/o A-604	p/o Rail Assy
0-601. 4		Same as 0-601, p/o A-605	p/o Rail Assy
0-601. 5		Same as 0-601; p/o A-606	p/o Rail Assy
O-601.6		Same as 0-601, p/o A-607	p/o Rail Assy
A-601. 7		Same as 0-601, p/o A-608	p/o Rail Assy
A-601. 8		Same as 0-691, p/o A-609	p/o Rail Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-601. 9		Same as 0-601, p/o A-610	p/o Rail Assy
0-602	Low Failure Item	ROLLER, bearing: rear; corrosion resisting steel, electropolish finish; 0.902 in . OD by 0.265 in . wd o/a; 0.4375 in. diam shaft hole; CBTL part/dwg NL-900365-1; p/o A-601	p/o Rail Assy
0-602. 1		Same as 0-602, p/o A-602	p/o Rail Assy
0-602. 2		Same as 0-602, p/o A-603	p/o Rail Assy
O-602. 3		Same as 0-602; p/o A-604	p/o Rail Assy
O-602. 4		Same as 0-602; p/o A-605	p/o Rail Assy
0-602. 5		Same as 0-602, p/o A-606	p/o Rail Assy
0-602.6		Same as 0-602, p/o A-607	p/o Rail Assy
0.602.7		Same as 0-602, p/o A-608	p/o Rail Assy
O-602. 8		Same as 0-602, p/o A-609	p/o Rail Assy
O-602.9		Same as 0-602, p/o A-610	p/o Rail Assy
0-603	Low Failure Item	SPRING: left hand; torsion type; 0.038 in . diam corrosion resisting steel spring wire; $1.116 \mathrm{in} . \lg , 0.250 \mathrm{in}$. wd, 0.250 in. h o/a; two turns, LH turns; one end straight, short end bent 90° on $1 / 32 \mathrm{in}$. radius, $1 / 8 \mathrm{in} . \mathrm{lg}$; mts over 0.156 in . diam pin; working moment is $16 \mathrm{in} . ~ o z \pm 5 \mathrm{in}$. oz; CBTL part/ dwg NL-900981-1; p/o A-601	For Latch in Rail Assy
O-603. 1		Same as 0-603, p/o A-603	For Latch in Rail Assy
O-603. 2		Same as 0-603, p/o A-605	For Latch in Rail Assy
O-603. 3		Same as 0-603, p/o A-607	For Latch in Rail Assy
0-603. 4		Same as 0-603, p/o A-609	For Latch in Rail Assy
0-604	Low Failure Item	SPRING: right hand; torsion type; 0.038 in. diam corrosion resisting steel spring wire; $1.116 \mathrm{in} . \mathrm{lg}, 0.250 \mathrm{in} . \mathrm{h}$, two turns, RH turns; one end straight, short end bent 90° on $1 / 32$ in . radius, $1 / 8 \mathrm{in} . \mathrm{lg} ; \mathrm{mts}$ over 0.156 in . diam pins; working moment is $16 \mathrm{in} . \mathrm{oz}^{2} 5 \mathrm{in}$. oz; CBTL part/dwg NL-900982-1; p/o A-602	For Latch in Rail Assy
O-604. 1		Same as 0-604, p/o A-604	For Latch in Rail Assy
O-604. 2		Same as 0-604, p/o A-606	For Latch in Rail Assy
O-604. 3		Same as 0-604, p/o A-608	For Latch in Rail Assy
O-604. 4		Same as 0-604, p/o A-610	For Latch in Rail Assy
0-605		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description,	Locating Function
O-606	Low Failure Item	ROLLER, bearing: center; corrosion resisting steel, electropolish finish; 0.988 in . OD by 0.156 in . wd o/a; 0.4375 in. diam shaft hole; CBTL part/dwg NL-900986-1; p/o A-601	p/o Rail Assy
O-606. 1		Same as O-606, p/o A-601	p/o Rail Assy
O-606. 2		Same as O-606, p/o A-601	p/o Rail Assy
O-606. 3		Same as 0-606, p/o A-602	p/o Rail Assy
O-606. 4		Same as O-606, p/o A-602	p/o Rail Assy
O. 606.5		Same as O-606, p/o A-602	p/o Rail Assy
O-606. 6		Same as O-606, p/o A-603	p/o Rail Assy
O-606. 7		Same as O-606, p/o A-603	p/o Rail Assy
O-606. 8		Same as 0-606, p/o A-603	p/o Rail Assy
A-606. 9		Same as O-606, p/o A-604	p/o Rail Assy
O-606. 10		Same as O-606, p/o A-604	p/o Rail Assy
O-606. 11		Same as O-606, p/o A-604	p/o Rail Assy
O-606. 12		Same as O-606, p/o A-605	p/o Rail Assy
O-606. 13		Same as O-606, p/o A-605	p/o Rail Assy
O-606. 14		Same as O-606, p/o A-505	p/o Rail Assy
O-606. 15		Same as O-606, p/o A-606	p/o Rail Assy
0-606. 16		Same as 0-606, p/o A-606	p/o Rail Assy
0-606. 17		Same as 0-606, p/o A-606	p/o Rail Assy
O-606. 18		Same as 0-606, p/o A-607	p/o Rail Assy
O-606. 19		Same as O-606, p/o A-607	p/o Rail Assy
O-606. 20		Same as 0-606, p/o A-607	p/o Rail Assy
O-606. 21		Same as O-606, p/o A-608	p/o Rail Assy
0-606. 22		Same as 0-606, p/o A-608	p/o Rail Assy
O-606. 23		Same as O-606, p/o A-608	p/o Rail Assy
O-606. 24		Same as O-606, p/o A-609	p/o Rail Assy
O-606. 25		Same as O-606, p/o A-609	p/o Rail Assy
0-606. 26		Same as - 606, p/o A-609	p/o Rail Assy
O-606. 27		Same as O-606, p/o A-610	p/o Rail Assy
O-606. 28		Same as 0-606, p/o A-610	p/o Rail Assy
O-606. 29		Same as 0-606, p/o A-610	p/o Rail Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-607	Shop Manufacture	SHAFT, roller: monel, cold drawn; 21/64 in. lg by 17/32 in. diam o/a; CBTL part/dwg NL-900985-1; p/o A-601	p/o Rail Assy
0-607. 1		Same as 0-607; p/o A-601	p/o Rail Assy
0-607. 2		Same as 0-607, p/o A-601	p/o Rail Assy
0-607. 3		Same as 0-607, p/o A-602	p/o Rail Assy
0-607. 4		Same as 0-607, p/o A-602	p/o Rail Assy
0-607. 5		Same as 0-607, p/o A-602	p/o Rail Assy
0-607. 6		Same as 0-607, p/o A-603	p/o Rail Assy
O-607. 7		Same as 0-607, p/o A-603	p/o Rail Assy
O-607. 8		Same as 0-607, p/o A-603	p/o Rail Assy
0-607. 9		Same as 0-607, p/o A-604	p/o Rail Assy
0-607. 10		Same as 0-607, p/o A-604	p/o Rail Assy
0-607. 11		Same as 0-607, p/o A-504	p/o Rail Assy
0-607. 12		Same as 0-607, p/o A-605	p/o Rail Assy
0-607. 13		Same as 0-607, p/o A-605	p/o Rail Assy
0-607. 14		Same as 0-607, p/o A-605	p/o Rail Assy
0-607. 15		Same as 0-607, p/o A-606	p/o Rail Assy
0-607. 16		Same as 0-607, p/o A-606	p/o Rail Assy
0-607. 17		Same as 0-607, p/o A-606	p/o Rail Assy
O-607. 18		Same as 0-607, p/o A-607	p/o Rail Assy
0-607. 19		Same as 0-607, p/o A-607	p/o Rail Assy
0-607. 20		Same as 0-607, p/o A-607	p/o Rail Assy
0-607. 21		Same as 0-607, p/o A-608	p/o Rail Assy
0-607. 22		Same as 0-607, p/o A-608	p/o Rail Assy
0-607. 23		Same as 0-607, p/o A-608	p/o Rail Assy
O-607. 24		Same as 0-607, ${ }^{\text {j/o A-609 }}$	p/o Rail Assy
0-607. 25		Same as 0-607, p/o A-609	p/o Rail Assy
0-607. 26		Same as 0-607, p/o A-609	p/o Rail Assy
0-607. 27		Same as 0-607, p/o A-610	p/o Rail Assy
0-607. 28		Same as 0-607, p/o A-610	p/o Rail Assy
0-607. 29		Same as 0-607, p/o A-610	p/o Rail Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-601	N17-C-71408-5333	CONNECTOR, PLUG, ELECTRICAL: 1 contact, male, round; straight type; BNC connector; $31 / 32 \mathrm{in} . \mathrm{lg}, 9 / 16 \mathrm{in}$. diam of a; RF connector, 50 ohms nominal impedance; constant frequency impedance; cylindrical shape, brass, silver pl; locking type; teflon insert; 0.206 in . diam max cable opening; NAVY dwg RE49F246; MIL type UG-88/U	Connector to J-1303 in RFA
P-602	N17-C-99999-1179	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; male, style 12 Ref Dwg Group 206, 52 ohms nominal iwpedance; plastic dielectric; round, 90° angle shape; 1-7/32 in. lg by 1-5/8 in. wd o/a dimen; w/inclosing brass shell, silver pl ; polarized; locking type, 5/8 in. -24 thd coupling nut, w/ cable clamp; RF connector; CARO part/dwg 18750	Connector to J-1304 in RFA
P-603		Same as P-601	Connector to J-1305 in RFA
P-604	N17-C-800956-126	CAP, PLATE: ceramic body w/tin pl beryllium copper grip; fits $9 / 16 \mathrm{in}$. diam cap; CNA type SPP-9	Connector to J-1306 in RFA
P-605	N17-C-800646-201	CAP, PLATE: ceramic body w/tin pl beryllium copper grip; fits $3 / 8 \mathrm{in}$. diam cap; CNA type SPP-3	Connector to J-1107 in LLRM
P-606		Same as P-605	Connector to J-1108 in LLRM
P-607		Same as P-601	Connector to J-2928 in RFO
P-608		Same as P-605	Connector to J-503 in MVPS
P-609	N17-C-71108-5314	CONNECTOR, PLUG, ELECTRICAL: 1 contact, female, rd, straight type; 1-1/32 in. $\mathrm{lg}, 3 / 4 \mathrm{in}$. diam, o/a dimen; RF connector, 50 ohms nominal impedance; cylindrical shape, brass, silver pl; locking type; teflon insert; 0.206 in . diam max cable opening; per MIL-C-3608; ML type UG-89/U	RF Output to Receiver
P-610	N17-C-71414-1801	CONNECTOR, PLUG, ELECTRICAL: 1 contact, male, round, straight type; 1-3/4 in. lg, 13/16 in. diam, o/a dimen; RF connector, 52 ohms nominal impedance; cylindrical shape, brass, silver pl; locking type; teflon insert; NAVY dwg RE49F569; MIL type UG-536/U	RF Output
Z-601	N17-S-50965-9117	FILTER, RADIO INTERFERENCE: 125v RMS, 22 amp RMS min, 60 cps ; internal voltage drop at rated load less than 0.20 v RMS; continucus duty; hermetically sealed; capable of operating in ambient temp of $-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ with a relative humidity of 95% at $+50^{\circ} \mathrm{C} ; 3-5 / 16 \mathrm{in}$. lg excluding term, 2 in . wd max, 7/8 in. h o/a dimen; two no. 8-32 thd stud w/ solder lug term located 1 at each end diagonally opposite each other; two 3/16 in. diam mtg holes spaced 2-15/16 in. c to c; CBTL part/dwg NL-901570-1	RF Filter
Z-602		Same as Z-601	RF Filter
Z-603	N17-S-50977-5856	FILTER, RADIO INTERFERENCE: 125v RMS, 9.0 amps RMS min, 60 cps ; internal voltage drop at rated load less than 0.20 v RMS; continuous duty; hermetically sealed; capable of operating in ambient temp of $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ with a relative humidity of 95% at $+50^{\circ} \mathrm{C}$; 2-3/4 in. lg excluding term, 1-3/4 in. wd, 13/16 in. h o/a dimen; two no. 8-32 thd stud term w/nut \&	RF Filter

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { Z-603 } \\ & \text { (cont) } \end{aligned}$ Z-604 701-799	F16-R-400984-104	lockwasher located 1 at each end diagonally opposite each other; two $3 / 16 \mathrm{in}$. diam mtg holes spaced $2-3 / 8 \mathrm{in}$. c to c ; CBTL part/dwg NL-901567-1 Same as 2-603 MOUNTING, MT-1423/SRT: (Rack, Electrical Equipment): steel; enameled finish; grey front panel; o/a dimen 24-37/64 in. $\mathrm{lg}, 16-1 / 8 \mathrm{in} . \mathrm{wd}, 11-1 / 8 \mathrm{in} . \mathrm{h}$; base blocks are discarded, assembled w/shock mounts at installation; contains 2 air blower assys and 3 air filters; wired; acts as AC input term for equipment; incl air duct for directing air to equipment; used as base mount for CABINET, ELECTRICAL EQUIPMENT, CY-1571/ SRT, CY-1572/SRT, CY-1573/SRT; p/o AN/SRT-14, 15, 16; CBTL part/dwg NL-981791-14	RF Filter
B-701	N17-B-21188-654	BLOWER: centrifugal vane; electric motor operated; nonportable; guarded; motor $1 / 30 \mathrm{hp}, 3300 \mathrm{rpm}, 50 / 60 \mathrm{cyc}$, single ph, 115 v AC; $9-1 / 4 \mathrm{in}$. lg by $6-3 / 8 \mathrm{in}$. wd by $5-15 / 16 \mathrm{in}$. $\mathrm{h} \mathrm{o} / \mathrm{a}$; 128 cfm at 3300 rpm ; single speed, off-on toggle switch; direct drive; CW; steel, painted dark grey; pedestal mtg; wheel is dynamically balanced; CCBN model DRPR type KS-3505A-CW; CBTL part/dwg NL-981176-12-1; c/o B-701A, O-701 and impeller housing	General Ventilation
B-701A	N17-M-55257-3910	MOTOR, ALTERNATING CURRENT: capacitor-induction motor; 115 v , $50 / 60 \mathrm{cyc}$, single $\mathrm{ph}, 49.5 \mathrm{w}$ approx; $1 / 30 \mathrm{hp}$, single takeoff, 3300 rpm , reversible in rotation; closed frame; ambient temp minus $20^{\circ} \mathrm{C}$ to plus $65^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ temp rise for continuous duty; shaft flatted on two sides, 90° apart; 4-5/16 in. lg excluding shaft, $3-3 / 8 \mathrm{in}$. diam; 0.3125 in . diam shaft, shaft extends $1-1 / 4 \mathrm{in}$. from frame; four flexible wire lead term; mtd by half section motor clamp, 1-13/16 in. radius, two $5 / 16$ in. diam holes spaced $4-13 / 32$ in. c to c ; CCBN type no. S2R-AC2 Series 94; CBTL part/dwg NL-982727-3; p/o B-701	Drive for B-701
B-702	N17-B-21188-653	BLOWER: centrifugal vane; electric motor operated; nonportable; guarded; motor $1 / 30 \mathrm{hp}, 3300 \mathrm{rpm}, 50 / 60 \mathrm{cvc}$, single $\mathrm{ph}, 115 \mathrm{v}$ AC; $9-1 / 4 \mathrm{in}$. \lg by $6-3 / 8 \mathrm{in}$. wd by $5-15 / 16 \mathrm{in}$. ho o a; 128 cfm at 3300 rpm ; single speed, off-on toggle switch; direct drive; CCW; steel, painted dark grey; pedestal mtg; wheel is dynamically balanced; CCBN model DRPR type KS-3505A-CCW; CBTL part/dwg NL-981176-12-2; c/o B-702A, O-702, and impeller housing	General Ventilation
B-702A		Same as B-701A; p/o B-702	Drive for B-702
C-701	N16-C-49981-9914	CAPACITOR, FIXED, PAPER DIELECTRIC: one section; case style no. 20, MBCA Ref Dwg Group 1; $4 \mathrm{mf},+20 \%$, -10% tolerance; 220 v AC, hermetically sealed metal case; case dimen excluding term, 5-1/32 in. lg, 1-3/8 in. diam; two solder lug type term, $9 / 16 \mathrm{in}$. h, located on top, spaced $1 / 2 \mathrm{in}$. c to c; castor oil impregnated; castor oil filled; no internal ground connections; clamp mtg; CSF type 53P, Cat no. C53P4, outline dwg no. S-3-311, part no. P-17332	Split Phase Capacitator for B-701
C-702		Same as C-701	Split Phase Capacitor for B-702

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-701	For Reference Only	BOARD, link: melamine glass sheet per spec BuShips 17P25 (SHIPS); four solder lug type term; without barriers; o/a dimen $4-3 / 4 \mathrm{in} . \mathrm{lg}, 1 \mathrm{in}$. wd, $31 / 32 \mathrm{in} . \mathrm{h}$; two 0.221 in . diam mtg holes, 4-1/4 in. mtg c to c ; marked E-701 and 1, 2, 3, 4; incl link strips; CBTL part/dwg NL-981213-1	Series-Parallel on Parallel Connection for Heaters
E-702	N17-B-77892-7550	TERMINAL BOARD: molded melamine board; nine double screw type term; barrier type; o/a dimen 4-11/16 in. $\mathrm{lg}, 1-1 / 8$ in $w d, 1 / 2 \mathrm{in} . \mathrm{h}$; four 0.175 in . diam mtg holes, $4-3 / 8 \mathrm{in}$. by $27 / 64 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; each term incl nickel pl brass eyelet, term screws nickel pl; CJC part No. 9-141B	Connections for Blowers and Heaters
E-703	Low Failure Item	INSULATOR, plate; neoprene, grade 2501 med soft; 4-5/8 in. lg, 2 in. h, $3 / 16$ in. thk; CCCX; CBTL part/dwg NL-981198-1	Liner for Clamp Assy
E-704		Same as E-703	Liner for Clamp Assy
H-701	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, coupling: stainless steel, 1 bolt employed; clamping diam 3-9/16 in. to 4-1/2 in.; 3/4 in. wd; approx 4-3/4 in. h; CZB type QS200-M64S	Clamps Flexible Coupling to Air Filter and Blower
H-702		Same as H-701	Clamps Flexible Coupling to Air Filter and Blower
H-703		Same as H-701	Clamps Flexible Coupling to Air Filter and Blower
H-704		Same as H-701	Clamps Flexible Coupling to Air Filter and Blower
H-705	Low Failure Item	CLAMP ASSEMBLY: air duct; incl metal clamp and 13 oz nylon stitched canvas duct; rectangular shape; $2 \mathrm{in} . \lg , 1-3 / 4 \mathrm{in}$. wd approx, 5-7/16 in. h; CBTL part/dwg NL-982923-12	Connects Blower to Vent
H-706		Same as H-705	Connects Blower to Vent
HR-701	N17-H-60027-9421	HEATING ELEMENT, ELECTRICAL: 115 v , 150 w , $1.8 \mathrm{amp} ;$ chrome steel sheath; two screw type term; dimen, excluding projecting term, $7 \mathrm{in} . \lg , 1-1 / 2 \mathrm{in}$. wd, $15 / 32 \mathrm{in}$. thk; two $1 / 4$ in. mtg slots, 6-1/4 in. c to c; CG Cat no. 2A338, dwg no. K-5204191 G6	Low Temperature Cabinet Heater
HR-702		Same as HR-701	Low Temperature Cabinet Heater
HR-703		Same as HR-701	Low Temperature Cabinet Heater
HR-704		Same as HR-701	Low Temperature Cabinet Heater
O-701	N17-I-19006-5184	IMPELLER, FAN, CENTRIFUGAL: multiblade; forward curve blades; steel; cad pl; single wd; 30 blades; CW; o/a dimen $3-13 / 16 \mathrm{in}$. diam by 3.0 in . wd; single inside hub, $1.0 \mathrm{in} . \mathrm{lg}$, 0.312 in. bore; mtd with two no. 1/4-20 set screws; CCBN part no. AO-702-CW, dwg no. KC-9767; CBTL part/dwg NL-982726-12-2; p/o B-701	Impeller for B-701

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-702	N17-I-19006-5286	IMPELLER, FAN, CENTRIFUGAL: multiblade; forward curve blades; steel; cad pl; single wd; 30 blades; CCW; o/a dimen, $3-13 / 16 \mathrm{in}$. diam ${ }^{2}$ by 3.0 in . wd; single inside hub, $1.0 \mathrm{in} . \mathrm{lg}$, 0.312 in . bore; mtd with two no. $1 / 4-20$ set screws; CCBN part no. AO-701-CCW, dwg no. KC-9767; CBTL part/dwg NL-982726-12-4; p/ o B-702	Impeller for B-702
0-703	For Replacement. Use G42-C-20721-50	FILTER, AIR CONDITIONING: permanent; cloth no. 16 mesh 0.013 wire aluminum screen; 11-1/4 in. $\lg , 6-3 / 4 \mathrm{in} . \mathrm{h}, 0.013$ in. thk; eighteen 0.140 in . mtg holes; CBTL part/dwg NL-981351-1	Bottom Screening
O-'704		Same as 0-703	Bottom Screening
0-705	For Replacement Use G42-C-20763-136	FILTER, AIR CONDITIONING: permanent; monel wire cloth no. 6 mesh 0.032 diam screen; 13-9/16 in. lg , 5-3/4 in. h; eighteen 9/64 in. diam mtg holes; CBTL part/dwg NL-981516-2	Panel Screening
0-706	N17-C-794001-186	CLEANER ELEMENT, air: oil wetted type; steel container with bronze screen cloth; 4-7/8 in. lg, 3-9/16 in. OD; replaceable; one 1-5/16 in. lg, 7/8 in. wd wing nut soldered to $3-3 / 32$ in. lg shaft, has $1 / 4 \mathrm{in} .-28$ thd $3 / 4 \mathrm{in}$. at one end; four no. 11 (0.191) drill holes equi-spaced on $2-3 / 8 \mathrm{in}$. diam BC; CBEN catalog no. 1-ST modified; CBTL part/dwg NL-980953-2	Air Filter
0-707		Same as O-706	Air Filter
0-708		Same as 0-706	Air Filter
0-709	N17-C-99999-1192	COUPLING, SHAFT, FLEXIBLE: neoprene tube insert; 4-1/16 in. ID, 2-3/8 in. wd; 1/16 in. wall thickness; CBTL part/dwg NL-982362-1-1	Couples Blower to Air Filter
0-710		Same as 0-709	Couples Blower to Air Filter
1001-1299	F16-M-42274-2541	MODULATOR, RADIO, MD-229/SRT: emission type as indicated in MBCA Ref Dwg Grp 5 incl AI, A3, Fl; amplitude modulation 65 w audio output; frequency modulation 1000 cyc frequency shift; for audio modulator 100 to 5000 cyc frequency response $\pm 1 \mathrm{db} ; 600$ ohms input impedance, 1000 ohms and 8000 ohms output impedance; external and self-contained power supplies, 115 v AC, 60 cyc , single ph and DC voltages of +500 v , $+300 \mathrm{v},-12 \mathrm{v},-24 \mathrm{v},-220 \mathrm{v}$; o/a dimen 25-1/4in. lg, 16 in . wd, $8-21 / 32 \mathrm{in} . \mathrm{h}$; acts as modulator for AN/SRT-14, 15 and 16 and is used as driver for AN/SRT-15 and 16; contains an antenna tuning unit by-pass transfer circuit; incl electronic keyer; provides only switching function for F 4 emission (input facsimile); CBTL part/dwg NL-900438-14	
C-1001	For Replacement Use N16-C-19781-5626	CAPACITOR, FIXED, ELECTROLYTIC: 1 section, 25 mf , 25v DCW; per spec JAN-C-62; JAN type CE63C250F	Coupling J-1106 to T-1003
C-1002	N16-C-20179-5441	CAPACITOR, FIXED, ELECTROLYTIC: 1 section, 100 mf , 15v DCW; per spec JAN-C-62; JAN type CE63C101E	By-Pass Microphone Voltage Supply
C-1003	N16-C-53204-4089	CAPACITOR, FIXED, PAPER DIELECTRIC: 2 sections, each section $100,000 \mathrm{mmf}+20 \%-10 \%$; 600v DCW; per spec JAN-C25; JAN type CP53B4FF104V	AGC Line By-Pass
C-1003A		p/o C-1003	ACG Line By-Pass

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-1003B		p/o C-1003	AGC Line By-Pass
C-1004	N16-C-42765-4884	CAPACITOR, FIXED, PAPER DIELECTRIC: 10, 000 mmf $\pm 20 \%$; 400v DCW, per spec JAN-C-91; JAN type CN30E103M	Coupling V-1001 to V-1002A
C-1005		Same as C-1004	Coupling V-1002B to V-1013A
C-1006		Same as C-1004	Squelch Coupling V-1002B to V-1008A
C-1007	For Replacement Use N16-C-47293-9453	CAPACITOR, FIXED, PAPER DIELECTRIC: 500, 000 mmf $+20 \%-10 \%$; 200v DCW; per spec JAN -C-25; JAN type CP53B1EC504V	Cathode By-Pass V-1004B
C-1008	N16-C-48808-9150	CAPACITOR, FIXED, PAPER DIELECTRIC: $1.0 \mathrm{mf}+20 \%$ -10\%; 100v DCW, per spec JAN-C-25; JAN type CP53B1FB105V	Decoupling to V-1014
C. 1009	N16-C-44285-6258	CAPACITOR, FIXED, PAPER DIELECTRIC: 50, 000 mmf $\pm 20 \%$; 400v DCW; per spec JAN-C-91; JAN type CN43E503M	Decoupling V-1002B to V-10140
C-1010	N16-C-31797-5484	CAPACITOR, FIXED, MICA DIELECTRIC: $2000 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM30A202J	Coupling V-1008A to V-1004A
C-1011		Same as C-1009	Coupling V-1008A to V-1008B
C-1012		Same as C-1009	Coupling V-1008 to CR-1002
C-1013		Same as C-1008	Squelch Storage Cond.
C-1014		Same as C-1007	Filter Squelch Bias Line
C-1015		Same as C-1004	Coupling Z-1001 to V-1002B
C-1016		Same as C-1004	Coupling V-1003A and B
C-1017	For Replacement Use N16-C-42740-5575	CAPACITOR, FIXED, PAPER DIELECTRIC: 10, 000 mmf $\pm 20 \%$; 1000v DCW; per spec JAN-C-25; JAN type CP29A1EG103M	Coupling V-1003B to V-1005A
C-1018		Same as C-1017	Coupling V-1003B to V-1005B
C-1019	N16-C-49948-9355	CAPACITOR, FIXED, PAPER DIELECTRIC: $4.0 \mathrm{mf} \pm 10 \%$; 100v DCW; per spec JAN-C-25; JAN type CP54B1EB405K	Anti Sparking K-1101 Contacts
C-1020	N16-C-27181-4391	CAPACITOR, FIXED, MICA DIELECTRIC: $33 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM20A330J	Coupling V-1017B to V-1017A
C-1021		Same as C-1020	Coupling V-1017A to V-1017B
C-1022	For Replacement Use N16-C-30109-3806	CAPACITOR, FIXED, MICA DIELECTRIC: $470 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM20A471J	Keyer Wave Shaping

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-1023		Same as C-1010	Keyer Wave Shaping
C-1024	N16-C-31085-3679	CAPACITOR, FIXED, MICA DIELECTRIC: 1000 mmf $\pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM30A102J	Keyer Wave Shaping
C-1025	N16-C-32193-2480	CAPACITOR, FIXED, MICA DIELECTRIC: $3000 \mathrm{mmf}+5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM30A302J	Keyer Wave Shaping
C-1026	N16-C-32641-6343	CAPACITOR, FIXED, MICA DIELECTRIC: $4700 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM35E472J	Keyer Wave Shaping
C-1027		Same as C-1024	$\begin{aligned} & \text { Phase Shifter } \\ & \text { V-1020 } \end{aligned}$
C-1028		Same as C-1024	$\begin{aligned} & \text { Phase Shifter } \\ & \text { V-1020 } \end{aligned}$
C-1029	N16-C-45805-6260	CAPACITOR, FIXED, PAPER DIELECTRIC: 100, 000 mmf $\pm 20 \%$; 400v DCW; per spec JAN-C-91, JAN type CN43E104M	$\begin{aligned} & \text { Coupling V-1020A } \\ & \text { to V-1020B } \end{aligned}$
C-1030	N16-C-53697-7220	CAPACITOR, FIXED, PAPER DIELECTRIC: 2 sections; $500,000 \mathrm{mmf}-500,000 \mathrm{mmf}+20 \%-10 \%$; 600v DCW; per spec JAN-C-25; JAN type CP67B4EF504V	
C-1030A		p/o C-1030	Coupling V-1020B $\text { to } \mathrm{V}-1020 \mathrm{~A}$
C-1030B		p/o C-1030	$\begin{aligned} & \text { Coupling V-1020 } \\ & \text { Output } \end{aligned}$
C-1031	For Replacement Use N16-C-27656-2601	CAPACITOR, FIXED, MICA DIELECTRIC: $51 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-5; JAN type CM20A510J	$\begin{aligned} & \text { Cathode By-Pass } \\ & \text { V-1020 } \end{aligned}$
C-1032	For Replacement Use N16-C-29133-4001	CAPACITOR, FLXED, MICA DIELECTRIC: 180 mmf $\pm 10 \%$; 500v DCW; per spec JAN-C-5; JAN type CM20A181K	Cathode By-Pass V-1020
C-1033		Not Used	
C-1034	N16-C-20981-7841	CAPACITOR, FIXED, ELECTROLYTIC: 1 section, 1500 mf , 25v DCW; per spec JAN-C-62; JAN type CE51B152F	Filter 12v Power Supply
C-1035		Same as C-1034	Filter 12v Power Supply
C-1036	N16-C-20119-1001	CAPACITOR, FIXED, ELECTROLYTIC: 1 section; 80 mf , 450v DCW; per spec JAN-C-62; JAN type CE51E800R	Filter 250v Power Supply
C-1037	N16-C-53448-1600	CAPACITOR, FIXED, PAPER DIELECTRIC: 2 sections, $250,000 \mathrm{mmf}-250,000 \mathrm{mmf},+20 \%-10 \%$; 600 v DCW; per spec JAN-C-25; JAN type CP53B4FF254V	
C-1037A		p/o C-1037	$\begin{aligned} & \text { By-Pass Cathode } \\ & \text { V-1011A } \end{aligned}$
C-1037B		p/o C-1037	$\begin{aligned} & \text { By-Pass Grid } \\ & \text { V-1011 } \end{aligned}$
C-1038	N16-C-47321-9602	CAPACITOR, FLXED, PAPER DIELECTRIC: 500, 000 mmf +20\%; 600v DCW; per spec JAN-C-25; JAN type CP53B1FF504V	$\begin{aligned} & \text { By-Pass Cathode } \\ & \text { V-1011B } \end{aligned}$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-1039	For Replacement Use N16-C-47297-3107	CAPACITOR, FIXED, PAPER DIELECTRIC: $0.5 \mathrm{mf}+20 \%$ -10\%, 600v DCW; per spec JAN-C-25; JAN type CP55B1FF504V	Time Delay to Plate and Grid V-1023
C-1040	N16-C-49981-9980	CAPACITOR, FIXED, PAPER DIELECTRIC: $4 \mathrm{mf}+20 \%-10 \%$; 600v DCW; per spec JAN-C-25; JAN type CP40C2FF405V	250v Regulated Supply By-Pass
C-1041	N16-C-46371-9896	CAPACITOR, FIXED, PAPER DIELECTRIC: $250,000 \mathrm{mmf}$ $+20 \%-10 \%$; 600v DCW; per spec JAN-C-25; JAN type CP53B2EF254V	Coupling V-1004A to Z-1001
C-1042	N16-C-21942-8247	CAPACITOR, FIXED, ELECTROLYTIC: 2 sections; 35-35 mf; 400v DCW; per spec JAN-C-62, JAN type CE52C350Q	
C-1042A		p/o C-1042	Filter
C-1042B		p/o C-1042	Filter
C-1043		Same as C-1004	Cathode By-Pass V-1003A
C-1044		Same as C-1024	Divider Compensator
C-1045	For Replacement Use N16-C-47321-9567	CAPACITOR, FIXED, PAPER DIELECTRIC: 0.5 mf +40\%-15\%; 1000v DCW; per spec JAN-C-25; JAN type CP63B1DG504X	Filter to V-1003B
C-1046		Same as C-1004	Keyer Wave Shaping
C-1047	N16-C-43117-1701	CAPACITOR, FIXED, PAPER DIELECTRIC: 20, 000 mmf $\pm 10 \%$; 600v DCW; per spec JAN-C-91; JAN type CN42E203K	Keyer Wave Shaping
C-1048	N16-C-43493-7988	CAPACITOR, FIXED, PAPER DIELECTRIC: $30,000 \mathrm{mmf}$ $\pm 10 \%$; 400v DCW; per spec JAN-C-91; JAN type CN42E 303 K	Keyer Wave Shaping
C-1049		Same as C-1009	Keyer Wave Shaping
C-1050	N16-C-17069-2651	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 100 mmf $\pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC26UJ101G	By-Pass V-1018 Plate \#1.
C-1051		Same as C-1050	By-Pass V-1018 Plate \#2
C-1052		Same as C-1004	$\begin{aligned} & \text { By-Pass V-1013B } \\ & \text { Plate \#2 } \end{aligned}$
C-1053		Same as C-1004	Side Tone Coupling
CR-1001	N17-R-99999-0867	RECTIFIER, METALLIC: selenium; designed for single ph full wave bridge circuit, MBCA Ref Dwg Group 23-1; input data, per leg, new, 16v RMS, aged, 17v RMS, $\max 18 \mathrm{v}$ RMS, single ph; output 12.5 v DC, 0.5 amps DC max bridge type rectification; round shape, o/a dimen excluding term 2-3/4 in. h by $3-3 / 8$ in. diam; one m tg stud with $5 / 16 \mathrm{in}$. -18 thd, $5 / 8$ in. lg ; salt spray test per BuShips 16E4(RE); tropicalization per JAN-T-152; built to spec MIL-R-15736; CFT type no. 106D7737; .CBTL part/dwg NL-900760-1	Rectifier 12v
CR-1002	N16-T-51734-10	CRYSTAL UNIT, RECTIFYING: germanium diode; per spec JAN-1-A; JAN type 1N34A	Squelch Diode

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
F-1001	N17-F-14690-5825	FUSE, CARTRIDGE: $3 \mathrm{amps}, 250 \mathrm{v}$; time delay, 150% for $0-1$ minute, 300% for 6 seconds minimum; 1-1/2 in. $\mathrm{lg}, 0.406 \mathrm{in}$. diam; per spec MIL-F-15160A; ML type FO9G3R00B	T-1001 Protection
F-1002	N17-F-14690-5800	FUSE, CARTRIDGE: $2 \mathrm{amps}, 250 \mathrm{v}$; time delay, 150% for 0-1 minute, 300% for 6 seconds minimum; 1-1/2 in. $\mathrm{lg}, 0.406 \mathrm{in}$. diam; per spec MIL-F-15160A; ML type FO9G2R00B	T-1002 Protection
H-1001	N17-C-99999-489	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; one hole in bracket for no. 10 machine screw for mtg; 1.625 in. diam by $7 / 8 \mathrm{in}$. h o/a; CAIS type $926-\mathrm{H}-5$	u/w C-1034
H-1001. 1		Same as H-1001	u/w C-1035
H-1001. 2		Same as H-1001	w/w C-1036
H-1001. 3		Same as H-1001	u/w V-1006
H-1001. 4		Same as H-1001	u/w V-1007
H-1002	Low Failure Item	HINGE: piano; aluminum; superset finish; 6-25/32 in. lg by 1-1/16 in. wd o/a; non-removable pin; 8 mtg holes total, 4 holes 0.128 in . diam for rivets, 4 holes 0.169 in . diam for machine screws; CBTL part/dwg NL-900426-2	For Access Door
H-1003	Low Failure Item	SLIDE, chassis: right hand; c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2 \mathrm{in}$. c to c ; two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes, 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For LLRM Chassis
H-1004	Low Failure Item	SLIDE, chassis: left hand, c / o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0. 169 in . diam mtg holes, countersunk, spaced 2-1/2 in. c to c, two $1 / 4$ in. -28 NF-2 thd mtg holes spaced $1 \mathrm{in.c}$ to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For LLRM Chassis
H-1005	N16-C-300798-866	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; 1 hole in bracket for no. 10 machine screw for mtg ; 1-3/8 in. diam by $3 / 4 \mathrm{in}$. h o/a; CAIS type 926 -C	u/w V-1009
H-1006		Same as H-1005	u/w V-1010
I-1001	G17-L-6806-130	LAMP, GLOW: neon, 105-125v, $\mathbf{1 / 2 5} \mathbf{w}$; MBCA Ref Dwg Group 7, single contact, bayonet candalabra base, T-3-1/4, clear, orange-red glow; 1-3/16 in. max o7a h; CG type NE-51; same as I-503	250v Regulated Power Supply "ON"
J-1101	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts \& term; w/partially enclosed plastic shell; polarized; non-locking; $5 \mathrm{amp}, 600 \mathrm{v}$ DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	Chassis Connector to J-603
J-1102		Same as J-1101	Chassis Connector to J-604

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-1103		Same as J-1101	Chassis Connector to J-605
J-1104	N17-J-39253-3043	JACK, telephone: 1-1/4 in. $\mathrm{lg}, 3 / 4 \mathrm{in}$. diam o/a excluding lugs; J3-2B contact arrangement; $3 / 8 \mathrm{in}$. -32 thd mtg bushing 5/16 in. lg; per spec JAN-J-641; JAN type JJ-089	Local Headphone
J-1105	N17-J-39435-6234	JACK, telephone: o/a dimen 1-7/32 in. lg, 15/16 in. wd, 49/64 in. h o/a; J2-2A contact arrangement; mts by $3 / 8$ in. -32 thd mtg bushing with one washer and one hex nut; CMA no. SCA2B; per spec JAN-J-641; JAN type JJ-033	Carbon Microphone Input
J-1106	N17-C-72252-1131	CONNECTOR, RECEPTACLE, ELECTRICAL: 5 contacts; 1 mating end, 5 size 16 contacts, female, rated at 22 amps, 700 v DCW; 500v RMS; phenolic dielectric; box receptacle, straight shape; $15 / 16 \mathrm{in} . \lg$ by 1-3/16 in. sq o/a dimen; w/inclosing shell, aluminum, cad pl, corrosion resistant; polarized; locking type with $7 / 8 \mathrm{in} .-20$ coupling thd; four 0.120 in . diam mtg holes located on sq mtg flange with $29 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; per spec MII-C-5015; MII type AN3102A-14S-5S	Handset Input
J-1107	N17-I-59705-1251	INSULATOR, FEEDTHRU: brass; silver pl finish; $15 / 16 \mathrm{in}$. $\mathrm{lg}, 5 / 8 \mathrm{in}$. diam o/a; CNA type XS-7 modified; CBTL part/dwg NL-900095-1; same as J-503	Medium Voltage Input
J-1108		Same as J-1107	LLRM Output
J-1109	N17-C-73301-5363	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 contacts, female, round; polarized; straight type; 1-1/4 in. $\lg , .7 / 16 \mathrm{in}$. wd, 27/32 in. ho/a; rectangular shape; molded melamine; two no. 4-40 NC-2 thd screws, 0.937 in . mtg/c; socket contacts phosphor bronze, gold pl; CCCK type MRE-14S-G	Main Chassis Connector for Preamplifier, Mates with J-1111
J-1110	N17-C-99999-1196	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric red nylon; 29/32 in. lg, 5/16 in. wd incl hex coupling nut o/a dimen; 1000v peak; $w /$ inclosing shell, cylindrical shape, brass, nickel pl; not polarized; 1 hole, $1 / 4 \mathrm{in}$. diam; 1/4 in. -32 thd on receptacle for mating w/ coupling nut; CARO part 225A; same as J-504	+250v Regulated Power Supply Test Point
J-1111	N17-C-73301-5358	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 contacts, male, round, no. 20 AWG; polarized; straight type; 1-1/4 in. $\mathrm{lg}, 7 / 16 \mathrm{in} . \mathrm{wd}, 25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen; rectangular shape body, molded melamine; t wo no. 4-40 NC-2 thd screws, 0.937 in . $\mathrm{mtg} / \mathrm{c}$; contacts brass, gold pl; CCCK type MRE-14P-G	Preamplifier Plug to Main Chassis, Mates with J-1109
K-1101	N17-R-99999-0849	RELAY, ARMATURE: three sets of form "C" contacts; 3PST; transfer function; 150v peak, 5 amp make, 3 amps break; one winding, 24v DC; one term per contact, two term on coil, one side of coil grounded; continuous duty capable of $0-20 \mathrm{cps}$ without chatter; 1-7/16 in. lg by 1-3/4 in. h by $1-1 / 8 \mathrm{in}$. wd o/a dimen; two no. 4-40 tapped holes on 0.656 in . by 0.375 in . mtg/c; CBTL part/dwg NL-900098-1	Keying Relay
K-1102	N17-R-99999-0856	RELAY, ARMATURE: contact arrangement 1C, SPDT, 2 amp; one winding, 5000 ohms resistance, $24 v \mathrm{DC}$; one term per contact, two term on coil; continuous duty, hermetically sealed; $2-3 / 8 \mathrm{in}$. lg by $1-1 / 2 \mathrm{in}$. wd by $1-1 / 2 \mathrm{in}$. $\mathrm{d} 0 / \mathrm{a}$ dimen; motd by means of two no. 6-32 thd studs 1-3/8 in. c to c, approx $1 / 2$ in. lg; CSI type 5RJ5000G	Transfer Function Relay
K-1103		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1002	N16-S-34576-6514	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; $1-15 / 16 \mathrm{in} . \lg ; 1.093 \mathrm{in}$. diam o/a dimen; bayonet mtg; per spec JAN-S-28A; JAN type TS103U02	u/w XV-1002
0-1003		Same as O-1002	u/w XV-1003
O-1004		Same as 0-1002	u/w XV-1004
0-1005		Same as 0-1002	u/w XV-1005
0-1006	N17-C-800646-201	CLIP, ELECTRICAL; grid-plate style 9, MBCA Ref Dwg Group 37; phosphor bronze; 1-1/8 in. lg, 5/8 in. wd, 9/16 in. h o/a; ceramic insulation; 1 solder lug type term; $3 / 8 \mathrm{in}$. when opened; retains tension under high heat conditions, used as tube plate clip; CJA no. 36002, part/dwg K-36002	u/w XV-1006
0-1007		Same as O-1006	u/w XV-1007
O-1008		Same as O-1002	u/w XV-1008
0-1009		Not Used	
0-1010		Not Used	
0-1011		Same as 0-1002	u/w XV-1011
0-1012	N16-S-34557-8351	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; 1-3/4 in. lg, 0.958 in . diam o/a dimen; bayonet mtg; per spec JAN-S-28A, JAN type TS102U02	u/w XV-1012
0-1013		Same as O-1001	u/w XV-1013
0-1014		Same as 0-1001	w/w XV-1014
0-1015		Same as O-1002	u/w XV-1015
0-1016		Same as 0-1001	u/w XV-1016
0-1017		Same as 0-1002	u/w XV-1017
0-1018		Same as O-1001	u/w XV-1018
0-1019		Same as O-1002	u/w XV-1019
--1020		Same as 0-1002	u/w XV-1020
0-1021	N16-S-34607-6039	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; 2-1/4 in. lg, 0.958 in . diam o/a dimen; bayonet mtg; per spec JAN-S-28A; JAN type TS102U03	u/w XV-1021
0-1022		Same as O-1021	u/w XV-1022
0-1023		Same as O-1002	u/w XV-1023
0-1024	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: lower; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $10.844 \mathrm{in} . \lg , 1 / 4 \mathrm{in}$. wd, 0.125 in . thk of a dimen; CCCS dwg no. A-9019.9-2 (Revision no. 3); p/o H-1003; same as $0-508$	p/o Chassis Slide
O-1024. 1		Same as O-1024; p/o H-1004	p/o Chassis Slide

TABLE 8-3. TABLE OF REPLACEABLE PARTS

		Air Force		
	O-1025	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \mathrm{lg}$, 1/4 in. wd, 0.125 in . thk o/a dimen; CCCS dwg no. A-9019. 9-1 (Revision no. 3); p/o H-1003; same as O-506	p/o Chassis Slide
	O-1025. 1		Sáme as O-1025; p/o H-1004	p/o Chassis Slide
	O-1026	N17-S-99999-0590	SPRING, HELICAL COMPRESSION: cylindrical; stainless steel, passivate finish; $1 / 2 \mathrm{in} . \lg$ by $1 / 4 \mathrm{in}$. diam; 5 RH turns, 0.035 in . diam open ends ground; per MIL-W-6713 cond B, type 302; CBTL part/dwg NL-983629-1	p/ o S-1101
+	O-1027	Low Failure Item	SPRING, HELICAL COMPRESSION: 0.032 in . diam music wire per NAVY spec 22W11C; 3/8 in. h, 1/2 in. diam o/a; $3-1 / 2$ turns, RH or LH wound; first and last $3 / 4$ turns are flat; cad pl; CBTL part/dwg NL-900018-1; u/w H-1003; same as 0-507	Stop Button Spring for Chassis Slide
	O-1027. 1		Same as O-1027; w/w H-1004	Stop Button Spring for Chassis Slide
	O-1028	Low Failure Item	SPRING: loop type; for latch, 0.038 in . diam corrosion resisting steel spring wire; 2-1/2 in. $\lg , 11 / 16 \mathrm{in} . \mathrm{h} \mathrm{o/a}$; one end semi-hook type, one end open; irregular shape; CBTL part/dwg NL-900991-1; p/o H-1003; same as 0-509	p/o Chassis Slide
1	O-1028. 1		Same as O-1028; p/o H-1004	p/o Chassis Slide
	O-1029	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 cond $1 / 4 \mathrm{H}$, 0.025 in . thk strip per MIL-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8 in. lg, 15/ $16 \mathrm{in}. \mathrm{h;} \mathrm{CBTL} \mathrm{part/dwg}$ NL-900142-1; p/o S-1104; same as 0-510	For Contact in S-1104
	R-1001	N16-R-49598-811	RESISTOR, FIXED, COMPOSITION: 120 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF121K	Voltage Divider Microphone Supply
	R-1002		Same as R-1001	Voltage Divider Microphone Supply
	R-1003	N16-R-49967-811	RESISTOR, FIXED, COMPOSITION: 1,500 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF152K	Voltage Divider T-1003 Output
	R-1004	N16-R-50696-811	RESISTOR, FIXED, COMPOSITION: 180, 000 ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF184K	Voltage Divider T-1003 Output
	R-1005	N16-R-49688-811	RESISTOR, FIXED, COMPOSITION: 270 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF271K	Cathode Bias V-1001
	R-1006	N16-R-50481-457	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF473K	Plate Resistor V-1001
	R-1007	For Replacement Use N16-R-50355-498 N16-R-50337-528	RESISTOR, FIXED, COMPOSITION: 18, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF183K	Screen Resistor V-1001
	R-1008		RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF153K	Screen Resistor V-1001
	R-1009		Same as R-1004	Grid Resistor V-1002A

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1010	N16-R-50012-811	RESISTOR, FIXED, COMPOSITION: 2, 200 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF222K	Cathode Resistor V-1002A
R-1011	N16-R-50786-811	RESISTOR, FIXED, COMPOSITION: 390, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF394K	Plate Resistor $\mathrm{V}-1002 \mathrm{~A}$
R-1012	N16-R-50741-126	RESISTOR, FIXED, COMPOSITION: 270, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF274J	Voltage Divider V-1013A, V-1014
R-1013	N16-R-50975-811	RESISTOR, FIXED, COMPOSITION: 1.0 meg ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF105K	AGC Filter Resistor V-1013A
$\dot{\mathrm{R}}$-1014	N16-R-88179-4410	RESISTOR, VARIABLE: composition element; 1 section, $500,000 \mathrm{ohms}, \pm 10 \% ; 2.25 \mathrm{w}$ nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ "U" taper, 75000, 190000, 315000, 435000 ohms resistance at 20, $40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, $9 / 16 \mathrm{in}$. d; round corrosion resistant metal shaft, $1 / 4 \mathrm{in}$. diam, $3 / 4 \mathrm{in}$. lg , normal torque, contact arm insulated, no "off" position; mtd by bushing $3 / 8$ in. -32 NEF-2 thd, $3 / 8 \mathrm{in} . \lg$; CBZ type JU5041P3048 type J	Squelch Level
R-1015	N16-R-87849-4404	RESISTOR, VARIABLE: composition element; 1 section, 50,000 ohms, $\pm 10 \%$; 2. 25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ "A" taper, 500, 2500, 10000, 32500 ohms resistance at $20,40,60$, 80% rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, $9 / 16$ in. d; round, corrosion resistant metal shaft, $1 / 4 \mathrm{in}$. diam, $3 / 4 \mathrm{in} . \mathrm{lg}$, normal torque; contact arm insulated, no "off" position; mtd by bushing $3 / 8$ in. -32 NE F-2 thd, $3 / 8$ in. lg; CBZ type JA5031-P3048 type J	Gain to Clip Control
R-1016	N16-R-50373-421	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF223K	Plate Resistor V-1008A
R-1017	N16-R-50353-431	RESISTOR, FIXED, COMPOSITION: 18, 000 ohms, $\pm 5 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF183J	Clipper Voltage Divider V-1014
R-1018	N16-R-50480-811	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 10 \%, 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF473K	Isolating Clipper Resistor V-1014
R-1019	N16-R-50678-811	RESISTOR, FIXED, COMPOSITION: 150, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF154K	Clipper Symmetry V-1014
R-1020	N16-R-87519-4580	RESISTOR, VARIABLE: composition element; 1 section, 5000 ohms, $\pm 10 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at $50 \% \mathrm{CW}$ rotation; special taper, CBZ " U " taper, 750, $1900,3150,4350$ ohms at $20,40,60,80 \%$ rotation respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam; 9/16 in. d; round, screwdriver-slotted, metal shaft, corrosion resistant, $1 / 4 \mathrm{in}$. diam, 5/8 in. lg, normal torque, $\mathrm{w} /$ shaft locking device; contact arm insulated, no "off" position; mtd by bushing $3 / 8 \mathrm{in} .-32$ NEF-2 thd, $1 / 2 \mathrm{in}$. lg; CBZ type JLU 5021 -SD4040L type J	Clipper Symmetry V-1014
R-1021		Same as R-1013	Grid Resistor V-1004A
R-1022		Same as R-1008	Plate Resistor V-1008B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating. Function
R-1023		Same as R-1008	Plate Resistor V-1008B
R-1024	N16-R-50634-231	RESISTOR, FIXED, COMPOSITION: 100, 000 ohms, $\pm 10 \%$; 1 w; per spec JAN-R-11; JAN type RC30BF104K	Grid Resistor V-1008B
R-1025		Same as R-1010	Cathode Resistor V-1008
R-1026	N16-R-50165-811	RESISTOR, FIXED, COMPOSITION: 5600 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF562K	Cathode Resistor V-1002B
R-1027		Same as R-1006	Plate Resistor V-1004A
R-1028	N16-R-50237-811	RESISTOR, FIXED, COMPOSITION: 8200 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF822K	Cathode Resistor V-1013B
R-1029		Same as R-1013	Plate Resistor V-1013B
R-1030	N16-R-50552-811	RESISTOR; FIXED, COMPOSITION: 68000 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF683K	Loading Resistor CR-1002
R-1031	N16-R-49427-811	RESISTOR, FIXED, COMPOSITION: 47 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF470K	Parasitic Suppressor Resistor
R-1032	N16-R-87679-4270	RESISTOR, VARIABLE: composition element; 1 section, 10000 ohms, $\pm 10 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ ' U ' taper, 1500, $3800,6300,8700 \mathrm{ohms}$ resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term, metal case enclosed, 1-1/16 in. diam 9/16 in. d; round, corrosion resistant metal shaft, $1 / 4 \mathrm{in}$. diam, 3/4 in. lg , normal torque; contact arm insulated, no "off" positions; mtd by bushing $3 / 8$ in. -32 NEF-2 thd, $3 / 8 \mathrm{in}$. lg; CBZ type JU1031-P3048 type J	Percent Modulation Set
R-1033	N16-R-49922-811	RESISTOR, FIXED, COMPOSITION: 1000 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF102K	Cathode Resistor V-1004A
R-1034	\cdots	Same as R-1011	Plate Resistor V-1002B
R-1035	N16-R-50822-811	RESISTOR, FIXED, COMPOSITION: 470, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF474K	Grid Resistor V-1003B
R-1036	N16-R-50652-231	RESISTOR, FIXED, COMPOSITION: 120, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF124K	Cathode Resistor V-1003B
R-1037		Same as R-1010	Cathode Resistor V-1003B
R-1038		Same as R-1036	Plate Resistor V-1003B
R-1039		Same as R-1035	Grid Resistor V-1005B
R-1040		Same as R-1035	Grid Resistor V-1005A
R-1041		Same as R-1003	Cathode Resistor V-1004B

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1042	N16-R-50310-480	RESISTOR, FIXED, COMPOSITION: 12, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF123K	Cathode Resistor V-1015B
R-1043	N16-R-50418-457	RESISTOR, FIXED, COMPOSITION: 33, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF333K	Cathode Resistor V-1005B
R-1044		Same as R-1043	Cathode Resistor V-1005A
R-1045	N16-R-65735-4716	RESISTOR, FIXED, WIRE WOUND: 160 ohms, $\pm 5 \%$; 15 w ; per spec MIL-R-26A; MIL type RW20G161	Cathode Resistor for Dumpers V-1006, V-1007
R-1046	N16-R-49238-811	RESISTOR, FIXED, COMPOSITION: 10 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF100K	Protective Resistor V-1007
R-1047		Same as R-1046	Protective Resistor V-1006
R-1048	N16-R-88009-4505	RESISTOR, VARIABLE: composition element; 1 section, 100,000 ohms, $\pm 10 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at $50 \% \mathrm{CW}$ rotation; special taper, CBZ " U " taper, $15000,38000,63000,87000$ ohms resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, 9/16 in. d; round, corrosion resistant metal shaft, slotted for screwdriver adj; $1 / 4 \mathrm{in}$. diam by $5 / 8 \mathrm{in} . \lg$, normal torque, w/shaft locking device; contact arm insulated, no "off" position; mtd by bushing, $3 / 8$ in. -32 NEF-2 thd $1 / 2 \mathrm{in} . \mathrm{lg}$; CBZ type JLU $1041-$ SD4040L type J; same as R-413	High Level Mod. Audio Level mov-acmaty
R-1049		Same as R-1018	High Level Mod. Audio Level
R-1050	N16-R-50651-811	RESISTOR, FIXED, COMPOSITION: 120, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF124K	High Level Mod. Audio Level
R-1051	N16-R-50533-935	RESISTOR, FIXED, COMPOSITION: 62, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF623J	Voltage Divider Fixed Bias
R-1052	N16-R-50336-811	RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R 11; JAN type RC20BF153K	Voltage Divider Fixed Bias
R-1053		Same as R-1011	Dropping Resistor I-1001
R-1054	N16-R-49787-101	RESISTOR, FIXED, COMPOSITION: 510 ohms, $\pm 5 \%$; 2 w; per spec JAN-R-11; JAN type RC42BF511J	Bleeder 12v Power Supply
R-1055	N16-R-50283-529	RESISTOR, FIXED, COMPOSITION: 10, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF103K	Bleeder 250v Regulated Supply
R-1056		Same as R-1055	Bleeder 250v Regulated Supply
R-1057	.	Same as R-1055	Bleeder 250v Regulated Supply
R-1058		Same as R-1055	Bleeder 250v Regulated Supply
R-1059		Same as R-1031	Current Balance V-1010

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1060		Same as R-1031	$\begin{aligned} & \text { Current Balance } \\ & \mathrm{V}-1010 \end{aligned}$
R-1061	N16-R-50202-511	RESISTOR, FIXED, COMPOSITION: 6, 800 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF682K; same as R-519	Voltage Divider $\mathrm{V}-1011$
R-1062		Same as R-1061	Voltage Divider $\mathrm{V}-1011$
R-1063	N16-R-50166-508	RESISTOR, FIXED, COMPOSITION: 5600 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF562K	Voltage Divider V-1011
R-1064		Same as R-1063	Voltage Divider V-1011
R-1065		Same as R-1035	Plate Resistor V-1011A
R-1066		Same as R-1035	Plate Resistor $\mathrm{V}-1011 \mathrm{~B}$
R-1067	For Replacement Use N16-R-66303-4543	RESISTOR, FIXED, WIRE WOUND: 6, 300 ohms, $\pm 5 \%$; 15 w ; per spec MIL-R-26A; MIL type RW20G632	Voltage Divider V-1011
R-1068	N16-R-90868-2997	RESISTOR, VARIABLE: wire wound; 2, 500 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-19; JAN type RA20A1SD252KK	Output Voltage Control 250v Regulated Supply
R-1069	For Replacement Use N16-R-66425-2766	RESISTOR, FIXED, WIRE WOUND: 12, 000 ohms, $\pm 5 \%$; 22 w ; per spec MIL-R-26A; MIL type RW21G123	$\begin{aligned} & \text { Voltage Divider } \\ & \text { V -1011 } \end{aligned}$
R-1070		Same as R-1013	Voltage Divider V-1012
R-1071		Same as R-1030	Dropping Resistor V-1012
R-1072	N16-R-50633-811	RESISTOR, FIXED, COMPOSITION: 100, 000 ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF104K	Voltage Divider 250v Regulated Supply
R-1073		Same as R-1019	Voltage Divider 250v Regulated Supply
R-1074		Same as R-1072	Voltage Divider Keying Voltage
R-1075		Same as R-1035	Terminating Resistor Keyer Input
R-1076		Same as R-1072	Isolating Resistor V-1015
R-1077		Same as R-1031	Parasitic Suppressor V-1015
R-1078		Same as R-1031	Parasitic Suppressor V-1015

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locatịng Function
R-1097		Same as R-1035	Isolating Resistor V-1018
R-1098	N16-R-87679-4540	RESISTOR, VARIABLE: composition element; 1 section, 10,000 ohms, $\pm 10 \% ; 2.25 \mathrm{w}$ nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at $50 \% \mathrm{CW}$ rotation; special taper, CBZ " U " taper $1500,3800,6300,8700$ ohms resistance at $20,40,60$ and 80% rotations respectively; 3 solder lug type term; mietal case, enclosed, 1-1/16 in. diam, 9/16 in. d; round, corrosion resistant metal shaft, slotted for screwdriver adjustment, $1 / 4 \mathrm{in}$. diam by $5 / 8 \mathrm{in}$. lg , normal torque, w/shaf locking device; contact arm insulated, no "off' position; mtd by bushing 3/8 in. -32 NEF-2 thd $1 / 2 \mathrm{in}$. lg; CBZ type JLU 1031-SD4040L type J ; same as R -411	Negative Clipping Level
R-1099		Same as R-1031	Parasitic Suppressor
R-1100		Same as R-1031	Parasitic Suppressor
R-1101		Same as R-1031	Parasitic Suppressor
R-1102	N16-R-50479-751	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 5 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF473J	Cathode Resistor V-1019
R-1103		Same as R-1033	Cathode Resistor V-1019
R-1104		Same as R-1031	Parasitic Suppressor V-1019
R-1105	N16-R-50400-231	RESISTOR, FIXED, COMPOSITION: 27, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF273K	Voltage Divider V-1018
R-1106		Same as R-1105	Voltage Divider V-1018
R-1107		Same as R-411	Positive Clipping Level
R-1108	N16-R-50677-431	RESISTOR, FIXED, COMPOSTRION: 150,000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF154J	Phase Shift V-1020
R-1109	N16-R-50839-431	RESISTOR, FIXED; COMPOSITION: 510,000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF514J	Phase Shift V-1020
R-1110		Same as R-1108	Phase Shift V-1020
R-1111		Same as R-1109	Phase Shift V-1020
R-1112		Same as R-1033	Feed Back V-1020
R-1113	N16-R-87419-4350	RESISTOR, VARIABLE: composition element; 1 section, 2, 500 ohms, $\pm 10 \% ; 2.25 \mathrm{w}$ nominal power rating at 100% CW rotation, 2 w at 50% CW rotation; special taper, CBZ "U' taper, 375, 950, 1575,2175 ohms resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam $9 / 16 \mathrm{in}$. d; round screwdriver slotted, metal	Feed Back Control V-1020

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1134	N16-R-88412-5359	RESISTOR, VARIABLE: composition element; 1 section, 2.5 megohms, $\pm 20 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ "U" taper, 375000, 950000 , 1575000, 2175000 ohms resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, 9/16 in. d; round, screwdriver-slotted, metal shaft, corrosion resistant, $1 / 4 \mathrm{in}$. diam, $5 / 8 \mathrm{in} . \mathrm{lg}$, normal torque, w/shaft locking device; contact arm insulated, no "off" position; mtd by bushing $3 / 8 \mathrm{in} .-32$ NEF-2 thd $1 / 2 \mathrm{in}$. 1 g ; CBZ type JLU 2552 -SD4040L type J	Time Delay Variation
R-1135	N16-R-50094-231	RESISTOR, FIXED, COMPOSITION: 3, 900 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF392K	Filter
R-1136		Same as R-1135	Filter
R-1137	N16-R-49822-948	RESISTOR, FIXED, COMPOSITION: 620 ohms, $\pm 5 \%$; 2 w ; per spec MIL-R-11A; MIL type RC42GF621J	Termination
R-1138		Same as R-1072	Suppressor
R-1139		Same as R-1072	Suppressor
R-1140	N16-R-50417-811	RESISTOR, FIXED, COMPOSITION: 33,000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF333K	Filter
R-1141		Same as R-1072	Side Tone Oscillator Isolation
R-1142		Same as R-1013	AGC Filter Resistor V-1013A
R-1143		Same as R-1035	Side Tone Coupling
R-1144		Same as R-1127	Side Tone Coupling
S-1101	N17-S-99999-0608	SWITCH, ROTARY: 6 sect, 2 pole, 5 position; solid silver alloy non-shorting contacts; ceramic grade L-3 wafers: 4-15/32 in. lg by $1-1 / 2 \mathrm{in}$. max diam o/a dimen excluding shaft and bushing; 2 hole mtg in front; 1 hole for $3 / 8 \mathrm{in}$. -32 thd bushing and one $1 / 8 \mathrm{in}$. hole for positioning lug; 2 hole mtg in back, spaced 1-1/4 in. apart for no. 4-40 thd screw; $1 / 4 \mathrm{in}$. diam round shaft, $13 / 16 \mathrm{in}$. lg excluding bushing, w/3/32 in. hole for locking pin; solder lug type term; per BuShips 16S19; CBTL part/dwg NL-900704-2; c/o S-1101A, B, C, D, E and F	Service Selector Switch
S-1101A	N17-S-91797-4999	SWITCH SECTION, ROTARY: 2 pole, 5 position; spaced 30° apart; solid silver alloy non-shorting contacts; ceramic grade L-3 body; solder lug type term; approx 1-1/2 in. diam, $1 / 16 \mathrm{in}$. thk excluding term; CCCT type $4 \mathrm{M}-\mathrm{LW}$; per spec BuShips 16S19; p/ o S-1101	Front: Control Circuits Rear: Keyer Input Switching
S-1101B		Same as S-1101A; p/o S-1101	```Front: FSO Switch- ing Rear: Buffer & RFO Keying```
S-1101C		Same as S-1101A; p/o S-1101	Front: Keyer Switching Rear: Wobbulator Switching \& others

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-1101D		Same as S-1101A; p/ o S-1101	Front: Wabbulator Switching Rear: Side Tone Switching
S-1101E		Same as S-1101A; p/o S-1101	Front: Mod Switching Rear: Mod Switching
S-1101F		Same as S-1101A; p/o S-1101	Spare Sections
-S-1102	N17-S-74139-4844	SWITCH, TOGGLE: DPDT; $1 \mathrm{amp} / 250 \mathrm{v}$, or $3 \mathrm{amp} / 125 \mathrm{v}$; phenolic body; 2-1/8 in. lg, 1-9/32 in. h, 23/32 in. wd o/a dimen; bat type actuating handle 11/16 in. lg excluding 15/32 in. bushing; locking action; 6 solder lug type term, located in rear; single mtg hole for 15/32 in. - 32 thd bushing; per spec JAN-S-23, JAN type ST22N	Microphone Input Connections
S-1103	N17-S-72018-7719	SWITCH, TOGGLE: SPDT; $1 \mathrm{amp} / 250 \mathrm{v}, 3 \mathrm{amp} / 125 \mathrm{v}$; phenolic body; 2-1/8 in. lg, 1-9/32 in. h, 23/32 in. wd o/a dimen; bat type actuating handle, excluding $15 / 32 \mathrm{in}$. bushing; locking action; 6 solder lug type term located on back; single mtg. hole for $15 / 32$ in. - 32 thd bushing; per spec JAN-S-23; JAN type ST12D	AGC "On-Off"
S-1104	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; DPST, male and female type, beryllium copper alkoy strip contact; thermosetting plastic molding body; $1-1 / 2 \mathrm{in}$. lg by $1-1 / 2 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. thk o/a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in. apart; interrupts 24v DC; CBTL part/dwg NL-9000592; same as S-501	Interlock Switch
S-1105		Same as S-1103	Neutral Polar Selector
S-1106	N17-S-99999-0607	SWITCH, ROTARY: 1 section, 5 poles, 2 position; spaced 30° apart; solid silver alloy non-shorting contacts; ceramic grade L3 wafer; 1-29/ 32 in . lg, approx 1-1/2 in. diam o/a; 2 hole mtg , 1 hole for $3 / 8 \mathrm{in}$. -32 thd bushing, other hole for $1 / 8 \mathrm{in}$. diam positioning lug; flatted $1 / 4 \mathrm{in}$. diam round shaft $1 / 2 \mathrm{in}$. lg excluding $3 / 8 \mathrm{in}$. bushing; solder lug type term; per BuShips 16S19, CBTL part/dwg NL-900705-2	Remote-Local Selector
S-1107	N17-S-99999-0605	SWITCH, ROTARY: 1 section, 1 pole, 3 position, spaced 30° apart; solid silver alloy non-shorting contacts; ceramic grade L3 wafer; momentary contacts on each side of a neutral position; 1-25/ $32 \mathrm{in} . \mathrm{lg}$, approx 1-1/2 in. o/a diam; 2 hole mtg, 1 hole for $3 / 8$ in. -32 thd bushing, other hole for $1 / 8 \mathrm{in}$. diam positioning lug; flatted $1 / 4 \mathrm{in}$. diam round shaft $1 / 2 \mathrm{in} . \lg$ excluding $3 / 8 \mathrm{in}$. bushing; solder lug type term; CCCT 4M-LW; CBTL part/dwg NL-900706-2	Keyer Test Switch
S-1108	N17-S-54635-2503	SWITCH, LEVER, PILE-UP: 2 lever position, position 1 momentary, position 2 locking; contact arrangement 2A each position, MBCA Ref Dwg Group 4; 3.0 amp ; 3-1/8 in. lg, 7/8 in. wd, 2-1/4 in. h; lever type actuator $1-5 / 16 \mathrm{in} . \mathrm{lg}, 3 / 8 \mathrm{in}$. diam; 8 solder lug type term; 2 mtg holes countersunk for no. 4-36 machine screw 1-15/16 in. c to c; CRY part no. A-49459	Test Key

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-1109	N17-S-61361-4411	SWITCH, ROTARY: 1 section; 4 positions max no. of switching positions possible; contact arrangement non-"pile-up" type, 2 moving contacts, 6 fixed contacts, DP4T; non-shorting contacts, solid silver alloy; ceramic insulation grade L4B per JAN-I-10; o/a dimen 1 in . $\mathrm{lg}, 1-5 / 8 \mathrm{in}$. wd, 1-7/8 in. h; bushing mtd, 3/8 in. -32 thd, $3 / 8 \mathrm{in}$. lg ; flatted shaft, $7 / 8 \mathrm{in}$. lg from mtg surface, $1 / 4$ in. diam; solder lug type term, $1 / 2 \mathrm{in}$. lg; COC type no. 46882-HIC; CBTL part/dwg NL-981020-1	Keying Rate Selector
S-1110	N17-S-68852-8221	SWITCH, SENSITIVE: SPST; 125v AC; 10 amp; phenolic body; o/a dimen excluding actuator, 1-5/8 in. $\mathrm{lg}, 53 / 64 \mathrm{in} . \mathrm{h}, 9 / 32$ in. thk; stainless steel button type actuating plunger $3 / 32 \mathrm{in}$. diam, . 007 in. max differential, $1 / 32$ in. max pretravel, . 025 in. max overtravel; 6 to 10 oz operating force; 3 oz minimum release force; momentary action, normally closed; 2 solder lug type term; four 3/32 in. diam mtg holes spaced $5 / 8 \mathrm{in}$. and 1 in. centers; 0.010 in. gap; CATK type 2MC1-1A, Model M; p/o switch assembly; CBTL part/dwg NL-900437-12	Push to Turn Break Switch
T-1001	N17-T-73816-2689	TRANSFORMER, POWER, STEP-DOWN AND STEP-UP: hermetically sealed, cold rolled steel case; 110v AC, 50/60 cyc, single ph input; 2 output winding, no. 1 secondary 1000 v centertapped, 0.15 amps, no. 2 secondary $2.5 \mathrm{v}, 4.75 \mathrm{amps}$; no. 1 secondary 2000 v , no. 2 secondary 1500 v insulation; vacuum varnish impregnated; dimen MBCA Ref Dwg Group 12, 4-3/8 in. \lg by $4-1 / 4 \mathrm{in}$. wd by 4-13/16 in. $\mathrm{h} ; 7$ stand-off type term 25/32 in. lg, 13/32 in. diam; mtd by four no. $10-32$ thd, $1 / 2 \mathrm{in}$. d inserts on 3-9/16 in. mtg/c, MBCA Ref Dwg Group 12; electrostatic shield; "4. 5 munsell gray" finish, ceramic-neoprene type term $1 / 2 \mathrm{in}$. diam spaced 60° apart on $1-11 / 16 \mathrm{in}$. diam B. C. to fit in 2-1/2 in. diam B. C. cutout; CBEY part/dwg no. OD2585; CBTL part/dwg NL-982185-1	Rectifier Plate 250v Regulated Supply
OR			
T-1001	For Replacement use N17-T-738162689 until present stock is exhausted then replace with N17-TO77121-8720	TRANSFORMER, POWER, STEP-DOWN AND STEP-UP: hermetically sealed, cold rolled steel case; primary winding 110v AC, $50 / 65 \mathrm{cps}$, single ph input; one secondary winding 1000 v RMS center tapped, 225 ma DC; primary working insulation 500v RMS, secondary working insulation 2400 v RMS; impregnated; MBCA Ref. Dwg Group 12 dimensions 4-3/8 in. lg, 4-1/4 in . wd, and 4-3/4 in. h; five standoff type terminals $1 / 2 \mathrm{in}$. diam spaced 60° apart on $1-11 / 16 \mathrm{in}$. diam B. C. ; mtd by four no. 10-32 threaded inserts $1 / 2 \mathrm{in}$. d on $3-9 / 16 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$. electrostatic shield; per MIL-T-27 spec; CBTL part/dwg \#NL-901614-1	
T-1002	N17-T-70292-7675	TRANSFORMER, POWER, STEP-DOWN: hermetically sealed, steel case; 110 v AC, $50 / 60$ cyc, single ph input; 6 output windings, no. 1 secondary 6.3 v at 2.8 amps center tapped, no. 2 secondary 6.3 v at 4.25 amps , no. 3 secondary 6.3 v at 3.0 amps center tapped, no. 4 secondary 5.0 v at 2.0 amps , no. 5 secondary 15.0 v at 0.3 amp , no. 6 secondary 17.5 v at 1 amp tapped at 16.5 v ; primary test voltage 1500 v RMS, other 1850v RMS; Robertson potting compound; 3-23/32 in. OD by 4-17/32 in. max h o/a dimen, MBCA Ref Dwg Group 12; 17 solder lug type term located on mtg surface, 12 on 2-1/4 in. diam circle, 5 on 1 in . diam circle; four holes $0,201 \mathrm{in}$. diam on $3 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ on 3-3/4 in. max sq mtg plate; electrostatic shield grounded to case; CUT part/dwg.F-3594; per spec MIL-T-27; CBTL part/dwg NL-980606-1	General Filament \& 12v DC Power Supply

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
T-1003	N17-T-61611-1275	TRANSFORMER, AUDIO FREQUENCY: input type; primary winding 600 ohms o/a impedance tapped at 35 ohms impedance, secondary 200, 000 ohms o/a impedance; 1000 v RMS test voltage; hermetically sealed upright tinplate case; o/a dimen MBCA Ref Dwg Group 12 1-1/2 in. lg by 1-1/2 in. wd by 2-3/16 in. h ; 18 dbm max audio operating level, 1 to 18.1 primary to secondary turns ratio; 100 to 5000 cyc frequency range, $\pm 1 / 2 \mathrm{db}$, not tuned; 5 solder lug type term on standoffs mtd on bottom; mtd by 4 inserts no. 6-32 thd by $3 / 8 \mathrm{in}$. d on $15 / 16 \mathrm{in}$. by $15 / 16$ in. $\mathrm{mtg} / \mathrm{c}$; wax impregnated, shielded; CAVM part/dwg S-537-1, per spec MIL-T-27; CBTL part/dwg NL-980977-1	Microphone Input
T-1004	N17-T-63057-1001	TRANSFORMER, AUDIO FREQUENCY: modulation type; 4200 ohms primary impedance, center tapped, secondary no. 11000 ohms impedance center tapped, secondary no. 2 10, 000 ohms impedance tapped at 8,000 ohms and 9,000 ohms impedance; primary 120 ma DC balanced, secondary no. 120 ma balanced, secondary no. 2140 ma unbalanced; primary insulation test voltage 1500 v RMS, secondary no. 12100 v RMS, secondary no. 2 3700v RMS; hermetically sealed, steel upright case, nickel iron alloy core; o/a dimen 4-1/4 in. wd by 4-3/8 in. lg by 5-3/8 in. h MBCA Ref Dwg Group 12; max audio operating level secondary no. 120 w , secondary no. 265 w max audio operating level; one secondary in use at a given time; turns ratio primary to secondary no. 11 to 0.535 , primary to secondary no. 21 to 1.63 ; frequency response 100 to 15000 cyc per sec, $\pm 5 \mathrm{db}$, not tuned; 10 solder lug type term mtd on stand-off insulators, located on bottom; 4 inserts no. $10-32$ thd by $9 / 16$ in. d, 3 in. by $3-1 / 2$ in. c to c; hum balancing construction, wax impregnated, pitch filling, not shielded; CAVM part/dwg 22321; per spec MIL-T-27; CBTL part/dwg NL-980978-1	Output from V-1006, V-1007
T-1005	N17-T-63458-4551	TRANSFORMER, AUDİO FREQŪENCȲ: plate coupling type; primary impedance $15,000 \mathrm{ohms}$, secondary 600 ohms impedance; 8 ma primary rated; 1500v RMS test voltage insulation; hermetically sealed, steel upright case; o/a dimen 1-1/2 in. lg by $1-1 / 2 \mathrm{in}$. wd by $2-3 / 16 \mathrm{in} . \mathrm{h} ; 25 \mathrm{db}$ max audio operating level; 1 to 0.272 primary to secondary ratio of turns; frequency range of 200 to $4500 \mathrm{cyc} \pm 0.5 \mathrm{db}$, not tuned; 4 solder lug term on standoffs located on bottom; 4 inserts no. 6-32 thd by $3 / 8 \mathrm{in}$. $\mathrm{d}, 15 / 16 \mathrm{in}$. by $15 / 16 \mathrm{in}$. c to c, MBCA Ref Dwg Group 12; wax filled and impregnated; not shielded; CAVM part/ dwg S-2233-1; per spec MIL-T-27; CBTL part/dwg NL-980979-1	Side Tone Output V-1004
V-1001	N16-T-75725	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 5725	Audio Amplifier Speech
V-1002	N16-T-75751	ELECTRON TUBE: dual triode; miniature; per spec JAN-1A; JAN type 5751	Audio Amplifier Speech
V-1003		Same as V-1002	Cathode Follower \& Phase Splitter
V-1004	N16-T-75814	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 5814	Audio Amplifier Speech
V-1005		Same as V-1004	Cathode Follower Mod. Drivers
V-1006	N16-T-75933	ELECTRON TUBE: tetrode; per spec JAN-1A; JAN type 5933	Power Amplifier, Modulator

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
V-1007		Same as V-1006	Power Amplifier, Modulator
V-1008		Same as V-1004	Squelch
V-1009	N16-T-55446-5	ELECTRON TUBE: dual diode; per spec MIL-E-1B; JAN type 5R4WGB	Rectifier
V-1010	N16-T-56202	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 6AS7G	Regulator
V-1011		Same as V-1002	Regulator Control
V-1012	N16-T-75651	ELECTRON TUBE: voltage regulator; per spec JAN-1A; JAN type 5651	Voltage Regulator
V-1013	N16-T-75726	ELECTRON TUBE: dual diode; per spec JAN-1A; JAN type 5726	AGC Rectifier
V-1014		Same as V-1013	Speech Clipper
V-1015	For Replacement Use N16-T-58240-14	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 6201	Keyer Circuit
$\dot{\mathrm{V}}$-1016		Same as V-1013	Keyer Circuit
V-1017		Same as V-1015	Keyer Circuit
V-1018		Same as V-1013	Keyer Circuit
V-1019		Same as V-1015	Keyer Circuit
V-1020		Same as V-1015	Wien Bridge Osc.
V-1021	N16-T-52001-5	ELECTRON TUBE: gas diode; per spec JAN-1A; JAN type OB2	-108v Regulated
V-1022		Same as V-1021	+108v Regulated
V-1023		Same as V-1015	Transfer Function Circuit
XC-1034	N16--S-63515-4151	SOCKET, ELECTRON TUBE: 8 contacts, brass, silver pl; octal type; oval; 1-7/8 in. lg, 1-3/8 in. wd, 11/16 in. h excluding term; phenolic dielectric insulator; one piece saddle mtg, bottom mtg; 1-1/8 in. diam chassis hole required, 2 mtg holes, 0.156 in . diam, 1.500 in . c to c; per spec JAN-S-28A; JAN type TS101P01	Socket for C-1034
XC-1035		Same as XC-1034	Socket for C-1035
XC-1036		Same as XC-1034	Socket for C-1036
$\begin{aligned} & \text { XC-1037 } \\ & \text { thru } \\ & \text { XC-1041 } \end{aligned}$		Not Used	
XC-1042		Same as XC-1034	Socket for C-1042
XF-1001	Low Failure Item	FUSEHOLDER: extractor post type; 250v, 30 amp ; accommodates 1 fuse, cartridge type, $1-1 / 2 \mathrm{in} . \lg , 13 / 32 \mathrm{in}$. diam; black bakelite body;bright alloy pl brass contacts;2-1/4 in. lg,	Holder for F-1001

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XF-1001 (cont) XF-1002 XI-1001	N17-L-76763-1597	$1.775 \mathrm{in} . \mathrm{wd}, 1.2 \mathrm{in} . \mathrm{h}$ o/a dimen; 2 solder lug type term, hot tin dipped; two $0.167 \mathrm{in} . \mathrm{mtg}$ holes 1.312 in . c to c for fastening to panel; one mtg hole 0.865 in . diam; waterproof; CFA type HPC-DZ; CBTL part/dwg NL-900068-2; same as XF-501 Same as XF-100i LIGHT, INDICATOR: supplied w/lens, $5 / 8 \mathrm{in}$. diam, clear, fluted, screw type holder; accommodates neon T3-1/4 NE 51 lamp, single contact miniature bayonet base, 110v; brass shell, black nickel finish, enclosed; 2-5/16 in. $\mathrm{lg}, 15 / 16 \mathrm{in}$. diam o/a dimen, 1 mtg hole required $11 / 16 \mathrm{in}$. diam; accommodates up to $1 / 4 \mathrm{in}$. max thk panel; horizontally mtd; lamp replaceable from front of panel; 2 solder lug type term, located on socket base, both insulated from shell; incl built in 51, 000 ohm $1 / 3$ w composition resistor; CAYZ type 53408-XP18-997; same as XI-503	Holder for F-1002 Retainer for I-1001
XR-1116	N17-L-51710-1675	LAMPHOLDER: single holder; 2500v breakdown; nickel pl, brass shell, phenolic body, mica filled insulation; 1-7/16 in. \lg by $7 / 8 \mathrm{in}$. wd by $1-3 / 8 \mathrm{in}$. h o/a dimen; 2 tinned solder term; two 0.152 in . diam mtg holes spaced 1-1/8 in. c to c ; L slot for holding bayonet type bulb; CJA part no. 33992	Socket For R-1116
XV-1001	N16-S-62603-6700	SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver pl; miniature; incl metal shield base, 0.800 in . diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, $0.125 \mathrm{in} . \mathrm{ID}$; oval; 1-1/8 in. lg , $0.800 \mathrm{in} . \mathrm{wd}, 25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; ceramic insulator; one piece saddle $\mathrm{mtg}, 5 / 8 \mathrm{in}$. diam chassis hole required, 2 mtg holes, 0.125 in . diam, 0.875 in . c to c ; per spec JAN-S-28A; JAN type TS102C01	Socket for V-1001
XV-1002	N16-S-64063-6714	SOCKET, ELECTRON TUBE: 9 contacts, beryllium copper, silver pl; miniature; incl metal shield base, 0.940 in . diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, 0.125 in . ID; oval; 1-3/8 in. lg , 0.940 in . wd, $25 / 32 \mathrm{in}$. h o/a dimen excluding term; ceramic insulator; one piece saddle $\mathrm{mtg}, 3 / 4 \mathrm{in}$. diam chassis hole required, 2 mtg holes, 0.125 in . diam, 1.125 in . diam, 1.125 in. c to c; per spec JAN-S-28A; JAN type TS103C01	Socket for V-1002
$\begin{aligned} & x V-1003 \\ & x v-1004 \end{aligned}$		Same as XV-1002 Same as XV-1002	Socket for V-1003 Socket for V-1004
XV-1005		Same as XV-1002	Socket for V-1005
XV-1006	N16-S-61719-4639	SOCKET, ELECTRON TUBE: 5 contacts, phosphor bronze, silver pl; medium; round; 2-5/32 in. lg, 1-3/8 in. wd, 41/64 in. h o/a dimen excluding term; ceramic steatite body; bracket and retainer ring mtg; 1.172 in . diam chassis hole required, 2 mtg slots $5 / 32 \mathrm{in}$. by $5 / 16 \mathrm{in}$. spaced 1-49/64 in. c to c; insulating barriers between all contacts; CJA type 33005	Socket for V-1006
XV-1007		Same as XV-1006	Socket for V-1007
XV-1008		Same as XV-1002	Socket for V-1008
XV-1009		Same as XC-1034	Socket for V-1009
XV-1010		Same as XC-1034	Socket for V-1010
XV-1011		Same as XV-1002	Socket for V-1011

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XV-1012		Same as XV-1001	Socket for V-1012
XV-1013		Same as XV-1001	Socket for V-1013
XV-1014		Same as XV-1001	Socket for V-1014
XV-1015		Same as XV-1002	Socket for V-1015
XV-1016		Same as XV-1001	Socket for V-1016
XV-1017		Same as XV-1002	Socket for V-1017
XV-1018		Same as XV-1001	Socket for V-1018
XV-1019		Same as XV-1002	Socket for V-1019
XV-1020		Same as XV-1002	Socket for V-1020
XV-1021		Same as XV-1001	Socket for V-1021
XV-1022		Same as XV-1001	Socket for V-1022
XV-1023		Same as XV-1002	Socket for V-1023
Z-1001	N16-F-44702-8298	FILTER, LOW PASS: attenuation at $6000 \mathrm{cps}, 35 \mathrm{db}$ minimum and $10,000 \mathrm{cps}, 45 \mathrm{db}$ minimum; 10,000 ohms input impedance, 10, 000 ohms output impedance, not tapped; 2-9/16 in. lg, 1-9/16 in. wd, 2-1/2 in. h o/a dimen excluding term; hermetically sealed, rectangular metal case; 4 inserts no. 6-32 thd by $1 / 4 \mathrm{in}$. d on $2-1 / 8 \mathrm{in}$. by $1-1 / 8 \mathrm{in}$. mtg/c; 3 solder lug term on insulators $5 / 16 \mathrm{in}$. diam by $1 / 2 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$, located on mtg surface, housing and term per spec MIL-T-27; CAVM part/dwg S-1554-1; CBTL part/dwg NL-980974-1	Plate of V-1004A
1301-1399	F-16-A-33460-1003	AMPLIFIER, RADIO FREQUENCY, AM-1008/SRT: frequency range 300 kc to 26 mc ; 100 or 500 w power output, 51 ohms output impedance; input data $0.1 \mathrm{w}, 2 \mathrm{v}$ required for excitation, 91 ohms input impedance; operating requirements 115 v AC, 60 cyc, single ph, DC operating requirements $500 \mathrm{v}, 300 \mathrm{v},-24 \mathrm{v}$, -220 v , and one of the following depending on mode of operation $1050 \mathrm{v}, 1300 \mathrm{v}, 2400 \mathrm{v}, 3000 \mathrm{v}$; for 100 w operation the screens are suppiied $w / 300 \mathrm{v}$, for 500 w operation the supply is 500 v , during $C W$ transmission at 100 w a plate supply of 1300 v is available, during 500 w CW operation the plate supply becomes 3000 v , during 100 w phone operation a 1050 v supply is available at the plates, for 500 w phone operation a 2400 v supply is available, 500 w operation is inhibited under certain overload conditions or component failures, control circuit function prevents 500 w operation at frequencies between 300 kc and 2 mc ; material of case aluminum; 25-1/4 in. $\mathrm{lg}, 16 \mathrm{in}$. wd, 11-11/64 in. h o/a; drawer mtd; p / o AN/SRT-14, 15,16 ; CBTL part/ dwg NL-900560-26	.
A-1301	N17-R-99999-0855	VENTILATOR: duct u / w blower to cool PA tube; synthetic rubber, solid, 40 ± 5 shore hardness; irregular shape; 3-5/8 in. $\lg , 2-21 / 32 \mathrm{in} . \mathrm{wd}, 3-7 / 32 \mathrm{in} . \mathrm{h}$ o/a; 1500 per sq in . tensile strength; oil resistant; press fit mtd; CCCW type; CBTL part/ dwg NL-900533-12	u/w Blower B-1306
$\begin{aligned} & \text { B-1301 } \\ & \text { thru } \\ & \text { B-1305 } \end{aligned}$	-	Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
B-1306	Low Failure Item	BLOWER: inverted type, centrifugal vane; electric motor operated; non-portable; guarded; motor $0.02 \mathrm{hp}, 3200 \mathrm{rpm}$, single ph, 60 cyc, 115 v AC; 6-13/32 in. $\mathrm{lg}, 4-7 / 16 \mathrm{in}$. wd, $6-3 / 32 \mathrm{in} . \mathrm{h} ; 50 \mathrm{cfm}$ at 3200 rpm ; single speed; direct drive; CCW; reversible; steel, painted black; wheel is dynamically balanced; four no. 8-32 thd mtg holes 2 on each flat of motor spaced 0.750 in . apart; 1-3/32 in. h, 2-13/32 in. outlet at bottom; CCBN model DRPPI type KS-409, part no. AO-1903; CBTL part/dwg NL-900532-12; c/o B-1306A, O-1304 and impeller housing	Ventilation V-1304
B-1306A	N17-M-57683-1432	MOTOR, ALTERNATING CURRENT: capacitor start and run induction motor; $115 \mathrm{v}, 0.37 \mathrm{amp}, 60 \mathrm{cyc}$, single $\mathrm{ph}, 37 \mathrm{w}$ at full load; $0.02 \mathrm{hp}, 3200 \mathrm{rpm}$, reversible in rotation; closed frame; ambient temp $80^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}$ temp rise for continuous duty; flatted stainless steel shaft, 1-3/8 in. lg from motor enclosure; 3-7/16 in. lg from blower housing wall excluding shaft, 2-1/2 in. $\mathrm{h}, 2-3 / 4 \mathrm{in}$. wd; four flexible wire lead term; mtd by two brackets, 8 mtg holes on motor, no. $8-32 \mathrm{NC}-2 \mathrm{~B}$ thd $1 / 4$ in. d, 4 each on top flat and 4 on bottom flat w/ 1 in . by 0.750 in. mtg/c; CCBN part no. AO-1903-01; CBTL part/dwg NL-900532-12 item 1; p/o B-1306	Drive for B-1306
C-1301	N16-C-30119-7167	CAPACITOR, FIXED, MICA DIELECTRIC: $470 \mathrm{mmf} \pm 20 \%$; 500v DCW; per spec JAN-C-5; JAN type CM25E471M	Grid Coupling V-1301
C-1302	N16-C-33627-7716	CAPACITOR, FIXED, MICA DIELECTRIC: $10,000 \mathrm{mmf} \pm 20 \%$; 300v DCW; per spec JAN-C-5; JAN type CM35E103M	Cathode By-Pass V-1301
C-1303	N16-C-18885-2501	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500v DC working voltage; $2200 \mathrm{mmf}, \pm 20 \% ; 22 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$ neg temp coef, $\pm 30 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$ tolerance; style no. 20K Ref Dwg Group 1; uninsulated body, 0.230 in . diam, $0.860 \mathrm{in} . \mathrm{lg}$ o/a dimen; schematic diagram no. 1-R Ref Dwg Group 1; mtg facilities not incl; CER Style "S"	Screen Filter V-1301
C-1304	N16-C-64062-7023	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: compression type; single section; 4-30 mmf; 500v DCW; per spec JAN-C-81; JAN type CV14C300	Padding Capacitor
C-1305	N16-C-61846-1421	CAPACITOR, VARIABLE, AIR DIELECTRIC: plate meshing type; single section; $18-400 \mathrm{mmf}$; midline frequency tuning characteristic; 1000v AC peak voltage; 3-11/32 in. $1 \mathrm{lg}, 2-1 / 16$ in. wd, 1-15/16 in. h dimen excluding shaft and bushing, shaft extends $3 / 8 \mathrm{in}$. beyond bushing each end; extension shaft adjustment, $180^{\circ} \mathrm{CW}$ rotation; base not insulated, rigid aluminum frame; 3 solder lug type term; two no. 6-32 thd tap mtg holes on 2-19/32 in. centers; rotor rotation not limited by pin stops, ball bearing front \& rear; 27 rotor 26 stator plates; 0.025 nominal air gap; CHC part no. RMC style modified; CBTL part/ dwg NL-981798-2	Buffer Tuning
C-1306		Same as C-1303	By-Pass Plate V-1301
C-1307		Same as C-1303	Grid Coupling V-1302
C-1308		Same as C-1303	By-Pass Grid Return V-1302
C-1309	N16-C-31095-6967	CAPACITOR, FIXED, MICA DIELECTRIC: $1000 \mathrm{mmf} \pm 20 \%$; 500v DCW; per spec JAN-C-5; JAN type CM25E102M	RF By-Pass CR-1301

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-1310	N16-C-48817-1103	CAPACITOR, FIXED, PAPER DIELECTRIC: $1 \mathrm{mf} \pm 10 \%$; 600v DCW; per spec JAN-C-25; JAN type CP63B1EF105K	Motor Capacitor B-1306
C-1311		Same as C-1303	$\begin{aligned} & \text { Screen By-Pass } \\ & \mathrm{V}-1302 \end{aligned}$
C-1312		Same as C-1305	IPA Tuning
C-1313		Same as C-1303	By-Pass Plate Return V-1302
C-1314		Not Used	
C-1315	N16-C-34788-7453	CAPACITOR, FIXED, MICA DIELECTRIC: $33,000 \mathrm{mmf} \pm 20 \%$; 600v DCW; per spec JAN-C-5; JAN type CM55E 333M	Grid Return By-Pass V-1304
C-1316	N16-C-31913-9488	CAPACITOR, FIXED, MICA DIELECTRIC: $2200 \mathrm{mmf} \pm 20 \%$; 1200v DCW; per spec JAN-C-5; JAN type CM45A222M	Grid Coupling V-1304
C-1317	N16-C-46371-9849	CAPACITOR, FIXED, PAPER DIELECTRIC: 600v DC working voltage, 20 amps rated current, $250,000 \mathrm{mmf},+20 \%-10 \%$ tolerance, capacity range $225,000 \mathrm{mmf}$ to $300,000 \mathrm{mmf}$; metal case, uninsulated, hermetically sealed, o/a dimen 2-1/4 in. \lg by 1 in diam excluding mtg bracket; 2 term, $3 / 8 \mathrm{in}$. diam bushing w/no. 10-32 thd hole $1 / 4 \mathrm{in} . \mathrm{d}$ at each end; bracket type mtg, non-removable, one 0.250 diam mtg hole in bracket located $7 / 8 \mathrm{in}$. from central axis; feedthru type w/case grounded; CSF Hypass part no. 48P12	$\begin{aligned} & \text { Filament By-Pass } \\ & \text { V-1304 } \end{aligned}$
C-1318	N16-C-99999-1173	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 5000v DC working voltage; $1000 \mathrm{mmf}, \pm 10 \%$; style no. 30P Ref Dwg Group 1 ; insulated body, $13 / 16 \mathrm{in}$. diam, $5 / 8 \mathrm{in}$. lg o/a dimen; schematic diagran no. 1-R Ref Dwg Group 1; mtg facilities incl, removable, two no. 6-32 NC-2 tap, 0.187 in . d located at both ends; CBN part no. DA858S-1000	Plate Blocking V-1304
C-1319	N16-C-65863-2275	CAPACITOR, VARIABLE, VACUUM DIELECTRIC: 1 section; $10-300 \mathrm{mmf}$, straight line capacity tuning characteristic from 20-290 mmf; 10000v AC max RF peak voltage, $42 \mathrm{amp} \max$ RMS; special extension drive shaft adjustment, CCW rotation from min to max capacity, 0.768 in . motion changes capacitance from 10 mmf to 285 mmf ; o/a dimen 6-9/16 in. lg , 3 in . diam excluding tubulation projection; glass and copper enclosed, flange \& anode silver pl; 2 term, 1 ferrule type and 1 formed by mtg flange, located 1 at each end; four 0.196 in . diam holes spaced irregularly on 2.625 in . diam circle located on flange mtg, CAZG type UCS $10-300 \mathrm{mmf}$, 10 KV peak volts $\mathrm{w} /$ flange mtg attached, dwg no. 259 modified; CBTL part/dwg NL-980954-2	Power Amplifier Plate Tuning
C-1320		Same as C-1319	Power Amplifier Plate Tuning V-1304
C-1321		Same as C-1319	Power Amplifier Antenna Matching Tuning
C-1322	N16-C-31798-8002	CAPACITOR, FIXED, MICA DIELECTRIC: $2000 \mathrm{mmf} \pm 5 \%$; 2500v DCW; per spec JAN-C-5; JAN type CM55E 202J	$\begin{aligned} & \text { Screen By-Pass } \\ & \mathrm{V}-1304 \end{aligned}$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Stendard Navy Air Force	Name and Description	Locating Function
C-1323	N16-C-61118-7166	CAPACITOR, VARIABLE, AIR DIELECTRIC: plate meshing type; single section; 11-140 mmf; straight line capacity; 1000v AC peak voltage; 2-1/4 in. $\mathrm{lg}, 1-13 / 16 \mathrm{in}$. $\mathrm{wd}, 1-11 / 16 \mathrm{in} . \mathrm{h}$ o/a dimen excluding shaft, $1-3 / 8 \mathrm{in}$. shaft extension; screwdriver $360^{\circ} \mathrm{CW}$ rotation; base not insulated, rigid aluminum frame, iridite finish; 3 solder lug type term; two no. 6-32 thd tap mtg holes spaced $1-19 / 32 \mathrm{in}$. c to c; 10 rotor \& 9 stator plates, nickel pl; silver pl rotor contact; ceramic insulator; ball bearings front and rear; 0.245 in . air gap; CHC type RMC-140-S modified; CBTL part/dwg NL-981337-2	Harmonic Trap Tuning
C-1324		Not Used	
C-1325	N16-C-29266-6432	CAPACITOR, FIXED, MICA DIELECTRIC: $200 \mathrm{mmf} \pm 5 \%$; 3000v DCW; per spec JAN-C-5; JAN type CM65B201J	Power Amplifier Band 1 Fixed Padder
C-1326		Not Used	
C-1327	N16-C-28554-4632	CAPACITOR, FIXED, MICA DIELECTRIC: $100 \mathrm{mmf} \pm 5 \%$; 3000v DCW; per spec JAN-C-5; JAN type CM65B101J	Power Amplifier Band 1 Fixed Padder
C-1328		Same as C-1309	DC Blocking CR-1301
C-1329		Same as C-1317	Filament By-Pass V-1304
C-1330	For Replacement Use N16-C-27842-2836	CAPACITOR, FIXED, MICA DIELECTRIC: 62 mmf $\pm 5 \%$; 3000v DCW; per spec JAN-C-5; JAN type CM65B620J	Fixed Padder Band 2 V-1304
C-1331	For Replacement Use N16-C-28818-2636	CAPACITOR, FIXED, MICA DIELECTRIC: $130 \mathrm{mmf} \pm 5 \%$; 3000v DCW; per spec JAN-C-5; JAN type CM65B131J	Fixed Padder Band 2 V-1304
C-1332		Same as C-1302	Meter By-Pass M-1304
C-1333		Same as C-1302	Meter By-Pass M-1303
C-1334		Same as C-1302	Meter By-Pass M-1301
C-1335		Same as C-1318	By-Pass Plate Return V-1304
$\begin{aligned} & \text { C-1336 } \\ & \text { thru } \\ & \text { C-1366 } \end{aligned}$		Not Used	
C-1367	N16-C-27578-3437	CAPACITOR, FIXED, MICA DIELECTRIC: $47 \mathrm{mmf} \pm 10 \%$; 2500v DCW; per spec JAN-C-5; JAN type CM45B470K	Screen By-Pass V-1304
C-1368		Same as C-1367	$\begin{aligned} & \text { Screen By-Pass } \\ & \text { V-1304 } \end{aligned}$
C-1369	N16-C-29655-7922	CAPACITOR, FIXED, MICA DIELECTRIC: $300 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-5; JAN type CM25D301G	V-1301 Band 5 Band Spread Capacitor

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Loçating Function
C-1370	N16-C-28547-9122	CAPACITOR, FIXED, MICA DIELECTRIC: $100 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-5; JAN type CM25D101G	V-1301 Band 6 Band Spread Capacitor
C-1371		Same as C-1369	V-1302 Band 5 Band Spread Capacitor
C-1372		Same as C-1370	V-1302 Band 6 Band Spread Capacitor
C-1373	For Reference Only	CAPACITOR, FIXED, AIR DIELECTRIC: 1 section; 20 mmf , $\pm 20 \%$; 1 plate, brass, silver pl; not in Ref Dwg Group 1, c/o 1 rectangular plate and one $3 / 8 \mathrm{in}$. sq by $1-23 / 32 \mathrm{in}$. capacitor mt , chassis forms one electrode; $1-23 / 32 \mathrm{in}$. d, $3 \mathrm{in} . \mathrm{h}, \mathrm{2-7/8}$ in. wd o/a dimen; mtg facilities incl, non-removable, two 0.193 in . diam mtg holes spaced $3 / 8 \mathrm{in}$. c to c located at end of capacitor mt; 1 mtg screw to be used as term; 0.250 in . nominal air gap; CBTL part/dwg NL-981886-1	$\begin{aligned} & \text { V-1304 Fixed } \\ & \text { Padding } \end{aligned}$
C-1374		Not Used	
C-1375		Same as C-1302	Cathode By-Pass $\mathrm{V}-1302$
C-1376		Not Used	
C-1377		Same as C-1301	By-Pass Grid Return V-1301
C-1378		Same as C-1302	Cathode By-Pass
C-1379		Same as C-1318	By-Pasis H.V. Supply Lead
C-1380	N16-C-15929-9002	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 5000v DC working voltage; $10 \mathrm{mmf}, \pm 10 \%$; style not incl in Ref Dwg Group 1 ; insulated body, $3 / 8 \mathrm{in}$. diam by $3 / 8 \mathrm{in}$. lg less axial lead term; CBN part no. 854-10Z	$\begin{aligned} & \text { L-1313 Fixed } \\ & \text { Padding } \end{aligned}$
C-1381		Same as C-1380	L-1314 Fixed Padding
CR-1301	N16-T-51734-10	CRYSTAL UNIT, RECTIFYING: germanium diode; per spec JAN-1-A; JAN type 1N34A; same as CR-1002	RF Rectifier
E-1301		Not Used	
E-1302	N16-C-289001-102	CFIMNEY: c/o air flow chimney w/chimney base and 3 captive screws; pyrex glass and aluminum, ball shape; 6 in . h, $4-3 / 16 \mathrm{in}$. diam excluding mtg wings, $1 / 8 \mathrm{in}$. wall thk, $2-1 / 8$ in. diam opening on top with one $1 / 8 \mathrm{in}$. wd slot; chimney secured to chimney base w/tube basing cement; mtd by 3 captive screws no. 8-32 thd irregularly spaced on 4-5/8 in. B. C.; CBTL part/dwg NL-982370-2; u/w XV-1304, V-1304	Used to Cool Power Amplifier Tube 4-400A
E-1303	Low Failure Item	TERMINAL BOARD: general purpose; 4 brass, silver pl solder lug term; $1 / 8 \mathrm{in}$. thk melamine glass board; 1-7/8 in. lg by 7/8 in. wd by $3 / 4 \mathrm{in} . \mathrm{h}$ o/a; two 0.191 in . diam mtg holes $1-3 / 8 \mathrm{in}$. c to c ; incl two $1 / 4 \mathrm{in}$. diam $0.421 \mathrm{in} . \lg$ shoulder spacers each w/ no. 6-32 tap hole through center; CBTL part/dwg NL-900554-1	Connection Point

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-1304 E-1305	N17-I-70531-3001	INSULATOR, STANDOFF: white ceramic; glazed finish; rectangular pillar standoff, code no. 46 Ref Dwg Group 9; 1-1/2 in. \lg by $3 / 4 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. h o/a dimen; two no. 8-32 tapped mtg holes on each end $\mathrm{w} / 0.375 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; CDP part 1123-01 Not Used	Mounts C-1373
E-1306	N16-K-702781-122	KNOB: pointer type, center portion of knob dome shape; aluminum, black enamel finish; for $1 / 4 \mathrm{in}$. diam shaft; slotted to mate with locating pin on switch shaft, $5 / 8 \mathrm{in} . \lg$ by 0.100 in. wd by $3 / 32 \mathrm{in}$. d; marked "PUSH" standard gothic characters, white filled; 2-3/8 in. lg by $1-1 / 8 \mathrm{in}$. h by $1-1 / 32 \mathrm{in}$. wd o/a; CBTL part/dwg NL-983341-2	u/w. Band Switch
E-1307	N16-K-702781-121	KNOB: set screw type; positive gripping surface; phenolic body; o/a dimen 1-1/2 in. OD by $15 / 16$ in. thk; w/mechanically attached skirt; straight shank; designed to accommodate round unthreaded shaft $1 / 4 \mathrm{in}$. diam, $9 / 16$ in. d hole, w/ 2 set screws, socket type drive, no. 8-32 thd; phenolic finish, dull matt; black; w/insert, brass, not removable; without markings; without pointers; CBTL part/dwg NL-901373-2	u/w "Tune PA"
E-1307. 1		Same as E-1307	u/w "Tune IPA"
E-1308	N16-K-702781-120	KNOB: round; black thermosetting phenolic, dull finish; for $1 / 4$ in. diam shaft; two no. $8-32$ by $3 / 16$ in. lg set screws; w/ pointer; 1-1/16 in. diam, 5/8 in. thk, 1-5/32 in. lg; brass, nickel pl insert; 15/32 in. depth of shaft hole; fluted; CMI part no RE10F479C type A; CBTL part/dwg NCP-20-1-11-2; same as E-1015	u/w PA Switch
E-1308. 1		Same as E-1308	u/w IPA Switch
E-1308. 2		Same as E-1308	u/w Voltmeter Switch
E-1309	Assemble from component parts	SUPPRESSOR, PARASITIC: resistor and coil type; 7/8 in. lg , 3/8 in. diam o/a; c/o 7 turns no. 18 AWG bare tinned copper wire spaced $1 / 16 \mathrm{in}$. apart around a $330 \mathrm{ohm}, 1 \mathrm{w}$ resistor type RC30BF331J; uncased; term mtg; 1 wire lead each end; CBTL part/dwg NL-980955-1	$\begin{aligned} & \text { B+ Feed for } \\ & \text { V-1302 } \end{aligned}$
E-1310	N17-S-91941-1102	SWITCH WAFER, rotary: ceramic, Alsimag no. 196 L4, impregnated w/Dow Corning no. 200; 3.830 in . OD by 3.030 in. ID by 0.312 in. thk, three 0.180 in. diam holes spaced 120° apart on 3.430 in . diam B.C. and twelve 0.120 in . diam holes spaced 30° apart on 3.430 in. diam B. C. ; no contacts; CPD part M-13714	p/o S-1302
$\begin{aligned} & \mathrm{E}-1310.1 \\ & \text { thru } \\ & \mathrm{E}-1310.6 \end{aligned}$		Same as E-1310	p/o S-1302
E-1311	N17-C-81987-7871	CONTACT, ELECTRICAL: spring leaf type; phosphor bronze, silver pl; "U" shaped, $1-13 / 32 \mathrm{in}$. lg by $5 / 16 \mathrm{in}$. wd by 0.0159 in. thk $0 / \mathrm{a} ; 1$ solder lug term; rated at 500 v DC, 1.0 amp ; oval mtg hole, 0.202 in . by 0.140 in . ; CPD part S-13720-102	p/o S-1302
$\begin{aligned} & \mathrm{E}-1311.1 \\ & \text { thru } \\ & \mathrm{E}-1311.4 \end{aligned}$		Same as E-1311	p/o S-1302

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-1318	N16-K-702781-115	KNOB: round; black thermosetting phenolic; dull finish; for $1 / 4 \mathrm{in}$. diam shaft; two no. 6-32 by $1 / 8 \mathrm{in} . \lg$ set screws; w/ pointer; 13/16 in. diam, 9/16 in. thk, 7/8 in. lg o/a; brass, nickel pl insert; 7/16 in. depth of shaft hole; fluted; CMI part no. RE10F479F type G; CBTL part/dwg NCP-20-1-18-2; same as E-1017	u/w Excitation Control
E-1319	N16-A-20661-1011	ADAPTER, cable: left hand mtg strap type; for use w/RG$55 / \mathrm{U}, \mathrm{RG}-58 / \mathrm{U}$ cable; o/a $\lg 1 / 2 \mathrm{in}$.; mtd by means of hole in strap $3 / 8 \mathrm{in}$. from c to c of cable; type coax cable term, CARO no. 6325	Coax Cable Adapter
- E-1320	N16-A-20661-1005	ADAPTER, cable: single hole mounting type; for use with RG-55/U, RG-58/U cable; o/a lg 13/16 in.; one hole mtg 5/16 in. diam; type coax cable termination; CARO part 1025	Coax Cable Adapter
E-1321		Same as E-1320	Coax Cable Adapter
E-1322		Same as E-1320	Coax Cable Adapter
E-1323		Same as E-1320	Coax Cable Adapter
E-1324	N16-A-20661-1002	ADAPTER, cable: right hand mtg strap type; for use with RG-55/U, RG-58/U cable; o/a $\lg 1 / 2 \mathrm{in}$.; mtd by means of hole in strap $3 / 8 \mathrm{in}$. from c to c of cable; type coax cable termination; CARO no. 3975	Coax Cable Adapter
E-1325		Same as E-1319	Coax Cable Adapter
E-1326		Same as E-1319	Coax Cable Adapter
$\begin{aligned} & \mathrm{E}-1327 \\ & \text { thru } \\ & \mathrm{E}-1394 \end{aligned}$		Not Used	
E-1395	Shop Manufacture	TERMINAL BOARD: ceramic or melamine type GMG; eight solder lug type term, one common term; o/a dimen 1-1/2 in. $\mathrm{lg}, 1-5 / 32 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in}$. h ; two no. 3-48 tapped mtg spacers 29/64 in. mtg/c; CBY part 13025; CBTL part/dwg NL-960103-1-3; same as E-1013	Component Mounting
E-1396		Same as E-1395	Component Mounting
E-1397	Low Failure Item	TERMINAL BOARD: general purpose; 15 brass, silver pl solder lug term; $1 / 2 \mathrm{in}$. between centers; $1 / 8 \mathrm{in}$. thk melamine glass board; 4-7/8 in. lg, 1 in . wd, $11 / 32 \mathrm{in} . \mathrm{h} o / \mathrm{a}$; four 0.180 in . diam mtg holes, one on each corner $1 / 2 \mathrm{in}$. ctoc w/4-1/4 in. mtg/c; CBTL part/dwg NL-980907-1	IPA Connection Point
E-1398	Low Failure Item	TERMINAL BOARD: general purpose; 12 brass, silver pl solder lug term; $1 / 8 \mathrm{in}$. thk melamine glass board; 4-9/16 in. \lg by $1-1 / 4 \mathrm{in}$. wd by $9 / 16 \mathrm{in} . \mathrm{h}$ o/a; two 0.169 in . diam mtg holes $4-1 / 16 \mathrm{in}$. c to c ; CBTL part/dwg NL-900581-1	Component Mounting
E-1399	Low Failure Item	TERMINAL BOARD: general purpose; 33 brass, silver pl solder lug term; $1 / 8 \mathrm{in}$. thk melamine glass board; 7-11/16 in. $\mathrm{lg}, 2-5 / 8 \mathrm{in} . \mathrm{wd}, 1 / 2 \mathrm{in} . \mathrm{h} \mathrm{o} / \mathrm{a}$; five 0.169 in . diam mtg holes on irregular centers; CBTL part/dwg NL-900376-2	Component Mounting
F-1301	N17-F-14690-5825	FUSE, CARTRIDGE: 3 amp , 250v; time delay, 150% for $0-1$ minute, 300% for 6 seconds minimum; 1-1/2 in. lg, 0.406 in . diam; per spec MIL-F-15160A; MIL type FO9G3R00B; same as F-1001	$\begin{aligned} & \text { B-1306, T-1302 } \\ & \text { Protection } \end{aligned}$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-1301	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in. pitch lg of link by 0.139 in . wd; stainless steel; 56 pitch $\mathrm{lg} \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-1	p/o PA Dial Drive
H-1302	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in . wd; stainless steel; 96 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-3	Drive for S-1301
H-1303	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in. pitch lg of link by 0.139 in . wd; stainless steel; 88 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-5	IPA Tuning Drive
H-1304	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in. wd; stainless steel; 48 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-2	p/o IPA Dial Drive
H-1305	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in . wd; stainless steel; 86 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-13	p/ヶ Right Angle Drive
H-1306	Low Failure Item	CLAMP, tube: stainless steel wire type 302, 0.093 in . diam; bent to $2-5 / 8 \mathrm{in}$. ID; terminated in hooked ends 0.145 in . D, bent 90° outward, spaced $5 / 16 \mathrm{in}$. apart; incl feet, stainless steel $3 / 32 \mathrm{in}$. thk silver soldered to ring, spaced 180° apart; CBTL part/dwg NL-982591-1	Clamp for V-1304
H-1307	N17-C-99999-489	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; one hole in bracket for no. 10 machine screw for mtg; 1.625 in . diam by $7 / 8 \mathrm{in}$. h o/a; CAIS type $926 \mathrm{H}-5$; same as $\mathrm{H}-1001$	Clamp for V-1302
H-1308	G42-P-14141-152	PIN, taper: steel, Groov-Pin full length taper, 3/32 in. diam by $3 / 4 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; CCCU type 1	Locking Pin
H-1308. 1		Same as H-1308	Locking Pin
H-1308. 2		Same as H-1308	Locking Pin
H-1309	G42-P-14141-136	PIN, taper: steel, Groov-Pin full length taper, 3/32 in. .diam by $1 / 2$ in. $\lg \mathrm{o} / \mathrm{a}$; CCCU type 1	Locking Pin
H-1309. 1		Same as H-1309	Locking Pin
H-1310	G42-P-14141-216	PIN, taper: steel, Groov-Pin full length taper, 7/64 in. diam by $1 / 2 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; CCCU type 1	Locking Pin
H-1310. 1		Same as H-1310	Locking Pin
H-1310. 2		Same as H-1310	Locking Pin
H-1311	G42-P-14141-140	PIN, taper: steel, Groov-Pin full length taper, 3/32 in. diam by $9 / 16 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; CCCU type 1	Locking Pin

TABLE 8-3: TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-1312	G42-P-14142	PIN, taper: steel, Groov-Pin full length taper; 7/64 in. diam by $3 / 4 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; CCCU type 1	Locking Pin
H-1312. 1		Same as H-1312	Locking Pin
H-1312. 2		Same as H-1312	Locking Pin
H-1313	G42-P-14141	PIN, taper: steel, Groov-Pin full length taper; $1 / 16$ in. diam, $3 / 8 \mathrm{in} . \lg \mathrm{o} / \mathrm{a} ; \mathrm{CCCU}$ type 1	Locking Pin
H-1314	Low Failure Item	SLIDE, chassis: right hand; c/o inner and outer slide, front latch, ball spacer $\mathrm{w} /$ stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. Ig closed, $1-5 / 8 \mathrm{in} . \mathrm{h}, 9 / 16 \mathrm{in}$. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced 2-1/2 in. c to c ; two $1 / 4 \mathrm{in}$. - 28 NF-2 thd mtg holes 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For RFA Chassis
H-1315	Low Failure Item	SLIDE, chassis: left hand, e/o inner and outer slide, front latch, ball spacer $\mathrm{w} /$ stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2 \mathrm{in}$. c to c , two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes spaced 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For RFA Chassis
H-1316	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch lg of link by 0.139 in . wd; stainless steel; 92 pitch lg o/a; rivet type links w /disconnecting pin, keeper and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-14	PA Tuning Drive
I-1301	N17-L-6491-50	LAMP, INCANDESCENT: 28v, 0.035 amp ; MBCA Ref Dwg Group 7, special 952 base $w / 5 / 16$ in. -32 NEF-2 thread and knurled sleeve; T-1-3/4 clear, amber color plastic cap, 1 tungsten, C-21; 3/4 in. max o/a h; over 25 hrs rated life; any burning position; CAYZ dwg no. 165-22-327E, type 320A	Power Amplifier Screen Overload Indicator
I-1302		Same as I-1301	Power Amplifier Plate Overload Indicator
I-1303		Same as I-1301	Antenna Tuning Unit Overload Indicator
I-1304		Same as I-1301	Spare
I-1305		Same as I-1301	500 w Operation Indicator
I-1306		Same as I-1301	100 w Operation Indicator
I-1307	-	Same as I-1301	100 w Carrier "ON" Indicator
I-1308		Same as I-1301	500 w Carrier "ON" Indicator

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-1301	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts and term; w/ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	Inter-Unit Wiring
J-1302		Same as J-1301	Inter-Unit Wiring
J-1303	N17-C-73108-1262	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; 1-1/32 in. lg, $3 / 4 \mathrm{in}$. wd across mtg plate; 500v peak; RF connector, 52 ohms nominal impedance; cylindrical shape; polystyrene insert; four no. 3-56 tapped mtg holes in corners of mtg flange, 0.50 in . mtg/c; JAN type UG291/U	RF Input from RFO
J-1304	N17-C-73114-7071	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round, straight type; 1-27/32 in. lg, 1 in . wd across mtg plate; RF connector, 52 ohms nominal impedance; cylindrical shape; four $1 / 8 \mathrm{in}$. diam mtg hole in corner of mtg flange, $23 / 32$ in. $\mathrm{mtg} / \mathrm{c}$; CARO type 36000	Inter-Unit Wiring to Antenna Tuning
J-1305		Same as.J-1303	Inter-Unit Wiring Receiver Input
J-1306	N17-C-99999-2001	INSULATOR, FEEDTHRU: bushing and bowl $\mathrm{w} /$ tapped cap and thd stud; steatite, brass, silver pl; 2-5/8 in. $\mathrm{lg}, 1-1 / 8 \mathrm{in}$. diam o/a; 45 amp ; 12000v; CCCV type 1125-A modified; CBTL part/dwg NL-900571-1	Chassis Connector Plate Voltage to V-1304
J-1307		Same as J-1303	External Oscillator Jack On Front Panel
J-1308	N17-C-72811-2237	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; angle type; 90° angle; $1 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}. \mathrm{d;} \mathrm{RF}$ connector, 52 ohms nominal impedance;angle shape, brass, silver pl; four mtg holes in corners of mtg flange 0.50 in . mtg/c; JAN type UG-535/U	RF Inpu: Jack to V-1301
J-1309	N17-C-99999-1196	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric red nylon; 29/32 in. lg, 5/16 in. wd incl hex coupling nut o/a dimen; 1000v peak; w/inclosing shell, cylindrical shape, brass, nickel pl; not polarized, 1 hole, $1 / 4 \mathrm{in}$. diam; $1 / 4 \mathrm{in}-$.32 thd on receptacle for mating $\mathrm{w} /$ coupling nut; CARO part 225A; same as J-504	Modulation Test Jack
K-1301		Not Used	
K-1302	N17-R-65150-7805	RELAY, ARMATURE: contact arrangement 1B, MBCA Ref Dwg Group 4, single throw, normally closed, single break, 500 v peak $\mathrm{AC}, 4 \mathrm{amp}, 150 \mathrm{w}$, non-indicative; one inductive winding, 300 ohms, 24 v DC, 80 ma ; one term per contact, two term on coil, one side of coil grounded; continuous duty; o/a dimen $2-1 / 4 \mathrm{in} . \lg$ by $1-1 / 16 \mathrm{in}$. wd by 1-17/32 in. h; two no. 6-32 tapped holes on $0.750 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; contacts will not open or close under load, 1000v peak AC operating voltage between contacts and frame; CBTL part/dwg NL-925441-1	Screen Modulation Choke Unshorting Relay

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
K-1303	N17-R-65155-6191	RELAY, ARMATURE: contact arrangement, 2 form C, MBCA Ref Dwg Group 4, single break, DC, 24v, 4 amp; 2 inductive windings, DC, SU coil 115 ohms, MR coil 360 ohms, 24v operating voltage, $0.070 \mathrm{amp} ; 6$ term on contact, 2 term on each coil; continuous duty; 4-9/16 in. lg by 1-3/4 in. wd by 2-5/16 in. d o/a dimen; mtd with bracket w/2 holes 5/32 in. diam, spaced $1-3 / 8 \mathrm{in}$. c to c ; corrosion resistant metal parts designed to operate at sea level; CARE type no. EL-1067-4, dwg 115054; CBTL part/dwg NL-982329-1	Power Amplifier Overload V-1304
K-1304	N17-R-65145-7979	RELAY, ARMATURE: contact arrangement form 2AX2A4B1C, MBCA Ref Dwg Group 4, single break, AC-DC, 4 amp; 1 inductive winding, 300 ohms DC; 24v DC operating voltage; 19 term on contact, 2 term on coil; continuous duty; 2-1/4 in. 1 g by $1-1 / 8 \mathrm{in}$. wd by $1-13 / 16 \mathrm{in}$. h o/a dimen; 2 no. 6-32 tapped holes, $3 / 4$ in. c to c; open frame, impregnated coil, contacts rated at 150 w with above current; CRY type J, part no. N-49556; per BuShips spec no. 40T9; CBTL part/dwg NL-981101-1; same as K-1104	500 w Latching Relay
K-1305		Not Used	
K-1306	N17-R-99999-0849	RELAY, ARMATURE: three sets of form "C" contacts; 3PST; transfer function; 150v peak, 5 amp make, 3 amp break; one winding, 24v DC; one term per contact, two term on coil, one side of coil grounded; continuous duty; capable of $0-20 \mathrm{cps}$ without chatter; 1-7/16 in. lg by 1-3/4 in. h by 1-1/8 in. wd o/a dimen; two no. 4-40 tapped holes on 0.656 in . by 0.375 in . $\mathrm{mtg} / \mathrm{c}$; CBTL part/dwg NL-900098-1; same as K-1101	Keying Relay
L-1301	N16-C-74225-1134	COIL, RADIO FREQUENCY: 700 uh; 290 turns, no. 10/41 Litz, single enamel, single silk covered copper conductor; single winding, 3 pie universal winding, untapped, unshielded; steatite coil form; two pies each 100 turns, $47 / 64 \mathrm{in}$. diam by $5 / 32 \mathrm{in}$. wd; one pie 90 turns, $11 / 16 \mathrm{in}$. diam by $5 / 32 \mathrm{in}$. wd ; o/a coil dimen 1-1/8 in. lg, 47/64 in. diam; coil form dimen $1 \mathrm{in} . \lg$ by $1 / 2 \mathrm{in}$. diam; one solder lug term at top of coil form, one wire pigtail terminal at bottom of coil form; mtd by single no. $8-32$ thd mtg hole, $3 / 8 \mathrm{in}$. d at bottom of coil form; CBTL part/dwg NL-981864-1	Buffer Band 1 Tank (0.3 to 0.8 mc)
L-1302	N16-C-76520-7157	COIL, RADIO FREQUENCY: 0.38 uh at 25 mc with slug withdrawn; six turns, double spaced, no. 14 AWG copper conductor, single Formex covered; one winding, single layer, untapped, unshielded; ceramic form, iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \lg$ by $5 / 8 \mathrm{in}$. diam; coil form dimen $2 \mathrm{in} . \lg$ by $5 / 8 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug; screwdriver adjustment on core and wrench adjustment on thd shaft attached to core; two solder lug type term located outside coil form; one $3 / 8 \mathrm{in} .-32$ thd mtg bushing $3 / 8$ in. lg; dwg no. NL-980705-2-4 stamped on coil form; CBTL part/dwg NL-980705-2-4	Buffer Band 6 Tank (19. 0 to 26.0 $\mathrm{mc})$
L-1303	N16-C-76613-8381	COIL, RADIO FREQUENCY: 0.82 uh at 25 mc with slug withdrawn; 10 turns; no. 14 AWG copper conductor, single Formex covered conductor; one winding, single layer winding, untapped, unshielded; ceramic form; iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. diam; coil form dimen 2 in. lg, 5/8 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment on core and wrench adjustment on thd shaft attached to core; two solder lug type term located outside coil form; one $3 / 8$ in. -32 thd mtg bushing $3 / 8$	Buffer Band 5 Tank (11. 0 to 19.0 mc)

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force.	Name and Description	Locating Function
$\begin{aligned} & \mathrm{L}-1303 \\ & \text { (cont) } \\ & \mathrm{L}-1304 \end{aligned}$	N16-C-76560-7203	in. lg; dwg no. NL-980705-2-3 stamped on coil form; CBTL part/dwg NL-980705-2-3 COIL, RADIO FREQUENCY: 2.5 uh at 7.9 mc with slug withdrawn; 18 turns, no. 20 AWG copper conductor, single Formex covered conductor; one winding, single layer winding, untapped, unshielded, ceramic form, iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \lg , 5 / 8 \mathrm{in}$. diam; coil form dimen $2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. diam; adjustable tuning, iron slug, screwdriver adjustment on core, wrench adjustment on thd shaft attached to core; two solder lug type term mtd outside coil form; one $3 / 8 \mathrm{in} .-32$ thd mtg bushing $3 / 8 \mathrm{in} . \mathrm{lg}$; dwg no. NL-980705-2-2 stamped on coil form; CBTL part/dwg NL-980705-2-2	Buffer Band 4 Tank (5. 0 to 11.0 mc)
L-1305	N16-C-76617-4406	COIL, RADIO FREQUENCY: 14 uh at 2.5 mc with slug withdrawn; 47 turns, no. 26 AWG copper conductor, single Formex covered conductor; one winding, single layer winding, untapped, unshielded ceramic form, iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. diam; coil form dimen $2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment on core, wrench adjustment on thd shaft attached to core; two solder lug type term located outside coil form; one $3 / 8 \mathrm{in}$. -32 thd mtg bushing $3 / 8 \mathrm{in} . \mathrm{lg}$; dwg no. NL-980705-2-1 stamped on coil form; CBTL part/dwg NL-980705-2-1	Buffer Band 3 Tank (2. 0 to 5.0 mc)
L-1306	N16-C-74640-3225	COIL, RADIO FREQUENCY: 2.5 mh at $1000 \mathrm{cps}, 28$ ohms DC resistance, 125 ma ; 397 turns, no. 36 AWG copper conductor, single nylon enamel insulation; one winding, pie universal winding, untapped, unshielded, ceramic form, air core; coil dimen not including term mtg attachments and tuning devices $1-1 / 8 \mathrm{in}$. OD, 19/32 in. lg ; coil form dimen 1-1/8 in. OD, 19/32 in. lg; two solder lug type term located outside coil form; mtg hole through eyelet in center of core; high voltage filter; resistance and inductance tolerances $\pm 5 \%$; CMM cat. no. 640, part/dwg no. B60050; CBTL part/dwg NL-982818-1	B+ Filter V-1302
L-1307		Same as L-1302	IPA Band 6 Tank
L-1308		Same as L-1303	IPA Band 5 Tank
L-1309		Same as L-1304	IPA Band 4 Tank
L-1310		Same as L-1305	IPA Band 3 Tank
L-1311	N16-C-75106-9315	COIL, RADIO FREQUENCY: 10 mh at $1000 \mathrm{cps}, 95.0$ ohms DC resistance, 125 ma ; 332 turns per pie, total turns 1660, no. 36 AWG copper conductor, single nylon enamel insulation; one winding, 5 pie universal winding, untapped, unshielded, ceramic form, air core; coil dimen excluding term mtg attachments and tuning devices, $11 / 16 \mathrm{in}$. diam, $1-1 / 2 \mathrm{in} . \mathrm{lg}$; coil form dimen 1-1/2 in. lg, $1 / 4 \mathrm{in}$. diam; two clamp type term with flat ribbon leads $1-1 / 4 \mathrm{in} . \mathrm{lg}$ at ends of ceramic form; used as grid choke; resistance and inductance tolerance $\pm 5 \%$; mfr by CMM cat. no. 4540, part/dwg no. B45010; CBTL part/dwg NL-982759-1	Grid Choke V-1304
L-1312		Not Used.	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-1313	N16-C-74010-2114	COIL, RADIO FREQUENCY: 0.45 mh at 0.8 to $2.0 \mathrm{mc} ; 6 \mathrm{ohms}$ DC resistance, 300 ma ; 113 ft . no. 26 AWG copper conductor double cotton covered; single bank wound, four layers, untapped, unshielded, textolite no. 1422 or equal form; coil dimen 2-1/2 in. $\lg , 7 / 8 \mathrm{in}$. diam less term; coil form dimen $2-1 / 2$ in. lg, $7 / 8$ in. diam; 2 term, CAMQ X-1582B located $3 / 16$ in. from each end; two no. 6-32 thd mtg holes, $1 / 2$ in. d; marked NL-982571-1; CBTL part/dwg NL-982571-1	Plate Choke V-1304
L-1314	N16-C-73684-7708	COIL, RADIO FREQUENCY: 85 uh at $0.5 \mathrm{mc}, 4.6$ ohms DC resistance, 1 amp; 192 turns, no. 32 AWG copper conductor, bare; one winding, single layer, untapped, unshielded, ceramic form, air core; coil dimen 6 in. $\mathrm{lg}, 9 / 16 \mathrm{in}$. diam; coil form dimen 6 in. lg, 9/16 in. OD, 5/16 in. ID; two solder lug type term located outside coil form; mtg brackets on each end of coil; dwg no. NL-982758-1 stamped on each coil; COM type Z-7, part/dwg no. A-1320-E; CBTL part/dwg NL-982758-1	RF Plate Choke V-1304
L-1315	N16-C-73509-2812	COIL, RADIO FREQUENCY: 44.0 uh at $1 \mathrm{mc}, 3.08$ ohms DC . resistance, $600 \mathrm{ma} ; 130$ turns no. 33 AWG copper conductor, single enamel covered; one winding, single layer, untapped, unshielded, textolite coil form, air core; coil dimen excluding term $2 \mathrm{in} . \lg .1 / 2 \mathrm{in}$. OD; 2 flexible wire term leads located outside of coil form; term leads used for mtg; dwg no. NL-982757-1 stamped on coil form; COM type Z-14 modified, spec 32829; CBTL part/dwg NL-982757-1	RF Plate Choke V-1304
L-1316	N16-C-73379-7020	COIL, RADIO FREQUENCY: 26 uh at $2.5 \mathrm{mc}, 1.2 \mathrm{amp} ; 90$ turns approx, no. 28E B \& S copper conductor, single enamel covered conductor; single winding, one layer, helix wound, untapped, unshielded, ceramic form, air core; coil form dimen excluding term $2 \mathrm{in} . \mathrm{lg}, 1 / 2 \mathrm{in} . \mathrm{OD}$; two flexible wire term no. 18 or no. 19 B \& S ga. tinned copper wire located outside coil form; mtd by its term leads; dwg no. NL-983952-1 stamped on coil form; CBTL part/dwg NL-983952-1	RF Plate Choke V-1304 (11. 0 to 26.0 mc)
L-1317	N16-C-71963-9758	COIL, RADIO FREQUENCY: 7-1/2 turns, 3/16 in. OD, . 032 wall, silver pl copper tubing; one winding, single layer, untapped, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $4-1 / 2 \mathrm{in} . \mathrm{lg}, 2 \mathrm{in}$. diam; coil form dimen 4-1/2 in. $\mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; two solder lug type term, one located inside coil form, one located outside coil form; four no. 8-32 thd mtg holes; part no. L-1317 stamped on coil form; CBTL part/dwg NL-982110-3	Power Amplifier Filter Band 6 (19.0 to 26.0 mc)
L-1318	N16-C-72095-9052	COIL, RADIO FREQUENCY: 11 turns, $1 / 8 \mathrm{in}$. OD, silver pl copper tubing; one winding, single layer, untapped, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $4-1 / 2 \mathrm{in}$. $\mathrm{lg}, 1-15 / 16 \mathrm{in}$. diam; coil form dimen $4-1 / 2 \mathrm{in} . \mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; two solder lug type term, one located inside and one outside coil form; four no. 8-32 thd mtg holes; part no. L-1318 stamped on coil form; CBTL part/dwg NL-982109-3	Power Amplifier Filter Band 5 (11. 0 to 19.0 mc)
L-1319	N16-C-72233-7810	COIL, RADIO FREQUENCY: 17 turns, no. 14 AWG silver clad copper wire; one winding, single layer, untapped, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $4-1 / 2 \mathrm{in} . \mathrm{lg}, 1.836 \mathrm{in}$. diam; coil form dimen 4-1/2 in. lg, 1-3/4 in. diam; two solder lug type term, one inside and one outside coil form; four no. 8-32 thd mtg holes; part no. L-1319 stamped on coil form; CBTL part/dwg NL-982108-3	Power Amplifier Filter Band 4 (5.0 to 11.0 mc)

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-1320	N16-C-72586-9358	COIL, RADIO FREQUENCY: 43 turns, no. 18 AWG silver clad copper wire; one winding, single layer, untapped, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $4-1 / 2 \mathrm{in} . \mathrm{lg}, 1.804 \mathrm{in}$. diam; coil form dimen $4-1 / 2 \mathrm{in} . \mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; two solder lug type term, one inside and one outside coil form; four no. 8-32 thd mtg holes; part no. L-1320 stamped on coil form; CBTL part/dwg NL-982107-3	Power Amplifier Filter Band 3 (2.5 to 5.0 mc)
$\begin{aligned} & \mathrm{L}-1321 \\ & \mathrm{~L}-1322 \end{aligned}$		Not Used Not Used	
L-1323	N16-C-71815-3539	COIL, RADIO FREQUENCY: 4-1/2 turns, $3 / 16 \mathrm{in}$. OD by . 032 in. wall, silver plated copper tubing; one winding, single layer, adjustable tap located approx at $5 / 8$ turn from finish of winding, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $3-1 / 2 \mathrm{in} .1 \mathrm{~g}, 2 \mathrm{in}$. diam; coil form dimen $3-1 / 2 \mathrm{in} . \mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; three solder lug type term, one inside coil form, one outside coil form and one located at tapped point of coil; four no. 8-32 thd mtg holes, two at each end of coil form; part no. L-1323 stamped on coil form; CBTL part/dwg NL-982114-3	Power Amplifier Antenna Matching Band 6 (19. 0 to 26.0 mc)
L-1324	N16-C-71880-7304	COIL, RADIO FREQUENCY: 6-1/2 turns, $1 / 8 \mathrm{in}$. OD, silver pl copper tubing; one winding, single layer, adjustable tap located approx at 1-1/4 turn from finish of winding, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $3-1 / 2 \mathrm{in}$. lg , 1-15/16 in. diam; coil form dimen $3-1 / 2 \mathrm{in} . \mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; three solder lug type term, one located inside coil form, one located outside coil form and one located at tapped point of coil; four no. 8-32 thd mtg holes, two located at each end of coil form; part no. L-1324 stamped on coil form; CBTL part/dwg NL-982113-3	Power Amplifier Antenna Matching Band 5 (11.0 to 19.0 mc)
L-1325	N16-C-72095-1042	COIL, RADIO FREQUENCY: 11 turns, no. 14 AWG copper wire; one winding, single layer, tapped at $1,1-1 / 4$ and $1-1 / 2$ turns, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $3-1 / 2 \mathrm{in} .1 \mathrm{~g}, 1.836 \mathrm{in}$. diam; coil form dimen 3-1/2 in. $\mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; five solder lug type term, two located inside coil form and three located at tapped points of coil; four no. 8-32 thd mtg holes, two located at each end of coil form; part no. L-1325 stamped on coil form; CBTL part/dwg NL-982112-3	Power Amplifier Antenna Matching Band 4 (5.0 to 11.0 mc)
L-1326		Not U	
L-1327	N16-C-72392-9641	COIL, RADIO FREQUENCY: 27 turns, no. 18 AWG copper wire; one winding, single layer, tapped at $3-1 / 8,4$ and $4-7 / 8$ turns, unshielded, steatite form, air core; coil dimen excluding term and mtg attachments $3-1 / 2 \mathrm{in} . \lg , 1.804 \mathrm{in}$. diam; coil form dimen 3-1/2 in. $\mathrm{lg}, 1-3 / 4 \mathrm{in}$. diam; five solder lug type term, two located inside coil form and three located at tapped points of coil; four no. 8-32 thd mtg holes, two located at each end of coil form; part no. L-1327 stamped on coil form; CBTL part/dwg NL-982111-3	Power Amplifier Antenna Matching Band 3 (2.0 to 5.0 mc)
L-1328		Not Used	
L-1329	N16-C-73583-5003	COIL, RADIO FREQUENCY: 52 uh at 2.5 mc , 56 turns, no. 20 AWG copper conductor, single Formex covered; one winding, single layer, tapped at six turns, unshielded, bakelite form, air core; coil dimen excluding term 3-1/4 in. $\mathrm{lg}, 1.31 \mathrm{in}$. diam;	Power Amplifier Antenna Matching Band 2 (0.8 to 2.0 mc)

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-1329 (cont) L-1330 L-1331	N16-C-73993-5384	coil form dimen 3-1/4 in. lg, 1-1/4 in. diam; two wire pigtail term located at either end; mtd by two mtg plates, one at each end; dwg no. NL-981966-2-4 stamped on coil form; CBTL part/ dwg NL-981966-2-4 Not Used COIL, RADIO FREQUENCY: 245 uh at $790 \mathrm{kc} ; 130$ turns, no. 26 AWG copper wire, single Formex covered conductor; one winding, single layer, tapped at 10 turns, unshielded, bakelite form, air core; coil dimen excluding term 3-1/4 in. lg, 1.28 in. diam o/a; coil form dimen 3-1/4 in. $\mathrm{lg}, 1-1 / 4 \mathrm{in}$. diam; 3 term, wire pigtail type, located at either end of coil and at tap; motd by two mtg plates, one on each end of coil form; dwg no. NL-981966-2-3 stamped on coil form; CBTL part/dwg NL-981966-2-3	Power Amplifier Antenna Matching Band 1 (0. 3 to 0.8 $\mathrm{mc})$
$\begin{aligned} & \mathrm{L}-1332 \\ & \mathrm{~L}-1333 \end{aligned}$	N16-C-74836-1694	Same as L-1306 COIL, RADIO FREQUENCY: $4.0 \mathrm{mh}, 10$ ohms DC resistance, $600 \mathrm{ma} ; 720$ turns, no. 28CSC copper wire; four pie universal wound, tapered, unshielded, ceramic form, air core; coil dimen excluding term 2-1/2 in. $\mathrm{lg}, 1-3 / 16 \mathrm{in}$. diam; coil form dimen 2-1/2 in. lg, $1 / 2 \mathrm{in}$. OD ; two solder lug type term; two mtg brackets, one at each end; CMM no. 4551; CBTL part/dwg NL-982572-1	B+ Filter V-1301 RF Plate Choke V-1304 (0. 3 to 0.8 $\mathrm{mc})$
L-1334	N16-C-73751-3234	COIL, RADIO FREQUENCY: 90 uh; 70 turns, no. 10/41 AWG Litz copper wire, single enamel silk covered conductor; one winding, one pie universal wound, untapped, unshielded, steatite form; coil dimen excluding term 43/64 in. diam, 1-1/8 in. wd; coil form dimen $1-1 / 8 \mathrm{in} . \mathrm{lg}, 1 / 2 \mathrm{in}$. diam; two term, one solder lug type, one wire pigtail type, solder lug located at top of coil form, wire pigtail on opposite side of coil form; one no. 8-32 thd mtg hole located at bottom of coil form; CBTL part/dwg NL-981865-1	Buffer Band 2 Tank (0. 3 to 0.8 $\mathrm{mc})$
$\begin{aligned} & \mathrm{L}-1335 \\ & \mathrm{~L}-1336 \end{aligned}$		Same as L-1301 Same as L-1334	IPA Band 1 Tank IPA Band 2 Tank
L-1337	N16-C-76614-4102	COIL, RADIO FREQUENCY: 10 uh at 2.5 mc with slug withdrawn; 35 turns, no. 26 AWG copper wire, single Formex covered conductor; single winding, single layer, untapped, unshielded, ceramic form, iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \mathrm{lg}, 5 / 8 \mathrm{in}$. diam; coil form dimen 2 in. lg, 5/8 in. diam; adjustable tuning, screwdriver adjustment on core and wrench adjustment on thd shaft attached to core; two solder lug type term located outside coil form; one 3/8 in. -32 thd mtg bushing $3 / 8 \mathrm{in}$. lg ; dwg no. NL-980705-2-5 stamped on coil form; CBTL part/dwg NL-980705-2-5	Harmonic Trap Band 3 (2. 0 to 5.0 mc)
L-1338	N16-C-76559-2640	COIL, RADIO FREQUENCY: 2.25 uh at 7.9 mc with slug withdrawn; 16 turns, no. 20 AWG copper wire, single Formex covered conductor; single winding, single layer, untapped, unshielded, ceramic form, iron core; coil dimen excluding mtg fixtures and tuning devices $2 \mathrm{in} . \lg , 5 / 8 \mathrm{in}$. diam; coil form dimen $2 \mathrm{in} . \lg , 5 / 8 \mathrm{in}$. diam; adjustable tuning, screwdriver adjustment on core and wrench adjustment on thd shaft attached to core; two solder lug type term located outside coil form; one 3/8 in. -32 thd mtg bushing $3 / 8 \mathrm{in}$. lg ; dwg no. NL-980705-2-6 stamped on coil form; CBTL part/dwg NL-980705-2-6	Harmonic Trap Band 4 (5. 0 to 11.0 $\mathrm{mc})$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Słandard Navy Air Force	Name and Description	Locating Function
L-1339	N16-C-73583-5001	COIL, RADIO FREQUENCY: 52 uh at 2.5 mc ; 56 turns, no. 20 AWG copper wire, Formex insulation; single winding, single layer, untapped, unshielded, bakelite form, air core; coil dimen excluding term $3-1 / 4 \mathrm{in} . \mathrm{lg}, 1.31 \mathrm{in}$. diam; coil form dimen 3-1/4 in. lg, 1.25 in . diam; two wire pigtail type term located on either end of coil; mtd by two mtg plates one on each end of coil form; dwg no. NL-981966-2-2 stamped on coil form; CBTL part/dwg NL-981966-2-2	Power Amplifier Filter Band 2 (0.8 to 2.0 mc)
L-1340		Same as L-1339	Power Amplifier Filter Band 2
L-1341	N16-C-73993-5382	COIL, RADIO FREQUENCY: 245 uh at $790 \mathrm{kc} ; 130$ turns, no. 26 AWG copper, single Formex covered conductors; one winding, single layer, untapped, unshielded, bakelite form, air core; coil dimen excluding term $3-1 / 4 \mathrm{in} . \mathrm{lg}, 1.28 \mathrm{in}$. diam; coil form dimen $3-1 / 4 \mathrm{in}$. $\mathrm{lg}, 1-1 / 4 \mathrm{in}$. diam; two wire pigtail term located on either end of coil; mtd by two mtg plates, one at each end of coil form; dwg no. NL-981966-2-1 stamped on coil form; CBTL part/dwg NL-981966-2-1	Power Amplifier Filter Band 1 (0.3 to 0.8 mc)
L-1342		Same as L-1341	Power Amplifier Filter Band 1
L-1343	N16-R-29238-4571	REACTOR: filter choke, one section; 10 hy , 150 ma DC; 198 ohms DC resistance; 3000v RMS test voltage; hermetically sealed, metal case; o/a dimen 3-3/8 in. $\mathrm{lg}, 3-1 / 4 \mathrm{in}$. wd, $4-15 / 16 \mathrm{in}$. h ; four no. $10-32$ thd inserts for $\mathrm{mtg}, 3 / 8 \mathrm{in}$. d on $2-1 / 2 \mathrm{in}$. by $2-1 / 4 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; two solder lug type term located at bottom; conforms to MIL-T-27, Grade 1, Class A; CAVM dwg no. S-280-2; CBTL part/dwg NL-980624-1	Choke Screen V-1304
L-1344		Same as L-1311	$\begin{aligned} & \text { Grid Choke } \\ & \text { V-1302 } \end{aligned}$
L-1345	Shop Manufacture	COIL, RADIO FREQUENCY: self inductance $0.1 \mathrm{uh} ; 4$ turns, no. 16 AWG soft bare copper, tinned conductor; one winding, single layer, untapped, unshielded, air core; $1 / 2 \mathrm{in} . \mathrm{D}, 0.6$ in. OD, approx 2-1/4 in. lg excluding term. o / a dimen; one solder lug term. located at one end of coil; CBTL part/dwg NL-901613-1	Suppression Choke
M-1301	N17-M-21869-5025	AMMETER (METER, ARBITRARY SCALE): panel mtd; DC; microamperes, 0 to $50 \mathrm{CW}, 0$ to 100 CW , graduated in increments of 10 for 0 to 50 scale and in increments of 20 for 0 to 100 scale; round, plastic; flush mtd, flange 3-1/2 in. wd, 2.80 in . body diam, 1.66 in . body depth from mtg surface excluding term; $\pm 2 \%$ accuracy at full scale reading; 2500 ohms $\pm 1 \%$ across term; calibrated for non-magnetic panel; magnetic movement; black numerals on white background; self contained; three mtg holes 0.150 in . diam spaced 120° apart on a 1.58 in . radius; two stud term $1 / 4 \mathrm{in} .-20 \mathrm{NF}-2$ thd $0.69 \mathrm{in} . \mathrm{lg}$; CV per spec JAN-I-6, similar to JAN type MR35W106SPEC except for scale; CBTL part/dwg NL-982280-1	Voltage Metering
M-1302	N17-M-18250-8256	AMMETER: RF thermoammeter type; panel mtd; RF amperes; 0 to 5 CW ; graduated in increments of tenths; linear expanding scale; round, plastic; flush mtd, flange 3-1/2 in. wd; frequency effect less than 2% up to 65 mc ; calibrated for non-magnetic panel; internal thermocouple; black numerals on white background; per spec JAN-I-6; JAN type MR35W005RLAA	Transmission Line Current Meter

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
M-1303		Same as M-1301	PA Current Metering V-1304
M-1304		Same as M-1301	IPA Current Metering V-1302
N-1301	Low Failure Item	CARD, DIAL NUMBER: aluminum w/bronze bearing and steel hub; numerals etched in aluminum; black background; numerals 1 to 100, 101 lines equally spaced along edge; two indents on outer edge at 180° and 235° from 0; round, 3 in . diam, $1 / 2 \mathrm{in}$. thk; three no. 4-40 tapped holes for mtg to sprocket; CBTL part/dwg NL-900187-1	For PA Dial Drive
N-1302	Low Failure Item	CARD, DIAL NUMBER: aluminum w/bronze bearing and steel hub; numerals etched in aluminum, black background; numerals 1 to 100 , 101 lines equally spaced along edge; two indents on outer edge at 135° and 180° from 0; round, 3 in . diam, $1 / 2 \mathrm{in}$. thk; three no. 4-40 tapped holes for mtg to sprocket; CBTL part/dwg NL-900173-1	For IPA Dial Drive
0-1301	N17-C-800487-451	CLIP, ELECTRICAL: grid plate style 7, MBCA Ref Dwg Group 37; steel; 7/8 in. $\lg , 3 / 8 \mathrm{in}$. wd, $3 / 8 \mathrm{in}$. h, 1 solder lug type term; used as tube plate clip; CNA type no. 24	u/w V-1302
0-1302	N17-C-814129-975	CLIP, ELECTRICAL: aluminum; supersat finish; 1-3/4in. 1g, $1-1 / 2 \mathrm{in} . \mathrm{wd}, 3 / 8 \mathrm{in} . \mathrm{h}$ o/a dimen; 1 no. 6-32 tapped hole for term; 8 radial fins equally spaced 45° apart; one 0.366 in . diam hole in center of clip; two no. 6-32 tapped holes 90° apart for mtg; used as electron tube plate clip; CBTL part/dwg NL-982540-2	u/w V-1304
0-1303	N16-S-34607-6039	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; 2-1/4 in. lg, 0.958 in . diam o/a dimen; bayonet mtg; per spec. JAN-S-28A; JAN type TS102U03; same as O-1021	u/w V-1303
0-1304	N17-I-19006-8801	MMPELLER, FAN, CENTRIFUGAL: multiblade; forward curve blades; steel, cad pl plus iridite; single width; 24 blades; CCW; o/a dimen $4-1 / 4 \mathrm{in}$. diam by $2-1 / 32 \mathrm{in}$. wd; single inside hub, $1 / 4 \mathrm{in}$. bore; mtd by two $1 / 4 \mathrm{in}$. -28 set screws; CCBN part no. AO-1903-02; CBTL part/dwg NL-900532-12 item 2	p/o B-1306
0-1305	N77-B-99999-0237	BEARING, BALL, BELL CRANK: single row non-loading groove type; axial; plain type; light duty; $1 / 2 \mathrm{in} . \mathrm{D}, 1-1 / 8 \mathrm{in}$. $\mathrm{OD}, 1 / 4 \mathrm{in}$. wd dimen of bearing only; o/a dimen $1-3 / 8 \mathrm{in}$. sq , 0.343 in. thk; eight balls; tight fit; ABEC 1 tol; CGM part R8X1A w/CBTL housing; CBTL part/dwg NL-900296-1	p/o PA Tuning Drive
0-1306	N17-C-812004-101	RETAINER, tube ring: steel, cad pl; 1-29/32 in. \lg by $1 / 2 \mathrm{in}$. h ; two $9 / 64 \mathrm{in}$. diam mtg holes spaced 1-1/2 in. ctoc; CUF no. 52329; CBTL part/dwg NCP-97-1A-7	u/w V-1301
0-1307	N16-G-414685-451	GEAR, BEVEL: brass, chrome pl; variable capacitor shaft driving; straight teeth; 24 teeth; 24 pitch, 1.000 in . pitch diam; face at 45° angle; 1.060 in . OD, 0.3125 in . ID, approx $9 / 16 \mathrm{in}$. thk; hub approx $9 / 16 \mathrm{in}$. diam; two 8-32 tapped holes 90° apart in hub for set screws; CBH part G464 modified; CBTL par't/dwg NL-900322-1	Drive for C-1323, p/o PA Tuning Drive
0-1308	N17-C-99999-1191	COUPLING, SHAFT, FLEXIBLE: multijaw type; female; brass, cad $\mathrm{pl}, 1 \mathrm{in}$. OD, $9 / 16 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; incl floating part; 0.240 in . wd by 7/32 in. d keyway across diam; 0.250 in ., 0.187 in . axdal mtg hole; two no. 6-32 tapped holes 90° apart; red dot on one end of keyway; CBTL part/dwg NL-900577-1	p/o IPA Drive Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1309	N17-C-98421-1601	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in . OD, $3 / 8 \mathrm{in}$. thk o/a; 0.234 in . wd by $3 / 32 \mathrm{in}$. d key across diam; 0.250 in ., 0.187 in . axial mtg hole; two no. 6-32 tapped holes 90° apart; red dot on one end of key; CBTL part/dwg NL-900578-1	p/o IPA Drive Assy
0-1310	N17-S-99999-0597	SPRING, HELICAL TORSION: single torsion, Ref Dwg Group 67; 0.041 in . diam music wire, nickel pl finish; $0.953 \mathrm{in} . \mathrm{lg}$, 0.469 in. wd, 0.406 in. thk o/a dimen; 2-1/4 turns, RH turns; $1 / 8 \mathrm{in}$. lg ends, 90° bend; CBTL part/dwg NL-900199-1	p/o PA Dial Drive Assy
0-1311	N16-G-438548-582	GEAR, SPUR: steel, nickel pl finish; straight teeth; 24 teeth; 14.5° pressure angle; 32 pitch, 0.750 in . pitch diam; 13/16 in. OD, 19/64 in. bore, $1 / 2 \mathrm{in}$. thk; straight face; hub extends $9 / 32 \mathrm{in}$. beyond face of gear, $21 / 32 \mathrm{in}$. OD; one no. 4-40 set screw and one $5 / 64 \mathrm{in}$. drill hole 90° apart, $1 / 8 \mathrm{in}$. front end of hub; similar to CBH part H3224; CBTL part/dwg NL-900278-1	p/o IPA Gear Box Assy
0-1312	N16-G-505001-238	GEAR ASSEMBLY: c/o two spur gears mtd on one hub; CBH part 106 gears modified, brass, straight teeth, 48 teeth, 32 pitch, $1-1 / 2 \mathrm{in}$. pitch diam, $1 / 4 \mathrm{in}$. diam, $1 / 16 \mathrm{in}$. d bore; bronze hub $5 / 8 \mathrm{in}$. diam, one no. 4-40 tap hole and one $5 / 64 \mathrm{in}$. drill hole spaced 90° apart; 0.3125 in . ID; 2 elongated spring windows, $0.437 \mathrm{in} . \mathrm{lg}, 1 / 4 \mathrm{in} . \mathrm{wd} \mathrm{o} / \mathrm{a}$, located on side of each gear; CBTL part/dwg NL-900272-1	p/o IPA Gear Box Assy
0-1313	N17-S-99999-0599	SPRING, HELICAL COMPRESSION: for gear locking; 0.026 in . diam music wire, cad pl; 11/64 in. ID, 5/8 in. lg o/a; 10 turns, LH or RH turns; pointed ends; CBTL part/dwg NL-900276-1	p/o IPA Gear Box Assy
0-1313.1		Same as 0-1313	p/o IPA Gear Box Assy
0-1314	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 35 teeth; 1.725 in. OD, $3 / 8 \mathrm{in}$. wd o/a dimen; hub $5 / 8 \mathrm{in}$. diam, $1 / 4 \mathrm{in}$. wd , 5/16 in. diam center hole, 5/64 in. diam and no. 4-40 tap holes located $1 / 8 \mathrm{in}$. from face of hub, spaced 90° apart; shaft mtd by means of $5 / 16 \mathrm{in}$. diam hole through center; CBKH type 9100-35 modified per CBTL part/dwg NL-900279-1	p/o IPA Gear Box Assy
0-1315	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 19 teeth; 0.972 in. $\mathrm{OD}, 3 / 8 \mathrm{in}$. wd o/a dimen; hub $1 / 2 \mathrm{in}$. diam, $1 / 4 \mathrm{in}$. wd, 0.250 in . diam center hole, 0.089 in . diam and no. 4-40 tap holes located $1 / 8 \mathrm{in}$. from face of hub, spaced 90° apart; shaft mtd by means of 0.250 in . diam hole through center; CBKH type 9100-19 modified per CBTL part/dwg NL-900312-1	Drives IPA Tuning Shaft
0-1316	N16-G-431850-419	GEAR, SPUR: bronze gear and hub; straight teeth; 48 teeth; 32 pitch, $1-1 / 2 \mathrm{in}$. pitch diam; o/a dimen $9 / 16 \mathrm{in}$. the by 1-5/32 in . OD; straight face; hub extends $3 / 8 \mathrm{in}$. beyond face of gear, $3 / 4 \mathrm{in}$. $\mathrm{OD} \mathrm{w} / 0.3125 \mathrm{in}$. diam hole for mtg; two holes, one no. 8-32 thd, other 0.063 in . diam hole at 90° apart; CBTL part/ dwg NL-981092-1	p/o PA Tuning Drive
0-1316.1		Same as 0-1316	p/o PA Tuning Drive
0-1317	N16-T-43276-1190	SHAFT SUB-ASSEMBLY (TRANSMITTER SUB-ASSEMBLY): c/o shaft w/two mtd sprockets and lock spider; approx 1.75 in . \lg by 0.800 in. wd by $0.800 \mathrm{in} . \mathrm{h}$; one sprocket, brass, 7 teeth, 0.395 in . OD by $1 / 4 \mathrm{in} . \mathrm{wd}$; one sprocket, brass, 10 teeth, 0.543 in . OD by $3 / 8 \mathrm{in}$. wd; sprockets mtd to shaft by GroovPins and set screws; CBTL part/dwg NL-900191-1	p/o PA Dial Drive Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1318	N16-T-43276-1191	SHAFT SUB-ASSEMBLY (TRANSMITTER SUB-ASSEMBLY): c/o shaft w/two mtd sprockets and lock spider; approx 1.75 in. \lg by 0.800 in . wd by $0.800 \mathrm{in}. \mathrm{h;} \mathrm{one} \mathrm{sprocket}, \mathrm{brass}$,7 teeth, 0.395 in . OD by $1 / 4 \mathrm{in}$. wd; one sprocket; brass, 14 teeth, 0.735 in. OD by $13 / 32$ in. wd; sprockets mtd to shaft by GroovPins and set screw; CBTL part/dwg NL-900180-1	p/o IPA Dial Drive Assy
O-1319. 1	N17-C-921001-109	CORE, ADJUSTABLE TUNING: iron powdered core, cylindrical shape; 2 in . lg excluding thd rod projecting axially from one end, $15 / 16 \mathrm{in}$. diam core; 1-3/8 in. nickel pl brass rod w/ no. 8-32 thd varnished to withstand 200 hour salt spray; CAI type 560; CBTL part/dwg NL-982092-1-2	u/w L-1329
O-1319. 2		Same as O-1319. 1	u/w L-1339
O-1319.3		Same as O-1319.1	u/w L-1340
O-1320. 1	N17-C-921001-108	CORE, ADJUSTABLE TUNING: iron powdered core, cylindrical shape; $2 \mathrm{in} . \lg$ excluding thd rod projecting axially from one end, $15 / 16 \mathrm{in}$. diam core; $1-3 / 8 \mathrm{in}$. lg nickel pl brass rod $\mathrm{w} /$ no. 8-32 thd varnished to withstand 200 hour salt spray; CAI type 520; CBTL part/dwg NL-982092-1-1	u/w L-1331
O-1320. 2		Same as O-1320.1	ùw L-1341
O-1320. 3		Same as 0-1320. 1	u/w L-1342
O-1321	N17-C-98378-3799	COUPLING, FLEXIBLE: disc shape insulator w/metal bushing on either side; approx o/a dimen 1-1/16 in. diam, 9/16 in. wd; one $1 / 4 \mathrm{in}$. diam hole drilled thru insulation for shaft mtg; free from backlash; CNA part TX-10 modified per CBTL part/ dwg NL-981903-1	IPA Shaft Coupling
O-1321. 1		Same as O-1321	IPA Shaft Coupling
O-1322	N16-G-431250-365	GEAR, SPUR: stainless steel; straight teeth, 18 teeth, 32 pitch, 0.563 in . pitch diam, $14-1 / 2^{\circ}$ pressure angle, straight face; 0.6256 in. OD by 0.187 in . thk; hub extends $5 / 16 \mathrm{in}$. beyond face of gear, $15 / 32 \mathrm{in}$. $\mathrm{OD} \mathrm{w} / 0.3129 \mathrm{in}$. diam bore, 0.125 in. wd slot $3 / 16$ in. d; CBTL part/dwg NL-981163-1	p/o PA Tuning Drive
O-1322. 1		Same as O-1322	p/o PA Tuning Drive
O-1322. 2		Same as 0-1322	p/o PA Tuning Drive
O-1323	N16-G-500001-347	GEAR ASSEMBLY: c/o spur pinion w/hub silver soldered to spur gear w/o hub; 0.8126 OD by 15/32 in. $\lg \mathrm{o} / \mathrm{a}$; pinion straight teeth, 16 teeth, 32 pitch, 0.500 in. pitch diam, 3/16 in. thk, 20° pressure angle, straight face, hub 0.3125 in. diam, 3/16 in. diam bore; gear straight teeth, 24 teeth, 32 pitch, 0.750 in. pitch diam, $14-1 / 2^{\circ}$ pressure angle, 0.3125 in. bore, $3 / 16$ in. thk, straight face; CBTL part/dwg NL-981772-1	p/o PA Tuning Drive
O-1324	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 11 teeth; o/a dimen 0.591 in . OD, $3 / 8 \mathrm{in}$. wd; hub $3 / 8 \mathrm{in}$. OD, $1 / 4 \mathrm{in} . \mathrm{wd}$, 0.2187 in . diam shaft hole; one no. 4-40 tapped hole and one 3/64 in. drilled hole thru one wall only for set screw and pin mtg; CBKH type 9100-11 modified per CBTL part/dwg NL-901034-1	p/o Right Angle Drive Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1325	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 33 teeth, 1-5/8 in. diam, 0.375 in. wd; hub $3 / 4 \mathrm{in}$. OD, $1 / 4 \mathrm{in}$. wd, 0.312 in . diam shaft hole; one no. 4-40 tapped hole and one $5 / 64 \mathrm{in}$. drilled hole thru one wall only for set screw and pin mtg; CBKH type 9100-33 modified per CBTL part/dwg NL-901033-1	p/o Right Angle Drive Assy
0-1325. 1		Same as 0-1325	p/o Right Angle Drive Assy
0-1326	Low Failure Item	SPROCKET ASSEMBLY, CHAIN: c/o sprocket mtd on bushing; sprocket brass, nickel pl, round, 19 teeth, 0.972 in . OD, $25 / 64 \mathrm{in} . \mathrm{wd}, 0.375 \mathrm{in}$. diam bore; bushing stainless steel, $1-1 / 8 \mathrm{in} . \lg , 1 / 2 \mathrm{in} . \operatorname{diam}$ o/a, $5 / 16 \mathrm{in} . \lg , 0.100 \mathrm{in} . \mathrm{wd}$ slot on sides of one end, 0.250 in . diam bore; no. 4-40 tap hole and one $1 / 16 \mathrm{in}$. diam hole thru one wall of sprocket hub; CBTL part/dwg NL-900134-1	Detent Assy Drive for S-1301 and S-1302
0-1327	N16-R-99999-0864	RING, RETAINING: steel, SAE 1060-1090; plain, iridite dip; for shaft diam $5 / 16 \mathrm{in}$. ID 0.281 in ., 0.025 in . thk; installed by means of special pliers no. 2; CCDE truarc part no. 5100-31SMI	p/o Right Angle Drive Assy
0-1328	Low Failure Item	BEARING, SLEEVE: porous bronze; flange type; $1 / 2 \mathrm{in}$. OD, $5 / 16 \mathrm{in} . \mathrm{D}, 3 / 8 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; flange is $0.6875 \mathrm{in} . \mathrm{OD}, 3 / 32 \mathrm{in}$. thk; CBH part no. FB-58-3	p/o Right Angle Drive Assy
0-1328. 1		Same as 0-1328	p/o Right Angle Drive Assy
0-1328. 2		Same as 0-1328	p/o Right Angle Drive Assy
O-1328.3		Same as 0-1328	p/o Right Angle Drive Assy
0-1329	N17-S-99999-0598	SPRING, HELICAL, TORSION: . no. 10 Washburn \& Moen gauge music wire, nickel pl; $2.389 \mathrm{in} . \mathrm{lg}, 1.250 \mathrm{in} .\mathrm{D} \mathrm{o/a;} 16.7$ turns, LH turns, semi-hook type term, one located on each end of spring; term bent on $5 / 32 \mathrm{in}$. radius; CBTL part/dwg NL-900303-1	u / w IPA Tuning Shaft Racks
0-1330	N16-R-99999-0863	RING, RETAINING: steel, SAE 1060-1090; plain, iridite dip; for shaft diam 7/32 in., D 0.196 in ., 0.015 in . thk; installed by means of special pliers no. 0018; CCDE truarc part no. 5100-21-SMI	p/o Right Angle Drive Assy
0-1330. 1		Same as 0-1330	p/o Right Angle Drive Assy
0-1331	N17-C-480858-962	SPROCKET, CHAIN: brass, nickel pl; round, 10 teeth; o/a dimen 0.543 in . OD, $3 / 8 \mathrm{in}$. wd; hub $5 / 16 \mathrm{in}$. OD, $1 / 4 \mathrm{in}$. wd; mtd by means of 0.2187 in . diam hole thru center, free running on shaft; CBKH type 9100-10 modified per CBTL part/dwg NL-901035-1	p/o Right Angle Drive Assy
O-1331. 1		Same as 0-1331	p/o Right Angle Drive Assy
0-1332	N17-S-99999-0596	SPRING, HELICAL, TORSION: 0.041 in . diam music wire, nickel pl finish; 31/32 in. lg, $0.489 \mathrm{in} . \mathrm{wd}, 0.50 \mathrm{in}$. thk o/a dimen; 2-1/4 turns; LH turns; $1 / 8 \mathrm{in} . \lg$ ends, 90° bend; CBTL part/dwg NL-900103-1	p/o IPA Dial Drive Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-1333	N16-G-431530-441	GEAR, SPUR: phosphor bronze, straight teeth, 32 teeth, 32 pitch, 1 in. pitch diam, 20° pressure angle, 0.3125 in. diam bore, $9 / 16$ in. thk, 1.0626 in. OD, straight face; hub extends 3/8 in. beyond face of gear, $3 / 4 \mathrm{in}$. OD; one no. 8-32 tapped hole in hub thru one wall only, one 0.089 in . diam hole drilled 90° from first in one wall only; CBTL part/dwg NL-981776-1	p/o PA Tuning Drive
O-1334	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 20 teeth; 1.020 in . OD, 0.125 in . wd o/a dimen; three mtg holes 0.125 in . diam elongated spaced 120° apart, shaft hole in center 0.3125 in. diam; CBKH type 9100-20 modified per CBTL part/dwg NL-900105-1	p/o IPA Dial Drive Assy
0-1335	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 35 teeth; 1.725 in . OD, 0.125 in . thk o/a dimen; three mtg holes 0.125 in . diam elongated spaced 120° apart, shaft hole in center 0.3125 in. diam; CBKH type 9100-35 modified per CBTL part/dwg NL-900189-1	p/o PA Dial Drive Assy
0-1336	Low Failure Item	SPROCKET, CHAIN: brass, nickel pl; round, 10 teeth; 0.543 in . OD, 0.125 in . thk o/a dimen; shaft mtd by means of 0.125 in . diam hole through center; CBKH type 9100-10 modified per CBTL part/dwg NL-900198-1	p/o IPA Tuning Drive Assy
O-1336. 1		Same as O-1336	p/o PA Dial Drive Assy
O-1336. 2		Same as 0-1336	p/o IPA Tuning Drive
0-1337	Low Failure Item	SPROCKET, CHAIN: idler; brass, nickel pl; round, 14 teeth; 0.735 in . OD by 0.312 in . wd o/a dimen; hub $3 / 8 \mathrm{in}$. OD, $3 / 16$ in. wd; shaft mtd by means of 0.125 in . diam hole through center; CBKH type 9100-14 modified per CBTL part/dwg NL-901055-1	Idler for PA Drive Assy
O-1338	N16-R-99999-0865	RING, RETAINING: steel, SAE 1060-1090, plain, iridite dip; external, for $1 / 4 \mathrm{in}$. diam shaft, ID 0.225 in ., 0.025 in . thk; installed by means of special pliers no. 2; CCDE truarc part 5100-25-SMI	p/o IPA Dial Drive Assy
O-1338. 1		Same as 0-1338	p/o Detent Assy for S-1301
O-1338. 2		Same as 0-1338	p/o Detent Assy for S-1301
0-1339	N16-R-99999-0859	RING, RETAINING: beryllium copper, plain, iridite dip; external, for $3 / 16 \mathrm{in}$. diam shaft, ID 0.168 in , 0.015 in . thk; installed by means of special pliers no. 2; CCDE truarc part 5100-18-C-MI	p/o IPA Dial Drive Assy
O-1339. 1		Same as 0-1339	p/o IPA Dial Drive Assy
O-1340	N16-R-99999-0860	RING, RETAINING: beryllium copper, plain, iridite dip; external, for $1 / 8 \mathrm{in}$. diam shaft, ID 0.112 in .0 .010 in . thk; installed by means of special pliers no. 2; CCDE truarc part 5100-12-C-MI	p/o PA Tune Drive Mechanism
O-1341		Same as 0-1338	p/o PA Dial Drive Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1342		Same as 0-1339	p/o PA Dial Drive Assy
0-1342. 1		Same as 0-1339	p/o PA Dial Drive Assy
0-1343	Low Failure Item	RACK ASSEMBLY: capacitor tuning; rack steel, cad pl, straight teeth, 32 pitch, $1-11 / 16 \mathrm{in} . \lg , 3 / 16 \mathrm{in} . \mathrm{sq} \mathrm{o} / \mathrm{a}, 0.101$ in . diam hole $1 / 8 \mathrm{in}$. from one end; steel screw cad pl, $1 / 4$ in. -28 NF-2 thd, 1-3/4 in. $\lg \mathrm{o} / \mathrm{a} \mathrm{w} / 1 / 2 \mathrm{in}$. hex hd slotted $0.218 \mathrm{in} . \mathrm{wd}, 5 / 16 \mathrm{in}$. d, 0.094 in . diam hole through side of head; rack mtd in hex head of screw; o/a dimen $3-7 / 32 \mathrm{in} . \mathrm{lg}$, 1/2 in. across flats; CBTL part/dwg NL-925578-1; u/w C-1319	p/o PA Tuning Drive
0-1343.1		Same as 0-1343; u/w C-1320	p/o PA Tuning Drive
O-1343.2		Same as 0-1343; u/w C-1321	p/o PA Tuning Drive
0-1344	N17-H-901148-150	HUB-YOKE ASSEMBLY: oblong shape, c/o of hub and yoke similar to ones used on CJA coupling no. K39006; coupling bronze, nickel pl, hub brass, nickel pl; $1 \mathrm{in}. \mathrm{lg} ,1 / 2 \mathrm{in}$. wd, 7/32 in. thk o/a dimen; shaft hole $1 / 4 \mathrm{in}$. diam, two mtg holes no. 6-32 thd, spaced 90° apart, $1 / 4 \mathrm{in} . \mathrm{lg}, 1 / 8 \mathrm{in}$. wd cutout at each end of yoke; CBTL part/dwg NL-982890-1	u/w IPA Tuning Capacitor
O-1344. 1		Same as 0-1344	u/w IPA Tuning Capacitor
0-1345	N17-C-99999-1188	INSERT, FLEXIBLE COUPLING: melamine tubing; round w/ keys; 1 in . diam, $5 / 8 \mathrm{in}$. wd o/a dimen; mts by means of $5 / 8$ in. diam center hole; four $3 / 16 \mathrm{in} . \mathrm{lg}, 1 / 8 \mathrm{in}$. wd keys, two located on each end spaced 180° apart; CBTL part/dwg NL-982884-1	u / w 1PA Tuning Capacitor
0-1346	Low Failure Item	RACK ASSEMBLY: core tuning; CBH rack no. L503, steel, straight teeth, 32 pitch, $3-5 / 8 \mathrm{in} .1 \mathrm{~g}, 3 / 16 \mathrm{in} . \mathrm{sq}$, straight face, one end 0.125 in . diam by $7 / 32 \mathrm{in} . \mathrm{lg}$ shoulder; steel screw 9/16 in. lg, w/3/8 in. hex head 5/16 in. lg and no. 8-32 thd; one $1 / 8 \mathrm{in}$. diam hole $1 / 4 \mathrm{in}$. d in center of hex head and one $3 / 32 \mathrm{in}$. diam hole thru one wall only on side of hex head; rack mtd in hex head of screw; o/a dimen 3-29/32 in. lg , 5/16 in. across hex flats; CBTL part/dwg NL-981086-1-2	p/o PA Tuning Drive
0-1346. 1		Same as 0-1346	p/o PA Tuning Drive
0-1347	Low Failure Item	RACK ASSEMBLY: core tuning; CBH rack no. L503, steel, straight teeth, 32 pitch, $3-1 / 8 \mathrm{in} . \lg , 3 / 16 \mathrm{in} . \mathrm{sq}$, straight face, one end 0.125 in . diam, 7/32 in. lg , shoulder; steel screw 9/16 in. $\mathrm{lg} \mathrm{w} / 3 / 8 \mathrm{in}$. hex head 5/16 in. Ig and no. 8-32 thd; one $1 / 8 \mathrm{in}$. diam hole $1 / 4 \mathrm{in}$. d in center of hex head and one $3 / 32$ in. diam hole thru one wall only on side of hex head; rack mtd in hex head of screw; o/a dimen 3-13/32 in. $\mathrm{lg}, 3 / 8$ in. across hex flats; CBTL part/dwg NL-981086-1-1	p/o PA Tuning Drive
0-1348	Low Failure Item	WHEEL ASSEMBLY, IDLER: c/o 10-tooth sprocket, idler shaft, retaining ring "Truarc" 5100-12-C-MI, idler block; $1-1 / 8 \mathrm{in} . \lg , 0.656 \mathrm{in} . \mathrm{wd}, 13 / 16 \mathrm{in} . \mathrm{h}$ approx o/a; mtg slot $1 \mathrm{in} . \lg , 0.125 \mathrm{in} . \mathrm{wd}$; CBTL part/dwg NL-900316-1	p/o IPA Tuning Drive

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-1349	Low Failure Item	SPRING, HELICAL, EXTENSION: cylindrical shape, Ref Dwg Group 66; 5-1/2 lbs load at $5 / 16 \mathrm{in}$. deflection and $9-1 / 8 \mathrm{lbs}$ load at $1 / 2 \mathrm{in}$. deflection; 11 coils close wound, RH helix; both ends style no. 10, Ref Dwg Group 66, o/a dimen 0.047 in . diam size of wire, 0.564 free o/a \lg of coils, $1-1 / 16 \mathrm{in}$. free lg inside of hooks, $3 / 8 \mathrm{in}$. OD of spring, $9 / 32 \mathrm{in}$. ID of spring, $3 / 16 \mathrm{in}$. wd of hook opening, $1-5 / 32 \mathrm{in}$. free o/a lg; hooks indexed at 90°; material corrosion resisting steel spring wire, type 302 per MIL-W-6713, Cond B; round, 0.047 in. diam; CBTL part/dwg NL-901499-1	u / w Detent of S-1301
O-1350	Procured on demand by nearest Naval Shore Activity	RETAINER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \lg , 1 / 4$ in. wd, 0.125 in. thk o/a dimen; CCCS dwg no. A-9019.9-1 (Revision no. 3); p/o H-1314; same as O-506	p/o Chassis Slide
O-1350. 1		Same as O-1350; p/o H-1315	p/o Chassis Slide
O-1351	Procure on demand by nearest Naval Shore Activity	RETAINER, bearing: lower; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; 10.844 in .1 lg , 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg no. A-9019.9-2 (Revision no. 3); p/o H-1314; same as O-508	p/o Chassis Slide
O-1351. 1		Same as O-1351; p/o H-1315	p/o Chassis Slide
O-1352	Low Failure Item	SPRING: helical compression type; 0.032 in. diam music wire per NAVY spec 22W11C; 3/8 in. h, 1/2 in. diam o/a; 3-1/2 turns, RH or LH wound; first and last 3/4 turns are flat; cad pl; C.BTL part/dwg NL-900018-1; u/w H-1314; same as O-507	Stop Button Spring For Chassis Slide
O-1352. 1		Same as O-1352; u/w H-1315	Stop Button Spring For Chassis Slide
O-1353	Low Failure Item	PIN, clevis: stainless steel; no dimension of this item is greater than one inch; disconnect pin of CBKH series 75-SS mechanical chain	Used to Join Ends of Chain Assy
$\begin{aligned} & \mathrm{O}-1353.1 \\ & \text { thru } \\ & \mathrm{O}-1353.4 \end{aligned}$		Same as O-1353	Used to Join Ends of Chain Assy
O-1354	Low Failure Item	RING, bearing: stainless steel; no dimension of this item is greater than one inch; tubular pin of CBKH series 75-SS mechanical chain	u/w Chain Assy
$\begin{aligned} & \mathrm{O}-1354.1 \\ & \text { thru } \\ & \mathrm{O}-1354.4 \end{aligned}$		Same as O-1354	u/w Chain Assy
O-1355	Low Failure Item	RING, RETAINING: stainless steel; no dimension of this item is greater than one inch; keeper of CBKH series 75-SS mechanical chain	u/w Chain Assy
$\begin{aligned} & \text { O-1355. } \\ & \text { thru } \\ & \text { O-1355.4 } \end{aligned}$		Same as O-1355	u/w Chain Assy
O-1356	N16-G-402366-896	GEAR, BEVEL: brass, chrome pl; straight teeth; 24 teeth; 24 pitch; 1 in. pitch diam; 1.06 in. OD, 17/32 in. d, $1 / 4 \mathrm{in}$. ID; face at 45° angle; hub extends $1 / 4 \mathrm{in}$. beyond face of gear, $5 / 8$	p/o PA Tuning Drive

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1309		Same as R-1308	Buffer Damping Band 4
R-1310		Same as R-1306	Buffer Damping Band 3
R-1311	N16-R-50065-751	RESISTOR, FIXED, COMPOSITION: 3300 ohms, $\pm 5 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF332J	Grid Leak V-1302
R-1312	N16-R-49239-231	RESISTOR, FIXED, COMPOSITION: 10 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF100K	Parasitic Suppressor V-1302
R-1313	N16-R-50012-126	RESISTOR, FIXED, COMPOSITION: 2200 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF222J	Screen Filter V-1302
R-1314	N16-R-79788-9599	RESISTOR, FIXED, WIRE WOUND: 0.5 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51BR5000F	Meter Mult. Cathode Cur. V-1302
R-1315	N16-R-80035-9599	RESISTOR, FIXED, WIRE WOUND: 500 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51B50R00F	Meter Mult. Grid Cur. V-1302
R-1316	N16-R-50517-231	RESISTOR, FIXED, COMPOSITION: 56, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF563K; same as R-1114	Meter Mult. Plate Volt. V-1302
R-1317	N16-R-73546-9751	RESISTOR, FIXED, FHM: body style no. 25, Ref Dwg Group 2; 10 megohms, $\pm 1 \% ; 1 \mathrm{w}$; "Nobeloy" metal conductive film; temp. coefficient from -0.050% to -0.080% per ${ }^{\circ} \mathrm{C}$; o/a dimen $1 \mathrm{in} . \lg , 0.370 \mathrm{in}$. OD at ends, 0.140 in . D ; rubberized enamel coating, resistant to humidity; 2 wire pigtail leads, $1-1 / 2$ in. lg ; CCC type $\mathrm{X}-1$	Meter Mult. Plate Volt. V-1302
R-1318	N16-R-73541-3111	RESISTOR, FIXED, FILM: body style no. 25, Ref Dwg Group 2; 5 megohms, $\pm 1 \%$; 1 w ; "Nobeloy" metal conductive film; temp coefficient from -0.050% to -0.080% per ${ }^{\circ} \mathrm{C}$; o/a dimen $1 \mathrm{in} . \lg , 0.370 \mathrm{in}$. OD at ends, 0.140 in . D ; rubberized enamel coating, resistant to humidity; 2 wire pigtail leads, 1-1/2 in. lg; CCC type X-1	Meter Mult. Screen Volt. V-1302
R-1319	N16-R-80005-6599	RESISTOR, FIXED, WIRE WOUND: 25 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51B25R00F	Meter Mult. Screen Cur. V-1302
R-1320		Not Used	
R-1321		Not Used	
R-1322	N16-R-68441-2076	RESISTOR, FIXED, WIRE WOUND: body style no. 3, MBCA Ref Dwg Group 2; non-inductive winding; 10,000 ohms, $\pm 5 \%$; $10 \mathrm{w}, 240{ }^{\circ} \mathrm{C}$ max continuous operating temp; 1-27/32 in. lg by $15 / 32$ in. diam o/a dimen excluding term; ceramic tube type protective covering, resistant to humidity; 2 wire lead type term, axial, 0.032 in. diam by 2-1/2 in. lg; type "C" clamp mtd, extends $11 / 16 \mathrm{in}$. beyond body of resistor, $5 / 16 \mathrm{in}$. wd, with 5/32 in. diam hole for mtg screw; CSF 10 NIT, w/clamp, type C	IPA Band 2 Damping
R-1323		Same as R-1322	IPA Band 4 Damping
R-1324	N16-R-68433-7171	RESISTOR, FIXED, WIRE WOUND: body style no. 3, MBCA Ref Dwg Group 2; non-inductive winding; 7500 ohms, $\pm 5 \% ; 10 \mathrm{w}$, $240^{\circ} \mathrm{C}$ max continuous operating temp; 1-27/32 in. lg by $15 / 32$ in. diam o a dimen excluding term; ceramic tube type protect-	IPA•Band 3 Damping

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \begin{array}{l} \mathrm{R}-1324 \\ \text { (cont) } \end{array} \\ & \text { R-1325 } \end{aligned}$		ive covering, resistant to humidity; 2 wire lead type term, axial, 0.032 in . diam by $2-1 / 2 \mathrm{in}$. lg; type "C" clamp intd, extends $11 / 16 \mathrm{in}$. beyond body of resistor, $5 / 16 \mathrm{in}$. wd, with $5 / 32$ in. diam hole for mtg screw; CSF 10 NIT, w/clamp, type C Not Used	
R-1326	N16-R-79892-5478	RESISTOR, FIXED, WIRE WOUND: 5.0 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51B5R000F	Meter Mult. Grid Cur. V-1304
R-1327	N16-R-79752-2179	RESISTOR, FIXED, WIRE WOUND: 0.25 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51BR2500F	Meter Mult. Cathode Cur. V-1304
R-1328		Same as R-1316	Meter Mult. Screen Volt. $\mathrm{V}-1304$
R-1329		Same as R-1317	Meter Mult. Screen Volt. $\mathrm{V}-1304$
R-1330	N16-R-79862-6679	RESISTOR, FIXED, WIRE WOUND: 2.5 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51B2R500F	Meter Mult. Screen Cur. V-1304
R-1331		Not Used	
R-1332		Same as R-4317	Meter Mult. Plate Volt. V-1304
R-1333		Same as R-1317	Meter Mult. Plate Volt. V-1304
R-1334		Same as R-1317	Meter Mult. Plate Volt. V-1304
R-1335		Same as R-1317	Meter Mult. Plate Volt. V-1304
R-1336		Same as R-1317	Meter Mult. Plate Volt. V-1304
R-1337		Same as R-1316	Meter Mult. Plate Volt. V-1304
R-1338	N16-R-73509-4299	RESISTOR, FIXED, FILM: body style no. 25, Ref Dwg Group 2; 49, 000 ohms, $\pm 1 \% ; 1 \mathrm{w}$; "Nobeloy" metal conductive film; temp coefficient from -0.025% to -0.040% per ${ }^{\circ} \mathrm{C}$; o / a dimen $1 \mathrm{in} . \lg , 0.370 \mathrm{in} . \mathrm{OD}^{2}$ at ends, $0.140 \mathrm{in} . \mathrm{D}$; rubberized enamel coating, resistant to humidity; 2 wire pigtail leads, 1-1/2 in. lg; CCC type X-1	Crystal Load CR-1301
R-1339		Same as R-1316	Meter Mult. Plate Volt. V-1302
R-1340		Not Used	
R-1341	N16-R-50372-126	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF223J	Bias Divider V-1302
R-1342	N16-R-50282-129	RESISTOR, FIXED, COMPOSITION: 10,000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BFli'3J	Bias Divider V-1302

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1343		Not Used	
R-1344	For Replacement Use N16-R-68416-4406	RESISTOR, FIXED, WIRE WOUND: 3500 ohms, $\pm 5 \%$; 5 w ; per spec JAN-R-26; JAN type RW55G352	Grid Divider Return V-1304
R-1345	N16-R-87349-4560	RESISTOR, VARIABLE: composition element; 1 section; 1000 ohms, $\pm 10 \%$; 2.25 w nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at 50% CW rotation; special taper, CBZ "U" taper, 150, $380,630,870$ ohms resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam 9/16 in. d; round, screwdriver-slotted, metal shaft, corrosion resistant, $1 / 4 \mathrm{in}$. diam 5/8 in. lg, normal torque, w/ shaft locking device; contact arm insulated, no "off" position; mtd by bushing $3 / 8$ in. - 32 NEF-2 thd $1 / 2 \mathrm{in}$. lg; CBZ type JLU1021-SD4040L type J	Bias Adjust V-1304
R-1346		Not Used	
R-1347		Not Used	
R-1348		Same as R-1345	Bias Adjust V-1304
$\begin{aligned} & \text { R-1349 } \\ & \text { thru } \\ & \text { R-1369 } \end{aligned}$		Not Used	
R-1370	For Replacement Use N16-R-49841-124	RESISTOR, FIXED, COMPOSITION: 680 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF681J	Overload Relay Shunt K-1303
R-1371		Same as R-1316	Meter Mult. Bias Volt. V-1302
R-1372		Same as R-1318	Meter Mult. Bias Volt. V-1302
R-1373	N16-R-49805-811	RESISTOR, FLXED, COMPOSITION: 560 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF561K	Screen Voltage Divider V-1301
R-1374	For Replacement Use N16-R-66303-4543	RESISTOR, FIXED, WIRE WOUND: 6, 300 ohms, $\pm 5 \%$; per spec MIL-R-26A; MIL type RW20G632; same as R-1067	Screen Voltage Divider V-1301
R-1375	For Replacement Use N16-R-66085-6406	RESISTOR, FIXED, WIRE WOUND: 1, 600 ohms, $\pm 5 \%$; 15 w; per spec MIL-R-26; MIL type RW20G162	Bias Divider V-1304
R-1376	For Replacement Use N16-R-66140-9266	RESISTOR, FIXED, WIRE WOUND: 2, 500 ohms, $\pm 5 \%$; 15 w ; per spec MIL-R-26; MIL type RW20G252	Bias Divider V-1304
R-1377	For Replacement Use N16-R-66397-8241	RESISTOR, FIXED, WIRE WOUND: 10, 000 ohms, $\pm 5 \% ; 22 \mathrm{w}$; per spec MIL-R-26; MIL type RW21G103	Screen Volt. Dropping Resistor V-1304
$\begin{aligned} & R-1378 \\ & \text { thru } \\ & R-1388 \end{aligned}$		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1389	For Replacement Use N16-R-49859-141	RESISTOR, FIXED, COMPOSITION: 750 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF751J	100 w Operation Shunt K-1303
R-1390		Not Used	
R-1391		Not Used	
R-1392		Same as R-1306	Buffer Damping Band 2
R-1393		Same as R-1322	IPA Band 1 Damping
R-1394	N16-R-49581-461	RESISTOR, FIXED, COMPOSITION: 100 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF101K	Screen Volt. RF Filter V-1304
R-1395	N16-R-50587-939	RESISTOR, FIXED, COMPOSITION: 82, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF823J	Cutoff Bias Limiter
R-1396		Same as R-1312	Cathode Filter
R-1397	For Replacement Use N16-R-87023-8958	RESISTOR, VARIABLE: composition element; 1 section; 1000 ohms, $\pm 10 \% ; 2.25 \mathrm{w}$ nominal power rating at $100 \% \mathrm{CW}$ rotation, 2 w at $50 \% \mathrm{CW}$ rotation; special taper, CBZ " U " taper, 15, 38, 63,87 ohms resistance at $20,40,60,80 \%$ rotations respectively; 3 solder lug type term; metal case, enclosed, 1-1/16 in. diam, $9 / 16 \mathrm{in} . \mathrm{d}$; round, corrosion resistant metal shaft, $1 / 4$ in . diam, $5 / 8 \mathrm{in}$. lg, normal torque; contact arm insulated, no "off" positions; mtd by bushing 3/8 in. - 32 NEF-2 thd, $3 / 8 \mathrm{in}$. lg ; CBZ type JU1011-P-3040 type J	Excitation Control
S-1301	N17-S-66529-3902	SWITCH, ROTARY: 4 sections; 2 sections are 2 pole, 6 positions, 2 sections are 1 pole, 6 positions; non-shorting type silver alloy contacts; 500 v DC max, 1 amp nominal load; ceramic insulation; 9-3/4 in. lg excluding shaft, 2-9/16 in. wd, $3-3 / 8 \mathrm{in}$. h o/a dimen; flatted shaft extends $1-1 / 16 \mathrm{in}$. beyond body of switch; solder lug type term; 2 studs $2-7 / 8 \mathrm{in}$. apart on each end, no. 10-32 thd nuts; CPD type 93; CBTL part/dwg NL-980793-14 (2 and 2 sections); incl switch wafer sections S-1301A, B, C, D	Buffer IPA Bandswitch
S-1301A	N17-S-91772-4016	SWITCH, SECTION, ROTARY: 2 pole, 6 position spaced 60°; ceramic body; silver alloy contact; 500v DC max, 1 amp nominal load; $3-3 / 8 \mathrm{in}$. $\mathrm{lg}, 2-5 / 8 \mathrm{in}$. wd, 1 in . thk; mtd by 2 holes for no. 8-32 thd screw 2-7/8 in. apart; rotor c/o two poles; one selects a single contact and the other pole shorts the rest; CBTL part/dwg NL-980793-14 Fig 1; p/o S-1301	$\begin{aligned} & \text { Coil Selector } \\ & \text { V-1301 } \end{aligned}$
S-1301B		Same as S-1301A; p/o S-1301	$\begin{aligned} & \text { Coil Selector } \\ & \text { V-1302 } \end{aligned}$
S-1301C	N17-S-91772-4017	SWITCH SECTION, ROTARY: 1 pole, 6 positions spaced 60°; ceramic body; silver-alloy non-shorting contact; 500 v DC max, 1 amp nominal load; $3-3 / 8 \mathrm{in}$. lg, $2-5 / 8 \mathrm{in}$. wd, 1 in . thk; mtd by 2 holes for no. $8-32$ thd screw 2-7/8 in. apart; rotor c/o one pole which selects a single contact; CBTL part/dwg NL-98079314 Fig 2; p/o S-1301	Bandspread Capacitor Switch V-1301
S-1301D		Same as S-1301C; p/o S-1301	Bandspread Capacitor Switch $\mathrm{V}-1302$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-1302	N17-S-67000-9815	SWITCH, ROTARY: 7 sections; 1 pole 6 positions; solid silver alloy contact; non-shorting type contact; ceramic body; 13-1/16 in. lg, 3-7/8 in. wd, 5-1/8 in. h o/a dimen; solder lug type term; mtg by three no. 8-32 thd studs each end 120° apart on 1-11/16 in. rad; oilite bushing at center for $1 / 4 \mathrm{in}$. diam shaft; CPD type 94; CBTL part/dwg NL-980625-14; incl switch wafer sections S-1302A; B, C, D, E, F and G	Power Amplifier Bandswitch
S-1302A	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 positions spaced 60°; ceramic body; solid silver alloy non-shorting type contact; $10,000 \mathrm{v}$ peak, 3 amp ; 3-7/8 in. diam, 1 in . wd. o/a dimen; solder lug type term; mtd by 3 holes for no. 8-32 thd screws spaced 120° apart on $1-11 / 16 \mathrm{in}$. rad; rotor c/o 1 pole which selects single contact; CBTL part/dwg NL-980625-14 Section A; p/o S-1302	RF Choke Shorting Switch V-1304
S-1302B	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 position spaced 60°; ceramic body; solid silver alloy non-shorting contact; 5, 000v peak, $20 \mathrm{amp} ; 3-7 / 8 \mathrm{in}$. diam, 1-1/2 in. wd o/a dimen; solder lug type term; mtd by 3 holes for no. $8-32$ screw 120° apart on 1-11/16 in. rad; rotor c/o 1 pole which selects a single contact/w/special contact arm; CBTL part/dwg NL-980625-14 Section B; p/o S-1302	Filter Coil Selector V-1304
S-1302C	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 position spaced 60°; ceramic body; solid silver alloy non-shorting contact; $5,000 \mathrm{v}$ peak, 5 amp ; 3-7/8 in. diam, 1-1/2 in. wd o/a dimen; solder lug type term; mtd by 3 holes for no. 8-32 screw 120° apart on 1-11/16 in. rad; rotor c/o 1 pole which shorts all but one contact; CBTL part/dwg NL-980625-14 Section C; p/o S-1302	Filter Coil Selector V-1304
S-1302D	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 position spaced 60°; ceramic body; solid silver alloy non-shorting contact; $5,000 \mathrm{v}$ peak, $5 \mathrm{amp} ; 3-7 / 8 \mathrm{in}$. diam, $1-1 / 2 \mathrm{in}$. wd o/a; solder lug type term; mtd by 3 holes for no. 8-32 screw 120° apart on 1-11/16 in. radius; rotor c/o 1 pole which shorts all but 1 contact; rotor keyway reversed 180° from position of S-1302C; CBTL part/dwg NL-980625-14 Section D; p/ o S-1302	Antenna Coil Shorting V-1304
S-1302E	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 positions spaced 60°; ceramic body; solid silver alloy non-shorting dual contact; 5 , 000v peak; $40 \mathrm{amp} ; 3-7 / 8 \mathrm{in}$. diam, 1-1/2 in. wd o/a dimen; solder lug type term; mtd by 3 holes for no. 8-32 screw 120° apart on 1-11/16 in. rad; rotor c/o 1 pole which selects a single dual contact $\mathrm{w} /$ special dual contact arm; CBTL part/dwg NL-980625-14 Section E; p/o S-1302	Antenna Coil Selector V-1304
S-1302F	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 positions spaced 60°; ceramic body; solid silver alloy non-shorting type contact; 500v peak, $5 \mathrm{amp} ; 3-7 / 8 \mathrm{in}$. diam, 1 in . wd o/a dimen; solder lug type term; mtd by 3 holes for no. 8-32 thd screws spaced 120° apart on 1-11/16 in. rad; rotor c/o 1 pole which selects single contact; angular positioning of rotor contact arm per NL-980625-14; CBTL part/dwg NL-980625-14 Section F; p/o S-1302	Antenna Tap Selector V-1304
S-1302G	For Reference Only	SWITCH SECTION, ROTARY: 1 pole, 6 positions spaced 60°; ceramic body; solid silver alloy non-shorting contact; 500v peak, $5 \mathrm{amp} ; 3-7 / 8 \mathrm{in}$. diam, 1 in . wd o/a; solder lug type term; mtd by 3 holes for no. 8-32 thd screws spaced 120° apart on 1-11/16 in. rad; angular positioning of rotor contact arm per NL-980625-14; CBTL part/dwg NL-980625-14 Section G; p/o S-1302	Harmonic Trap Selector V-1304

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description-	Locating Function
$\begin{aligned} & S-1303 \\ & S-1304 \end{aligned}$	N17-S-56407-2863	Not Used SWITCH, PUSH: SPST; AC, $2 \mathrm{amps} ; 24 \mathrm{v}$; momentary, normally open; nickel pl metal; 1-29/64 in. lg , $5 / 8 \mathrm{in}$. diam; pushbutton type; 2 screw type term located on bottom; single mtg bushing no. 15-32 in. thd; CAE type CH8450K1	Overload Reset
S-1305	N17-S-72018-7719	SWITCH, TOGGLE: SPDT; $1 \mathrm{amp} / 250 \mathrm{v}, 3 \mathrm{amp} / 125 \mathrm{v}$; phenolic body; 2-1/8 in. lg, 1-9/32 in. h, 23/32 in. wd o/a dimen; bat type actuating handle, excluding $15 / 32 \mathrm{in}$. bushing; locking action; 6 solder lug type term located on back; single hole mtg for $15 / 32$ in. -32 thd bushing; per spec JAN-S-23; JAN type ST12D; same as S-1103	External-Internal Oscillator Switch
S-1306	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; DPST, male and female type, beryllium copper alloy strip contact; thermosetting plastic molding body; 1-1/2 $\mathrm{in} . \lg$ by $1-1 / 2 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. thk o / a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in . apart; interrupts 24v DC; CBTL part/dwg NL-900059-2; same as S-501	Interlock Switch
$\begin{aligned} & \mathrm{S}-1307 \\ & \text { thru } \\ & \mathrm{S}-1377 \end{aligned}$		Not Used	
S-1378	N17-S-99999-0604	SWITCH, ROTARY: 1 section, 1 pole, 6 positions spaced 60°; ceramic body; solid silver alloy contacts; non-shorting rotor; c/o wafer only w/o shaft or mtg plate; 1-7/8 in. $\mathrm{lg}, 1-7 / 8 \mathrm{in}$. wd, 3/16 in. thk excluding solder lug term; COC type HC; CBTL part/dwg NL-900097-2	Bandswitch 500 w Disable Circuit
S-1379		Not Used	
S-1380		Not Used	
S-1381	N17-S-99999-0595	SWITCH, THERMOSTATIC: SPDT; adjustable operating temp range from $1706{ }^{\circ} \mathrm{F}$ to $2010^{\circ} \mathrm{F}$, temp set at $1922{ }^{\circ} \mathrm{F}$; temp element bimetal type; hex nut type range adjuster; 250v AC, 5 amp; energy required to operate actuating mechanism/expansion strip, 1.5 to $4 \mathrm{w} / \mathrm{sq} \mathrm{in}$.; 3 solder lug term; plastic body; $3-7 / 8 \mathrm{in} . \mathrm{lg}, 1-1 / 16 \mathrm{in}$. wd, $5 / 8 \mathrm{in} . \mathrm{h}$ o/a dimen; mtd by two no. 6-32 NC-2 thd holes on 3-9/16 in. mtg/c; CBTL part/dwg NL-925467-2	Excessive Plate Dissipation Alarm V-1304
S-1382		Not Used	
S-1383	N17-S-69144-9624	SWITCH, SENSITIVE: SPDT, 125v AC; 10 amp ; phenolic body; $1-5 / 8 \mathrm{in} . \lg , 53 / 64 \mathrm{in} . \mathrm{wd}, 9 / 32 \mathrm{in}$.h o/a; plunger snap action type 0.010 in . max differential movement, $1 / 32 \mathrm{in}$. max pretravel; 10 to 16 oz operating force; 4 oz min release; momentary action; 3 solder lug type term; four $3 / 32 \mathrm{in}$. diam holes spaced on corners w/ 1 in . centers on lg and $5 / 8 \mathrm{in}$. centers on wd; w/actuating plunger for cam operation; CATK type no. 3MD2-1A	Bandswitch Push to Turn Disable Circuit
S-1384	N17-S-99999-0603	SWITCH, ROTARY: 1 section, 2 pole, 6 position spaced 30°; 1500v breakdown between contacts; ceramic insulation; nonshorting silver contacts; not inclosed; 1-25/32 in. lg by 1-1/2 in . diam o/a; bushing mtd, $3 / 8 \mathrm{in} .-32$ thd by $3 / 8 \mathrm{in} . \mathrm{lg}$; round, flatted shaft, $1 / 4 \mathrm{in}$. diam, $1 / 2 \mathrm{in} . \lg$ from mtg surface; solder	Voltmeter Switch for M-1301

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & S-1384 \\ & \text { (cont) } \\ & S-1385 \end{aligned}$	N17-S-56738-9803	lug type term; provided w/adjustable stops at each end of travel; CCCT type 4M-LW; CBTL part/dwg NL-900214-2 SWITCH, PUSH: 10 amp , 115v AC; 1-7/8 in. lg, 7/8 in. diam o/a dimen; SPST; momentary contact; normally closed; 2 solder lug type term; single mtg bushing 15/32 in. - 32 thd; pushbutton type; CBDW type no. 2202	Disable 500 w to RFO
S-1386	N17-S-99999-0602	SWITCH, ROTARY: 1 section, 2 pole, 3 position spaced 30°; 1500v breakdown between contacts; ceramic insulation; nonshorting silver contacts; not inclosed; 1-25/32 in. lg by 1-1/2 in. diam o/a; bushing mtd, $3 / 8 \mathrm{in} .-32$ thd by $3 / 8 \mathrm{in}$. lg ; round, flatted shaft, $1 / 4 \mathrm{in}$. diam, $1 / 2 \mathrm{in} . \lg$ from mtg surface; solder lug type term; provided w/adjustable stops at each end of travel; CCCT type 4M-LW; CBTL part/dwg NL-900215-2	IPA Meter Switch M-1304
S-1387		Same as S-1386	PA Meter Switch M-1303
S-1388		Same as S-1304	Push for 500 w Operation
T-1301		Not Used	
T-1302	N17-T-70228-8632	TRANSFORMER, POWER, STEP-DOWN: hermetically sealed metal case; 110 v AC, 50/60 cyc, single ph input; 2 output windings, no. 1 secondary 6.3 v at 6.5 amps, no. 2 secondary 5.0 v at 14.5 amps center tapped; Robertson potting compound; o/a dimen 3-3/4in. sq max by 4-17/32 in. max h MBCA Ref Dwg Group 12; 7 standoff type term, 9/16 in. diam by 25/32 in. lg located on bottom; four no. 10-32 thd by $1 / 2 \mathrm{in}$. 1 g mtg studs on 2-7/8 in. by 2-7/8 in. mtg/c; electrostatic shield; per spec MIL-T-27; CUT part no. F-3612; CBTL part/dwg NL-980605-1	Filament Transformer
V-1301	N16-T-56177	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 6AG7	Buffer Amplifier
V-1302	N16-T-75933	ELECTRON TUBE: tetrode; per spec JAN-1A; JAN type 5933; same as V-1006	IPA
V-1303	N16-T-52001	ELECTRON TUBE: voltage regulator; per spec JAN-1A; JAN type OA2	Voltage Regulator Screen V-1301
V-1304	N16-T-54067	ELECTRON TUBE: tetrode; glass envelope, cylindrical shape; 3.56 in . diam; 5 terminations, pin type, located on bottom; radial-bearn power tetrode; CIM type 4-400A	Power Amplifier
XF-1301	Low Failure Item	FUSEHOLDER: extractor post type; 250v; 30 amp; accommodates 1 fuse, cartridge type, $1-1 / 2 \mathrm{in} . \mathrm{lg}, 13 / 32 \mathrm{in}$. diam; black bakelite body; bright alloy pl brass contacts; 2-1/4 in. lg, $1.775 \mathrm{in} . \mathrm{wd}, 1.2 \mathrm{in} . \mathrm{h}$ o/a dimen; 2 solder lug type term, hot tin dipped; two 0.167 in . mtg holes 1.312 in . c to c for fastening to panel; one mtg hole 0.865 in . diam; waterproof; CFA type HPC-DZ; CBTL part/dwg NL-900068-2; same as XF-501	Holder for F-1301
XI-1301	N17-L-50812-3395	LAMPHOLDER: single holder; accommodates special 952, MBCA Ref Dwg Grp 7; 28v, 0.035 amp ; brass shell; 0.865 in. $\mathrm{lg}, 1 / 2 \mathrm{in}$. across flats of hexagonal top, 19/32 in. wd approx; 1 solder lug type term; mtd by 7/16 in. - 28 NEF thd; body cad pl; CBTL part/dwg NL-981474-2; same as XI-401	Retainer for I-1301
XI-1302		Same as XI-1301	Retainer for I-1302
-90			ORIGIN

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XI-1303		Same as XI-1301	Retainer for I-1303
XI-1304		Same as XI-1301	Retainer for I-1304
XI-1305		Same as XI-1301	Retainer for I-1305
XI-1306		Same as XI-1301	Retainer for I-1306
XI-1307		Same as XI-1301	Retainer for I-1307
XI-1308		Same as XI-1301	Retainer for I-1308
XV-1301	N16-S-63509-2037	SOCKET, ELECTRON TUBE: 8 contacts, phosphor bronze, silver pl; medium; oval; 1-9/16 in. lg, 1-7/32 in. diam, 1/2 in. h o/a dimen excluding term; mica phenolic body; one piece saddle mtg; 0.084 in . diam chassis hole required, 2 mtg holes 0.136 in . diam, spaced $1-5 / 16 \mathrm{in}$. c to c ; low loss mica phenolic; contact tails hot tin dipped; CMG dwg 9905, type 51A-13203	Socket for V-1301
XV-1302	N16-S-61719-4639	SOCKET, ELECTRON TUBE: 5 contacts, phosphor bronze, silver pl; medium; round; 2-5/32 in. lg, 1-3/8 in. wd, 41/64 in. h o/a dimen excluding term; ceramic steatite body; bracket and retainer ring mtg; 1.172 in . diam chassis hole required, 2 mtg slots $5 / 32 \mathrm{in}$. by $5 / 16 \mathrm{in}$. spaced $1-49 / 64 \mathrm{in}$. c to c ; insulating barriers between all contacts; CJA type 33005; same as XV-1006	Socket for V-1302
XV-1303	N16-S-62603-6702	SOCKET, ELECTRON TUBE: 7 contacts, brass, nickel pl; miniature; incl metal shield base, 0.800 in . diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, 0.125 in . ID; oval; 1-1/8 in. lg, 0.800 in . $\mathrm{wd}, 25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; molded thermosetting plastic body; one piece saddle $\mathrm{mtg}, 5 / 8 \mathrm{in}$. diam chassis hole required, 2 mtg holes 0.125 in . diam, 0.875 in . c to c ; per spec JAN-S-28A; JAN type TS102PO1	Socket for $\dot{\mathbf{V}} \mathbf{- 1 3 0 3}$
XV-1304	N16-S-61879-8201	SOCKET, ELECTRON TUBE: five beryllium copper silver pl contacts; giant size; incl metal air system socket; oval shape; $5-3 / 8$ in. lg, 4-1/8 in. wd, 1-1/16 in. o/a dimen excluding term; aluminum body; machine screw mtg, 3 in. diam chassis hole required; four no. 10-32 tapped mtg holes spaced 90° on 3-5/16 in. diam circle; has opening in casting for air intake duct, to be u/w glass air flow chimney; CDM 4-400A/ 4000 airsystem socket modified; CBTL part/dwg NL-901416-2; incl XV-1304A	Socket for V-1304
XV-1304A	For Reference Only	SOCKET, ELECTRON TUBE: five beryllium copper silver pl contacts; giant size; round; 3 in. diam; ceramic body; mtd by means of four no. 10-32 screws and spring clips; socket may be turned to orient tube; five screw type term; CDM part no. 9391-S; CBTL part/dwg NL-982220-2 Item 2; p/o XV-1304	Insert for XV-1304
Z-1301	N17-S-50973-6401	SUPPRESSOR, ELECTRICAL NOISE: two inductances, 4.9 uh each; four capacitors 70, 000 mmf each; rated 120v RMS, 2 amp, $60 \mathrm{cyc} ; 50$ ohms output impedance; 3-1/16 in. lg, 1-1/2 in. wd, 1 in . h o/a dimen; screw mtd w/two 0.187 in . mtg holes	Line Filter 110v AC

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \hline \begin{array}{l} \mathrm{Z}-1301 \\ \text { (cont) } \end{array} \\ & 1401-1499 \end{aligned}$	F16-C-10642-8234	2-3/8 in. c to c; 4 stud type term; hermetically sealed; CCCR type FA682A, code no. 81831; CBTL part/dwg NL-925288-1 CABINET, ELECTRICAL EQUIPMENT, CY-1573/SRT: material of frame-steel, sides-aluminum, backplate-hot rolled steel pickled and oiled; grey enamel finish; o/a dimen $24 \mathrm{in} . \mathrm{lg}$, 16 in. wd, $9-5 / 8 \mathrm{in} . \mathrm{h}$; wired; used to house POWER SUPPLY PP-1096/SRT which mts on roller rails inside cabinet drawer; same as CABINET, ELECTRICAL EQUIPMENT, CY-1573A/ SRT except for material of backplate; p/o AN/SRT-15, 16; CBTL part/dwg NL-900934-14-1	
1401-1499	F16-C-10642-8233	CABINET, ELECTRICAL EQUIPMENT, CY-1573A/SRT: material of frame-steel, sides-aluminum, backplate-corrosion resisting steel; grey enamel finish; o/a dimen $24 \mathrm{in} . \lg , 16 \mathrm{in}$. wd, $9-5 / 8 \mathrm{in}$. h ; wired; used to house POWER SUPPLY PP1096/SRT which mts on roller rails inside cabinet drawer; same as CABINET, ELECTRICAL EQUIPMENT CY-1573/SRT except for material of backplate, this cabinet is the non-magnetic version; p/o AN/SRT-15A, 16A; CBTL part/dwg NL-900934-14-2	
A-1401	Low Failure Item	RAIL, assembly: left hand; c/o rail, rear latch, 4 rollers, 4 roller shafts; corrosion resisting steel, electropolish finish; o/a dimen 17-1/2 in. $\mathrm{lg}, 1 \mathrm{in} . \mathrm{h}, 0.390 \mathrm{in} . \mathrm{wd}$; three no. 10-24 tapped mtg holes, spaced 4.093 in . and 9.438 in . c to c; CBTL part/dwg NL-900369-12-2; same as A-601	For HVPS Chassis
A-1402	Low Failure Item	RAIL, assembly: right hand; c/o rail, rear latch, 4 rollers, 4 roller shafts; corrosion resisting steel, electropolish finish; o/a dimen 17-1/2 in. lg, $1 \mathrm{in} . \mathrm{h}, 0.390 \mathrm{in}$. wd; three no. 10-24 tapped mtg holes, spaced 4.093 in . and 9.438 in . c to c; CBTL part/dwg NL-900369-12-1; same as A-602	For HVPS Chassis
E-1401	N17-B-77937-1901	TERMINAL BOARD: molded melamine board; 10 double screw type term; barrier type; 4-3/8 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 13 / 32 \mathrm{in} . \mathrm{h}$ o/a; four 0.160 in . diam mtg holes, two on each end, spaced $4-1 / 8 \mathrm{in}$. c to c on $\mathrm{lg}, 5 / 16 \mathrm{in}$. c to c on wd ; CJC type $10-140-\mathrm{B}$	External Cable Connector
E-1402		Same as E-1401	External Cable Connector
E-1403	N17-B-99999-0238	TERMINAL BOARD: molded melamine board; 3 double screw type term; barrier type; 2-1/16 in. $\lg , 1-1 / 8 \mathrm{in}$. wd, $1 / 2 \mathrm{in}$. $\mathrm{h} o / \mathrm{a}$; four 0.175 in . diam mtg holes, two on each end, spaced $1-3 / 4 \mathrm{in}$. c to c on lg , and $27 / 64 \mathrm{in}$. c to c on wd; CJC type 3-141-B	3 Phase AC Line Connector
E-1404	Low Failure Item	TERMINAL BOARD: molded thermosetting plastic body, 3 no. 8-32 thd, stud type term; barrier type; 4-3/16 in. $\mathrm{lg}, 2-1 / 8 \mathrm{in}$. wd, $25 / 32 \mathrm{in} . \mathrm{h}$ o/a; four 0.193 in . diam mtg holes, two on each end, spaced $3-3 / 4 \mathrm{in}$. c to c on $\mathrm{lg}, 1-7 / 16 \mathrm{in}$. c to c on wd; CBTL part/dwg NL-900240-2; same as E-608	High Voltage Output Connector
E-1405	Shop Manufacture	CONTACT, ELECTRICAL: brass contactor, silver pl finish; press-fitted into a hard rubber body; $1 / 2 \mathrm{in}$. thk, $23 / 32 \mathrm{in} . \mathrm{wd}$, $1-1 / 2 \mathrm{in} . \mathrm{h}$ o/a dimen; two 0.128 in . diam mtg holes located on side spaced $3 / 4 \mathrm{in}$. c to c and two 0.128 in . diam mtg holes counterbore $5 / 16$ in. located in front spaced 1-1/16 in. c to c for universal mtg; CBTL part/dwg NL-900138-1; same as E-609	u/w Interlock Switch S-1502 in HVPS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { E-1406 } \\ & \text { thru } \\ & \text { E-1409 } \end{aligned}$		Not Used	
E-1410		Same as E-1403	External Cable Connector
H-1401	Low Failure Item	HANGER, CABLE: extensible cable support w/cable clips; 3/4 in. diam of cable accommodated; 0.020 in . thk by $13 / 16 \mathrm{in}$. wd dimen of spring extensible cable blank; material of metallic parts brass, carbon spring steel, cad pl finish; c/o 16 cable clips riveted to spring extensible cable blank $\mathbf{w} /$ spring stiffener at one end; designed to support and permit lateral movement of cable; two 0.312 in . diam mtg holes at one end spaced $3 / 4 \mathrm{in}$. c to c and two 0.180 in . diam holes on other end spaced 0.375 in . c to c for fastening to connector receptacle housing; CBTL part/dwg NL-901230-12; same as H-601	Cable Guide
J-1401	N17-C-99999-2016	CONNECTOR, RECEPTACLE, ELECTRICAL: c/o double row of 8 sliding contacts per row, female; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in}$. wd, $9 / 16 \mathrm{in} . \mathrm{h}$; polarized; nonlocking; 5 amp , 600 v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in. c to c in lg , and 0.460 in . c to c in wd; CPH type 26-190-16-1; same as J-601	Connector to J -1501 in HVPS
J-1402		Same as J-1401	Connector to J-1502 in HVPS
0-1401	Low Failure Item	ROLLER, bearing: rear; corrosion resisting steel, electropolish finish; 0.902 in . OD by 0.265 in . wd o/a; 0.4375 in. diam shaft hole; CBTL part/dwg NL-900365-1; p/o A-1401; same as 0-602	p/o Rail Assy
0-1402		Same as 0-1401; p/o A-1402	p/o Rail Assy
0-1403		Not Used	
0-1404		Not Used	
0-1405	Low Failure Item	ROLLER, bearing: center; corrosion resisting steel, electropolish finish; 0.988 in . OD by 0.156 in . wd o/a; 0.4375 in. diam shaft hole; CBTL part/dwg NL-900986-1; p/o A-1401; same as 0-606	p/o Rail Assy
0-1406		Same as 0-1405; p/o A-1401	p/o Rail Assy
0-1407	Low Failure Item	SHAFT, roller: rear; monel cold drawn; 13/32 in. lg by 17/32 in. diam o/a; CBTL part/dwg NL-900366-1; p/o A-1401; same as 0-601	p/o Rail Assy
0-1408		Same as 0-1407; p/o A-1402	p/o Rail Assy
0-1409	Shop Manufacture	SHAFT, roller: monel, cold drawn; 21/64 in. lg by 17/32 in. diam o/a; CBTL part/dwg NL-900985-1; p/o A-1401; same as 0-607	p/o Rail Assy
0-1410		Same as 0-1409; p/o A-1401	p/o Rail Assy
0-1411		Same as O-1409; p/o A-1401	p/o Rail Assy
0-1412		Same as 0-1409; p/o A-1402	p/o Rail Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1413		Same as O-1409; p/o A-1402	p/o Rail Assy
0-1414		Same as O-1409; p/o A-1402	p/o Rail Assy
$\begin{aligned} & 0-1415 \\ & \text { thru } \\ & 0-1418 \end{aligned}$		Not Used	
0-1419		Same as O-1405; p/o A-1401	p/o Rail Assy
0-1420		Same as 0-1405; p/o A-1402	p/o Rail Assy
0-1421		Same as 0-1405; p/o A-1402	p/o Rail Assy
0-1422		Same as 0-1405; p/o A-1402	p/o Rail Assy
O-1423		Not Used	
0-1424		Not Used	
0-1425	Low Failure Item	SPRING: left hand; torsion type; 0.038 in . diam corrosion resisting steel spring wire; $1.116 \mathrm{in} . \mathrm{lg}, 0.250 \mathrm{in}$. wd, 0.250 in . $\mathrm{h} o / \mathrm{a}$; two turns, LH turns; one end straight, short end bent 90° on $1 / 32$ in. radius, $1 / 8$ in lg ; mts over 0.156 in . diam pin; working moment is 16 in. oz. $\pm 5 \mathrm{in}$. oz. ; CBTL part/dwg NL-900981-1; p/o A-1401; same as 0-603	For Latch in Rail Assy
O-1426		Not Used	
0-1427	Low Failure Item	SPRING: right hand; torsion type; 0.038 in . diam corrosion resisting steel spring wire; $1.116 \mathrm{in} . \mathrm{lg}, 0.250 \mathrm{in} . \mathrm{h}$, two turns, RH turns; one end straight, short end bent 90° on $1 / 32 \mathrm{in}$. radius, $1 / 8 \mathrm{in} . \mathrm{lg}$; mts over 0.156 in . diam pin-working moment is 16 in . oz. $\pm 5 \mathrm{in}$. oz.; CBTL part/dwg NL-900982-1; p/o A-1402; same as 0-604	For Latch in Rail Assy
P-1401	N17-C-800956-126	CAP, PLATE: ceramic body $\mathrm{w} /$ /tin pl beryllium copper grip; fits $9 / 16 \mathrm{in}$. diam cap; CNA type SPP-9; same as P-604	Connector to $\mathrm{J}-1603$ in HVPS
Z-1401	N17-S-50967-6225	FILTER, RADIO INTERFERENCE: 440v RMS, 5.0 amps RMS minimum, 60 cps ; internal voltage drop at rated load less than 0.50 v RMS; continuous duty; hermetically sealed; capable of operating in ambient temp of $-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$ with a relative humidity of 95% at $+50^{\circ} \mathrm{C} ; 2-3 / 4 \mathrm{in}$. lg excluding term, 2 in . wd, 1-1/8 in. $h \max 0 / a$ dimen; two no. 8-32 thd stud w/solder lug term located 1 at each end diagonally opposite each other; two 3/16 in. diam mtg holes spaced 2-13/32 in. c to c; CBTL part/dwg NL-901569-1	RF Filter
Z-1402		Same as Z-1401	RF Filter
Z-1403		Same as Z-1401	RF Filter
1401-1499	F16-C-10642-8235	CABINET, ELECTRICAL EQUIPMENT, CY-1572/SRT: material of frame-steel, sides-aluminum, back plate-hot rolled steel pickled and oiled; grey enamel finish; o/a dimen 24 in. lg, $16 \mathrm{in} . \mathrm{wd}, ~ 9-5 / 8 \mathrm{in}$. h; wired; used to house RADIO MODULATOR MD-230/SRT which mts on roller rails inside cabinet drawer; same as CABINET, ELECTRICAL EQUIPMENT CY-1572A/SRT except for material of back plate; p / o AN/SRT15, 16; CBTL part/dwg NL-900935-14-1	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
1401-1499	F16-C-10642-8236	CABINET, ELECTRICAL EQUIPMENT, CY-1572A/SRT: material of frame-steel, sides-aluminum, back plate-corrosion resistant steel; grey enamel finish; o/a dimen $24 \mathrm{in} . \mathrm{lg}, 16 \mathrm{in}$. wd, $9-5 / 8 \mathrm{in}$. h ; wired; used to house RADIO MODULATOR MD230/SRT which mts on roller rails inside cabinet drawer; same as CABINET, ELECTRICAL EQUIPMENT CY-1572/SRT except for material of back plate, this cabinet is the non-magnetic version; p / o AN/SRT-15A, 16A; CBTL part/dwg NL-900935-14-2	
A-1401		Not Used	
A-1402		Not Used	
A-1403	Low Failure Item	RAII, assembly: left hand; c/o rail, rear latch, 4 rollers, 4 roller shafts; corrosion resisting steel, electropolish finish; o/a dimen 17-1/2 in. $\mathrm{lg}, 1 \mathrm{in} . \mathrm{h}, 0.390 \mathrm{in}$. wd; three no. 10-24 tapped mtg holes, spaced 4.093 in . and 9.438 in . c to c; CBTL part/dwg NL-900369-12-2; same as A-601	For HLRM Chassis
A-1404	Low Failure Item	RAIL, assembly: right hand; c/o rail, rear latch, 4 rollers, 4 roller shafts; corrosion resisting steel, electropolish finish; o / a dimen 17-1/2 in. $\mathrm{lg}, 1 \mathrm{in} . \mathrm{h}, 0.390 \mathrm{in}$. wd; three no. 10-24 tapped mtg holes, spaced 4.093 in . and 9.438 in . c to c; CBTL part/dwg NL-900369-12-1; same as A-602	For HLRM Chassis
$\begin{aligned} & \text { E-1401 } \\ & \text { thru } \\ & \text { E-1405 } \end{aligned}$		Not Used	
E-1406	N17-B-77937-1901	TERMINAL BOARD: molded melamine board; 10 double screw type term; barrier type; 4-3/8 in. lg, 7/8 in. wd, $13 / 32 \mathrm{in} . \mathrm{h}$ o / a; four 0.160 in . diam mtg holes, two on each end, spaced $4-1 / 8 \mathrm{in}$. c to c on $\mathrm{lg}, 5 / 16 \mathrm{in}$. c to c on wd; CJC type 10-140B; same as E-1401	External Cable Connector
E-1407		Same as E-1406	External Cable Connector
E-1408	Low Failure Item	TERMINAL BOARD: molded thermosetting plastic body; 3 no. 8-32 thd stud type term; barrier type; 4-3/16 in. $\mathrm{lg}, 2-1 / 8 \mathrm{in}$. wd, 25/32 in. ho/a; four 0.193 in . diam mtg holes, two on each end, spaced $3-3 / 4 \mathrm{in}$. c to c on $\mathrm{lg}, 1-7 / 16 \mathrm{in}$. c to c on wd; CBTL part/dwg NL-900240-2; same as E-608	High Voltage Connector to LLRM
E-1409	Shop Manufacture	CONTACT, ELECTRICAL: brass contactor, silver pl finish; press-fitted into a hard rubber body; $1 / 2 \mathrm{in}$. thk, $23 / 32 \mathrm{in}$. wd, $1-1 / 2 \mathrm{in} . \mathrm{h}$ o/a dimen; two 0.128 in . diam mtg holes located on side spaced $3 / 4 \mathrm{in}$. c to c and two 0.128 in . diam mtg holes counterbore $5 / 16 \mathrm{in}$. located in front spaced 1-1/16 in. c to c for universal mtg; CBTL part/dwg NL-900138-1; same as E-609	u/w Interlock Switch S-1602 HLRM
H-1401		Not Used	
H-1402	Low Failure Item	HANGER, CABLE: extensible cable support w/cable clips; 3/4 in. diam of cable accommodated; 0.020 in . thk by $13 / 16 \mathrm{in}$. wd dimen of spring extensible cable blank; material of metallic parts brass, carbon spring steel, cad pl finish; c/o 16 cable clips riveted to spring extensible cable blank w/spring stiffener at one end; designed to support and permit lateral movement of cable; two 0.312 in . diam mtg holes at one end spaced $3 / 4 \mathrm{in}$.	Cable Guide

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1430		Same as 0-1429; p/o A-1403	p/o Rail Assy
0-1431		Same as O-1429; p/o A-1403	p/o Rail Assy
0-1432		Same as O-1429; p/o A-1404	p/o Rail Assy
0-1433		Same as O-1429; p/o A-1404	p/o Rail Assy
0-1434		Same as 0-1429; p/o A-1404	p/o Rail Assy
0-1435		Same as 0-1415; p/o A-1403	p/o Rail Assy
0-1436		Same as 0-1415; p/o A-1404	p/o Rail Assy
0-1437		Same as 0-1415; p/o A-1404	p/o Rail Assy
0-1438		Same as O-1415; p/o A-1404	p/o Rail Assy
P-1401		Not Used	
P-1402	N17-C-800956-126	CAP, PLATE: ceramic body w/tin pl beryllium copper grip; fits $9 / 16 \mathrm{in}$. diam cap; CNA type SPP-9; same as P-604	Connector to J-1603 in HLRM
P-1403	N17-C-800646-201	CAP, PLATE: ceramic body w/tin pl beryllium copper grip; fits $3 / 8 \mathrm{in}$. diam cap; CNA type SPP-3; same as P-605	Connector to J-1604 in HLRM
P-1404		Same as P-1402	Connector to J-1605 in HLRM
1501-1599	F16-P-67998-7157	POWER SUPPLY, PP-1096/SRT: electronic type rectification; full wave; output data +3000 v DC, 340 ma or +2400 v DC, 550 ma; input data 220 v AC or 440 v AC, 60 cyc , three $\mathrm{ph},-24 \mathrm{v}$ DC; o/a dimen 25-1/4 in. lg, 16 in. wd, 7-19/32 in. h; filter not incl; drawer mtd; used only at 500 w level operation of equipment; p / o AN/SRT-15, 16; CBTL part/dwg NL-981112-14	
E-1501	Shop Manufacture	TERMINAL BOARD: c/o term board, fuse clips, \& 4 spacers; material of board melamine type GMG;incl 4 fuse clip term and 4 solder lug term screw mtd; w/o barriers; o/a dimen 5-5/8 in. $\mathrm{lg}, 2-7 / 16 \mathrm{in} . \mathrm{wd}, 1-15 / 16 \mathrm{in}$. thk approx; four no. 8-32 thd mtg holes on 1-5/8 in. by $1-15 / 16 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; used to $\mathrm{mt} \mathrm{F}-1504$, F-1505, F-1509 and F-1510; CBTL part/dwg NL-900062-2	Mounts Fuses
E-1502	Shop Manufacture	TERMINAL BOARD: c/o term board, fuse clips, \& 4 spacers; material of board melamine type GMG; incl 6 fuse clip term and 6 solder lug term screw mtd; w/o barriers; o/a dimen $5-5 / 8 \mathrm{in}$. $\mathrm{lg}, 3-5 / 8 \mathrm{in}$. wd, $1-15 / 16 \mathrm{in}$. thk approx; four no. $8-32$ thd mtg holes on $1-5 / 8 \mathrm{in}$. by $3-1 / 8 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; used to mt F-1501, F-1502, F-1503, F-1506, F-1507, F-1508; CBTL part/dwg NL-981125-2	Mounts Fuses
E-1503	Shop Manufacture	TERMINAL BOARD: c/o melamine link board, 4 nickel pl brass term links mtd in storage on two cad pl, brass no. 6-32 thd inserts; 8 screw type link term; w/o barriers; o/a dimen $3-3 / 8 \mathrm{in} . \lg , 1-1 / 4 \mathrm{in}$. wd, 15/16 in. thk approx; two 0.169 in. diam mtg holes spaced 3 in . c to c; CBTL part/dwg NL-981121-1	For Changing 440v Input to 220v Input
E-1504	Shop Manufacture	TERMINAL BOARD: c/o melamine link board, two nickel pl brass term links connected across term no. 2 \& no. 3; 4 screw type link term; w/o barriers; o/a dimen 2-5/8 in. lg, 1-1/4 in. wd, $3 / 4 \mathrm{in}$. thk approx; two 0.169 in . diam mtg holes spaced diagonally on 2-5/16 in. centers; CBTL part/dwg NL-982302-1	Connector Point

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-1505	Shop Manufacture	TERMINAL BOARD: ceramic or melamine type GMG; 8 solder lug type term, one common term; o/a dimen 1-1/2 in. lg , 1-5/32 in. wd, 9/16 in. h; two no. 3-48 tapped mtg spacers 29/64 in. c to c; used to mt R-1509, R-1510, R-1511; CBY type 13025; CBTL part/dwg NL-960103-1-3; same as E-1013	Component Mounting
E-1506	Shop Manufacture	TERMINAL BOARD: melamine glass sheet type GMG; 8 double turret lug type term; w/o barriers; o/a dimen 2-9/16 in. $\lg , 1-3 / 4 \mathrm{in} . \mathrm{wd}, 15 / 32 \mathrm{in}$. thk approx; two 0.169 in . diam mtg holes $2-1 / 16 \mathrm{in}$. c to c ; term silver pl; used to mt R-1501, R-1502, R-1503; CBTL part/dwg NL-900066-1 less resistors	Component Mounting
E-1507	N17-L-250952-0247	LENS, INDICATOR LIGHT: red, 1.0 in . effective lens diam, convex type, glass, smooth face, frosted back translucent; $3 / 4 \mathrm{in} . \lg , 1-1 / 8 \mathrm{in} . \operatorname{diam} \mathrm{o} / \mathrm{a}$; holder brass, chrome pl finish; thd type $1.0 \mathrm{in} .-27$ thd, $1 / 8 \mathrm{in} . \mathrm{lg}$; CAYZ part no. $51-111$; p/o XI-1501	p/o XI-1501
E-1508		Same as E-1507; p/o XI-1502	p/o XI-1502
E-1509		Same as E-1507; p/o XI-1503	p/o XI-1503
E-1510	N17-L-250052-645	LENS, INDICATOR LIGHT: amber, 1.0 in . effective lens diam, convex type, glass, smooth face, frosted back translucent; $3 / 4 \mathrm{in} . \lg , 1-1 / 8 \mathrm{in}$. diam o/a; holder, brass, chrome pl finish; thd type $1.0 \mathrm{in} .-27$ thd, $1 / 8 \mathrm{in} . \lg ;$ CAYZ part no. 51-113; p/o XI-1504	p/o XI-1504
E-1511	N17-C-81204-4226	CONTACT, ELECTRICAL: stationary contact screw assy; contact incl 1 point, $13 / 32 \mathrm{in}$. diam by $1 / 4 \mathrm{in}$. thk, fine silver; $15 / 16 \mathrm{in} . \mathrm{lg}, 13 / 32 \mathrm{in}$. diam o/a dimen excluding mtg nut; contact rated $1.5 \mathrm{amp} ; 1$ term screw type $\mathrm{w} /$ point welded to one end; mtg by means of no. 10-32 thd brass hex nut; CAO part/ dwg no. 26126. 59-1; p/o K-1502	p/o K-1502
E-1512		Same as E-1511; p/o K-1502	p/o K-1502
E-1513		Same as E-1511; p/o K-1502	p/o K-1502
E-1514	N17-C-81608-9856	CONTACT, ELECTRICAL: c/o right hand contact finger assy and flexible lead assy; contact incl 1 point, $3 / 8 \mathrm{in}$. diam by $1 / 16 \mathrm{in}$. thk, fine silver, welded to one end of flat contact finger; $1-15 / 16 \mathrm{in} . \lg , 3 / 8 \mathrm{in}$. wd, $13 / 32 \mathrm{in}$. thk o/a dimen excluding lead assy; contact rated $1.5 \mathrm{amp} ; 1$ term, wire lead assy with $7 / 32$ in. diam hole for connection, located at opposite end from point; contact surface located $3 / 8 \mathrm{in}$. from edge of mtg slot; 1 slotted mtg hole $1 / 2 \mathrm{in} . \lg$ by $1 / 8 \mathrm{in}$. wd; CAO part/ dwg no. 26493. 23-1; p/o K-1502	p/o K-1502
E-1515		Same as E-1514; p/o K-1502	p/o K-1502
E-1516	N17-C-81608-9846	CONTACT, ELECTRICAL: c/o left hand contact finger assy and flexible lead assy; contact incl 1 point, $3 / 8 \mathrm{in}$. diam by $1 / 16 \mathrm{in}$. thk, fine silver, welded to one end of flat contact finger; 1-15/16 in. lg, $3 / 8 \mathrm{in}$. wd, 13/32 in. thk o/a dimen excluding lead assy; contact rated 1.5 amp ; 1 term, wire lead assy with $7 / 32 \mathrm{in}$. diam hole for connection, located at opposite end from point; contact surface located $3 / 8 \mathrm{in}$. from edge of mtg slot; 1 slotted mtg hole $1 / 2 \mathrm{in} . \lg$ by $1 / 8 \mathrm{in}$. wd; CAO part/ dwg no. 26493. 23-3; p/o K-15C2	p/o K-1502

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-1517	N17-C-79785-3972	CONTACT, ELECTRICAL: 2 points located at one end of yoke opposite each other, fine silver, $1 / 4 \mathrm{in}$. diam by 0.130 in . thk; o/a dimen $2 \mathrm{in} . \lg$ by $1 / 4 \mathrm{in}$. wd excluding pigtail assy; 1 term, wire pigtail $w /$ eyelet lug soldered to opposite end from points; 1 mtg slot located in center of yoke $3 / 32 \mathrm{in}$. wd by $3 / 16 \mathrm{in} . \mathrm{lg}$, 1 mtg hole $3 / 32 \mathrm{in}$. diam located on term end $\mathrm{w} / \mathrm{mtg}$ centers spaced $3 / 4 \mathrm{in}$. c to c; CSD part no. 16337; p/o K-1501	p/o K-1501
E-1518	N17-C-80988-6056	CONTACT, ELECTRICAL: 2 points located at one end of bracket opposite each other, fine silver, $3 / 16 \mathrm{in}$. diam by 0.130 in . thk; o/a dimen $15 / 16 \mathrm{in}$. h by $25 / 32 \mathrm{in}$. wd by $1 / 4 \mathrm{in}$. d; one 0.140 in . diam mtg hole located at opposite end from points; CSD part no. 16332; p/o K-1501	p/o K-1501
E-1519	N17-C-80688-9736	CONTACT, ELECTRICAL: 2 points located at one end of bracket opposite each other, fine silver, one side 7/32 in. diam, other side $1 / 8 \mathrm{in}$. diam by $7 / 64 \mathrm{in}$. thk; o/a dimen $1-17 / 64 \mathrm{in} . \mathrm{h}$ by $3 / 4 \mathrm{in}$. wd by $1 / 4 \mathrm{in}$. d; one 0.140 in . diam mtg hole located at opposite end from points; CSD part no. 18335; p/ o K-1501	p/o K-1501
E-1520		Same as E-1517; p/o K-1501	p/o K-1501
E-1521		Same as E-1517; p/o K-1501	p/o K-1501
E-1522		Same as E-1518; p/o K-1501	$\mathrm{p} / \mathrm{o} \mathrm{K-1501}$
E-1523		Same as E-1518; p/o K-1501	p/o K-1501
E-1524		Same as E-1518; p/o K-1501	p/o K-1501
F-1501	N17-F-99999-0127	FUSE, CARTRIDGE: $3-1 / 2 \mathrm{amps}$, 600 v AC; 250% overload for 56 seconds, 500% for 19 seconds; ferrule type term, 1-7/16 in. \lg by $13 / 16 \mathrm{in}$. diam; enclosed type, fibre tube; one time; nonindicating; $5 \mathrm{in} . \lg$ by $13 / 16 \mathrm{in}$. diam; dual element; CFA type no. FRS 3-1/2	440v AC 3 Phase Protection
F-1502		Same as F-1501	440v AC 3 Phase Protection
F-1503		Same as F-1501	440v AC 3 Phase Protection
F-1504		Same as F-1501	440v AC 3 Phase Protection
F-1505		Same as F-1501	440v AC 3 Phase Protection
F-1506	For Reference Only	FUSE, CARTRIDGE: 6-1/4 amps, $6600 \mathrm{v} ; 200 \%$ overload for 80 seconds, 600% for 12.3 seconds; ferrule type term, 1-7/16 in. \lg by $13 / 16 \mathrm{in}$. diam; enclosed type, fibre tube; one time; non-indicating; $5 \mathrm{in} . \lg$ by $13 / 16 \mathrm{in}$. diam o/a; dual element; CFA type no. FRS 6-1/4; (Used only when 220 power is supplied)	220v AC 3 Phase Protection
F-1507		Same as F-1506	220v AC 3 Phase Protection
F-1508		Same as F-1506	220v AC 3 Phase Protection

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
F-1509		Same as F-1506	220v AC 3 Phase Protection
F-1510		Same as F-1506	220v AC 3 Phase Protection
H-1501	Low Failure Item	SLIDE, chassis: left hand; c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, $1-5 / 8$ in. $\mathrm{h}, 9 / 16 \mathrm{in}$. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2$ in. c to c; two $1 / 4$ in. -28 NF-2 thd mtg holes spaced 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For HVPS Chassis
H-1502	Low Failure Item	SLIDE, chassis: right hand; c/o inner \& outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, $1-5 / 8 \mathrm{in} . \mathrm{h}, 9 / 16 \mathrm{in}$. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2 \mathrm{in}$. c to c ; two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For HVPS Chassis
I-1501	N17-L-3917-300	LAMP, INCANDESCENT: 125v DC, 6 w ; MBCA Ref Dwg Group 7, double contact bayonet candelabra base, $S-6$, clear, 1 tungsten filament, C-7A; 1-13/16 in. max o/a h; over 25 hrs rated life; any burning position; CAYZ type 6S6DC-125; same as I-501	Phase "POWER-ON" Indicator
I-1502		Same as I-1501	Phase "POWER-ON" Indicator
I-1503		Same as I-1501	Phase "POWER-ON" Indicator
I-1504		Same as I-1501	Phase "POWER-ON" Indicator
J-1501	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$; excluding contacts and term; w/ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	Unit InterConnecting
J-1502		Same as J-1501	Unit InterConnecting
J-1503	N17-I-59628-9328	INSULATOR, FEEDTHRU: bushing and bowl w/tapped cap and thd stud; steatite, brass; silver pl; 2-3/4 in. lg, 1-1/8 in. diam o/a; 45 amp ; 12, 000v; CCCV type 1125-A modified; CBTL part/dwg NL-900217-1	H. V. Connector
K-1501	N17-R-65155-8105	RELAY, ARMATURE: non-pile-up type, 3PDT single break, AC, $115 \mathrm{v}, 230 \mathrm{v}, 440 \mathrm{v}, 8 \mathrm{amp}, 4 \mathrm{amp}, 2 \mathrm{amp} ; 1$ winding, $1 \mathrm{in-}$ ductive winding, DC, 300 ohms resistance, $24 \mathrm{v} \pm 25 \%$ operating voltage; 9 term on contacts, 2 term on coil; continuous duty; $3-1 / 2 \mathrm{in} . \lg , 2-1 / 2 \mathrm{in}$. wd, 1-15/16 in. h ; mts by means of four $1 / 8 \mathrm{in}$. by $5 / 32 \mathrm{in}$. mtg holes spaced 3 in . c to c by 2 in . c to c ; pl to resist corrosion and salt spray; CSD part no. 1XCX-143; CBTL part/dwg NL-983521-1	Speech/CW High Voltage Transfer

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
K-1502	N17-R-65143-5305	RELAY, ARMATURE: spring loaded wiping contacts, 5PST, three normally open and two normally closed, single break, AC-DC, normally open $440 \mathrm{v}, 60 \mathrm{cyc}$, normally closed 24 v DC, normally open 1.5 amp , normally closed 4 amp ; one winding, one inductive winding, DC, 180 ohms resistance, 24 v operating voltage, 0.133 amp operating current; 10 term on contacts, 2 term on coil, screw type; $6 \mathrm{in} . \lg , 3-5 / 8 \mathrm{in}$. wd, $3-1 / 8 \mathrm{in} . \mathrm{h}$; two 0.175 in . diam mtg holes on $5-3 / 8 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; open type frame; CAO type no. K-43163, dwg no. 26608.31; CBTL part/ dwg NL-980996-1	3 Phase Plate Contactor
K-1503		Not Used	
K-1504	N17-R-68405-1001	RELAY, MOTOR DRIVEN: DPST, normally open, 100 ma , 220v RMS, 300 ma , 24v DC, 60 cyc; AC, synchronous type, 220v, 60 cyc; 2 brass screw type term for motor, 4 brass screw type term for contacts; adjustable type, 2.5 to 45 second time range; reset facilities provided; 4-1/2 in. lg, 3 in . wd, $2-3 / 32 \mathrm{in}$. h ; four 0.159 in . diam holes on 4-1/8 in. by 2-5/8 in. $\mathrm{mtg} / \mathrm{c}$; CCX no. TC-45S, assembly dwg D1-C-2, outline dwg A4678; CBTL part/dwg NL-980972-1	Rectifier Plate Protection
L-1501	N16-R-29903-1513	REACTOR: swinging choke; one section; 2 hy min inductance, $0.010 \mathrm{amp} \min \mathrm{DC}, 8$ hy max inductance, $0.600 \mathrm{amp} \max \mathrm{DC}$; 25 ohms DC resistance; 3800v RMS test; hermetically sealed, steel case; 5-7/16 in. lg by 4-1/2 in. sq excluding term; four 0.288 in . diam mtg holes on 3-9/16 in. sq c to c ; two solder lug type term on insulators, $7 / 8 \mathrm{in}$. \lg by $9 / 16 \mathrm{in}$. diam, located on opposite end from mtg surface; CUT dwg F-3620; CBTL part/dwg NL-980881-1	Filter for 3000v Plate Supply
M-1501	N17-M-32915-3251	METER, TIME: elapsed time indicator; synchronous selfstarting electric motor, $1 / 6 \mathrm{rpm}$; electro-mechanical control; direct reading; automatic start and stop; 2-1/2 in. h, 2-1/8 in. wd, 2-3/64 in. d o/a; 5 rotating drum counters, each calibrated 0 to $9 \mathrm{w} /$ window opening face, operate from $230 \mathrm{v}, 60$ cyc line; two 0.132 in . diam mtg holes spaced 1-7/8 in. c to c ; total registry of counter is 9999.9 hours, figures on first four drums in black and on last drum in red, flush mtg; CHP type 5701-1/6; same as M-501	Recorcing Total Operating Time of H. V. Rectifier Filament
M-1502		Same as M-1501	Recording Total Operating Time of H. V. Rectifier Plate
0-1501	N17-C-800934-501	CLIP, ELECTRICAL: grid plate style 7, MBCA Ref Dwg Group 37; brass, cad pl; 1-3/8 in. lg, $1 / 2 \mathrm{in}$. wd; CNA type no. 12; same as 0-501	Plate Cap for $\mathrm{V}-1501$
0-1502		Same as 0-1501	Plate Cap for V-1502
0-1503		Same as 0-1501	Plate Cap for V-1503
0-1504		Same as 0-1501	Plate Cap for V-1504
0-1505		Same as 0-1501	Plate Cap for V-1505

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-1506		Same as 0-1501	Plate Cap for V-1506
0-1507	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 cond $1 / 4 \mathrm{H}$, 0.025 in . thk strip per ML-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8 in. $\mathrm{lg}, 15 / 16 \mathrm{in} . \mathrm{h} ; \mathrm{CBTL}$ part/dwg NL-900142-1; p/o S-1502; same as 0-510	Contact Spring of S-1502
0-1508		Same as O-1507; p/o S-1502	Contact Spring of S-1502
0-1509	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \mathrm{lg}, 1 / 4$ in. wd, 0.125 in . thk o/a dimen; CCCS dwg A-9019. 9-1 (Revision no. 3); p/o H-1501; same as 0-506	p/o Chassis Slide
0-1510		Same as O-1509; p/o H-1502	p/o Chassis Slide
0-1511	Procure on demand by nearest Naval Shore Supply Activity	RETALNER, bearing: lower, c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $10.844 \mathrm{in} . \mathrm{lg}$, $1 / 4 \mathrm{in} . \mathrm{wd}, 0.125 \mathrm{in}$. thk o/a dimen; CCCS dwg A-9019.9-2 (Revision no. 3); p/o H-1501; same as 0-508	p/o Chassis Slide
0-1512		Same as O-1511; p/o H-1502	p/o Chassis Slide
0-1513	Low Failure Item	SPRING: loop type; for latch; 0.038 in . diam corrosion resisting steel spring wire; 2-1/2 in. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{h} \mathrm{o/a;} \mathrm{one} \mathrm{end}$ semi-hook type, one end open; irregular shape; CBTL part/dwg NL-900991-1; p/o H-1501; same as 0-509	For Latch in Chassis Slide
0-1514	Low Failure Item	SPRING: helical compression type; 0.032 in. diam music wire per NAVY spec 22W11C; 3/8 in. h, $1 / 2 \mathrm{in}$. diam o/a; 3-1/2 turns, RH or LH wound; first and last 3/4 turns are flat; cad pl; CBTL part/dwg NL-900018-1; w/w H-1501; same as 0-507	Stop Button Spring for Chassis Slide
0-1515		Same as O-1514; u/w H-1502	Stop Button Spring for Chassis Slide
0-1516		Same as O-1513; p/o H-1502	p/o Chassis Slide
R-1501	N16-R-49662-506	RESISTOR, FDXED, COMPOSITION: 220 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF221K	Voltage Dropping
R-1502		Same as R-1501	Voltage Dropping
R-1503		Same as R-1501	Voltage Dropping
R-1504		Not Used	
R-1505	N16-R-66141-3006	RESISTOR, FDXED, WIRE WOUND: 2, 500 ohms, $\pm 5 \% ; 22 \mathrm{w}$; per spec MIL-R-26; MIIL type RW21G252	Voltage Dropping
R-1506		Same as R-1505	Voltage Dropping
R-1507		Same as R-1505	Voltage Dropping
R-1508		Same as R-1505	Voltage Dropping
R-1509	N16-R-50166-508	RESISTOR, FDKED, COMPOSITION: 5, 600 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF562K; same as R-1063	Voltage Dropping

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-1510		Same as R-1509	Voltage Dropping
R-1511		Same as R-1509	Voltage Dropping
S-1501	N17-S-75025-8961	SWITCH, TOGGLE: 3PST; 20 amps, 600v AC; bakelite body; dimen excluding handle $2-5 / 16 \mathrm{in} . \mathrm{lg}, 1-11 / 16 \mathrm{in}$. wd, $1-3 / 4$ in h; 6 screw type term; two 7/32 in. diam mtg holes on 3-9/32 in. mtg/c; CHH type 7810-U	3 Phase Emergency "ON-OFF"
S-1502	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; DPST, male and female type, beryllium copper alloy strip contact; thermosetting plastic molding body; 1-1/2 in. ig by $1-1 / 2 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. thk o/a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in . apart; interrupts 24v DC; CBTL part/dwg NL-900059-2; same as S-501	Interlock Switch
T-1501	N17-T-72978-3001	TRANSFORMER, POWER, RTEP-DOWN: hermetically sealed metal case; 220/440v AC, $50 / 60$ cyc, single ph input; 4 output windings, no. 1 secondary 2.5 v at 15.0 amps, no. 2 secondary 2.5 v at 5.0 amps , no. 3 secondary 2.5 v at 5.0 amps , no. 4 secondary 2.5 v at 5.0 amps ; primary test voltage 1500 v RMS all others 5200v RMS; Robertson potting compound; 4-1/2 in. sq, 6-1/32 in. h, MBCA Ref Dwg Group 12; 12 standoff type term; four no. 10-32 thd inserts on 3-9/16 in. sq mtg/c mtd opposite electrostatic shield; CUT part no. F-3616; CBTL part/ dwg NL-980883-1	Rectifier Filament Supply
T-1502	N17-T-78264-6589	TRANSFORMER, POWER, STEP-UP: open-frame, fosterized case; 220/440v AC, 50/60 cyc input 3 ph delta; one output winding, $1835 / 2260 \mathrm{v}$ RMS, 0.280 amp at $1835 \mathrm{v}, 0.186 \mathrm{amp}$ at 2260 v ; primary test voltage 1500 v RMS, secondary 7000v RMS; forced air cooled; 11-1/8 in. lg by 6-3/4 in. wd by 6-3/4 in. h, MBCA Ref Dwg Group 12; 36 screw type term and 12 shorting clips opposite mtg surface; 8 holes on 3-7/16 in. by 5-1/8 in. $\mathrm{mtg} / \mathrm{c}$; electrostatic shield grounded to laminations; CUT part no. F-3618-2; CBTL part/dwg NL-980880-1	Rectifier Plate Supply
V-1501	N16-T-53228	ELECTRON TUBE: diode; per JAN-1A; JAN type 3B28; same as V-501	High Voltage Rectifier
V-1502		Same as V-1501	High Voltage Rectifier
V-1503		Same as V-1501	High Voltage Rectifier
V-1504		Same as V-1501	High Voltage Rectifier
V-1505		Same as V-1501	High Voltage Rectifier
V-1506		Same as V-1501	High Voltage Rectifier
XI-1501	For Replacement Use N17-L-76885-5301	LIGHT, INDICATOR: supplied w/lens, 1 in. diam, red, convex; screw type lens holder; accommodates S6 DC bulb w/ bayonet base of double contact type; 125 v DC, $0.6 \mathrm{amp}, 75 \mathrm{w}$; brass, black nickel shell, enclosed; 3 in . lg, 1-1/8 in. diam o / a dimen; 1 mtg hole required 1 in . diam; accommodates 21/32 in. thk panel; horizontally mtd; lamp replaceable from front of	Retainer for I-1501

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
CR-1601 (cont) E-1601	Low Failure Item	$1-1 / 2 \mathrm{in} . \lg$ less mtg studs, $1 \mathrm{in} . \mathrm{wd}, 1-5 / 16 \mathrm{in} . \mathrm{h}$ incl term, 1 in . h less term; one no. 8-32 thd bolt through stack; 3 solder lug type term, located on plates; salt spray resistant coating, tropicalized per JAN-T-152; CFT type no. 102D4597S; CBTL part/dwg NL-980875-1 BALL, electrode: brass, cad pl; spherical with stud for mtg; 15/16 in. $\mathrm{lg}, 0.375 \mathrm{in}$. diam; one no. 6-32 NC-2 thd, stud 7/16 in. \lg for mtg; CBTL part/dwg NL-981436-1; same as E-1018	Safety Device for T-1601
E-1602		Same as E-1601	Safety Device for T-1601
E-1603	For Reference only	BOARD, link: four term with no. 6-32, $1 / 4 \mathrm{in}$. lg thd BHMS; $2-5 / 8 \mathrm{in} . \lg$ by $1-1 / 4 \mathrm{in}$. wd by $13 / 16 \mathrm{in} . \mathrm{h}$ o/a; term spaced $5 / 8 \mathrm{in}$. c to c in lg and wd ; melamine; two 0.169 in . diam mtg holes in diagonal corners; CBTL part/dwg NL-900500-1	Used to change from from 220v to 440v and from 440v to 220v
E-1604	Shop Manufacture	TERMINAL BOARD: c/o term board, aluminum baffle mtd on standoffs, fuse clip assy, plate, and elastic grommets; material of board, melamine resin glass cloth type GMG; incl 2 screw type term on 2 brass,' silver pl connectors; 8-5/16 in. $\lg , 2-1 / 2 \mathrm{in}$. wd, 7-1/16 in. h approx $0 /$ a dimen; aluminum bracket mtg, two used, each w/three no. 8-32 thd Pem fasteners, 4 screw mtg to term board \& 2 screw mtg to chassis all on 3-3/4 in. mtg/c; used for mtg R-1629 and R-1630; CBTL part/dwg NL-900524-12	Component Mounting
E-1605	Shop Manufacture	TERMINAL BOARD: melamine glass sheet type GMG; 8 double turret lug type term; w/o barriers; o/a dimen 6-1/8 in. lg , 2 in. wd, 15/32 in. thk approx; four 0.169 in . diam mtg holes spaced $5-5 / 8 \mathrm{in}$. on lg by $1-1 / 2 \mathrm{in}$. wd $\mathrm{mtg} / \mathrm{c}$; term silver pl ; used to mount R-1621 thru R-1627 incl; CBTL part/dwg NL-900483-2 less resistors	Component Mounting
E-1606	N17-B-99999-0239	TERMINAL BOARD: melamine type GMG; 14 single screw type term; barrier type, 5-7/8 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 13 / 32 \mathrm{in} . \mathrm{h}$; four 0.160 mtg holes spaced $5-5 / 8 \mathrm{in}$. c to c in lg and 0.312 in. c to c in wd; CJC type 14-140-Y-B	Interconnect Sub-Chassis of HLRM to Main Chassis
E-1607	Shop Manufacture	TERMINAL BOARD: melamine glass sheet type GMG; incl 4 screw type term; w/o barriers; 3-1/8 in. lg, 4-1/2 in. h, 1 in . thk o/a dimen; 3 bracket mtg, two no. 6-32 thd Pem fasteners on $2-1 / 4 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ and one $7 / 32 \mathrm{in}$. diam mtg hole irregularly spaced; used for mtg R-1601 and R-1602; CBTL part/dwg NL-900490-2 less resistors	Component Mounting
E-1608	N16-S-34607-6039	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; 2-1/4 in. lg; 0.958 in . diam o/a dimen; bayonet mtg; per spec JAN-S-28A; JAN type TS102U03; same as O-1021	For V-1603
E-1609		Same as E-1608	For V-1604
E-1610		Same as E-1608	For V-1605
E-1611	Low Failure Item	INSULATOR, cap: cylindrical; laminated phenolic tubing per JAN-P-79 form T. R. type LTS-E4; brown; 2-11/16 in. lg, 1-3/16 in. ID, 1-1/2 in. OD o/a; CBTL part/dwg NL-900517-1	For C-1601
E-1612	N17-L-250177-331	LENS, INDICATOR LIGHT: clear, $1 / 2 \mathrm{in}$. effective lens diam, \lg dome type; polystyrene, internally fluted; $13 / 16 \mathrm{in} . \mathrm{lg}, 5 / 8$ in. wd o/a dimen; unmounted; 9/16 in. -27 male thd, $3 / 16$ in. lg , to fit body; CAYZ part no。53-997; p/o XI-1601 Same as E-1612, p/o XI-1602	p/o XI-1601 p/o XI-1602

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-1601	N16-C-300799-201	RETAINER, CAPACITOR: cylindrical tube clamp, stainless steel type 302; 27/32 in. thk by 2 in . lg approx $0 / \mathrm{a}, 1-1 / 2 \mathrm{in}$. ID; bracket mtd; CAIS part/dwg 926D-2	For C-1601
H-1602	Low Failure Item	SLIDE, chassis: left hand, c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, $1-5 / 8 \mathrm{in}$. $\mathrm{h}, 9 / 16 \mathrm{in}$. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2$ in. c to c, two $1 / 4$ in. -28 NF-2 thd mtg holes spaced 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For HLRM Chassis
H-1603	Low Failure Item	SLIDE, chassis: right hand, c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2$ in. c to c ; two $1 / 4 \mathrm{in} .-28$ NF-2 thd mtg holes, 1 in. c to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For HLRM Chassis
I-1601	G17-L-6806-130	LAMP, GLOW: neon, 105-125v, $1 / 25 \mathrm{w}$; MBCA Ref Dwg Group 7, single contact bayonet candelabra base, T-3-1/4, clear, orange-red glow; 1-3/16 in. max o/a h; CG type NE-51; same as I-503	3000v DC Indicator
I-1602		Same as I-1601	350v DC Indicator
J-1601	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts and term; $\mathrm{w} /$ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600 v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as $\mathbf{P - 4 0 1}$	Inter-Unit Wiring
J-1602		Same as J-1601	Inter-Unit Wiring
J-1603	N17-I-59628-9328	INSULATOR, FEEDTHRU: bushing and bowl w/tapped cap and thd stud; steatite, brass; silver pl; 2-3/4 in. lg, 1-1/8 in. diam o/a; $45 \mathrm{amp} ; 12,000 \mathrm{v}$; CCCV type 1125-A modified; CBTL part/dwg NL-900217-1; same as J-1503	H. V. Connector
J-1604	N17-I-59705-1251	INSULATOR, FEEDTHRU: brass; silver pl; 15/16 in. lg, 5/8 in. diam o/a; CNA type XS-7 modified; CBTL part/dwg NL-900095-1; same as J-503	Medium Voltage Input
J-1605		Same as J-1603	H. V. Connector
J-1606	N17-C-73107-5183	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric green nylon; 29/ 32 in . lg, 5/16 in. wd incl hex coupling nut o/a dimen; 1000v peak; w/inclosing shell, cylindrical shape, brass, nickel pl; not polarized, 1 hole, $1 / 4 \mathrm{in}$. diam; 1/4-32 in. thd on receptacle for mating $\mathbf{w} /$ coupling nut; CARO part 225D	Test Point Grid 1 V-1602
J-1607		Same as J-1606	Test Point Grid 1 V-1601
K-1601	N17-R-65144-2453	RELAY, ARMATURE: contact arrangement 1A1B1C, MBCA Ref Dwg Group 4 (twin contacts), single break, AC-DC, uncoded contact C rated at 500 v , code 24 contacts A and B rated at 4 amp , uncoded contact C rated at $0.070 \mathrm{amps} ; 1$ winding,	Screen Ungrounding

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { K-1601 } \\ & \text { (cont) } \end{aligned}$		1 inductive winding, DC, 300 ohms resistance, 24 v operating voltage; 7 term on contacts, 2 term on coil; continuous duty; $2-1 / 4 \mathrm{in} . \lg , 1-1 / 8 \mathrm{in}$. wd, 1-45/64 in. h; mtd by means of two no. 6-32 tapped holes, spaced $3 / 4 \mathrm{in}$. c to c ; impregnated coil, mycalex insulation on form 1C contacts, code 24 contacts rated 150 w w/above mentioned current; CRY type J, part no. H-49556; CBTL part/dwg NL-981046-1	
K-1602		Not Used	
K-1603	N17-R-65142-3475	RELAY, ROTARY: power type, SPDT, double break, AC, $10,000 \mathrm{v}, 0.2 \mathrm{amp} ; 2$ windings, 2 inductive windings, DC, 115 ohms $\pm 10 \%, 24 \mathrm{v}, 0.2 \mathrm{amp} ; 4$ term on contacts, 2 term on coil; continuous duty; 3-5/16 in. lg, 1-5/8 in. wd, 3-1/4 in. h; mtd by means of four no. 6-32 thd tapped holes spaced 1.625 in . by 0.938 in. c to c; CCCQ part/dwg 7RX-2; CBTL part/dwg NL-982669-1	Shorting Relay for Secondary of T-1601
K-1604		Not Used	
K-1605		Same as K-1603	Modulator Output Selector
0-1601	N17-C-800487-451	CLIP, ELECTRICAL: grid plate style 7 MBCA Ref Dwg Group 37; steel; 7/8 in. $\lg , 3 / 8 \mathrm{in}$. wd, $3 / 8 \mathrm{in} . \mathrm{h} ; 1$ solder lug type term; used as electron tube plate clip; CNA type no. 24; same as 0-1301	Plate Cap for V-1601
0-1602		Same as 0-1601	Plate Cap for V-1602
0-1603	Procured on demand by nearest Naval Shore Supply Activity	RETADNER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \lg$, 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg A-9019. 9-1 (Revision no. 3); p/o H-1602; same as 0-506	p/o Chassis Slide
0-1604		Same as 0-1603; p/o H-1603	p/o Chassis Slide
0-1605	Low Failure Item	SPRING: loop type; for latch; 0.038 in . diam corrosion resisting steel spring wire; 2-1/2 in. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{h}$ o/a; one end semi-hook type, one end open; irregular shape; CBTL part/dwg NL-900991-1; p/o H-1602; same as 0-509	For Latch in Chassis Slide
0-1606	Low Failure Item	SPRING: helical compression type; 0.032 in . diam music wire per NAVY spec 22W11C; 3/8 in. h, $1 / 2 \mathrm{in}$. diam o/a; 3-1/2 turns, RH or LH wound; first and last $3 / 4$ turns are flat; cad pl; CBTL part/dwg NL-900018-1; u/w H-1602; same as O-507	Stop Button Spring for Chassis Slide
0-1607		Same as O-1606; u/w H-1603	Stop Button Spring for Chassis Slide
0-1608	Procured on demand by nearest Naval Shore Supply Activity	RETANER, bearing: lower; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $10.844 \mathrm{in} . \mathrm{lg}$, 1/4 in. wd, 0.125 in . thk o/a dimen; CCCS dwg A-9019.9-2 (Revision no. 3); p/o H-1602; same as 0-508	p/o Chassis Slide
0-1609		Same as O-1608; p/o H-1603	p/o Chassis Slide

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-1610	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 cond $1 / 4 \mathrm{H}$, 0.025 in. thk strip per MIL-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8in. lg, 15/16 in. h; CBTL part/dwg NL-900142-1; p/o S-1602	For Contact in S-1602
0-1611		Same as O-1610; p/o S-1602	For Contact in S-1602
0-1612		Same as O-1605; p/o H-1603	For Latch in Chassis Slide
R-1601	N16-R-68382-1286	RESISTOR, FLXED, WIRE WOUND: 500 ohms, $\pm 5 \%$; 9 w; per spec JAN-R-26A; JAN type RW56J501	Grid Leak V-1601
R-1602		Same as R-1601	Grid Leak V-1602
R-1603	N16-R-68407-6296	RESISTOR, FIXED, WIRE WOUND: 1, 800 ohms, $\pm 5 \%$; 9 w ; per spec JAN-R-26A; JAN type RW56J182	Bias Supply
$\begin{aligned} & \mathrm{R}-1604 \\ & \text { thru } \\ & \mathrm{R}-1619 \end{aligned}$		Not Used	
R-1620	N16-R-49464-506	RESISTOR, FIXED, COMPOSITION: 56 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF560K	Filter Resistor -43v Bias Supply
R-1621	N16-R-50839-751	RESISTOR, FIXED, COMPOSITION: 510, 000 ohms, $\pm 5 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF514J	Dropping Resistor I-1601
R-1622		Same as R-1621	Dropping Resistor I-1601
R-1623		Same as R-1621	Dropping Resistor I-1601
R-1624		Same as R-1621	Dropping Resistor I-1601
R-1625		Same as R-1621	Dropping Resistor I-1601
R-1626		Same as R-1621	Dropping Resistor I-1601
R-1627	N16-R-57015-231	RESISTOR, FIXED, COMPOSITION: 220,000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF224K; same as R-518	Dropping Resistor I-1601
R-1628	N16-R-50822-811	RESISTOR, FIXED, COMPOSITION: 470, 000 ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF474K; same as R-1035	Dropping Resistor I-1602
R-1629	N16-R-62235-7670	RESISTOR, FIXED, WIRE WOUND: 50,000 ohms, $\pm 5 \%$; 86 w ; per spec JAN-R-26A; JAN type RW12F503	Bleeder 3000v Supply
R-1630		Same as R-1629	Bleeder 3000v Supply
R-1631	N16-R-50679-231	RESISTOR, FIXED, COMPOSITION: 150, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30BF154K	Voltage Divider
R-1632	N16-R-50634-231	RESISTOR, FIXED, COMPOSITION: 100, 000 ohms, $\pm 10 \%$; 1 w; per spec JAN-R-11; JAN type RC30BF104K; same as R-1024	Voltage Divider

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XI-1601	N17-L-76763-1597	LIGHT, INDICATOR: supplied $w /$ lens, $5 / 8 \mathrm{in}$. diam, clear, fluted, screw type holder; accommodates neon T3-1/4, NE 51 lamp, single contact miniature bayonet base, 110 v ; brass shell, black nickel finish, enclosed; 2-5/16 in. lg, 15/16 in. diam o/a dimen, 1 mtg hole required $11 / 16 \mathrm{in}$. diam, accommodates up to $1 / 4 \mathrm{in}$. max thk panel; horizontally mtd; lamp replaceable from front of panel; 2 solder lug type term, located on socket base, both insulated from shell; incl built in 51000 ohm $1 / 3 \mathrm{w}$ composition resistor; CAYZ type 53408-XP18-997; same as XI-503	Retainer for I-1601
XI-1602		Same as XI-1601	Retainer for I-1602
XV-1601	N16-S-61876-8870	SOCKET, ELECTRON TUBE: 5 contacts, brass clip steel spring, cad pl; giant; sq shape; 2-7/8 in. lg, 2-7/8 in. wd, 3/4 $\mathrm{in} . \mathrm{h}$; ceramic body; above chassis mtg, 4 mtg holes, 0.190 in . diam spaced on corners w/2. 250 in . c to c; CEJ type no. 122-275-1 dwg no. H-122-275	Socket for V-1601
XV-1602		Same as XV-1601	Socket for V-1602
XV-1603	N16-S-62603-6702	SOCKET, ELECTRON TUBE: 7 contacts, brass, nickel pl; miniature; incl metal shield base, 0.800 in . diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, 0.125 in . ID; oval; 1-1/8 in. lg, 0.800 in. $\mathrm{wd}, 25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; molded thermosetting plastic body; one piece saddle $\mathrm{mtg}, 5 / 8 \mathrm{in}$. diam chassis hole required, 2 mtg holes 0.125 in . diam, 0.875 in . c to c ; per spec JAN-S-28A; JAN type TS102P01; same as XV-1303	Socket for V-1603
XV-1604		Same as XV-1603	Socket for V-1604
XV-1605		Same as XV-1603	Socket for V-1605
2001-2999	F16-O-53520-7644	OSCILLATOR, RADIO FREQUENCY, 0-275/SRT: frequency range 300 kc to $26 \mathrm{mc}, 3$ bands, 10 cps steps, any frequency between 300 kc and 26 mc may be selected in 10 cps steps according to the setting of the front panel dials; 0.004 to 0.0439 w power output rating; crystal frequency control; AC operating power requirements 115 v AC, 60 cycles, single ph; DC operating requirements $-24 \mathrm{v} D \mathrm{DC},+250 \mathrm{v} D \mathrm{DC},+250 \mathrm{v}$ DC regulated; external power supply; integral coils; o/a dimen 25-5/8 in. lg , $16 \mathrm{in} . \mathrm{wd}, 18-7 / 32 \mathrm{in} . \mathrm{h}$; mounts in ELECTRICAL EQUIPMENT CABINET CY-1571/SRT; incl CONTROL-INDICATOR C-1352/ SRT; p/o AN/SRT-14, 15, 16; CBTL part/dwg NL-960444-27	
A-2051	Low Failure Item	MOUNTING: coil slug; p/o tuning slug assembly; 19/32 in. lg , $3 / 8 \mathrm{in}$. wd o/a; mtd by two 0.147 in . holes $13 / 32 \mathrm{in}$. c to c indexed 15°; CCCP Cat. no. W1D632-NR w/wings 45° angle, modified; CBTL part/dwg NL-960083-1	Mounting for Coil Slug, Unit 3
$\begin{aligned} & \text { A-2051. } \\ & \text { thru } \\ & \text { A-2051. 10 } \end{aligned}$		Same as A-2051	Mounting for Coil Slugs, Unit 3
C-2001	N16-C-54460-4315	CAPACITOR, FIXED, PAPER DIELECTRIC: 3 sections, each section $100,000 \mathrm{mmf}+20 \%-10 \%$; 600v DCW; per spec JAN-C25; JAN type CP69B5FF104V	B+ Filter, Unit 1
C-2002	N16-C-33617-4746	CAPACITOR, FIXED, MICA DIELECTRIC: $10,000 \mathrm{mmf} \pm 5 \%$; 300v DCW; per spec JAN-C-5; JAN type CM35C103J	Spark Suppressor Y-2001 Thermostat, Unit 1

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force.	Name and Description	Locating Function
C-2003	For Replacement Use N16-C-31080-2015	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 1000 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB11EA102G	Screen Coupling V-2001, Unit 1
C-2004		Same as C-2003	Grid Coupling V-2001, Unit 1
C-2005	For Replacement Use N16-C-30183-3292	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 510 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA511G	Osc. Tank V-2001, Unit 1
C-2006		Same as C-2005	Osc. Tank V-2001, Unit 1
C-2007		Same as C-2003	Grid Coupling V-2002, Unit 1
C-2008		Same as C-2003	Grid Coupling V-2002, Unit 1
C-2009		Same as C-2003	Grid Coupling V-2003, Unit 1
C-2010		Same as C-2003	Grid Coupling V-2003, Unit 1
C-2011		Not Used	
C-2012	For Replacement Use N16-C-28386-8771	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 91 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA910G	Coupling L-2001, Unit 1
C-2013	For Replacement Use N16-C-31502-2449	CAPACITOR, FIXED BUTTON, MICA DIELECTRIC: 1500 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA152G	Osc. Spurious Trap L-2002, Unit 1
$\begin{aligned} & \text { C-2014 } \\ & \text { thru } \\ & \text { C-2030 } \end{aligned}$		Not Used	
C-2031	N16-C-18653-9364	CAPACITOK, FIXED, CERAMIC DIELECTRIC: case style no. 2 MBCA Ref Dwg Group 1; $1000 \mathrm{mmf} \pm 10 \%$; 500v DCW; temp coefficient variable; molded phenolic body, insulated; 0.250 in. diam by 0.562 in $\lg \mathrm{o}$ a dimen; 2 axial wire type term; term mtg; impregnated $\mathrm{w} /$ microcrystalline wax; CER $\mathrm{Hi}-\mathrm{K}$ Ceramicon GP2K1000	Grid Coupling V-2031, Unit 2
C-2032		Same as C-2001	
C-2032A		p/o C-2032	Screen By-Pass V-2031, Unit 2
C-2032B		p/o C-2032	Screen By-Pass V-2032, Unit 2
C-2032C		p/o C-2032	Plate By-Pass V-2034, Unit 2
C-2033	For Replacement Use N16-C-29813-9792	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 360 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA361G	Filter Tuning Z-2033, Unit 2
C-2034		Same as C-2003; p/o Z-2031	Filter Tuning Z-2031, Unit 2

ORIGNAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2035		Same as C-2003; p/o Z-2031	Filter Tuning V-2032, Unit 2
C-2036		Same as C-2031	Filter Tuning V-2032, Unit 2
C-2037	For Replacement Use N16-C-31080-2031	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 1000 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB20EA102G	Cathode Follower Coupling V-2033, Unit 2
C-2038	N16-C-15528-8911	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $3 \mathrm{mmf} \pm 0.25$ mmf; 500v DCW; per spec JAN-C-20A, JAN type CC21LJ030C	Filter Coupling 1 mc Filter, Unit 2
C-2039	For Replacement Use N16-C-29602-9582	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 270 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB11EA271G; p/o Z-2032	Filter Tuning Z-2032, Unit 2
C-2040		Same as C-2039; p/o Z-2032	Filter Tuning Z-2032, Unit 2
C-2041		Same as C-2039; p/o Z-2033	Filter Tuning Z-2033, Unit 2
$\begin{aligned} & \mathrm{C}-2042 \\ & \text { thru } \\ & \mathrm{C}-2050 \end{aligned}$		Not Used	
C-2051	For Reference Only	CAPACITOR, ASSEMBLY: $1692 \pm 3 \mathrm{mmf}$; made up of C-2051A, C-2051B, C-2051C and C-2051D; p/o Z-2052	(90-91) kc Tank S-2051C, Unit 3
C-2051A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 910 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA911G; p/o C-2051	(90-91) kc Tank S-2051C, Unit 3
C-2051B	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 750 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20FA751G; p/o C-2051	(90-91) kc Tank S-2051C, Unit 3
C-2051C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2051, C-2051A and C-2051B; per spec JAN-C-1 20A; CBTL part/dwg NL-961545-2; p/o C-2051	(90-91) kc Tank S-2051C, Unit 3
C-2051D		Same as C-2051C; p/o C-2051	(90-91) kc Tank S-2051C, Unit 3
C-2052	For Reference Only	CAPACITOR ASSEMBLY: $1471 \pm 3 \mathrm{mmf}$; made up of C-2052A, C-2052B, C-2052C and C-2052D; p/o Z-2052	(91-92) kc Tank S-2051C, Unit 3
C-2052A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 820 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB20EA821G; p/o C-2052	(91-92) kc Tank S-2051C, Unit 3
C-2052B	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 620 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA621G; p/o C-2052	(91-92) kc Tank S-2051C, Unit 3
C-2052C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2052, C-2052A and C-2052B; per JAN-C-20A; CBTL part/dwg NL-961545-2; p/ o C-2052	(91-92) kc Tank S-2051C, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2052D		Same as C-2052C; p/ o C-2052	(91-92) kc Tank S-2052C, Unit 3
C-2053	For Reference Only	CAPACITOR ASSEMBLY: $1258 \pm 3 \mathrm{mmf}$; made up of C-2053A, C-2053B, C-2053C and C-2053D; p/o Z-2052	$\begin{aligned} & \text { (92-93) kc Tank } \\ & \text { S-2052C, Unit } 3 \end{aligned}$
C-2053A		Same as C-2051B; p/o C-2053	(92-93) kc Tank S-2052C, Unit 3
C-2053B	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 470 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB20EA471G; p/o C-2053	$\begin{aligned} & \text { (92-93) kc Tank } \\ & \text { S-2052C, Unit } 3 \end{aligned}$
C-2053C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2053, C-2053A and C-2053B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/ o C-2053	(92-93) kc Tank S-2052C, Unit 3
C-2053D		Same as C-2053C; p/o C-2053	(92-93) kc Tank S-2052C, Unit 3
C-2054	For Reference Only	CAPACITOR, ASSEMBLY: $1055 \pm 3 \mathrm{mmf}$; made up of C-2054A, C-2054B, C-2054C and C-2054D; p/o Z-2052	(93-94) kc Tank S-2052C, Unit 3
C-2054A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 560 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA561G; p/o C-2054	(93-94) kc Tank S-2052C, Unit 3
C-2054B		Same as C-2053B; p/o C-2054	(93-94) kc Tank S-2052C, Unit 3
C-2054C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2054, C-2054A and C-2054B per spec NL-961545-2; per JAN-C-20A; p/ o C-2054	(93-94) kc Tank S-2052C, Unit 3
C-2054D		Same as C-2054C; p/o C-2054	(93-94) kc Tank S-2052C, Unit 3
C-2055	For Reference Only	CAPACITOR ASSEMBLY: $860 \pm 3 \mathrm{mmf}$; made up of C-2055A, C-2055B, C-2055C and C-2055D; p/o Z-2052	(94-95) kc Tank S-2052C, Unit 3
C-2055A		Same as C-2005; p/o C-2055	(94-95) kc Tank S-2052C, Unit 3
C-2055B	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 330 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA331G; p/o C-2055	(94-95) kc Tank S-2052C, Unit 3
C-2055C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2055, C-2055A and C-2055B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/o C-2055	(94-95) kc Tank S-2052C, Unit 3
C-2055D		Same as C-2055C; p/o C-2055	(94-95) kc Tank S-2052C, Unit 3
C-2056	For Reference Only	CAPACITOR ASSEMBLY: $671 \pm 3 \mathrm{mmf}$; made up of C-2056A, C-2056B, C-2056C and C-2056D; p/o Z-2052	(95-96) kc Tank S-2052C, Unit 3
C-2056A		Same as C-2055B; p/o C-2056	(95-96) kc Tank S-2052C, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2056B		Same as C-2055B; p/o C-2056	(95-96) kc Tank S-2052C, Unit 3
C-2056C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2056, C-2056A and C-2056B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/o C-2056	(95-96) kc Tank S-2052C, Unit 3
C-2056D		Same as C-2056C; p/o C-2056	(95-96) kc Tank S-2052C, Unit 3
C-2057	For Reference Only	CAPACITOR ASSEMBLY: $495 \pm 3 \mathrm{mmf}$; made up of C-2057A, C-2057B, C-2057C and C-2057D; p/o Z-2052	(96-97) kc Tank S-2052C, Unit 3
C-2057A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 240 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA241G; p/o C-2057	(96-97) kc Tank S-2052C, Unit 3
C-2057B		Same as C-2057A; p/o C-2057	(96-97) kc Tank S-2052C, Unit 3
C-2057C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2057 and C-2057A, C-2057B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/o C-2057	(96-97) kc Tank S-2052C, Unit 3
C-2057D		Same as C-2057C; p/ o C-2057	(96-97) kc Tank S-2052C, Unit 3
C-2058	For Reference Only	CAPACITOR ASSEMBLY: $323 \pm 3 \mathrm{mmf}$; made up of C-2058A, C-2058B, C-2058C and C-2058D; p/o Z-2052	(97-98) kc Tank S-2052C, Unit 3
C-2058A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 160 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA161G; p/o C-2058	(97-98) kc Tank S-2052C, Unit 3
C-2058B	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 150 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA151G; p/o C-2058	(97-98) kc Tank S-2052C, Unit 3
C-2058C	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C-2058, C-2058A and C-2058B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/o C-2058	(97-98) kc Tank S-2052C, Unit 3
C-2058D		Same as C-2058C; p/o C-2058	(97-98) kc Tank S-2052C, Unit 3
C-2059	For Reference Only	CAPACITOR ASSEMBLY: $158 \pm 3 \mathrm{mmf}$; made up of C-2059A, C-2059B, C-2059C and C-2059D; p/o Z-2052	(98-99) kc Tank S-2052C, Unit 3
C-2059A	For Reference Only	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 75 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA750G; p/o C-2059	(98-99) kc Tank S-2052C, Unit 3
C-2059B		Same as C-2059A; p/o C-2059	(98-99) kc Tank S-2052.C, Unit 3
C-2059	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: neg temp coef $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; chosen from NL-961545-2 to make up difference between C -2059, C -2059A and C -2059B; per spec JAN-C20A; CBTL part/dwg NL-961545-2; p/o C-2059	(98-99) kc Tank S-2052C, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating. Function
C-2059D		Same as C-2059C; p/o C-2059	(98-99) kc Tank S-2052C, Unit 3
C-2060	For Reference Only	CAPACITOR ASSEMBLY: made up of C-2060A, C-2060B, C-2060C and C-2060D; p/o Z-2051	Main Tank Z-2051, Unit 3
C-2060A	For Reference Only	CAPACITOR SUB-ASSEMBLY: $4796 \pm 3 \mathrm{mmf}$ at 100 KC ; matched pair c/o $4700 \mathrm{mmf}{ }^{2} 2 \%$; 2500v DCW; mica dielectric molded; JAN type \#CM60F472G per spec JAN-C-5 and max of two button mica capacitors; 500v DCW type \#CB20EA per spec BuShips 16C41; p/o C-2060	Main Tank Z-2051, Unit 3
C-2060B	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $91 \mathrm{mmf} \pm 1 \%$; neg temp coef $750($ tol +120$) \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; 500 v DCW; per spec JAN-C-20A; JAN type CC26UJ910F; p/o C-2060	Main Tank Z-2051, Unit 3
C-2060C		Same as C-2060B; p/o C-2060	Main Tank Z-2051, Unit 3
C-2060D		Same as C-2060B; p/o C-2060	Main Tank Z-2051, Unit 3
C-2061		Same as C-2003; p/o Z-2051	Grid Coupling V-2051, Unit 3
C-2062	For Replacement Use N16-C-31502-2408	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 1500 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB11EA152G	Filter Tuning T-2051, Unit 3
C-2063		Same as C-2013	Filter Tuning T-2051, Unit 3
C-2064		Same as C-2001	
C-2064A		p/o C-2064	Screen By-Pass V-2051, Unit 3
C-2064B		p/o C-2064	B+ Filter V-2051, Unit 3
C-2064C		p/o C-2064	$\begin{aligned} & \text { B+ Filter V'-2051, } \\ & \text { Unit } 3 \end{aligned}$
C-2065		Same as C-2002	Thermostat Spark Suppressor S-2054, Unit 3
C-2066	For Reference Only	CAPACTTOR, FIXED, CERAMIC DIELECTRIC: $51 \mathrm{mmf} \pm 2 \%$; neg. temp coef 750 (tol +120) $\mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$; 500 v DCW; per spec JAN-C-20A; JAN type CC21UJ510G; p/o Z-2052	Osc. Auxiliary Temp Compensation, Unit 3
$\mathrm{C}-2067$ thru $\mathrm{C}-2100$		Not Used	
C-2101		Same as C-2031	Grid Coupling V-2101, Unit 4
C-2102	For Reference Only	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1000 mmf $\pm 20 \%$; 350v DCW; p/o XV-2101	Screen By-Pass V-2101, Unit 4

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2103	For Replacement Use N16-C-28547-8581	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 100 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA101G; p/o Z-2101	Filter Tuning Z-2101, Unit 4
C-2104		Same as C-2103; p/o Z-2101	Filter Tuning Z-2101, Unit 4
C-2105		Same as C-2031	Grid Leak By-Pass V-2102, Unit 4
C-2106		Same as C-2102; p/o XV-2102	Screen By-Pass V-2102, Unit 4
C-2107		Same as C-2103; p/o Z-2102	Filter Tuning Z-2102, Unit 4
C-2108	N16-C-17069-2651	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $100 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC26UJ101G; same as C-1050	Filter Tuning Z-2102, Unit 4
C-2109		Same as C-2037	Output Coupling J-2102, Unit 4
C-2110		Same as C-2102; p/o XV-2101	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2101, Unit } 4 \end{aligned}$
C-2111		Same as C-2102; p /o XV-2102	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2102, Unit } 4 \end{aligned}$
C-2112		Same as C-2031	B+ Filter, Unit 4
$\begin{aligned} & \mathrm{C}-2113 \\ & \text { thru } \\ & \mathrm{C}-2125 \end{aligned}$		Not Used	
C-2126		Same as C-2003; p/o Z-2126	Grid Coupling $\mathrm{V}-2127$, Unit 12
C-2127		Same as C-2033; p/o Z-2126	Control Tube Capacitor V-2127, Unit 12
C-2128		Same as C-2052A; p/o Z-2126	Osc. Tank Z-2126, Unit 12
C-2129		Same as C-2002	$\begin{aligned} & \text { B+ By-Pass V-2127, } \\ & \text { Unit } 12 \end{aligned}$
C-2130		Same as C-2003; p/o Z-2126	Grid Coupling V -2128, Unit 12
C-2131		Same as C-2002	Cathode By-Pass V-2127, Unit 12
C-2132		Same as C-2001	B+ Decoupling, Unit 12
C-2132A		p/o C-2132	B+ Filter, Unit 12
C-2132B		p/o C-2132	B+ Filter, Unit 12
C-2132C		p/o C-2132	B+ Filter, Unit 12

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2133		Same as C-2062	Output Filter Tuning T-2126, Unit 12
C-2134		Same as C-2062	Output Filter Tuning T-2126, Unit 12
C-2135	N16-C-30915-5840	CAPACITOR, FIXED, MICA DIELECTRIC: 1 section; working voltage 500 v DC, 350 v AC, 1250 v peak working; $910 \mathrm{mmf} \pm 2 \%$; -20 to +100 parts/ million/deg C temp coefficient; style no. 11-P. Ref Dwg Group 1; metal case; 0.463 in . diam, 7/16 in. $\lg \mathrm{o} / \mathrm{a}$ dimen; 1 solder lug term; schematic diagram 2-R Ref Dwg Group 1; one mtg hole no. 3-48 thd, 7/64 in. deep; CAN type M-36 "VAR"; p/ o Z-2126	Osc. Tank Z-2126, Unit 12
C-2136		Not Used	
C-2137	N16-C-16909-2151	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $82 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC26UJ820G; p/o Z-2126	Osc. Tank Compensation Z-2126, Unit 12
C-2138		Not Used	
C-2139		Same as C-2002	Spark Suppressor S-2126, Unit 12
$\begin{aligned} & \mathrm{C}-2140 \\ & \text { thru } \\ & \mathrm{C}-2150 \end{aligned}$		Not Used	
C-2151		Same as C-2031	Suppressor Coupling V-2151, Unit 5
C-2152		Same as C-2031	Grid Coupling V-2151, Unit 5
C-2153		Same as C-2001	
C-2153A		p/o C-2153	Cathode By-Pass V-2151, Unit 5
C-2153B		p/o C-2153	Screen By-Pass V-2151, Unit 5
C-2153C		p/o C-2153	B+ Filter, Unit 5
C-2154		Same as C-2001	
C-2154A		p/o C-2154	Cathode By-Pass V-2152, Unit 5
C-2154B		p/o C-2154	Screen By-Pass V-2152, Unit 5
C-2154C		p/o C-2154 (Not Used)	
C-2155	For Replacement Use N16-C-29444-7112	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 240 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA241G; p/o Z-2151	Filter Tuning Z-2151, Unit 5

original

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2156		Same as C-2155; p/o Z-2151	Filter Tuning Z-2151, Unit 5
C-2157		Same as C-2155; p/o Z-2152	Filter Tuning Z-2152, Unit 5
C-2158		Same as C-2155; p/o '̇-2152	Filter Tuning Z-2152, Unit 5
C-2159	For Replacement Use N16-C-29128-2392	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 180 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA181G; p/o Z-2153	Filter Tuning Z-2153, Unit 5
C-2160		Same as C-2159; p/o Z-2153	Filter Tuning Z-2153, Unit 5
C-2161		Same as C-2159; p/o Z-2154	Filter Tuning Z-2154, Unit 5
C-2162		Same as C-2159; p/o Z-2154	Filter Tuning Z-2154, Unit 5
C-2163		Same as C-2102; p/o XV-2153	Cathode By-Pass V-2153, Unit 5
C-2164		Same as C-2102; p/o XV-2153	Screen By-Pass V-2153, Unit 5
C-2165	For Replacement Use N16-C-27993-9192	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 68 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA680G; p/o Z-2155	Filter Tuning Z-2155, Unit 5
C-2166		Same as C-2165; p/o Z-2155	Filter Tuning Z-2155, Unit 5
C-2167		Same as C-2102; p/o XV-2153	Fil. By-Pass V-2153, Unit 5
C-2168		Same as C-2102; p/o XV-2154	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2154, Unit } 5 \end{aligned}$
C-2169	For Replacement Use N16-C-30526-2505	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 680 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA681G	Output Coupling Z-2156, Unit 5
C-2170	N16-C-16780-9630	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $68 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC26TH680G	Filter Tuning Z-2156, Unit 5
C-2171		Same as C-2031	B+ Filter, Unit 5
C-2172		Same as C-2102; p/o XV-2154	Screen By-Pass V-2154, Unit 5
C-2173		Same as C-2102; p/o XV-2154	Cathode By-Pass V-2154, Unit 5
C-2174	N16-C-32250-9759	CAPACITOR, FIXED, MICA DIELECTRIC: $3300 \mathrm{mmf} \pm 10 \%$; 500v DCW; per spec JAN-C-5; JAN type CM30A332K	Low Pass Filter J-2153 Input, Unit 5
C-2175	N16-C-15561-7083	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 4 mmf ± 0.25 mmf; 500v DCW; per spec JAN-C-20A; JAN type CC21UJ040C	Filter Coupling 1.1 mc Filter, Unit 5

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2176		Same as C-2165; p/o Z-2156	Filter Tuning Z-2156, Unit 5
C-2177		Same as C-2175	Filter Coupling 1.2 mc Filter, Unit 5
C-2178		Same as C-2175	Filter Coupling 1.2 mc Filter, Unit 5
C-2179		Same as C-2159; p/o Z-2157	Filter Tuning Z-2157, Unit 5
C-2180		Same as C-2159; p/o Z-2157	Filter Tuning Z-2157, Unit 5
C-2181		Same as C-2002	Cathode By-Pass $\mathrm{V}-2153$, Unit 5
C-2182		Same as C-2002	RF By-Pass, Unit 5
$\begin{aligned} & \mathrm{C}-2183 \\ & \text { thru } \\ & \mathrm{C}-2200 \end{aligned}$		Not Used	
C-2201		Same as C-2031	Input Coupling V-2201, Unit 6
C-2202		Same as C-2001	
C-2202A		p/o C-2202	B+ Filter, Unit 6
C-2202B		p/o C-2202	B+ Filter, Unit 6
C-2202C		p/o C-2202	B+ Filter, Unit 6
C-2203		Same as C-2031	Grid Coupling to V-2202, Unit 6
C-2204	For Replacement Use N16-C-30658-1603	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 750 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA751G	Blocking Osc. Time, Unit 6
C-2205		Same as C-2031	Output Coupling to J-2202, Unit 6
C-2206	N16-C-54535-8505	CAPACITOR, FIXED, PAPER DIELECTRIC: 3 sect; each section $0.25 \mathrm{mfd}+20 \%-10 \%$; 600 v DCW; per spec JAN-C-25; JAN type CP69B5FF254V	
C-2206A		p/o C-2206	Screen By-Pass V-2203, Unit 6
C-2206B		p/o C-2206	Cathode By-Pass V-2203, Unit 6
C-2206C		p/o C-2206	Plate By-Pass V-2203, Unit 6
C-2207		Same as C-2031	Output Divider J-2202, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2208		Same as C-2031	Low Pass Filter, Unit 6
C-2209		Same as C-2003	10 kc Rejection Filter, Unit 6
C-2210		Same as C-2037	10 kc Rejection Filter, Unit 6
C-2211		Same as C-2003	10 kc Rejection Filter, Unit 6
C-2212	N16-C-64133-6581	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: single section; slug tuned; 7 to 45 mmf ; 500v DCW; per spec JAN-C81; JAN type CV11C450	10 kc Rejection Filter Tuning, Unit 6
C-2213		Same as C-2202	Low Pass Filter, Unit 6
C-2214	N16-C-18782-8807	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style no. 2 MBCA Ref Dwg Group 1; $1500 \mathrm{mmf} \pm 10 \%$; 500v DCW; temp coefficient variable; molded phenolic body, insulated; 0.250 in . diam by $0.812 \mathrm{in} . \mathrm{lg}$ o/a dimen; 2 axial wire type term; term mtg; impregnated w/microcrystalline wax; CER Hi-K Ceramicon GP2L1500	Low Pass Filter, Unit 6
C-2215	For Replacement Use N16-C-15949-2028	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $12 \mathrm{mmf} \pm 5 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21PH120J	Reactance Tube Phase Shift V-2204, Unit 6
C-2216		Same as C-2003	Grid Coupling V-2203, Unit 6
C-2217		Same as C-2003	Grid Coupling V-2205, Unit 6
C-2218		Same as C-2204; p/o Z-2201	Osc. Tank Z-2201, Unit 6
C-2219	N16-C-64062-6985	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: single section; 4.5 to 30 mmf ; 500v DCW; per spec JAN-C-81; JAN type CV11C300	Osc. Tank Tuning, Unit 6
C-2220	For Replacement Use N16-C-30288-7965	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 560 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA561G	Osc. Tank, Unit 6
C-2221		Same as C-2002	Screen By-Pass V-2204, Unit 6
C-2222	N16-C-16269-2583	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $30 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21UJ300G	Output Coupling J-2203, Unit 6
C-2223		Same as C-2003	Plate Load V-2205, Unit 6
C-2224		Same as C-2002	Screen By-Pass V-2205, Unit 6
C-2225		Same as C-2005	Low Pass Filter, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2226		Same as C-2037	Low Pass Filter, Unit 6
C-2227		Same as C-2005	Low Pass Filter, Unit 6
C-2228		Same as C-2031	Grid Coupling V-2206, Unit 6
C-2229		Same as C-2001	
C-2229A		p/o C-2229	B+ Filter, Unit 6
C-2229B		p/o C-2229	Cathode By-Pass V-2206, Unit 6
C-2229C		p/o C-2229	Screen By-Pass V-2206, Unit 6
C-2230		Same as C-2039; p/o Z-2202	$(1.21-1.3) \mathrm{mc}$ Main Filter Condenser, Unit 6
C-2231	N16-C-99999-178	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 3.0 mmf $\pm 0.25 \mathrm{mmf}$; 500 v DCW; per spec JAN-C-20A; JAN type CC21UJ030C	(1.21-1.3) mc Filter Coupling, Unit 6
C-2232		Same as C-2031	(1.21-1.3) mc Filter DC Blocking, Unit 6
C-2233		Same as C-2031	B+ Filter, Unit 6
C-2234		Same as C-2039; p/o Z-2203	(1.21-1.3) mc Main Filter Tuning Z-2203, Unit 6
C-2235		Same as C-2102; p/o XV-2207	Cathode By-Pass V02207, Unit 6
C-2236		Same as C-2102; p/o XV-2207	Screen By-Pass V-2207, Unit 6
C-2237	N16-C-16460-4151	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $43 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC25LH430G	(10.4-10.5) mc Filter T-2203, Unit 6
C-2238		Same as C-2237	(10.4-10.5) mc Filter T-2203, Unit 6
C-2239		Same as C-2237	(10.4-10.5) mc Filter T-2203, Unit 6
C-2240		Same as C-2102; p/o XV-2208	Cathode By-Pass V-2208, Unit 6
C-2241		Same as C-2102; p/o XV-2208	Screen By-Pass V-2208, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2242		Same as C-2237	(10.4-10.5) mc Filter T-2204, Unit 6
C-2243		Same as C-2102; p/o XV-2209	Cathode By-Pass V-2209, Unit 6
C-2244		Same as C-2102; p/o XV-2209	Screen By-Pass V-2209, Unit 6
C-2245		Same as C-2237	(10. 4-10.5) mc Filter T-2205, Unit 6
C-2246	N16-C-16524-5777	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $47 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC26PH470G	(10. 4-10.5) mc Filter T-2205, Unit 6
C-2247		Same as C-2013	Output Coupling J-2206, Unit 6
C-2248		Same as C-2102; p/o XV-2207	Fil. By-Pass V-2207, Unit 6
C-2249		Same as C-2102; p/o XV-2208	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2208, Unit } 6 \end{aligned}$
C-2250		Same as C-2102; p/o XV-2209	Fil. By-Pass V-2209, Unit 6
C-2251	For Replacement Use N16-C-27571-8744	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 47 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA470G	1. 21 mc Filter Step S-2201C, Unit 6
C-2252	For Replacement Use N16-C-27366-1109	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 39 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA390J	1.22 mc Filter Step S-2201C, Unit 6
C-2253	For Replacement Use N16-C-27181-4308	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 33 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA330J	1. 23 mc Filter Step S-2201C, Unit 6
C-2254		Same as C-2253	1. 24 mc Filter Step S-2201C, Unit 6
C-2255	For Replacement Use N16-C-26838-5029	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 22 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C $\uparrow 1$; NAVY type CB20EA220J	1. 25 mc Filter Step S-2201C, Unit 6
C-2256	For Replacement Use N16-C-99999-1171	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 15 mmf $\pm 10 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA150K	1. 26 mc Filter Step S-2201C, Unit 6
C-2257	For Replacement Use N16-C-26025-8185	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 10 mmf $\pm 10 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA100K	1.27 mc Filter Step S-2201C, Unit 6
C-2258	For Replacement Use N16-C-25107-8491	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 5 mmf . $\mathbf{2 0 \%}$; 500v DCW; per BuShips 16C41; NAVY type CB20EA050M	1. 28 mc Filter Step S-2201C, Unit 6

table 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stack Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2259		Same as C-2251	1.21 mc Filter Step S-2201B, Unit 6
C-2260		Same as C-2252	1.22 mc Filter Step S-2201B, Unit 6
C-2261		Same as C-2253	1.23 mc Filter Step S-2201B, Unit 6
C-2262		8ame as C-2253	1.24 mc Filter Step S-2201B, Unit 6
C-2263		Same as C-2255	1.25 mc Filter Step S-2201B, Unit 6
C-2264		Same as C-2256	1. 26 mc Filter Step S-2201B, Unit 6
C-2265		Same as C-2257	1. 27 mc Filter Step S-2201B, Unit 6
C-2266		Same as C-2258	28 mc Filter Step S-2201B, Unit 6
C-2267	N16-C-65702-3003	CAPACITOR, VARIABLE, PLASTIC DIELECTRIC: rotary type tubular trimmer; 1.0 to $8.0 \mathrm{mmf} ; 500 \mathrm{v} \mathrm{DCW} ; 1-5 / 8 \mathrm{in} . \mathrm{h}$ at max capacity, $5 / 8 \mathrm{in}$. wd, $23 / 64 \mathrm{in} . \mathrm{d} \mathrm{o} / \mathrm{a}$ dimen excluding solder lug term; 2 term, one solder lug type, one term formed by mtg clip; screwdriver slot adjustment; cylindrical brass plunger; dielectric material molded polystyrene, brass base; for panel thickness 0.040 in . to 0.065 in .; CER style 532	(1.21-1.3) mc Main Trimmer S-2201C, Unit 6
C-2268		Same as C-2267	1.21 mc Trimmer S-2201C, Unit 6
C-2269		Same as C-2267	1.22 mc Trimmer S-2201C, Unit 6
C-2270		Same as C-2267	1. 23 mc Trimmer S-2201C, Unit 6
C-2271		Same as C-2267	1.24 mc Trimmer S-2201C, Unit 6
C-2272		Same as C-2267	1.25 mc Trimmer S-2201C, Unit 6
C-2273		Same as C-2267	1.26 mc Trimmer S-2201C, Unit 6
C-2274		Same as C-2267	1.27 mc Trimmer S-2201C, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2275		Same as C-2267	1. 28 mc Trimmer S-2201C, Unit 6
C-2276		Same as C-2267	1.29 mc Trimmer S-2201C, Unit 6
C-2277		Same as C-2267	(1.21-1.3) mc Main Trimmer S-2201B, Unit 6
C-2278		Same as C-2267	1.21 mc Trimmer S-2201B, Unit 6
C-2279		Same as C-2267	1.22 mc Trimmer S-2201B, Unit 6
C-2280		Same as C-2267	1.23 mc Trimmer S-2201B, Unit 6
C-2281		Same as C-2267	1.24 mc Trimmer S-2201B, Unit 6
C-2282		Same as C-2267	1.25 mc Trimmer S-2201B, Unit 6
C-2283		Same as C-2267	1.26 mc Trimmer S-2201B, Unit 6
C-2284		Same as C-2267	1.27 mc Trimmer S-2201B, Unit 6
C-2285		Same as C-2267	1.28 mc Trimmer S-2201B, Unit 6
C-2286		Same as C-2267	1.29 mc Trimmer S-2201B, Unit 6
C-2287	For Replacement Use N16-C-16784-9269	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $68 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC32CG680G	Osc. Temp Compensation V-2205, Unit 6
C-2288		Same as C-2222	$\begin{aligned} & (1.21-1.3) \mathrm{mc} \\ & \text { Filter Temp Com- } \\ & \text { pensation Z-2202, } \\ & \text { Unit } 6 \end{aligned}$
C-2289		Same as C-2222	(1.21-1. 3) mc Filter Temp Compensation, Unit 6
C-2290		Same as C-2108	Coupling, Unit 6
C-2291	N16-C-45801-9618	CAPACITOR, FIXED, PAPER DIELECTRIC: 100, 000 mmf $+20 \%-10 \%$; 600v DCW; per 3pec JAN-C-25A; JAN type CP54B1E F104V	Cathode By-Pass V-2202, Unit 6
$\begin{aligned} & \mathrm{C}-2292 \\ & \text { thru } \\ & \mathrm{C}-2300 \end{aligned}$		Not Used	
C-2301		Same as C-2031	Grid Coupling V-2301, Unit 7

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2302		Same as C-2102; p/o XV-2301	Screen By-Pass V-2301, Unit 7
C-2303		Same as C-2103; p/o Z-2301	Filter Tuning Z-2301, Unit 7
C-2304		Same as C-2103; $\mathrm{p} / \mathrm{o} \mathrm{Z}-2301$	Filter Tuning Z-2301, Unit 7
C-2305		Same as C-2102; p/o XV-2302	Screen By-Pass V-2302, Unit 7
C-2306		Same as C-2102; p/o XV-2302	Cathode By-Pass V-2302, Unit 7
C-2307		Same as C-2103; p/o Z-2302	Filter Tuning Z-2302, Unit 7
C-2308		Same as C-2108	Filter Tuning Z-2302, Unit 7
C-2309		Same as C-2037	Output Coupling J-2302, Unit 7
C-2310		Same as C-2102; p/o XV-2301	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2301, Unit } 7 \end{aligned}$
C-2311		Same as C-2102; p/o XV-2302	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2302, Unit } 7 \end{aligned}$
C-2312		Same as C-2102; p/o XV-2303	Fil. By-Pass V-2303, Unit 7
C-2313		Same as C-2102; p/o XV-2304	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2304, Unit } 7 \end{aligned}$
C-2314		Same as C-2031	B+ Filter, Unit 7
C-2315		Same as C-2031	Grid Coupling V-2303, Unit 7
C-2316		Same as C-2102; p/o XV-2303	Screen By-Pass V-2303, Unit 7
C-2317		Same as C-2165; p/o Z-2303	Filter Tuning Z-2303, Unit 7
C-2318		Same as C-2165; p/o Z-2303	Filter Tuning Z-2303, Unit 7
C-2319		Same as C-2102; p/o XV-2304	Cathode By-Pass V-2304, Unit 7
C-2320		Same as C-2102; p/o XV-2304	Screen By-Pass V-2304, Unit 7
C-2321		Same as C-2165; p/o Z-2304	Filter Tuning Z-2304, Unit 7
C-2322		Same as C-2170	Filter Tuning Z-2304, Unit 7

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2323		Same as C-2169	Output Coupling J-2303, Unit 7
C-2324		Not Used	
C-2325		Not Used	
C-2326		Same as C-2031	Input Coupling V-2326, Unit 8
C-2327		Same as C-2031	Grid Coupling V-2326, Unit 8
C-2328		Same as C-2001	
C-2328A		p/o C-2328	B+ Filter, Unit 8
C-2328B		p/o C-2328	B+ Filter, Unit 8
C-2328C		p/o C-2328	B+ Filter, Unit 8
C-2329		Same as C-2002	Cathode By-Pass $\text { V-2327, Unit } 8$
C-2330		Same as C-2002	Screen By-Pass $\mathbf{V - 2 3 2 7}$, Unit 8
C-2331	For Replacement Use N16-C-28547-8635	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 100 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB20EA101G	Low Pass Filter, Unit 8
C-2332		Same as C-2103	100 kc Rejection Filter, Unit 8
C-2333		Same as C-2331	100 kc Rejection Filter, Unit 8
C-2334		Same as C-2103	100 kc Rejection Filter, Unit 8
C-2335	N16-C-63965-2800	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: single section, slug-tuned, 3 to 13 mmf ; 500v DCW; per spec JAN-C81; JAN type CV11B130	100 kc Rejection Filter, Unit 8
C-2336		Same as C-2003	Low Pass Filter, Unit 8
C-2337	N16-C-99999-211	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $2 \mathrm{mmf} \pm 0.25$ mmf; 500v DCW; per spec JAN-C-20A; JAN type CC21PK020C	Reactance Tube Phase Shift V-2328, Unit 8
C-2338		Same as C-2102; p/o XV-2328	Screen By-Pass V-2328, Unit 8
C-2339		Same as C-2335	Osc. Tank Trimmer, Unit 8
C-2340		Same as C-2012; p/o Z-2326	Osc. Tank, Unit 8
C-2341	For Replacement Use N16-C-28125-8192	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 75 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA750G	Osc. Tank, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2342		Same as C-2103	Osc. Coupling V-2329, Unit 8
C-2343		Same as C-2103	Mixer Coupling V-2329, Unit 8
C.-2344	N16-C-15528-5533	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $3 \mathrm{mmf} \pm 0.25$ mmf; 500v DCW; per spec JAN-C-20A; JAN type CC21CJ030C	Grid Coupling V-2334, Unit 8
C-2345	N16-C-16236-6426	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $27 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21RH270G	Osc. Plate Load V-2329, Unit 8
C-2346		Same as C-2102; p/o XV-2329	Screen By-Pass V-2329, Unit 8
C-2347	For Replacement Use N16-C-27651-1012	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 51 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA510G	Low Pass Filter, Unit 8
C-2348	N16-C-29075-4924	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 160 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA161G; same as C-2058A	Low Pass Filter, Unit 8
C-2349		Same as C-2347	Low Pass Filter, Unit 8
C-2350		Same as C-2102; p/o XV-2330	Cathode By-Pass $\mathrm{V}-2330$, Unit 8
C-2351		Same as C-2102; p/o XV-2330	$\begin{aligned} & \text { Screen By-Pass } \\ & \text { V-2330, Unit } 8 \end{aligned}$
C-2352		Same as C-2002	$\underset{\text { Vcreen By-Pass }}{\text { V-2328, }}$ V-2328, Unit 8
C-2353		Same as C-2237	(16.6-17.5) mc Filter Tuning L-2338, Unit 8
C-2354		Same as C-2031	DC Isolating, Unit 8
C-2355	N16-C-15369-4394	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1.0 mmf $\pm 0.25 \mathrm{mmf}$; 500 v DCW; per spec JAN-C-20A; JAN type CC21SK010C	Filter Coupling, Unit 8
C-2356		Same as C-2337	Filter Tuning S-2326F, Unit 8
C-2357		Same as C-2237	(16.6-17.5) mc Filter Tuning L-2339, Unit 8
C-2358		Same as C-2344	16.6 mc Filter Tuning S-2326F, Unit 8
C-2359		Same as C-2344	16.7 mc Filter Tuning S-2326F, Unit 8
C-2360		Same as C-2344	16.6 mc Filter Tuning S-2326E, Unit 8

ORIGINAL

AN/SRT $14,14 \mathrm{~A}, 15,15 \mathrm{~A}, 16,16 \mathrm{~A}$
TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2361		Same as C-2344	16.7 mc Filter Tuning S-2326E, Unit 8
C=2362		Same as C-2267	16.6 mc Filter Trimmer S-2326F, Unit 8
C-2363		Same as C-2267	16.7 mc Filter Trimmer S-2326F, Unit 8
C-2364		Same as C-2267	16.8 mc Filter Trimmer S-2326F, Unit 8
C-2365		Same as C-2267	16.9 mc Filter Trimmer S-2326F, Unit 8
C-2366		Same as C-2267	17.0 mc Filter Trimmer S-2326F, Unit 8
C-2367		Same as C-2267	17.1 mc Filter Trimmer S-2326F, Unit 8
C-2368		Same as C-2267	17.2 mc Filter Trimmer S-2326F, Unit 8
C-2369		Same as C-2267	17.3 mc Filter Trimmer S-2326F, Unit 8
C-2370		Same as C-2267	17.4 mc Filter Trimmer S-2326F Unit 8
C-2371		Same as C-2267	16.6 mc Filter Trimmer S-2326E, Unit 8
C-2372		Same as C-2267	16.7 mc Filter Trimmer S-2326E, Unit 8
C-2373		Same as C-2267	16.8 mc Filter Trimmer S-2326E, Unit 8
C-2374		Same as C-2267	16.9 mc Filter Trimmer S-2326E, Unit 8
C-2375		Same as C-2267	17.0 mc Filter Trimmer S-2326E, Unit 8
C-2376		Same as C-2267	17.1 mc Filter Trimmer S-2326E, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2377		Same as C-2267	17. 2 mc Filter Trimmer S-2326E, Unit 8
C-2378		Same as C-2267	17.3 mc Filter Trimmer S-2326E, Unit 8
C-2379		Same as C-2267	17.4 mc Filter Trimmer S-2326E, Unit 8
C-2380		Same as C-2102; p/o XV-2331	Cathode By-Pass V-2331, Unit 8
C-2381		Same as C-2102; p/o XV-2331	Screen By-Pass V-2331, Unit 8
C-2382		Same as C-2031	B+ By-Pass, Unit 8
C-2383	For Replacement Use N16-C-27181-4272	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 33 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB11EA330J; p/o Z-2327	$\begin{aligned} & \text { (27-28) mc Filter } \\ & \text { Z-2327, Unit } 8 \end{aligned}$
C-2384		Same as C-2383; p/oz-2327	$\begin{aligned} & \text { (27-28) mc Filter } \\ & \text { Z-2327, Unit } 8 \end{aligned}$
C-2385		Same as C-2102; p/o XV-2332	Cathode By-Pass V-2332, Unit 8
C-2386		Same as C-2102; p/o XV-2332	Screen Bÿ-Pass V-2332, Unit 8
C-2387		Same as C-2383; p/o Z-2328	(27-28) mc Filter Z-2328, Unit 8
C-2388		Same as C-2383; p/o Z-2328	$\begin{aligned} & \text { (27-28) mc Filter } \\ & \text { Z-2328, Unit } 8 \end{aligned}$
C-2389		Same as C-2102; p/o XV-2333	Cathode By-Pass V-2333, Unit 8
C-2390		Same as C-2102; p/o XV-2333	$\begin{aligned} & \text { Screen By-Pass } \\ & \mathrm{V}-2333 \text {, Unit } 8 \end{aligned}$
C-2391		Same as C-2383; p/o Z-2329	(27-28) mc Filter Z-2329, Unit 8
C-2392		Same as C-2237	$\begin{aligned} & \text { (27-28) mc Filter } \\ & \text { Z-2329, Unit } 8 \end{aligned}$
C-2393	For Replacement Use N16-C-29602-9629	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 270 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA271G	Output Coupling J-2330, Unit 8
C-2394		Same as C-2102; p/o XV-2330	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2330, Unit } 8 \end{aligned}$
C-2395		Same as C-2102; p/o XV-2331	Fil. By-Pass V-2331, Unit 8
C-2396		Same as C-2102; $\mathrm{p} / \mathrm{n} \mathrm{XV}-2332$	Fil. By-Pass V-2332, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2397		Same as C-2102; p/o XV-2333	Fil. By-Pass V-2333, Unit 8
C-2398		Same as C-2102; p/o XV-2328	Fil. By-Pass V-2328, Unit 8
C-2399		Same as C-2102; p/o XV-2329	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2329, Unit } 8 \end{aligned}$
C-2400		Same as C-2102; p/o XV-2328	Cathode By-Pass V-2328, Unit 8
C-2401		Same as C-2102; p/o XV-2327	Cathode By-Pass V-2327, Unit 8
C-2402		Same as C-2102; p/o XV-2327	Screen By-Pass V-2327, Unit 8
C-2403		Same as C-2102; p/o XV-2327	Fil. By-Pass V-2327, Unit 8
C-2404		Same as C-2337	Filter Tuning, Unit 8
C-2405		Same as C-2267	Main Trimmer, Unit 8
C-2406		Same as C-2267	Main Trimmer, Unit 8
C-2407		Same as C-2031	Output Coupling J-2327, Unit 8
C-2408		Same as C-2102; p/o XV-2334	Plate By-Pass V-2334, Unit 8
C-2409		Same as C-2102; p/o XV-2334	Fil. By-Pass V-2334, Unit 8
C-2410	N16-C-16076-9703	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $20 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21TH200G	Osc. Tank Z-2326, Unit 8
$\begin{aligned} & \text { C-2411 } \\ & \text { thru } \\ & \text { C-2425 } \end{aligned}$		Not Used	
C-2426	For Replacement Use N16-C-26210-4971	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 12 mmf $\pm 10 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA120K	(27-28) mc Tuning S-2426C, Unit 9
C-2427	For Replacement Use N16-C-26917-4298	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 24 mmf土5\%; 500v DCW; per BuShips 16C41; NAVY type CB20EA240J	(32-33) mc Tuning S-2426C, Unit 9
C-2428	For Replacement Use N16-C-27286-8770	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 36 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA360J	(37-38) mc Tuning S-2426C, Unit 9
C-2429		Same as C-2102; p/o XV-2426	Cathode By-Pass V-2426, Unit 9
C-2430	N16-C-99999-179	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $24 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21PH240G	Main Tuning S-2426C, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2431		Same as C-2267	Main Trimmer S-2426C, Unit 9
C-2432		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2433		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2434		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2435		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2436		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2437		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2438		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2439		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2440		Same as C-2267	100 kc Step Tuning S-2427C, Unit 9
C-2441		Same as C-2337	100 kc Step Tuning S-2427C, Unit 9
C-2442		Same as C-2426	$\begin{aligned} & \text { (27-28) mc Tuning } \\ & \text { S-2426D, Unit } 9 \end{aligned}$
C-2443		Same as C-2427	(32-33) mc Tuning S-2426D, Unit 9
C-2444		Same as C-2428	$\begin{aligned} & \text { (37-38) mc Tuning } \\ & \text { S-2426D, Unit } 9 \end{aligned}$
C-2445		Same as C-2102; p/o XV-2426	$\begin{aligned} & \text { Screen By-Pass } \\ & \mathrm{V}-2427 \text {, Unit } 9 \end{aligned}$
C-2446		Same as C-2430	Main Tuning S-2426D, Unit 9
C-2447		Same as C-2267	Main Trimmer S-2427D, Unit 9
C-2448		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2449		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2450		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2451		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2452		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2453		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2454		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2455		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2456		Same as C-2267	100 kc Step Tuning S-2427D, Unit 9
C-2457		Same as C-2337	100 kc Step Tuning S-2427D, Unit 9
C-2458		Same as C-2426	(27-28) mc Tuning S-2426E, Unit 9
C-2459		Same as C-2427	$\begin{aligned} & \text { (32-33) mc Tuning } \\ & \mathrm{S}-2426 \mathrm{E} \text {, Unit } 9 \end{aligned}$
C-2460		Same as C-2428	(37-38) mc Tuning S-2426E, Unit 9
C-2461	N16-C-17919-1869	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500v DCW; $330 \mathrm{mmf} \pm 10 \%$; $30 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$ negative temp coefficient; ± 30 $\mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$ tolerance; style no. 25 K Ref Dwg Group 1; insulated body, 0.250 in . diam, $0.562 \mathrm{in} . \mathrm{lg} \mathrm{o} / \mathrm{a}$ dimen; schematic diagram 1-R Ref Dwg Group 1; mtg facilities not incl; CER Hi-K Ceramicon GP2K330	Grid Coupling V-2427, Unit 9
C-2462		Same as C-2430	Main Tuning S-2426E, Unit 9
C-2463		Same as C-2267	Main Trimmer S-2426E, Unit 9
C-2464		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2465		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9 .
C-2466		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2467		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2468		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2469		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2470		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2471		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2472		Same as C-2267	100 kc Step Trimmer S-2427E, Unit 9
C-2473		Same as C-2337	100 kc Step Trimmer S-2427E, Unit 9
C-2474		Same as C-2426	(27-28) mc Tuning S-2426F, Unit 9
C-2475		Same as C-2427	(32-33) mc Tuning S-2426F, Unit 9
C-2476		Same as C-2428	(37-38) mc Tuning S-2426F, Unit 9
C-2477		Same as C-2461	Grid Coupling V-2428, Unit 9
C-2478		Same as C-2267	Main Trimmer S-2426F, Unit 9
C-2479		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2480		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2481		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2482		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2483		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2484		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2485		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2486		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2487		Same as C-2267	100 kc Step Tuning S-2427F, Unit 9
C-2488		Same as C-2337	100 kc Step Tuning S-2427F, Unit 9
C-2489		Same as C-2102; p/o XV-2427	Cathode By-Pass V-2427, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2490		Same as C-2102; p/o XV-2427	Screen By-Pass V-2427, Unit 9
C-2491		Same as C-2102; p/o XV-2428	Cathode By-Pass V-2428, Unit 9
C-2492		Same as C-2102; p/o XV-2428	Screen By-Pass V-2428, Unit 9
C-2493		Same as C-2461	Grid Coupling V-2429, Unit 9
C-2494		Same as C-2102; p/o XV-2429	Cathode By-Pass V-2429, Unit 9
C-2495		Same as C-2102; p/o XV-2429	Screen By-Pass V-2429, Unit 9
C-2496		Same as C-2461	DC Blocking V-2429, Unit 9
C-2497		Same as C-2430	Main Tuning J-2428, Unit 9
C-2498	For Replacement Use N16-C-29655-7347	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 300 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA301G	Output Coupling J-2428, Unit 9
C-2499		Same as C-2031	B+ Filter, Unit 9
C-2500		Same as C-2031	B+ Filter, Unit 9
C-2501		Same as C-2031	B+ Filter, Unit 9
C-2502		Same as C-2102; p/o XV-2426	Fil. By-Pass V-2426, Unit 9
C-2503		Same as C-2102; p/o XV-2427	Fil. By-Pass V-2427, Unit 9
C-2504		Same as C-2102; p/o XV-2428	Fil. By-Pass V-2428, Unit 9
C-2505		Same as C-2102; p/o XV-2429	Fil. By-Pass V-2429, Unit 9
C-2506		Same as C-2258	100 kc Step Filter Tuning S-2427C, Unit 9
C-2507		Same as C-2258	100 kc Step Filter Tuning S-2427D, Unit 9
C-2508		Same as C-2258	100 kc Step Filter Tuning S-2427E, Unit 9
C-2509		Same as C-2258	100 kc Step Filter Tuning S-2427F, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { C-2510 } \\ & \text { thru } \\ & \text { C-2525 } \end{aligned}$		Not Used	
C-2526		Same as C-2331	Low Pass Filter, Unit 10
C-2527		Same as C-2331	Filter Tuning S-2526E, Unit 10
C-2528		Same as C-2331	Filter Tuning S-2526D, Unit 10
C-2529		Same as C-2331	Filter Tuning S-2526C, Unit 10
C-2530		Same as C-2461	Grid Coupling V-2427, Unit 10
C-2531		Same as C-2102; p/o XV-2526	Screen By-Pass V-2526, Unit 10
C-2532		Same as C-2461	Grid Coupling V-2 227 , Unit 10
C-2533		Same as C-2102; p/o XV-2527	Screen By-Pass V-2527, Unit 10
C-2534		Same as C-2461	Grid Coupling V-2528, Unit 10
C-2535		Same as C-2102; p/o XV-2528	Cathode By-Pass V-2528, Unit 10
C-2536		Same as C-2102, p/o XV-2528	Screen By-Pass V-2528, Unit 10
C-2537	N16-C-99999-177	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1.0 mmf $\pm 0.25 \mathrm{mmf}$; 500 v DCW; per spec JAN-C-20A; JAN type CC21PK010C	Filter Coupling V-2529, Unit 10
C-2538		Same as C-2102; p/o XV-2529	Cathode By-Pass V-2529, Unit 10
C-2539		Same as C-2102; p/o XV-2529	Screen By-Pass V-2529, Unit 10
C-2540		Same as C-2461	DC Blocking V-2529, Unit 10
C-2541		Same as C-2537	Filter Coupling, Unit 10
C-2542		Same as C-2108	Filter Tuning, Unit 10
C-2543		Same as C-2037	Cathode Follower Coupling V-2033, Unit 10
C-2544		Same as C-2102; p/o XV-2526	Fil. By-Pass V-2526, Unit 10

TABLE 8-3. TABLE OF REPLACEABLE PARTS:

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2545		Same as C-2102; p/o XV-2527	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2527, Unit } 10 \end{aligned}$
C-2546		Same as C-2102; p/o XV-2528	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2528, Unit } 10 \end{aligned}$
C-2547		Same as C-2102; p/o XV-2529	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2529, Unit } 10 \end{aligned}$
C-2548		Same as C-2031	B+ Filter, Unit 10
C-2549		Same as C-2031	B+ Filter, Unit 10
C-2550		Same as C-2461	DC Blocking V-2528, Unit 10
C-2551 thru C-2625		Not Used	
C-2626		Same as C-2001	
C-2626A		p/o C-2626	Cathode By-Pass V-2626, Unit 11A
C-2626B		p/o C-2626	Screen By-Pass V-2626, Unit 11A
C-2626C		p/o C-2626	Cathode By-Pass V-2627, Unit 11A
C-2627		Same as C-2102; p/o XV-2626	Cathode By-Pass V-2626, Unit 11A
C-2628		Same as C-2102; p/o XV-2626	Screen By-Pass V-2626, Unit 11A
C-2629		Same as C-2001	
C-2629A		p/o C-2629	Screen By-Pass V-2627, Unit 11A
C-2629B		p/o C-2629	Cathode By-Pass V-2628, Unit 11A
C-2629C		p/o C-2629	Screen By-Pass V-2628, Unit 11A
C-2630		Same as C-2108	Grid Coupling, Unit 11A
C-2631	N16-C-15980-4450	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $15 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21LH150G	Low Pass Filter V-2626, Unit 11A
C-2632		Same as C-2001	
C-2632A		p/o C-2632	B+ Filter, Unit 11A
C-2632B		p/o C-2632	B+ Filter, Unit 11A
C-2632C		p/o C-2632	B+ Filter, Unit 11A

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2633		Same as C-2102; p/o XV-2627	Screen By-Pass V-2627, Unit 11A
C-2634		Same as C-2102; p/o XV-2626	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2626, Unit 11A } \end{aligned}$
C-2635		Same as C-2108	Grid Coupling V-2628, Unit 11A
C-2636		Same as C-2102; p / o XV-2628	Cathode By-Pass V-2628, Unit 11A
C-2637		Same as C-2102; p/o XV-2627	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2627, Unit 11A } \end{aligned}$
C-2638		Same as C-2102; p/o XV-2628	Screen By-Pass V-2628, Unit 11A
C-2639		Same as C-2102; p/o XV-2628	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2628, Unit 11A } \end{aligned}$
C-2640		Same as C-2031	Grid Coupling V-2629, Unit 11A
C-2641		Same as C-2631	Low Pass Filter V-2626, Unit 11A
C-2642		Same as C-2002	Output Coupling J-2628, Unit 11A
C-2643		Same as C-2102; p/o XV-2627	Cathode By-Pass V-2627, Unit 11A
C-2644	N16-C-99999-1176	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 500v DCW; $5000 \mathrm{mmf},+100 \%-0 \%$; style no. 19K Ref Dwg Group 1; insulated body, 19/32 in. diam, $1 / 16 \mathrm{in} . \mathrm{lg}$ o/a dimen; schematic diagram no. 1-R Ref Dwg Group 1; mtg facilities not incl; CER Hi-K type 811	Keying Voltage By-Pass, Unit 11A
C-2645		Same as C-2644	Grid Blocking V-2626, Unit 11A
$\begin{aligned} & \text { C-2646 } \\ & \text { thru } \\ & \text { C-2650 } \end{aligned}$		Not Used	
C-2651	. \cdot a	Same as C-2252	(10-11) mc Tuning S-2651C, Unit 11B
C-2652		Same as C-2347	(11-12) mc Tuning S-2651C, Unit 11B
C-2653	For Replacement Use N16-C-27835-4801	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 62 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA620G	(12-13) mc Tuning S-2651C, Unit 11B
C-2654	N16-C-27993-9241	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 68 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA680G	(13-14) mc Tuning S-2651C, Unit 11B
C-2655	N16-C-28204-9442	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 82 mmf $\pm 2 \%$; 500 v DCW; per BuShips 16C41; NAVY type CB20EA820G	(14-15) mc Tuning S-2651C, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2656	For Replacement Use N16-C-28389-5813	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 91 mmf $\pm 2 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA910G	(15-16) mc Tuning S-2651C, Unit 11B
C-2657		Same as C-2257	$\begin{aligned} & \text { (7-8) mc Tuning } \\ & \text { S-2651C, Unit 11B } \end{aligned}$
C-2658	For Replacement Use N16-C-26732-9419	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 20 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA200J	$\begin{aligned} & \text { (8-9) mc Tuning } \\ & \text { S-2651C, Unit 11B } \end{aligned}$
C-2659	For Replacement Use N16-C-27128-6407	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 30 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA300J	(9-10) mc Tuning S-2651C, Unit 11B
C-2660		Same as C-2267	Main Filter Trimmer S-2651C, Unit 11B
C-2661		Same as C-2430	Main Filter Trimmer S-2651C, Unit 11B
C-2662		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2663		Same as C-2256	100 kc Step Tuning S-2652B, Unit 11B
C-2664		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2665		Same as C-2256	100 kc Step Tuning S-2652B, Unit 11B
C-2666		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2667		Same as C-2426	100 kc Step Tuning S-2652B, Unit 11B
C-2668		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2669		Same as C-2257	100 kc Step Tuning S-2652B, Unit 11B
C-2670		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2671		Same as C-2258	100 kc Step Tuning S-2652B, Unit 11B
C-2672		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2673		Same as C-2258	100 kc Step Tuning S-2652B, Unit 11B
C-2674		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2675		Same as C-2267	100 kc Step Tuning S-2652B, Unit 11B
C-2676		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2677		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2678		Same as C-2252	(10-11) mc Tuning S-2651D, Unit 11B
C-2679		Same as C-2347	(11-12) mc Tuning S-2651D, Unit 11B
C-2680		Same as C-2653	(12-13) mc Tuning S-2651D, Unit 11B
C-2681		Same as C-2654	(13-14) mc Tuning S-2651D, Unit 11B
C-2682		Same as C-2655	(14-15) inc Tuning S-2651D, Unit 11B
C-2683		Same as C-2656	($15-16$) mc Tuning S-2651D, Unit 11B
C-2684		Same as C-2257	$\begin{aligned} & \text { (7-8) mc Tuning } \\ & \text { S-2651D, Unit 11B } \end{aligned}$
C-2685		Same as C-2658	$\begin{aligned} & \text { (8-9) mc Tuning } \\ & \text { S-2651D, Unit 11B } \end{aligned}$
C-2686		Same as C-2659	(9-10) mc Tuning S-2651D, Unit 11B
C-2687		Same as C-2267	Main Trimmer S-2651D, Unit 11B
C-2688		Same as C-2430	Main Filter Tuning S-2651D, Unit 11B
C-2689		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2690		Same as C-2256	100 kc Step Tuning S-2652C, Unit 11B
C-2691		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2692		Same as C-2256	100 kc Step Tuning S-2652C, Unit 11B
C-2693		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2694		Same as C-2426	100 kc Step Tuning S-2652C, Unit 11B
C-2695		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2696		Same as C-2257	100 kc Step Tuning S-2652C, Unit 11B
C-2697		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2698		Same as C-2258	100 kc Step Tuning S-2652C, Unit 11B
C-2699		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2700		Same as C-2258	100 kc Step Tuning S-2652C, Unit 11B
C-2701		Same as C-2252	(10-11) mc Tuning S-2651E, Unit 11B
C-2702		Same as C-2347	(11-12) mc Tuning S-2651E, Unit 11B
C-2703		Same as C-2653	(12-13) mc Tuning S-2651E, Unit 11B
C-2704		Same as C-2654	(13-14) mc Tuning S-2651E, Unit 11B
C-2705		Same as C-2655	(14-15) mc Tuning S-2651E, Unit 11B
C-2706		Same as C-2656	(15-16) mc Tuning S-2651E, Unit 11B
C-2707		Same as C-2257	(7-8) mc Tuning S-2651E, Unit 11B
C-2708		Same as C-2658	(8-9) mc Tuning S-2651E, Unit 11B
C-2709		Same as C-2659	(9-10) mc Tuning S-2651E, Unit 11B
C-2710		Same as C-2267	Main Trimmer S-2651E, Unit 11B
C-2711		Same as C-2430	Main Filter Tuning S-2651E, Unit 11B
C-2712		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2713		Same as C-2256	100 kc Step Tuning S-2652D, Unit 11B
C-2714		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2715		Same as C-2256	100 kc Step Tuning S-2652D, Unit 11B
C-2716		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2717		Same as C-2426	100 kc Step Tuning S-2625D, Unit 11B
C-2718		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2719		Same as C-2257	100 kc Step Tuning S-2652D, Unit 11B
C-2720		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2721		Same as C-2258	100 kc Step Tuning S-2652D, Unit 11B
C-2722		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2723		Same as C-2258	100 kc Step Tuning S-2652D, Unit 11B
C-2724		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2725		Same as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2726		Smae as C-2267	100 kc Step Tuning S-2652D, Unit 11B
C-2727		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2728		Same as C-2252	(10-11) mc Tuning S-2651F, Unit 11B
C-2729		Same as C-2347	(11-12) mc Tuning S-2651F, Unit 11B
C-2730		Same as C-2653	(12-13) mc Tuning S-2651F, Unit 11B
C-2731		Same as C-2654	(13-14) mc Tuning S-2651F, Unit 11B
C-2732		Same as C-2655	(14-15) mc Tuning S-2651F, Unit 11B
C-2733		Same as C-2656	(15-16) mc Tuning S-2651F, Unit 11B
C-2734		Same as C-2257	$\begin{aligned} & \text { (7-8) mc Tuning } \\ & \mathrm{S}-2651 \mathrm{~F}, \text { Unit } 11 \mathrm{~B} \end{aligned}$
C-2735		Same as C-26.58	$\begin{aligned} & (8-9) \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2651 \mathrm{~F}, \text { Unit } 11 \mathrm{~B} \end{aligned}$
C-2736		Same as C-2659	$\begin{aligned} & \text { (9-10) mc Tuning } \\ & \text { S-2651F, Unit } 11 \mathrm{~B} \end{aligned}$
C-2737		Same as C-2267	Main Trimmer S-2651F, Unit 11B

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2738		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2739		Same as C-2256	100 kc Step Tuning S-2652E, Unit 11B
C-2740		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2741		Same as C-2256	100 kc Step Tuning S-2652E, Unit 11B
C-2742		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2743		Same as C-2426	100 kc Step Tuning S-2652E, Unit 11B
C-2744		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2745		Same as C-2257	100 kc Step Tuning S-2652E, Unit 11B
C-2746		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2747		Same as C-2258	100 kc Step Tuning S-2652E, Unit 11B
C-2748		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2749		Same as C-2258	100 kc Step Tuning S-2652E, Unit 11B
C-2750		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2751		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2752		Same as C-2267	100 kc Step Tuning S-2652E, Unit 11B
C-2753		Same as C-2267	100 kc Step Tuning S-2652C, Unit 11B
C-2754		Same as C-2102; p/o XV-2651	Cathode By-Pass V-2651, Unit 11B
C-2755		Same as C-2102; p/o XV-2651	Screen By-Pass V-2651, Unit 11B
C-2756		Same as C-2461	Grid Coupling V-2652, Unit 11B
C-2757		Same as C-2102; p/o XV-2652	Cathode By-Pass V-2652, Unit 11B
C-2758		Same as C-2102; p/o XV-2652	Screen By-Pass V-2652, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2759		Same as C-2461	Grid Coupling V-2653, Unit 11B
C-2760		Same as C-2102; p/o XV-2653	Cathode By-Pass V-2653, Unit 11B
C-2761		Same as C-2102; p/o XV-2653	Screen By-Pass V-2653, Unit 11B
C-2762		Same as C-2461	Grid Coupling V-2654, Unit 11B
C-2763		Same as C-2102; p/o XV-2654	Cathode By-Pass V-2654, Unit 11B
C-2764		Same as C-2102; p/o XV-2654	Screen By-Pass V-2654, Unit 11B
C-2765		Same as C-2461	DC Blocking V-2654, Unit 11B
C-2766	N16-C-16268-8561	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $30 \mathrm{mmf} \pm 2 \%$; 500v DCW; per spec JAN-C-20A; JAN type CC21SH300G	Main Tuning J-2653, Unit 11B
C-2767		Same as C-2498	Output Coupling J-2653, Unit 11B
C-2768		Same as C-2031	B+ Filter, Unit 11B
C-2769		Same as C-2031	B+ Filter, Unit 11B
C-2770		Same as C-2031	B+ Filter, Unit 11B
C-2771		Same as C-2102; p/o XV-2651	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2651, Unit 11B } \end{aligned}$
C-2772		Same as C-2102; p/o XV-2652	Fil. By-Pass V-2652, Unit 11B
C-2773		Same as C-2102; p/o XV-2653	Fil. By-Pass V-2653, Unit 11B
C-2774		Same as C-2102; p/o XV-2654	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2654, Unit 11B } \end{aligned}$
C-2775		Same as C-2337	$\begin{aligned} & 100 \mathrm{kc} \text { Tuning } \\ & \text { S-2652B, Unit 11B } \end{aligned}$
C-2776		Same as C-2337	100 kc Tuning S-2652C, Unit 11B
C-2777		Same as C-2337	100 kc Tuning S-2652D, Unit 11B
C-2778		Same as C-2337	100 kc Tuning S-2652E, Unit 11B
C-2779		Same as C-2644	Keying Voltage Decoupling, Unit 11B

AN/SRT 14, 14A, 15, 15A, 16, 16A
TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { C-2780 } \\ & \text { thru } \\ & \text { C-2800 } \end{aligned}$		Not Used	
C-2801		Same as C-2256	(20-21) mc Tuning S-2801B, Unit 11C
C-2802	For Replacement Use N16-C-26606-1909	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 18 mmf $\pm 10 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA180K	(21-22) mc Tuning S-2801B, Unit 11C
C-2803		Same as C-2658	(22-23) mc Tuning S-2801B, Unit 11C
C-2804		Same as C-2427	(23-24) mc Tuning S-2801B, Unit 11C
C-2805	For Replacement Use N16-C-27075-8712	CAPACITOR, FIXED, BUTTON, MICA DIELECTRIC: 27 mmf $\pm 5 \%$; 500v DCW; per BuShips 16C41; NAVY type CB20EA270J	(24-25) mc Tuning S-2801B, Unit 11C
C-2806	N16-C-15624-8856	CAPACITOR, FIXED, CERAMIC DIELECTRIC: $5 \mathrm{mmf} \pm 0.025$ mmf; 500v DCW; per spec JAN-C-20A; JAN type CC21LH050C	$\begin{aligned} & 20 \mathrm{mc} \text { Trap } \\ & \text { S-2801B, Unit 11C } \end{aligned}$
C-2807		Same as C-2253	(25-26) mc Tuning S-2801B, Unit 11C
C-2808		Same as C-2258	(18-19) mc Tuning S-2801B, Unit 11C
C-2809		Same as C-2257	(19-20) mc Tuning S-2801B, Unit 11C
C-2810		Same as C-2267	Main Trimmer S-2801B, Unit 11C
C-2811	*	Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2812		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2813		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2814		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2815		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2816		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2817		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2818		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C
C-2819		Same as C-2267	100 kc Step Tuning S-2802A, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2820		Same as C-2337	100 kc Step Tuning S-2802A, Unit 11C
C-2821		Same as C-2430	Main Tuning S-2801B, Unit 11C
C-2822		Same as C-2258	100 kc Step Tuning S-2802A, Unit 11C
C-2823		Same as C-2258	100 kc Step Tuning S-2802A, Unit 11C
C-2824		Same as C-2256	(20-21) mc Tuning S-2801C, Unit 11C
C-2825		Same as C-2802	(21-22) mc Tuning S-2801C, Unit 11C
C-2826		Same as C-2658	(22-23) mc Tuning S-2801C, Unit 11C
C-2827		Same as C-2427	(23-24) mc Tuning S-2801C, Unit 11C
C-2828		Same as C-2805	$\begin{aligned} & 26 \mathrm{mc} \text { Trap } \\ & \text { S-2801C, Unit 11C } \end{aligned}$
C-2829		Same as C-2806	$\begin{aligned} & 20 \text { mc Trap } \\ & \text { S-2801C, Unit 11C } \end{aligned}$
C-2830		Same as C-2253	(25-26) mc Tuning S-2801C, Unit 11C
C-2831		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2832		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2833		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2834		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2835		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2836		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2837	\%	Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2838		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2829		Same as C-2267	100 kc Step Tuning S-2802B, Unit 11C
C-2840		Same as C-2337	100 kc Step Tuning S-2802B, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2841		Same as C-2258	(18-19) mc Tuning S-2801C, Unit 11C
C-2842		Same as C-2257	(19-20) mc Tuning S-2801C, Unit 11C
C-2843		Same as C-2258	100 kc Step Tuning S-2802B, Unit 11C
C-2844		Same as C-2258	100 kc Step Tuning S-2802B, Unit 11C
C-2845		Same as C-2267	Main Trimmer S-2801C, Unit 11C
C-2846		Same as C-2430	Main Tuning S-2801C, Unit 11C
C-2847		Same as C-2256	(20-21) mc Tuning S-2801D, Unit 11C
C-2848	,	Same as C-2802	(21-22) mc Tuning S-2801D, Unit 11C
C-2849		Same as C-2658	(22-23) mc Tuning S-2801D, Unit 11C
C-2850		Same as C-2427	(23-24) mc Tuning S-2801D, Unit 11C
C-2851		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2852	-	Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2853		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2854		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2855		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2856		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2857		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2858		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2859		Same as C-2267	100 kc Step Tuning S-2802C, Unit 11C
C-2860		Same as C-2337	100 kc Step Tuning S-2802C, Unit 11C
C-2861		Same as C-2805	(24-25) mc Tuning S-2801D, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2862		Same as C-2253	(25-26) mc Tuning S-2801D, Unit 11C
C-2863		Same as C-2258	(18-19) mc Tuning S-2801D, Unit 11C
C-2864		Same as C-2257	(19-20) mc Tuning S-2801D, Unit 11C
C-2865		Same as C-2267	Main Trimmer S-2801D, Unit 11C
C-2866		Same as C-2430	Main Tuning S-2801D, Unit 11C
C-2867		Same as C-2258	100 kc Step Tuning S-2802C, Unit 11C
C-2868		Same as C-2258	100 kc Step Tuning S-2802C, Unit 11C
C-2869		Same as C-2256	(20-21) mc Tuning S-2801E, Unit 11C
C-2870		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2871		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2872		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2873		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2874		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2875		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2876		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2877		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2878		Same as C-2267	100 kc Step Tuning S-2802D, Unit 11C
C-2879		Same as C-2337	100 kc Step Tuning S-2802D, Unit 11C
C-2880		Same as C-2802	(21-22) mc Tuning S-2801E, Unit 11C
C-2881		Same as C-2658	(22-23) mc Tuning S-2801E, Unit 11C
C-2882		Same as C-2427	(23-24) mc Tuning S-2801E, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2883		Same as C-2805	(24-25) mc Tuning S-2801E, Unit 11C
C-2884		Same as C-2253	(25-26) mc Tuning S-2801E, Unit 11C
C-2885		Same as C-2258	(18-19) mc Tuning S-2801E, Unit 11C
C-2886		Same as C-2257	(19-20) mc Tuning S-2801E, Unit 11C
C-2887		Same as C-2267	Main Trimmer S-2801E, Unit 11C
C-2888		Same as C-2258	100 kc Step Tuning S-2802D, Unit 11C
C-2889		Same as C-2258	100 kc Step Tuning S-2802D, Unit 11C
C-2890		Same as C-2102; p/o XV-2801	Cathode By-Pass V-2801, Unit 11C
C-2891		Same as C-2102; p/o XV-2801	$\begin{aligned} & \text { Screen By-Pass } \\ & \text { V-2801, Unit 11C } \end{aligned}$
C-2892		Same as C-2461	Grid Coupling V-2802, Unit 11C
C-2893		Same as C-2102; p /o XV-2802	Cathode By-Pass V-2802, Unit 11C
C-2894		Same as C-2102; ${ }^{\text {/ o XV-2802 }}$	Screen By-Pass V-2802, Unit 11C
C-2895		Same as C-2461	Grid Coupling V-2803, Unit 11C
C-2896		Same as C-2102; p / o XV-2803	Cathode By-Pass V-2803, Unit 11C
C-2897		Same as C-2102; p/o XV-2803	Cathode By-Pass V-2803, Unit 11C
C-2898		Same as C-2461	Grid Coupling V-2804, Unit 11C
C-2899		Same as C-2102; p/o XV-2804	Cathode By-Pass V-2804, Unit 11C
C-2900		Same as C-2102; p/o XV-2804.	Screen By-Pass V-2804, Unit 11C
C-2901		Same as C-2461	DC Blocking J-2803, Unit 11C
C-2902		Same as C-2766	Main Tuning J-2803, Unit 11C
C-2903		Same as C-2498	Output Coupling J-2803, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
C-2904		Same as C-2031	B+ Filter, Unit 11C
C-2905		Same as C-2031	B+ Filter, Unit 11C
C-2906		Same as C-2031	B+ Filter, Unit 11C
C-2907		Same as C-2102; p/o XV-2804	Fil. By-Pass V-2804, Unit 11C
C-2908		Same as C-2102; p/o XV-2803	$\begin{aligned} & \text { Fil. By-Pass } \\ & \text { V-2803, Unit 11C } \end{aligned}$
C-2909		Same as C-2102; p/o XV-2802	Fil. By-Pass V-2802, Unit 11C
C-2910		Same as C-2102; p/o XV-2801	Fil. By-Pass V-2801, Unit 11C
C-2911		Same as C-2258	100 kc Step Filter Tuning S-2802A, Unit 11C
C-2912		Same as C-2258	100 kc Step Filter Tuning S-2802B, Unit 11C
C-2913		Same as C-2258	100 kc Step Filter Tuning S-2802C, Unit 11C
C-2914		Same as C-2258	100 kc Step Filter Tuning S-2802D, Unit 11C
C-2915		Same as C-2644	Keying Voltage Decoupling, Unit 11C
C-2916		Same as C-2644	Grid Return ByPass V-2802, Unit 11C
C-2917		Same as C-2644	Grid Blocking for V-2802, Unit 11C
C-2918 thru C-2926		Not Used	
C-2927	N16-C-32646-6813	CAPACITOR, FIXED, MICA DIELECTRIC: $4700 \mathrm{mmf} \pm 10 \%$; 500v DCW; per spec JAN-C-5; JAN type CM35C472K	RF Filter
C-2928		Same as C-2927	RF By-Pass
CR-2201	N16-T-51738	CRYSTAL UNIT, RECTIFYING: germanium diode; per spec JAN-1A; JAN type 1N38	Damping Diode, Unit 6
CR-2326		Same as CR-2201	Damping Diode, Unit 8
CR-2920	N16-T-51734-10	CRYSTAL UNIT, RECTIF YING: germanium diode; per spec JAN-1A; JAN type 1N34A; same as CR-1002	Zero Beat Mixer

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-2001. 1	Low Failure Item	TERMINAL BOARD: ceramic; eight turret lug type term, one common term; $7 / 8 \mathrm{in} . \mathrm{lg}, 1 / 2 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$; two no. $3-48$ tapped mtg holes, 29/64 in. mtg/c; CBY part 12855; CBTL part/dwg NL-960103-1-1; same as E-1011	Component Mounting, Unit 1
E-2001. 2		Same as E-2001. 1	Component Mounting, Unit 1
E-2001. 3		Same as E-2001. 1	Component Mounting, Unit 1
E-2001. 4		Same as E-2001. 1	Component Mounting, Unit 1
E-2001. 5		Same as E-2001. 1	Component Mounting, Unit 1
E-2002 thru E-2030		Not Used	
E-2031	Procured on demand by nearest Naval Shore Supply Activity	TERMINAL BOARD: ceramic; eight turret lug type term, one common term; 1-7/32 in. $\mathrm{lg}, 1-1 / 32 \mathrm{in}$. wd, $9 / 16 \mathrm{in} . \mathrm{h}$; two no. 3-48 tapped mtg holes, 29/64 in. mtg/c; CBY part 12856; CBTL part/dwg NL-960103-1-2	Component Mounting, Unit 2
E-2032 thru E-2050		Not Used	
E-2051	N17-I-59480-7061	INSULATOR, FEEDTHRU: kovar and glass, kovar tinned finish; round tapered dome shape, flanged, MBCA Ref Dwg Group 9 code no. 351 ; o/a $\lg 1-9 / 16 \mathrm{in} ., \lg$ of body $5 / 16 \mathrm{in} .$, $7 / 16 \mathrm{in}$. diam; flange mtd; kovar rod 1-9/16 in. $\mathrm{lg}, 1 / 8 \mathrm{in}$. diam force fitted into insulator, rod is flatted at both ends to a thickness of $1 / 16 \mathrm{in}$., $1 / 8 \mathrm{in}$. diam hole drilled thru flatted portion at both ends; CBTL part/dwg NL-959925-1; p/o Z-2051	Feed-Thru Term for Z-2051, Unit 3
E-2051. 1		Same as E-2051; p/o Z-2051	Feed-Thru Term for Z-2051, Unit 3
E-2051. 2		Same as E-2051; p/o Z-2051	Feed-Thru Term for Z-2051, Unit 3
E-2051. 3		Same as E-2051; p/o Z-2051	Feed-Thru Term for Z-2051, Unit 3
E-2052		Same as E-2031	Component Mounting, Unit 3
$\begin{aligned} & \mathrm{E}-2053 \\ & \text { thru } \\ & \mathrm{E}-2100 \end{aligned}$		Not Used	
E-2101		Same as E-2031	Component Mounting, Unit 4
E-2102 thru E-2125		Not Used	
E-2126. 1		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locaṭing Function
E-2126. 2		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12
E-2126. 3		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12
E-2126. 4		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12
E-2126. 5		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12
E-2126. 6		Same as E-2051; p/o Z-2126	Feed-Thru Term, Unit 12
E-2127. 1	Shop Manufacture	INSULATOR, SPACER: rectangular shape w/support surface curved to fit a radius of $13 / 32 \mathrm{in}$.; made of centradite, grade $\mathrm{L}-3$; 21/32 in. lg, $0.534 \mathrm{in} . \mathrm{wd}, 0.267 \mathrm{in}$. thk o/a; single axial hole 0.136 in . diam drilled thru length; per spec JAN-I10; CBN type 400; CBTL part/dwg NL-959926-1; p/o Z-2126	p/o Oven Assy Z-2126, Unit 12
E-2127. 2		Same as E-2127.1; p/o Z-2126	p/o Oven Assy Z-2126, Unit 12
E-2128 thru E-2200		Not Used	
E-2201		Same as E-2001. 1	Component Mounting, Unit 6
E-2201. 1		Same as E-2001. 1	Component Mounting, Unit 6
E-2201. 2		Same as E-2001. 1	Component Mounting, Unit 6
E-2202		Same as E-2031	Component Mounting, Unit 6
E-2203	Shop Manufacture	TERMINAL BOARD: ceramic or melamine type GMG; eight turret lug type term, one common term; o/a dimen 1-1/2 in. $\mathrm{lg}, 1-5 / 32 \mathrm{in}$. wd, $9 / 16 \mathrm{in}$. h; two no. 3-48 tapped mtg spacers, 29/64 in. mtg/c; CBY part 13025; CBTL part/dwg NL-960103-1-3; same as E-1013	Component Mounting, Unit 6
E-2204 thru E-2300		Not Used	
E-2301		Same as E-2203	Component Mounting, Unit 7
E-2302 thru E-2325		Not Used	
E-2326		Same as E-2031	Component Mounting, Unit 8
E-2327		Same as E-2001. 1	Component Mounting, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-2327. 1		Same as E-2001. 1	Component Mounting, Unit 8
E-2327. 2		Same as E-2001. 1	Component Mounting, Unit 8
$\begin{aligned} & \mathrm{E}-2328 \\ & \text { thru } \\ & \mathrm{E}-2525 \end{aligned}$		Not Used	
E-2526		Same as E-2001. 1	Component Mounting, Unit 10
$\mathbf{E - 2 5 2 7}$ thru E-2625		Not Used	
E-2626		Same as E-2031	Component Mounting, Unit 11A
$\begin{aligned} & \mathrm{E}-2627 \\ & \text { thru } \\ & \mathrm{E}-2918 \end{aligned}$		Not Used	
E-2919	N16-S-63515-4151	SOCKET, ELECTRON TUBE: 8 contacts, brass, silver pl; octal type; oval; 1-7/8 in. lg, 1-3/8 in. wd, 11/16 in. h, excluding term; phenolic dielectric insulator; one piece saddle mtg , bottom mtg; 1-1/8 in. diam chassis hole required, 2 mtg holes, 0.156 in. diam, 1.500 in. c to c; per spec JAN-S-28A; JAN type TS101PO1; same as XC-1034	Control Test Point Location
E-2920	N16-A-20661-1005	ADAPTER, cable: single hole mtg type; for use with RG-55/U, RG-58/U cable; o/a $\lg 13 / 16$ in.; one hole mtg 5/16 in. diam; type coax cable term, CARO no. 1025; same as E-1320	Coax Cable Adapter
$\begin{aligned} & \mathrm{E}-2920.1 \\ & \text { thru } \\ & \mathrm{E}-2920.9 \end{aligned}$		Same as E-2920	Coax Cable Adapters
E-2921	Shop Manufacture	TERMINAL BOARD: copper sheet, cold rolled, hot tin dipped; w/o term, eight holes 0.120 in . diam equally spaced on $1 / 2 \mathrm{in}$. B. C. ; w/o barriers; o/a dimen $3 / 4 \mathrm{in}$. OD by $1 / 32 \mathrm{in}$. thk; one mtg hole in center 0.144 in . diam; CBTL part/dwg NL-900373-1	Connection Point
E-2922		Same as E-2921	Connection Point
E-2923		Same as E-2921	Connection Point
E-2924		Not Used	
E-2925		Same as E-2921	Connection Point
E-2926		Same as E-2921	Connection Point
E-2927		Same as E-2921	Connection Point
E-2928		Same as E-2921	Connection Point
E-2929		Same as E-2921	Connection Point
E-2930		Same as E-2203	Component Mounting

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-2931	N16-K-702781-115	KNOB: round; black thermosetting phenolic; dull finish; for $1 / 4$ in. diam shaft; two no. 6-32 by $1 / 8 \mathrm{in}$. lg set screws; w/ pointer; $13 / 16 \mathrm{in}$. diam, $9 / 16 \mathrm{in}$. thk, $7 / 8 \mathrm{in}$. lg o/a; brass, nickel pl insert; $7 / 16$ in. depth of shaft hole; fluted; CMI part no. RE10F479F type G; CBTL part/dwg NCP-20-1-18-2; same as E-1017	FSK Phase Mod.
E-2932	N16-A-20661-1002	ADAPTER, cable: right hand mtg strap type; for use with RG-55/U, RG-58/U cable; o/a $\lg 1 / 2 \mathrm{in}$. ; mtd by means of hole in strap $3 / 8 \mathrm{in}$. from c to c of cable; type coax cable term; CARO part no. 3975; same as E-1324	Coax Cable Adapter
$\begin{aligned} & \mathrm{E}-2932.1 \\ & \text { thru } \\ & \mathrm{E}-2932.7 \end{aligned}$		Same as E-2932	Coax Cable Adapter
E-2933	N17-C-73108-2800	ADAPTER, cable: single hole mtg type; for use with RG-59/U, RG-62/U cable; o/a lg 13/16 in.; one hole mtg $5 / 16 \mathrm{in}$. diam; type coax cable term; CARO part no. 1050	Coax Cable Term
E-2933.1		Same as E-2933	Coax Cable Term
E-2933. 2		Same as E-2933	Coax Cable Term
E-2933. 3		Same as E-2933	Coax Cable Term
E-2934	N16-K-702781-116	KNOB: round, fluted; black thermosetting phenolic; for $1 / 4 \mathrm{in}$. diam shaft; two no. $8-32$ thd $1 / 4 \mathrm{in} . \lg$ set screws spaced 120° apart; w/o pointer; 1-1/2 in. diam, 7/8 in. h o/a; brass, nickel pl insert; CMI part no. RE10F479C type E modified; CBTL part/dwg NL-900624-1	Band Switch Selector
E-2934. 1		Same as E-2934	Channel Switch Selector
E-2934. 2		Same as E-2934	Channel Switch Selector
E-2934. 3		Same as E-2934	Freq Switch Selector
E-2934. 4		Same as E-2934	Freq Switch Selector
E-2934. 5		Same as E-2934	Freq Switch Selector
E-2934. 6		Same as E-2934	Freq Switch Selector
E-2934. 7		Same as E-2934	Freq Switch Selector
E-2934. 8		Same as E-2934	Freq Switch Selector
$\begin{aligned} & \mathrm{F}-2001 \\ & \text { thru } \\ & \mathrm{F}-2916 \end{aligned}$		Not Used	

NAVSHIPS 92121(A)
PARTS LIST
AN/SRT 14, 14A, 15, 15A, 16, 16A
TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
F-2917 F-2918	N17-F-14690-5800	FUSE, CARTRIDGE: 2 amps, 250v; time delay, 150% for 0-1 minute, 300% for 6 seconds min ; ferrule type; $1-1 / 2 \mathrm{in}$. lg, 0.406 in. diam; per spec MIL-F-15160A; MII type F09G2R00B; same as F-1002 (four spares for F-2917 included in equipment) Same as F-2917	Filament Primary Protection Oven Heater Protection
H-2001	Low Failure Item	FASTENER: chrome vanadium steel, cad pl; $2 \mathrm{in} .1 \mathrm{lg}, 1 / 4 \mathrm{in}$. shank diam, 9/16 in. head diam; oval head, slotted; CAXO type 98-OS-5-133	Cowl Fastener
H-2001. 1		Same as H-2001	Cowl Fastener
H-2002	N42-P-11500-9100	PIN: chrome vanadium steel, cad pl, $0.443 \mathrm{in} . \mathrm{lg}, 0.103 \mathrm{in}$. diam o/a dimen; 3 serrations centrally located $7 / 32 \mathrm{in}$. lg ; CAXO type 98-5-CP	Cross Pin for Cowl Fastener
H-2002. 1		Same as H-2002	Cross Pin for Cowl Fastener
$\begin{aligned} & \mathrm{H}-2003 \\ & \text { thru } \\ & \mathrm{H}-2030 \end{aligned}$		Not Used	
H-2031		Same as H-2002	Cross Pin for Cowl Fastener
H-2031. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2032		Same as H-2001	Cowl Fastener
H-2032. 1		Same as H-2001	Cowl Fastener
H-2033 thru H-2050		Not Used	
H-2051		Same as H-2002	Cross Pin for Cowl Fastener
H-2051. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2051. 2		Same as H-2002	Cross Pin for Cowl Fastener
H-2051, 3		Same as H-2002	Cross Pin for Cowl Fastener
H-2052	Low Failure Item	FASTENER: chrome vanadium steel, cad pl; 55/64 in. lg by 5/8 in. diam o/a; oval head, slotted; CAXO type 98-OS-5-32	Cowl Fastener
H-2052. 1		Same as H-2052	Cowl Fastener
H-2052. 2		Same as H-2052	Cowl Fastener
H-2052. 3		Same as H-2052	Cowl Fastener

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-2053 H-2054 thru H-2100	Low Failure Item	CLAMP: transformer clamp; stainless steel; tightened by means of bolt, mtd w/hole $5 / 32 \mathrm{in}$. diam; 23/32 in. h by 1-1/2 in. $\lg \mathrm{o} / \mathrm{a}$; designed to support $7 / 8 \mathrm{in}$. diam material, adjustable; CBTL part/dwg NL-900235-1 Not Used	Clamp for T-2051, Unit 3
H-2101		Same as H-2002	Cross Pin for Cowl Fastener
H-2101. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2102		Same as H-2001	Cowl Fastener
H-2102. 1		Same as H-2001	Cowl Fastener
$\begin{aligned} & \text { H-2103 } \\ & \text { thru } \\ & \text { H-2150 } \end{aligned}$		Not Used	
H-2151		Same as H-2002	Cross Pin for Cowl Fastener
H-2151. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2151.2		Same as H-2002	Cross Pin for Cowl Fastener
H-2151. 3		Same as H-2002	Cross Pin for Cowl Fastener
H-2152		Same as H-2001	Cowl Fastener
H-2152. 1		Same as H-2001	Cowl Fastener
H-2152. 2		Same as H-2001	Cowl Fastener
H-2152. 3		Same as H-2001	Cowl Fastener
$\begin{aligned} & \mathrm{H}-2153 \\ & \text { thru } \\ & \mathrm{H}-2200 \end{aligned}$		Not Used	
H-2201	Low Failure Item	STRAP, bearing: stainless steel; 1-27/32 in. lg by $7 / 16 \mathrm{in}$. wd by $1 / 32 \mathrm{in}$. thk o / a; two $1 / 8 \mathrm{in}$. diam mtg holes, spaced $1-9 / 16 \mathrm{in}$. c to $\mathrm{c} ; 1 / 4 \mathrm{in}$. diam hole; extruded $1 / 16 \mathrm{in}$.; bearing surface for shaft; COC type 2011	p/o Bearing Block Assy, Unit 6
H-2202		Same as H-2002	Cross Pin for Cowl Fastener
H-2202. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2202. 2		Same as H-2002	Cross Pin for Cowl Fastener

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-2202. 3		Same as H-2002	Cross Pin for Cowl Fastener
H-2203	Low Failure Item	FASTENER: chrome vanadium steel, cad pl; 1-27/32 in. lg, 9/16 in. diam o/a; oval head, slotted; CAXO type 98-OS-5-129	Cowl Fastener
H-2203. 1		Same as H-2203	Cowl Fastener
H-2203. 2		Same as H-2203	Cowl Fastener
H-2203. 3		Same as H-2203	Cowl Fastener
$\begin{aligned} & \mathrm{H}-2204 \\ & \text { thru } \\ & \mathrm{H}-2300 \end{aligned}$		Not Used	
H-2301		Same as H-2001	Cowl Fastener
H-2301. 1		Same as H-2001	Cowl Fastener
H-2302		Same as H-2002	Cross Pin for Cowl Fastener
H-2302. 1		Same as H-2002	Cross Pin for Cowl Fastener
$\begin{aligned} & \mathrm{H}-2303 \\ & \text { thru } \\ & \mathrm{H}-2325 \end{aligned}$		Not Used	
H-2326		Same as H-2203	Cowl Fastener
H-2326. 1		Same as H-2203	Cowl Fastener
H-2326. 2		Same as H-2203	Cowl Fastener
H-2326. 3		Same as H-2203	Cowl Fastener
H-2327		Same as H-2002	Cross Pin for Cowl Fastener
H-2327. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2327. 2		Same as H-2002	Cross Pin for Cowl Fastener
H-2327. 3		Same as H-2002	Cross Pin for Cowl Fastener
$\begin{aligned} & \mathrm{H}-2328 \\ & \text { thru } \\ & \mathrm{H}-2425 \end{aligned}$		Not Used	
H-2426		Same as H-2002	Cross Pin for Cowl Fastener
H-2426. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2426. 2		Same as H-2002	Cross Pin for Cowl Fastener

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-2651. 1		Same as H-2427	Cowl Fastener
H-2651. 2		Same as H-2427	Cowl Fastener
H-2651. 3		Same as H-2427	Cowl Fastener
H-2652		Same as H-2002	Cross Pin for Cowl Fastener
H-2652. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2652. 2		Same as H-2002	Cross Pin for Cowl Fastener
H-2652. 3		Same as H-2002	Cross Pin for Cowl Fastener
$\begin{aligned} & \mathrm{H}-2653 \\ & \text { thru } \\ & \mathbf{H - 2 8 0 0} \end{aligned}$		Not Used	
H-2801		Same as H-2002	Cross Pin for Cowl Fastener
H-2801. 1		Same as H-2002	Cross Pin for Cowl Fastener
H-2801. 2		Same as H-2002	Cross Pin for Cowl Fastener
H-2801. 3	-	Same as H-2002	Cross Pin for Cowl Fastener
H-2802		Same as H-2427	Cowl Fastener
H-2802. 1		Same as H-2427	Cowl Fastener
H-2802. 2		Same as H-2427	Cowl Fastener
H-2802. 3		Same as H-2427	Cowl Fastener
$\begin{aligned} & \mathrm{H}-2803 \\ & \text { thru } \\ & \mathrm{H}-2915 \end{aligned}$		Not Used	
H-2916	G42-P-14141-76	PIN, taper: steel, full length taper; 5/64 in. diam, $5 / 8 \mathrm{in} . \mathrm{lg}$ o/a; CCCU type 1	Locking Pin
H-2916. 1		Same as H-2916	Locking Pin
H-2917	G42-P-14141-68	PIN, taper: steel, full length taper; $5 / 64 \mathrm{in}$. diam, $1 / 2 \mathrm{in} . \mathrm{lg}$ o/a; CCCU type 1	Locking Pin
$\begin{aligned} & \text { H-2917. } 1 \\ & \text { thru } \\ & \text { H-2917. } 19 \end{aligned}$		Same as H-2917	Locking Pin
H-2918	N43-S-99999-0611	SCREWDRIVER: slot drive; stainless steel blade, $0.328 \mathrm{in} . \mathrm{lg}$ by 0.171 in . wd by 0.015 in . thk; cad pl brass sleeve 9.16 in . \lg by 0.175 in . diam; 0.016 in . wd by $3 / 8 \mathrm{in}$. \lg slot; $5-17 / 32$ in lg, 0.175 in . diam o/a dimen; handle laminated thermosetting plastic, type LE; CBTL part/dwg NL-900776-1	Special RFO Alignment Tool

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-2919	Low Failure Item	WINDOW: door; plexiglass; 0.0625 in. thk by $13-1 / 4 \mathrm{in} . \lg$ by $5-13 / 16 \mathrm{in}$. wd o/a dimen; mtd by means of 22 holes 0.144 in . diam spaced approx 1-11/16 in. apart ; CCDB type II, clear; CBTL part/dwg NL-900791-12	p/o Door Assy
H-2920	Low Failure Item	CHAIN: chain assembly incl approx 10 in. bead chain no. 10 , one coupling no. $10-\mathrm{A}$, other coupling no. $10-\mathrm{AD}$; bead type; $10-1 / 8 \mathrm{in}$. c to c ; stainless steel; eyelets at each end for mtg ; CCCO; CBTL part/dwg NL-900842-1	Door Stop
H-2921	Low Failure Item	SLIDE, chassis: left hand, c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, $1-5 / 8$ in. high, $9 / 16$ in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced 2-1/2 in. c to c , two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes spaced 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For RFO Chassis
H-2922	Low Failure Item	SLIDE, chassis: right hand; c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. ig closed, $1-5 / 8$ in. high, $9 / 16$ in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced 2-1/2 in. c to c; two $1 / 4$ in. -28 NF-2 thd mtg holes 1 in. e to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For RFO Chassis
H-2923	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in . wd; stainless steel; 202 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links $\mathrm{w} /$ disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-9	Drive Units 11B Bottom, 11C Bottom
H-2924	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in . wd; stainless steel; 194 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-10	Drive Units 9 Bottom, 11B Top, 11C Top
H-2925	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in. pitch \lg of link by 0.139 in. wd; stainless steel; 186 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-11	Drives Unit 10
H-2926	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch lg of link by 0.139 in . wd; stainless steel; 74 pitch \lg o/á; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-7	Drives Unit 8
H-2927	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch \lg of link by 0.139 in . wd; stainless steel; 68 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-6	Drives Unit 6
H-2928	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in. pitch \lg of link by 0.139 in . wd; stainless steel; 100 pitch $\lg \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-8	Drives Unit 9 Top
ORIGINAL			8-1

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-2929	Low Failure Item	CHAIN ASSEMBLY: miniature sprocket type, 0.147 in . pitch lg of link by 0.139 in . wd; stainless steel; 98 pitch $\mathrm{lg} \mathrm{o} / \mathrm{a}$; rivet type links w/disconnecting pin, keeper, and tubular pin; 100 lbs yield strength; CBKH 75-SS series; CBTL part/dwg NL-900261-2-12	Drives S-2996
H-2930	N16-C-300798-866	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; 1 hole in bracket for no. 10 M . S. for mtg; $1-3 / 8 \mathrm{in}$. diam by $3 / 4 \mathrm{in}$. h o/a; CAIS type $926-\mathrm{C}$; same as $\mathrm{H}-1005$	u/w R-2940
H-2931	Low Failure Item	HINGE: piano; aluminum, supersat finish, w/full lg brass pin; o/a dimen 12-15/32 in. lg by 2-13/16 in. wd; non-removable pin; 8 holes 0.116 in . diam used to mount channel and tuning charts, 8 holes 0.144 in. diam spaced 1-11/16 in. c to c used for screw mtg to door assy; rounded ends; CBTL part/ dwg NL-901022-12	For Tuning and Channel Charts
I-2915	N18-R-269-5202	COUNTER, ROTATING, FIXED MOUNTING: movable scale type; incl 2 concentrically mtd dials, one for counting increment of each turn, the other for counting turns; incremental dial has 100 equal divisions, graduated for 0 to 100 , right to left, graduated in increments of 10 , covered by 3600° arc; turn counting ring, 0 to 10, right to left, graduated in increments of 1 , covered by 330° arc; gear drive; 10 to 1 ratio; white numerals black background; w/knurled locking screw, w / o adapter ring; dull black finish; designed for $1 / 2 \mathrm{in}$. shaft; o / a dimen 1-3/4 in. diam, 1-1/2 in. h; CAQM model no. 746 modified; CBTL part/dwg NL-961596-1	F.S. Deviation Control
I-2916	G17-L-6806-130	LAMP, GLOW: neon, $105-125 v, 1 / 25 \mathrm{w}$; MBCA Ref Dwg Group 7, single contact bayonet candelabra base, T-3-1/4, clear, orange-red glow; 1-3/16 in. max o/a h; CG type NE-51; same as I-503	F.S. Osc. Oven Heater Indicator
I-2917		Same as I-2916	Int. Osc. Oven Heater Indicator
I-2918	G17-L-6297	LAMP, INCANDESCENT: tungsten filament; JAN type TB-14; 6 to $8 v$; miniature bayonet base; T-3-1/4 bulb; per NAVY dwg RE38F149D, part no. 32; CG part 47	Crystal Osc. Oven Heater Indicator
J-2001	N17-C-73408-4051	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; $3 / 4 \mathrm{in} . \lg , 9 / 16 \mathrm{in}$. diam o/a; not over 500v peak; 52 ohms nominal impedance, non-constant frequency impedance characteristic; cylindrical shape, brass, silver-pl; locking type, molded polystyrene insert, mounts thru 3/8 in. hole; includes lockwasher, hex nut; 3/8 in. -32 NEF-2 thd 7/32 in. lg on body; CANS part/dwg KC-11-04	1d Output, Unit 1
J-2002		Same as J-2001	1b Output, Unit 1
J-2003		Same as J-2001	1a Output, Unit 1
J-2004		Same as J-2001	1c Output, Unit 1
J-2005		Same as J-2001	1e Output, Unit 1
J-2006	N17-C-73301-5363	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 contacts, female, round; polarized; straight type; 1-1/4 in. lg, 7/16 in. wd, $27 / 32$ in. h o/a; rectangular shape; molded melamine, two no. 4-40 NC-2 thd screws; 0.937 in. mtg/c; socket, contacts phosphor bronze, gold plated; CCCK type MRE-14S-G; same as J-1109	Unit 1 Power

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{J}-2007 \\ & \text { thru } \\ & \mathrm{J}-2030 \end{aligned}$		Not Used	
J-2031		Same as J-2001	1a Input to V-2031, Unit 2
J-2032		Same as J-2001	2b Output from V-2033, Unit 2
J-2033		Same as J-2001	2c Output from V-2033, Unit 2
J-2034		Same as J-2001	2a Output from V-2033, Unit 2
J-2035		Same as J-2001	2d Output from V-2034, Unit 2
J-2036		Same as J-2001	2e Output from V-2032, Unit 2
J-2037		Same as J-2006	Unit 2 Power
J-2038	N17-C-73407-8421	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; $1 / 2 \mathrm{in} . \mathrm{lg}$, excluding term, $3 / 8$ in. diam; non-constant frequency impedance characteristic; cylindrical shape, brass body, silver pl; laminated phenolic and polystyrene insert; one mtg stud, $1 / 4 \mathrm{in}$. diam, w/no. $1 / 4$ in. - 32 thd, 29/64 in. lg approx, no. 1/4 in. -32 thd hex nut $3 / 8$ in. across flats; CANS type KP-9000	Test Point for 1a, J-2031, Unit 2
$\begin{aligned} & \mathrm{J}-2039 \\ & \text { thru } \\ & \mathrm{J}-2050 \end{aligned}$		Not Used	
J-2051		Same as J-2001	3b Output to Int. Osc. Jack J-2933, Unit 3
J-2052		Same as J-2001	3a Output, Unit 3
J-2053	N17-C-73325-2481	CONNECTOR, RECEPTACLE, ELECTRICAL: 21 contacts, female, round; polarized; straight type; 2-1/4 in. $\mathrm{lg}, 3 / 8 \mathrm{in}$. $\mathrm{wd}, 27 / 32 \mathrm{in} . \mathrm{h}$ o/a including mtg studs and polarizing pins; rectangular shape, molded melamine; two no. 4-40 NC-2 thd mtg studs, $1 / 4 \mathrm{in} . \mathrm{lg}$, spaced 1.937 in . c to c ; socket contacts brass, gold pl; CCCK part/dwg MRE-21S-G	Unit 3 Power
J-2054		Same as J-2038	Test Point for 3a, J-2052, Unit 3
$\begin{aligned} & \mathrm{J}-2055 \\ & \text { thru } \\ & \mathrm{J}-2100 \end{aligned}$		Not Used	
J-2101		Same as J-2001	2a Input, Unit 4
J-2102		Same as J-2001	4a Output, Unit 4
J-2103		Same as J-2006	Unit 4 Power

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-2104		Same as J-2038	Test Point 2a, J-2101, Unit 4
J-2105		Same as J-2038	Test Point 4a, J-2102, Unit 4
$\begin{aligned} & \mathrm{J}-2106 \\ & \text { thru } \\ & \mathrm{J}-2125 \end{aligned}$		Not Used	
J-2126		Same as J-2053	Unit 12 Power
J-2127		Same as J-2038	Freq Shift Test Point, Unit 12
$\begin{aligned} & \mathrm{J}-2128 \\ & \text { thru } \\ & \mathrm{J}-2150 \end{aligned}$		Not Used	
J-2151		Same as J-2001	4a Input, Unit 5
J-2152		Same as J-2001	2b Input, Unit 5
J-2153		Same as J-2001	1b Input, Unit 5
J-2154		Same as J-2001	12a Input, Unit 5
J-2155		Same as J-2001	3a Input, Unit 5
J-2156		Same as J-2001	5a Output, Unit 5
J-2157		Same as J-2006	Unit 5 Power
J-2158		Same as J-2038	Test Point 4a, J-2151, Unit 5
J-2159		Same as J-2038	Test Point 2b, J-2152, Unit 5
J-2160		Same as J-2038	Test Point 1b, J-2153, Unit 5
J-2161		Same as J-2038	Test Point 5a, J-2156, Unit 5
$\begin{aligned} & \mathrm{J}-2162 \\ & \text { thru } \\ & \mathrm{J}-2200 \end{aligned}$		Not Used	
J-2201		Same as J-2001	1c Input, Unit 6
J-2202		Same as J-2001	6c Output, Unit 6
J-2203		Same as J-2001	6a Output, Unit 6
J-2204		Same as J-2001	2c Input, Unit 6
J-2205		Same as J-2001	5a Input, Unit 6
J-2206		Same as J-2001	6b Output, Unit 6
J-2207		Same as J-2053	Unit 6 Power

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-2208		Same as J-2038	$\begin{aligned} & \text { Test Point 1c, } \\ & \text { Unit } 6 \end{aligned}$
J-2209		Same as J-2038	Test Point 2c, Unit 6
J-2210		Same as J-2038	Test Point 5a, Unit 6
J-2211		Same as J-2038	Test Point 6b, Unit 6
$\begin{aligned} & \mathrm{J}-2212 \\ & \text { thru } \\ & \mathrm{J}-2300 \end{aligned}$		Not Used	
J-2301		Same as J-2001	2d Input, Unit 7
J-2302		Same as J-2001	7b Output, Unit 7
J-2303		Same as J-2001	7a Output, Unit 7
J-2304		Same as J-2006	Unit 7 Power
J-2305		Same as J-2038	Test Point 2d, J-2301, Unit 7
J-2306		Same as J-2038	Test Point 7b, J-2302, Unit 7
J-2307		Same as J-2038	Test Point 7a, J-2303, Unit 7
$\begin{aligned} & \mathrm{J}-2308 \\ & \text { thru } \\ & \mathrm{J}-2325 \end{aligned}$		Not Used	
J-2326		Same as J-2001	1d Input, Unit 7
J-2327		Same as J-2001	8a Output, Unit 8
J-2328		Same as J-2001	7 Fa Input, Ụnit 8
J-2329		Same as J-2001	6b Input, Unit 8
J-2330		Same as J-2001	8b Output, Unit 8
J-2331		Not Used	
J-2332		Same as J-2006	Unit 8 Power
J-2333		Same as J-2038	1d Test Point, Unit 8
J-2334		Same as J-2038	7a Test Point, Unit 8
J-2335		Same as J-2038	6b Test Point, Unit 8
J-2336		Same as J-2038	8b Test Point, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-2337 thru $J-2425$		Not Used	
J-2426		Same as J-2001	8b Input, Unit 9
J-2427		Same as J-2001	7b Input, Unit 9
J-2428		Same as J-2001	9 Output, Unit 9
J-2429		Same as J-2006	Unit 9 Power
J-2430		Same as J-2038	Test Point for 8b, J-2426, Unit 9
J-2431		Same as J-2038	Test Point for 7b, J-2427, Unit 9
J-2432		Same as J-2038	Test Point for 9, J-2427, Unit 9
$\begin{aligned} & \mathrm{J}-2433 \\ & \text { thru } \\ & \mathrm{J}-2525 \end{aligned}$		Not Used	
J-2526		Same as J-2001	2e Input, Unit 10
J-2527		Same as J-2001	10 Output, Unit 10
J-2528		Same as J-2006	Unit 10 Power
J-2529		Same as J-2038	Test Point for 2 e , J-2526, Unit 10
J-2530		Same as J-2038	Test Point for 10, J-2527, Unit 10
$\begin{aligned} & \mathrm{J}-2531 \\ & \text { thru } \\ & \mathrm{J}-2625 \end{aligned}$		Not Used	
J-2626		Same as J-2001	9a Input, V -2626, Unit 11A
J-2627		Same as J-2001	10a Input, V-2626, Unit 11A
J-2628	-	Same as J-2001	11a Output V-2629, Unit 11A
J-2629		Same as J-2006	Unit 11A Power
J-2630		Same as J-2038	Test Point for 9a, J-2626, Unit 11A
J-2631		Same as J-2038	Test Point for 10a, J-2627, Unit 11A
J-2632		Same as J-2038	Test Point for 11a, J-2628, Unit 11A

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{J}-2633 \\ & \text { thru } \\ & \mathrm{J}-2650 \end{aligned}$		Not Used	
J-2651		Same as J-2001	$\begin{aligned} & \text { 10b Input, V-2651, } \\ & \text { Unit 11B } \end{aligned}$
J-2652		Same as J-2001	$\begin{aligned} & \text { 9b Input, V-2651, } \\ & \text { Unit 11B } \end{aligned}$
J-2653		Same as J-2001	$\begin{aligned} & \text { 11b Output, V-2654, } \\ & \text { Unit 11B } \end{aligned}$
J-2654		Same as J-2006	Unit 11B Power
J-2655		Same as J-2038	Test Point for 10b, J-2651, Unit 11B
J-2656		Same as J-2038	Test Point for 9b, $\mathrm{J}-2652$, Unit 11B
J-2657		Same as J-2038	Test Point for 11b, J-2653, Unit 11B
$\begin{aligned} & \mathrm{J}-2658 \\ & \text { thru } \\ & \mathrm{J}-2800 \end{aligned}$		Not Used	
J-2801		Same as J-2001	$\begin{aligned} & \text { 10c Input, V-2801, } \\ & \text { Unit 11C } \end{aligned}$
J-2802		Same as J-2001	$\begin{aligned} & \text { 9c Inpuc, V-2801, } \\ & \text { Unit 11C } \end{aligned}$
J-2803		Same as J-2001	$\begin{aligned} & \text { 11c Output, V-2804, } \\ & \text { Unit 11C } \end{aligned}$
J-2804		Same as J-2006	Unit 11C Power
J-2805		Same as J-2038	Test Point for 10c, J-2801, Unit 11C
J-2806		Same as J-2038	Test Point for 9c, J-2802, Unit 11C
J-2807		Same as J-2038	Test Point for 11c, J-2803, Unit 11C
$\begin{aligned} & \mathrm{J}-2808 \\ & \text { thru } \\ & \mathrm{J}-2915 \end{aligned}$		Not Used	
J-2916	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts and term; $\mathrm{w} /$ partially enclosed plastic shell; polarized, non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced $2.024 \mathrm{in} . \mathrm{c}$ to c in lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P -401	Inter-Unit Wiring
J-2917		Same as J-2916	Inter-Unit Wiring

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-2918		Same as J-2916	Inter-Unit Wiring
J-2919	N17-C-99999-2016	CONNECTOR, RECEPTACLE, ELECTRICAL: c/o double row of 8 sliding contacts per row, female; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in}$. wd, $9 / 16 \mathrm{in} . \mathrm{h}$; polarized; nonlocking; $5 \mathrm{amp}, 600 \mathrm{v}$ DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg , and 0.460 in . c to c in wd ; CPH type 26-190-16-1; same as J-601	Front Panel Connection
J-2920		Same as J-2919	Front Panel Connection
J-2921 thru J-2927		Not Used	
J-2928	N17-C-73108-7660	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; 1-1/32 in. $\mathrm{lg}, 3 / 4 \mathrm{in}$. wd across mounting plate; 500v peak; RF connector, not matched; cylindrical shape; polystyrene insert; four no. 3-56 tapped mtg holes in corners of mtg flange, $0.50 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; MIL type UG262/U	RFO Output
J-2929	N17-C-73108-1262	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; 1-1/32 in. lg, $3 / 4 \mathrm{in}$. wd across mtg plate; 500v peak; RF connector, 52 ohms nominal impedance; cylindrical shape; polystyrene insert; four no. 3-56 tapped mtg holes in corners of mtg flange 0.50 in . mtg/c; JAN type UG-291/U; same as J-1303	10 kc Test Jack
J-2930		Same as J-2929	10 kc Test Jack
J-2931	N17-C-99999-1198	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; 13/16 in. lg, 11/16 in. sq base o/a dimen excluding protruding contact; 500v AC RMS; RF connector, 52 ohms nominal impedance, constant frequency impedance characteristic; cylindrical shape w / sq mount at end; brass, silver pl; locking type; copolymer insert; 4 holes w/no. $3-56 \mathrm{in}$. thd, 0.500 in . mtg/c; MIL type UG-290A/U	100 kc Test Jack
J-2932		Same as J-2929	100 kc Step Test Jack
J-2933		Same as J-2931	Int. Osc. Test Jack
J-2934		Same as J-2931	Freq. Shift Osc. Test Jack
K-2151	N17-R-65155-6075	RELAY, ARMATURE: contact arrangement 2C, MBCA Ref Dwg Group 4, single break, AC-DC, 4 amp, $150 \mathrm{w} ; 1$ inductive winding, 500 ohms, 24v DC operating voltage; 6 term on contacts, 2 term on coil; continuous duty; 2-1/4 in. $1 \mathrm{~g}, 1-1 / 8 \mathrm{in}$. wd, 1-3/8 in. h o/a dimen; mtd by means of 2 no. 6-32 tapped holes spaced $3 / 4 \mathrm{in}$. c to c; impregnated coil; open frame type; CRY type J part no. A-45701; per BuShips spec no. 40T9; CBTL part/dwg NL-961378-1	Freq. Shift CW Selector, Unit 5
L-2001	N16-C-76737-6510	COIL, RADIO FREQUENCY: $1700 \mu \mathrm{~h}$ at $1000 \mathrm{cps} \mathbf{w} / \mathrm{o}$ slug and shield can, $1760 \mu \mathrm{~h}$ at 0.25 mc with slug and shield can, 34 ohms DC resistance; 420 turns per pie, (840 total), no. 38 EF AWG copper wire, single enamel, single polyamide fiber covered conductor, one winding, two pie, universal wound, untapped,	Freq. Adj. for Crystal Oven Y-2001, Unit 1

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { L-2001 } \\ & \text { (cont) } \end{aligned}$		shielded with cylindrical aluminum can, molded thermosetting plastic form, powdered iron core, coil dimensions, excluding term mtg attachments and tuning devices 2-25/32 in. lg, 0.928 $\mathrm{in} . \mathrm{h}, 1.089 \mathrm{in} . \mathrm{wd}$, o/a coil form dimen 2-7/32 in. lg excluding locking stud, 0.828 in . diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; four solder lug type term located on one end of coil form; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in}$. \lg with $31 / 32$ in. mtg/c; part no. L-2001 stamped on coil form and shield can; CBTL part/dwg NL-960140-14-1	
L-2002	N16-C-76737-6611	COIL, RADIO FREQUENCY: $1340 \mu \mathrm{~h}$ at $0.25 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, $1700 \mu \mathrm{~h}$ to $2400 \mu \mathrm{~h}$ with slug tuning, 34 ohms DC resistance; 540 turns no. 38EF AWG copper wire, single enamel, single fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil dimen 1-5/16 in. lg by 21/64 in. diam, o/a coil form dimen $1-5 / 16 \mathrm{in} . \mathrm{lg}, 21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two term, solder lug type located outside coil form; one no. $10-32$ thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 19 stamped on coil form; CBTL part/dwg NL-960090-14-19	Osc. Spurious Trap C-2013, Unit 1
$\begin{aligned} & \mathrm{L}-2003 \\ & \text { thru } \\ & \mathrm{L}-2050 \end{aligned}$		Not Used	
L-2051	For Reference Only	COIL ASSEMBLY, RF: main oscillator tank coils, $441.5 \mu \mathrm{~h}$; c/o L-2051A, L-2051B; p/o Z-2051	Main Osc. Tank Z-2051, Unit 3
L-2051A	For Reference Only	COIL, RADIO FREQUENCY: $432.5 \mu \mathrm{~h}+1 \%$ at $100 \mathrm{kc}, 3.45$ ohms DC resistance; 170 turns no. 5/36 Litz copper conductor, double fiber covered conductor, one winding, six layer bank wound, tapped at 29 and 119 turns, unshielded ceramic form, air core, o/a coil dimen 1-3/4 in. $\mathrm{lg}, 0.769 \mathrm{in}$. diam; four term, solder post type located outside coil form; mtd by two no. 6-32 NC-1 tapped holes spaced 1-1/2 in. c to c; coil term stamped O, C, K, G; CBTL part/dwg NL-960085-3; p/o L-2051	Main Osc. Tank Z-2051, Unit 3
L-2051B	For Reference Only	COIL, RADIO FREQUENCY: 24 to 42 turns of no. 23R AWG single resin covered copper magnet wire, to resonate at 100 kc in Z-2051, single layer wound, unshielded, ceramic form, air core, o/a coil form dimen 1-9/16 in. lg by 0.625 in . OD; two pigtail wire term located on either end of coil extending from terminal lugs; mtd by two no. 4-40 NC-1 tapped holes with $0.406 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ located on one end of coil form; CBTL part/ dwg NL-960187-2; p/o L-2051	Main Osc. Tank Trimmer Z-2051, Unit 3
L-2052	N16-C-72955-3796	COLL, RADIO FREQUENCY: $3.95 \mu \mathrm{~h}$ without slug, 4.2 to 5.4 $\mu \mathrm{h}$ with slug tuning; 23 turns no. 23R AWG single resin covered copper magnet wire, one winding, single layer, untapped, unshielded, ceramic form, air core, o/a coil dimen 1-9/16 in. $\mathbf{l g}$ by $5 / 8 \mathrm{in}$. diam; two wire pigtail term from term lugs located outside coil form at each end; mtd by two no. 4-40 NC-1 tapped holes with $0.406 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; CBTL part/dwg NL-960086-2	(91-92) kc Tank S-2051B, Unit 3
L-2053		Same as L-2052	(92-93) kc Tank S-2051B, Unit 3
L-2054		Same as L-2052	(93-94) kc Tank S-2051B, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2055		Same as L-2052	(94-95) kc Tank S-2051B, Unit 3
L-2056		Same as L-2052	(95-96) kc Tank S-2051B, Unit 3
L-2057		Same as L-2052	(96-97) kc Tank S-2051B, Unit 3
L-2058		Same as L-2052	(97-98) kc Tank S-2051B, Unit 3
L-2059		Same as L-2052	(98-99) kc Tank S-2051B, Unit 3
L-2060		Same as L-2052	(99-100) kc Tank S-2051B, Unit 3
L'2061	N16-C-76522-7262	COIL, RADIO FREQUENCY: $0.62 \mu \mathrm{~h}$ at 25 mc without slug, $0.67 \mu \mathrm{~h}$ to $1.2 \mu \mathrm{~h}$ with slug tuning; 13 turns no. 22 EF2 AWG copper wire, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil form dimen $1-5 / 16 \mathrm{in}$. lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two wire pigtail type term located outside coil form; mtd by one no. 10-32 thd bushing, $1 / 4 \mathrm{in} . \mathrm{lg}$; CBTL part/dwg NL-960120-2-4	100 Cycle Step S-2052B, Unit 3
L-2062	N16-C-76522-7251	COIL, RADIO FREQUENCY: $0.62 \mu \mathrm{~h}$ at 25 mc without slug, $0.67 \mu \mathrm{~h}$ to $1.2 \mu \mathrm{~h}$ with slug tuning; 12-1/2 turns no. 22 EF2 AWG copper wire, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil form dimen $1-5 / 16$ in. lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two wire pigtail term located outside coil form; mtd by one no. 10-32 thd bushing $1 / 4 \mathrm{in} . \lg ;$ CBTL part/dwg NL-960120-2-3	100 cycle Step S-2052B, Unit 3
L-2063		Same as L-2061	100 Cycle Step S-2052B, Unit 3
L-2064		Same as L-2062	100 Cycle Step S-2052B, Unit 3
L-2065		Same as L-2061	100 Cycle Step S-2052B, Unit 3
L-2066		Same as L-2062	100 Cycle Step S-2052B, Unit 3
L-2067		Same as L-2061	100 Cycle Step S-2052B, Unit 3
L-2068		Same as L-2062	100 Cycle Step S-2052B, Unit 3
L-2069		Same as L-2061	100 Cycle Step S-2052B, Unit 3
L-2070	N16-C-76215-4083	COIL, RADIO FREQUENCY: three turns no. 20 EF2 AWG copper wire, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil form	10 Cycle Step S-2053B, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2070 (cont) $\mathrm{L}-2071$	N16-C-76206-1246	dimen $1-5 / 16$ in. lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two wire pigtail term located outside coil form; mtd by one no. 10-32 thd bushing $1 / 4 \mathrm{in}$. lg; CBTL part/dwg NL-960120-2-2 COII, RADIO FREQUENCY: 2-1/2 turns no. 20 EF2 AWG copper wire, single enamel, double fibre covered conductor, one winding, single layer winding, untapped, unshielded, bakelite form, powdered iron core, o/a coil dimen 1-5/16 in. lg by 21/64 in. diam, o/a coil form dimen 1-5/16 in. lg, 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment at one end of coil form; two wire pigtail type term located outside coil form; mtd by one no. 10-32 thd bushing, 1/4 in. lg; CBTL part/dwg NL-960120-2-1	10 Cycle Step S-2053B, Unit 3
L-2072		Same as L-2070	10 Cycle Step S-2053B, Unit 3
L-2073		Same as L-2071	10 Cycle Step S-2053B, Unit 3
L-2074		Same as L-2070	10 Cycle Step S-2053B, Unit 3
L-2075		Same as L-2071	10 Cycle Step S-2053B, Unit 3
L-2076		Same as L-2070	10 Cycle Step S-2053B, Unit 3
L-2077		Same as L-2071	10 Cycle Step S-2053B, Unit 3
L-2078		Same as L-2070	10 Cycle Step S-2053B, Unit 3
L-2079		Same as L-2071	10 Cycle Step S-2053B, Unit 3
L-2080		Same as L-2052	Zero Adjustment, Unit 3
L-2081 thru L-2125		Not Used	
L-2126	N16-C-74464-9087	COIL, RADIO FREQUENCY: $1398 \mu \mathrm{~h}$ at 100 kc , 6. 54 ohms DC resistance; 314 turns no. 5/36 AWG Litz copper conductor, single enamel, double fiber covered conductor, one winding, 8 layer bank wound, tapped at 53 and 228 turns, unshielded, ceramic form, air core, coil dimen 1-3/4 in. lg by 0.769 in . diam; o/a coil form dimen 1-3/4 in. lg by 0.769 in . diam; four solder lug type term located outside coil form; two no. 6-32 NC-1 tapped mtg holes 0.531 in . c to c ; letters $\mathrm{O}, \mathrm{C}, \mathrm{K}, \mathrm{G}$, stamped on coil form next to term; CBTL part/dwg NL-9600843; p/o Z-2126	Osc. Tank Z-2126, Unit 12
$\mathrm{L}-2127$ thru L-2200		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2201	N16-C-74120-3665	COIL, RADIO FREQUENCY: $460 \mu \mathrm{~h}$ at $1000 \mathrm{cps}, 10.5$ ohms DC resistance; 245 turns no. 38 EF AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded; iron coil form, iron core, coil dimen excluding term $5 / 16 \mathrm{in}$. diam, $17 / 32 \mathrm{in}$. lg ; o/a coil form dimen 17/32 in. lg by $5 / 32 \mathrm{in}$. diam; two wire pigtail ${ }^{\text {th }}$ type term located axially at each end of coil form; term mtg; blue dot stamped on coil form; mfd by CAMQ part no. LPC-3-460F, part/dwg X-2017; per spec BuShips 16C 38, Grade B; CBTL part/dwg NL-960147-1-3	Low Pass Filter, Unit 6
L-2202		Same as L-2201	Low Pass Filter, Unit 6
L-2203		Not Used	
L-2204	N16-C-76657-2810	COIL, RADIO FREQUENCY: $70 \boldsymbol{\mu h}$ at 1.25 mc w/o slug, 74 $\mu \mathrm{h}$ to $113 \mu \mathrm{~h} \mathrm{w} /$ slug tuning, 2.50 ohms DC resistance; 102 turns no. 5/41 EF2 AWG Litz copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, $\alpha /$ a coil dimen excluding term 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; no. 16 stamped on coil form; CBTL part/ dwg NL-960090-14-16	210 kc Tank, S-2201D, Unit 6
L-2205		Same as L-2204	220 kc Tank S-2201D, Unit 6
L-2206		Same as L-2204	230 kc Tank S-2201D, Unit 6
L-2207	N16-C-76647-9526	COIL, RADIO FREQUENCY: $49 \mu \mathrm{~h}$ at $1.25 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, $52 \mu \mathrm{~h}$ to $83 \mu \mathrm{~h} \mathbf{w} /$ slug tuning, 2.1 ohms DC resistance; 88 turns no. 5/41 EF2 AWG Litz copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. $10-32$ thd mtg bushing $1 / 4 \mathrm{in}$. lg; no. 15 stamped on coil form; CBTL part/dwg NL-960090-14-15	240 kc Tank S-2201D, Unit 6
L-2208	-	Same as L-2207	250 kc Tank S-2201D, Unit 6
L-2209	N16-C-76646-1817	COIL, RADIO FREQUENCY: $35 \mu \mathrm{~h}$ at $2.5 \mathrm{mc} w / o$ slug, $38 \mu \mathrm{~h}$ to $66 \mu \mathrm{~h}$ w/slug tuning, 1.8 ohms DC resistance; 76 turns no. 34 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; no. 18 stamped on coil form; CBTL part/dwg NL-960090-14-18	260 kc Tank S-2201D, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2210		Same as L-2209	270 kc Tank S-2201D, Unit 6
L-2211	N16-C-76645-3441	COIL, RADIO FREQUENCY: $29 \mu \mathrm{~h}$ at $2.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, $32 \mu \mathrm{~h}$ to $53 \mu \mathrm{~h} w /$ slug tuning, 1.6 ohms DC resistance; 69 turns no. 5/41 EF2 AWG Litz copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; no. 14 stamped on coil form; CBTL part/dwg NL-960090-14-14	280 kc Tank S-2201D, Unit 6
L-2212		Same as L-2211	290 kc Tank S-2201D, Unit 6
L-2213		Not Used	
L-2214		Not Used	
L-2215		Same as L-2201	Osc. Plate Load V-2205, Unit 6
L-2216		Same as L-2201	Spurious Choke, Unit 6
$\begin{aligned} & \mathrm{L}-2217 \\ & \text { thru } \\ & \mathrm{L}-2300 \end{aligned}$		Not Used	
L-2301	N16-C-73092-8301	COIL, RADIO FREQUENCY: $10 \mu \mathrm{~h}$ at $7.9 \mathrm{mc}, 0.141 \mathrm{ohms}$ DC resistance; 36 turns no. 28 AWG copper conductor, single enamel covering, one winding, single layer wound, untapped, unshielded, powdered iron form, powdered iron core, coil dimen excluding term $5 / 8 \mathrm{in}$. lg by $7 / 32 \mathrm{in}$. diam, o/a coil form dimen $5 / 8$ in. \lg by $3 / 16$ in. diam; two wire lead term located axially; term mtd; CBTL part/dwg NL-961903-1	Spurious Filter, Unit 7
L-2302	N16-C-73811-4168	COIL, RADIO FREQUENCY: $120 \mu \mathrm{~h}$ at $1000 \mathrm{cps}, 7.5 \mathrm{ohms}$ DC resistance; 191 turns no. 38 AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, phenolic coil form, phenolic core, coil dimen excluding term, 5/16 in. diam by $17 / 32 \mathrm{in}$. lg , o/a coil form dimen $17 / 32 \mathrm{in} . \lg$ by $5 / 32 \mathrm{in}$. diam; two wire pigtail type term located axially at each end of coil form; term mtg; black dot stamped on coil form; CAMQ part no. LPB-3-120F, part/dwg no. X-2017; CBTL part/dwg NL-960147-1-2	Spurious Filter, Unit 7
L-2303		Same as L-2302	Spurious Filter, Unit 7
$\begin{aligned} & \mathrm{L}-2304 \\ & \text { thru } \\ & \mathrm{L}-2325 \end{aligned}$		Not Used	
L-2326		Same as L-2302	Osc. Plate Load V-2329, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2327	N16-C-76608-1101	COIL, RADIO FREQUENCY: $7.4 \mu \mathrm{~h}$ at 5.0 mc w/o slug, 8.0 $\mu \mathrm{h}$ to $15.6 \mu \mathrm{~h} \mathrm{w} /$ slug tuning, 1.7 ohms DC resistance; 36 turns no. 38 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen $1-5 / 16 \mathrm{in}$. \lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. $10-32$ thd mtg bushing $1 / 4 \mathrm{in}$. lg ; no. 17 stamped on coil form; CBTL part/dwg no. NL-960090-14-17 Same as L-2327	1.6 mc Tank S-2326G, Unit 8 1.7 mc Tank S-2326G, Unit 8
L-2329	N16-C-73108-1029	COIL, RADIO FREQUENCY: $5.8 \mu \mathrm{~h}$ at 5.0 mc w/o slug, 6.1 $\mu \mathrm{h}$ to $11.5 \mu \mathrm{~h} \mathbf{w} /$ slug tuning, 1.6 ohms DC resistance; 36 turns no. 38 EF AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term not grounded located outside coil form; one no. $10-32$ thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 20 stamped on coil form; CBTL part/dwg NL-960090-14-20	1.8 mc Tank S-2326G, Unit 8
L-2330		Same as L-2329	1.9 mc Tank S-2326G, Unit 8
L-2331	N16-C-72136-6063	COIL, RADIO FREQUENCY: $4.3 \mu \mathrm{~h}$ at $5.0 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, 4.5 $\mu \mathrm{h}$ to $8.6 \mu \mathrm{~h}$ w/slug tuning, 1.25 ohms DC resistance; 27 turns no. 38 EF2 AWG copper wire, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term not grounded located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; CBTL part/ dwg NL-960090-14-22	2.0 mc Tank S-2326G, Unit 8
L-2332		Same as L-2331	2.1 mc Tank S-2326G, Unit 8
L-2333	N16-C-71581-1126	COIL, RADIO FREQUENCY: $3.1 \mu \mathrm{~h}$ at $5.0 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, 3.3 $\mu \mathrm{h}$ to $6.0 \mu \mathrm{~h} \mathrm{w} / \mathrm{slug}$ tuning, 1.0 ohms DC resistance; 22 turns no. 38 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen $1-5 / 16 \mathrm{in}$. lg by $21 / 64 \mathrm{in}$. diam, o/a coil form dimen $1-5 / 16$ in. \lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term not grounded located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; color coded red-brown on coil form; CBTL part/dwg NL-960090-14-21	2.2 mc Tank S-2326G, Unit 8
L-2334		Same as L-2333	2.3 mc Tank S-2326G, Unit 8
L-2335		Same as L-2333	2.4 mc Tank S-2326G, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2336	N16-C-73615-2870	COIL, RADIO FREQUENCY: $63 \mu \mathrm{~h}$ at $1000 \mathrm{cps}, 5.5$ ohms DC resistance; 138 turns no. 38 EF AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, phenolic coil form, phenolic core, coil dimen excluding term $5 / 16 \mathrm{in}$. diam by $17 / 32 \mathrm{in} . \mathrm{lg}$; o/a coil form dimen $17 / 32 \mathrm{in} . \lg$ by $5 / 32 \mathrm{in}$. diam; two wire pigtail term located axially at each end of coil form; term mtd; red dot stamped on coil form; CAMQ part no. LPB-3-63F, part/dwg no. X-2017; CBTL part/dwg NL-960147-1-1	Low Pass Filter, Unit 8
L-2337		Same as L-2336	Low Pass Filter, Unit 8
L-2338	N16-C-76533-5681	COIL, RADIO FREQUENCY: $1.19 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can; 10 turns no. 32 EF-2 AWG copper wire, single enamel, double polyamide fiber covered conductor, one winding, single layer wound, untapped, shielded, cylindrical aluminum can, molded thermosetting plastic form, powdered iron core, coil dimen excluding term, mtg attachments and tuning devices $2-25 / 32 \mathrm{in}$. lg by 0.928 in . diam; o/a coil form dimen $2-7 / 32 \mathrm{in} . \lg$ by 0.828 in . diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; four solder lug type term located outside coil form; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \mathrm{lg}$ spaced 31/32 in. c to c; part no. L-2338 stamped on coil form and shield can; CBTL part/dwg NL-960140-14-32	(16.6-17.5) mc Filter, Unit 8
L-2339		Same as L-2338	(16.6-17.5) mc Filter, Unit 8
L-2340		Same as L-2302	Spurious Choke, Unit 8
$\begin{aligned} & \mathrm{L}-2341 \\ & \text { thru } \\ & \mathrm{L}-2425 \end{aligned}$		Not Used	
L-2426	N16-C-76522-3309	COIL, RADIO FREQUENCY: $0.53 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, $0.56 \mu \mathrm{~h}$ to $0.95 \mu \mathrm{~h} \mathrm{w} /$ slug tuning; 8 turns no. 30 EF2 AWG copper conductor, single enamel, double polyamide fiber covered, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam, o/a coil form dimen $1-5 / 16 \mathrm{in}$. lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; no 1 stamped on coil form; CBTL part/dwg NL-960090-14-1	(22-23) mc Tuning S-2426C, Unit 9
L-2427	N16-C-76520-8925	COIL, RADIO FREQUENCY: $0.40 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, $0.45 \mu \mathrm{~h}$ to $0.70 \mu \mathrm{~h} \mathrm{w} /$ slug tuning; 7 turns no. 28 EF2 AWG copper conductor, single enamel, double polyamide fiber covered, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 5 stamped on coil form; CBTL part/dwg NL-960090-14-5	(27-28) mc Tuning S-2426C, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2428	N16-C-76520-3836	COIL, RADIO FREQUENCY: $0.21 \mu \mathrm{~h}$ at $25 \mathrm{mc} w / \mathrm{o}$ slug, 0.23 $\mu \mathrm{h}$ to $0.34 \mu \mathrm{~h} \mathbf{w} /$ slug tuning; 5 turns no. 22 EF2 AWG copper conductor, single enamel, double polyamide fiber covered, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg; no. 3 stamped on coil form; CBTL part/dwg NL-960090-14-3	(32-33) mc Tuning S-2426C, Unit 9
L-2429	N16-C-76520-2180	COIL, RADIO FREQUENCY: 0.16μ hat $25 \mathrm{mc} w / \mathrm{o}$ slug, 0.17 $\mu \mathrm{h}$ to $0.25 \mu \mathrm{~h} \mathbf{w} /$ slug tuning; 4 turns no. 22 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing 1/4 in. lg; no. 4 stamped on coil form; CBTL part/dwg NL-960090-14-4	$\begin{aligned} & \text { (37-38) mc } \\ & \text { Tuning } \mathrm{S}-2426 \mathrm{C} \text {, } \\ & \text { Unit } 9 \end{aligned}$
L-2430		Same as L-2302	RF Plate Choke V-2426, Unit 9
L-2431		Same as L-2426	$\begin{aligned} & (22-23) \mathrm{mc} \\ & \text { Tuning S-2426D, } \\ & \text { Unit } 9 \end{aligned}$
L-2432		Same as L-2427	$(27-28) \mathrm{mc}$ Tuning S-2426D, Unit 9
L-2433		Same as L-2428	$(32-33) \mathrm{mc}$ Tuning S-2426D, Unit 9
L-2434		Same as L-2429	(37-38) mc Tuning S-2426D, Unit 9
L-2435		Same as L-2302	RF Plate Choke V-2427, Unit 9
L-2436		Same as L-2426	$\begin{aligned} & (22-23) \mathrm{mc} \\ & \text { Tuning S-2426E, } \\ & \text { Unit } 9 \end{aligned}$
L-2437		Same as L-2427	$\begin{aligned} & (27-28) \mathrm{mc} \\ & \text { Tuning S-2426E, } \\ & \text { Unit } 9 \end{aligned}$
L-2438	.	Same as L-2428	$\begin{aligned} & (32-33) \mathrm{mc} \\ & \text { Tuning S-2426E, } \\ & \text { Unit } 9 \end{aligned}$
L-2439		Same as L-2429	$(37-38) \mathrm{mc}$ Tuning S-2426E, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2440		Same as L-2302	RF Plate Choke V-2428, Unit 9
L-2441		Same as L-2426	$\begin{aligned} & (22-23) \mathrm{mc} \\ & \text { Tuning S-2426F, } \\ & \text { Unit } 9 \end{aligned}$
L-2442		Same as L-2427	$\begin{aligned} & (27-28) \mathrm{mc} \\ & \text { Tuning } \mathrm{S}-2426 \mathrm{~F} \text {, } \\ & \text { Unit } 9 \end{aligned}$
L-2443		Same as L-2428	(32-33) mc Tuning S-2426F, Unit 9
L-2444		Same as L-2429	$\begin{aligned} & (37-38) \mathrm{mc} \\ & \text { Tuning S-2426F, } \\ & \text { Unit } 9 \end{aligned}$
L-2445		Same as L-2302	RF Plate Choke V-2429, Unit 9
L-2446		Same as L-2302	Spurious Filter, Unit 9
$\begin{aligned} & \mathrm{L}-2447 \\ & \text { thru } \\ & \mathrm{L}-2525 \end{aligned}$		Not Used	
L-2526	N16-C-76570-2892	COLL, RADIO FREQUENCY: $3.1 \mu \mathrm{~h}$ at $5.0 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, 3.3 $\mu \mathrm{h}$ to $6.0 \mu \mathrm{~h}$ w/slug tuning, 1.0 ohms DC resistance; 22 turns no. 38 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, one pie, universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. \lg by 21/64 in. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term, 1 term grounded, located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \lg$; no. 12 stamped on coil form; CBTL part/ dwg NL-960090-14-12	$\begin{aligned} & 7 \text { mc Tuning } \\ & \text { S-2526F, Unit } 10 \end{aligned}$
L-2527	N16-C-76559-6401	COIL, RADIO FREQUENCY: $2.10 \mu \mathrm{~h}$ at $7.9 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, 2.4 $\mu \mathrm{h}$ to $4.2 \mu \mathrm{~h}$ w/slug tuning; 17 turns no. 38 EF AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by $21 / 64$ in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing 1/4 in. lg; no. 6 stamped on coil form; CBTL part/dwg NL-960090-14-6	$\begin{aligned} & 8 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{~F}, \text { Unit } 10 \end{aligned}$
L-2528	N16-C-76530-4083	COIL, RADIO FREQUENCY: $0.93 \mu \mathrm{~h}$ at $7.9 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug, 1.0 $\mu \mathrm{h}$ to $1.9 \mu \mathrm{~h} \mathrm{w} /$ slug tuning; 12 turns no. 32 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen 1-5/16 in. \lg by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type	13 mc Tuning S-2526F, Unit 10

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{L}-2528 \\ & \text { (cont) } \end{aligned}$		term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 8 stamped on coil form; CBTL part/dwg NL-960090-14-8	
L-2529	N16-C-76524-3971	COIL, RADIO FREQUENCY: $0.75 \mu \mathrm{~h}$ at 12.5 mc w/o slug, 0.8 $\mu \mathrm{h}$ to $1.4 \mu \mathrm{~h}$ with slug tuning; 10 turns no. 32 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \lg$; no. 9 stamped on coil form; CBTL part/dwg NL-960090-14-9	14 mc Tuning S-2526F, Unit 10
L-2530		Same as L-2426	16 mc Tuning S-2526F, Unit 10
L-2531		Same as L-2426	17 mc Tuning S-2526F, Unit 10
L-2532		Same as L-2426	18 mc Tuning S-2526F, Unit 10
L-2533		Same as L-2426	19 mc Tuning S-2526F, Unit 10
L-2534		Same as L-2427	20 mc Tuning S-2526F, Unit 10
L-2535		Same as L-2427	21 mc Tuning S-2526F, Unit 10
L-2536	N16-C-76520-5969	COIL, RADIO FREQUENCY: $0.31 \mu \mathrm{~h}$ at 25 mc w/o slug, 0.33 $\mu \mathrm{h}$ to $0.55 \mu \mathrm{~h}$ with slug tuning; 7 turns no. 22 EF2 AWG copper conductor, single enamel, double polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen $1-5 / 16 \mathrm{in}$. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. 10-32 thd mtg bushing 1/4 in. lg; no. 2 stamped on coil form; CBTL part/dwg NL-960090-14-2	$\begin{aligned} & 22 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{~F}, \text { Unit } 10 \end{aligned}$
L-2537		Same as L-2526	7 mc Tuning S-2526E, Unit 10
L-2538		Same as L-2527	8 mc Tuning S-2526E, Unit 10
L-2539		Same as L-2528	13 mc Tuning S-2526E, Unit 10.
L-2540		Same as L-2529	14 mc Tuning S-2526E, Unit 10
L-2541		Same as L-2426	16 mc Tuning S-2526E, Unit 10
L-2542		Same as L-2426	17 mc Tuning S-2526E, Unit 10

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock NL:mbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2543		Same as L-2426	$\begin{aligned} & 18 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{E} \text {, Unit } 10 \end{aligned}$
L-2544		Same as L-2426	$\begin{aligned} & 19 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{E} \text {, Unit } 10 \end{aligned}$
L-2545		Same as L-2427	$\begin{aligned} & 20 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{E} \text {, Unit } 10 \end{aligned}$
L-2546		Same as L-2427	21 mc Tuning S-2526E, Unit 10
L-2547		Same as L-2536	$\begin{aligned} & 22 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{E} \text {, Unit } 10 \end{aligned}$
L-2548		Same as L-2526	$\begin{aligned} & 7 \mathrm{mc} \text { Tuning } \\ & \text { S-2526D, Unit } 10 \end{aligned}$
L-2549		Same as L-2527	$\begin{aligned} & 8 \mathrm{mc} \text { Tuning } \\ & \text { S-2526D, Unit } 10 \end{aligned}$
L-2550		Same as L-2528	$\begin{aligned} & 13 \mathrm{mc} \text { Tuning } \\ & \text { S-2526D, Unit } 10 \end{aligned}$
L-2551		Same as L-2529	14 mc Tuning S-2526D, Unit 10
L-2552		Same as L-2426	$\begin{aligned} & 16 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{D} \text {, Unit } 10 \end{aligned}$
L-2553		Same as L-2426	17 mc Tuning S-2526D, Unit 10
L-2554		Same as L-2426	$\begin{aligned} & 18 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{D} \text {, Unit } 10 \end{aligned}$
L-2555		Same as L-2426	$\begin{aligned} & 19 \mathrm{mc} \text { Tuning } \\ & \text { S-2526D, Unit } 10 \end{aligned}$
L-2556		Same as L-2427	20 mc Tuning S-2526D, Unit 10
L-2557		Same as L-2427	$\begin{aligned} & 21 \mathrm{mc} \text { Tuning } \\ & \text { S-2526D, Unit } 10 \end{aligned}$
L-2558		Same as L-2536	$\begin{aligned} & 22 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{D} \text {, Unit } 10 \end{aligned}$
L-2559		Same as L-2526	$\begin{aligned} & 7 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{C} \text {, Unit } 10 \end{aligned}$
L-2560		Same as L-2527	$\begin{aligned} & 8 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{C} \text {, Unit } 10 \end{aligned}$
L-2561		Same as L-2528	$\begin{aligned} & 13 \mathrm{mc} \text { Tuning } \\ & \text { S-2526C, Unit } 10 \end{aligned}$
L-2562		Same as L-2529	$\begin{aligned} & 14 \mathrm{mc} \text { Tuning } \\ & \text { S-2526C, Unit } 10 \end{aligned}$
L-2563		Same as L-2426	$\begin{aligned} & 16 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{C} \text {, Unit } 10 \end{aligned}$

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps \$tandard Navy Air Force	Name and Description	Locating Function
L-2564		Same as L-2426	17 mc Tuning S-2526C, Unit 10
L-2565		Same as L-2426	18 mc Tuning S-2526C, Unit 10
L-2566		Same as L-2426.	19 mc Tuning S-2526C, Unit 10
L-2567		Same as L-2427	20 mc Tuning S-2526C, Unit 10
L-2568		Same as L-2427	21 mc Tuning S-2526C, Unit 10
L-2569		Same as L-2536	22 mc Tuning S-2526C, Unit 10
L-2570		Same as L-2526	$\begin{aligned} & 7 \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2526 \mathrm{~B}, \text { Unit } 10 \end{aligned}$
L-2571		Same as L-2527	$\begin{aligned} & 8 \mathrm{mc} \text { Tuning } \\ & \text { S-2526B, Unit } 10 \end{aligned}$
L-2572		Same as L-2528	13 mc Tuning S-2526B, Unit 10
L-2573		Same as L-2529	14 mc Tuning S-2526B, Unit 10
L-2574		Same as L-2529	16 mc Tuning S-2526B, Unit 10
L-2575		Same as L-2426	17 mc Tuning S-2526B, Unit 10
L-2576		Same as L-2426	18 mc Tuning S-2526B, Unit 10
L-2577		Same as L-2426	19 mc Tuning S-2526B, Unit 10
L-2578		Same as L-2427	20 mc Tuning S-2526B, Unit 10
L-2579		Same as L-2427	21 mc Tuning S-2526B, Unit 10
L-2580		Same as L-2536	22 mc Tuning S-2526B, Unit 10
L-2581		Same as L-2302	Plate Choke V-2526, Unit 10
L-2582		Same as L-2302	Plate Choke V-2527, Unit 10
L-2583		Same as L-2302	Plate Choke V-2528, Unit 10
L-2584		Same as L-2302	Plate Choke V-2529, Unit 10

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Nary Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { L-2585 } \\ & \text { thru } \\ & \mathrm{L}-2625 \end{aligned}$		Not Used	
L-2626		Same as L-2336	Low Pass Filter V-2627, Unit 11A
L-2627		Same as L-2336	Low Pass Filter V-2627, Unit 11A
L-2628		Same as L-2336	Low Pass Filter V-2627, Unit 11A
L-2629		Same as L-2209	Video Compensation, Unit 11A
L-2630		Same as L-2209	Video Compensation, Unit 11A
$\begin{aligned} & \mathrm{L}-2631 \\ & \text { thru } \\ & \mathrm{L}-2650 \end{aligned}$		Not Used	
L-2651	N16-C-76538-4601	COIL, RADIO FREQUENCY: $1.25 \mu \mathrm{~h}$ at 7.9 mc w/o slug, 1.4 $\mu \mathrm{h}$ to $2.6 \mu \mathrm{~h} w /$ slug tuning; 15 turns no. 32 EF2 AWG copper conductor, single enamel, double nylon covered, one winding, single layer wound, untapped, unshielded, phenolic coil form, powdered iron core, coil dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen 1-5/16 in. lg by 21/64 in. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term located outside coil form; one no. $10-32$ thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 7 stamped on coil form; CBTL part/dwg NL-960090-14-7	(10-11) mc Tuning S:2651C, Unit 11B
L-2652		Same as L-2651	(11-12) mc Tuning S-2651C, Unit 11B
L-2653		Same as L-2528	(12-13) mc Tuning S-2651C, Unit 11B
L-2654		Same as L-2529	(13-14) mc Tuning S-2651C, Unit 11B
L-2655		Same as L-2426	(14-15) mc Tuning S-2651C, Unit 11B
L-2656		Same as L-2426	($15-16$) mc Tuning S-2651C, Unit 11B
L-2657	N16-C-76601-1901	COIL, RADIO FREQUENCY: $5.8 \mu \mathrm{~h}$ at 5.0 mc w/o slug, 6.1 $\mu \mathrm{h}$ to $11.5 \mu \mathrm{~h} \mathrm{w} /$ slug tuning, 1.6 ohms DC resistance; 36 turns no. 38 EF AWG copper conductor, single enamel, single polyamide fiber covered conductor, one winding, single layer wound, untapped, unshielded, bakelite form, powdered iron core, o/a coil dimen 1-5/16 in. lg by 21/64 in. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located one end of coil form; two solder lug type term, 1 term grounded, located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in} . \mathrm{lg}$; no. 10 stamped on coil form; CBTL part/dwg NL-960090-14-10	$\begin{aligned} & \text { (6-7) mc Tuning } \\ & \text { S-2651C, Unit } 11 \mathrm{~B} \end{aligned}$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2658	N16-C-76581-2344	COIL, RADIO FREQUENCY: $4.3 \mu \mathrm{~h}$ at 5.0 mc w/o slug, 4.5 $\mu \mathrm{h}$ to $8.6 \mu \mathrm{~h} \mathrm{w} / \mathrm{slug}$ tuning, 1.25 ohms DC resistance; 27 turns no. 38 EF2 AWG copper wire, single enamel, double polyamide fiber covered conductor, one winding, one pie universal wound, untapped, unshielded, bakelite form, powdered iron core, coil dimen 1-5/16 in. lg by $21 / 64 \mathrm{in}$. diam; o/a coil form dimen $1-5 / 16 \mathrm{in} . \lg$ by $21 / 64 \mathrm{in}$. diam; adjustable tuning, adjustable iron slug, screwdriver adjustment located at one end of coil form; two solder lug type term, 1 term grounded, located outside coil form; one no. 10-32 thd mtg bushing $1 / 4 \mathrm{in}$. lg ; CBTL part/dwg NL-960090-14-13	(7-8) mc Tuning S-2651C, Unit 11B
L-2659		Same as L-2526	(8-9) mc Tuning S-2651C, Unit 11B
L-2660		Same as L-2527	(9-10) mc Tuning S-2651C, Unit 11B
L-2661		Same as L-2651	($10-11$) mc Tuning S-2651D, Unit 11B
L-2662		Same as L-2651	(11-12) mc Tuning S-2651D, Unit 11B
L-2663		Same as L-2528	(12-13) mc Tuning S-2651D, Unit 11B
L-2664		Same as L-2529	(13-14) mc Tuning S-2651D, Unit 11B
L-2665		Same as L-2426	(14-15) mc Tuning S-2651D, Unit 11B
L-2666		Same as L-2426	(15-16) mc Tuning S-2651D, Unit 11B
L-2667		Same as L-2657	(6-7) mc Tuning S-2651D, Unit 11B
L-2668		Same as L-2658	(7-8) mc Tuning S-2651D, Unit 11B
L-2669		Same as L-2526	(8-9) mc Tuning S-2651D, Unit 11B
L-2670		Same as L-2527	(9-10) mc Tuning S-2651D, Unit 11B
L-2671		Same as L-2302	Plate Choke V-2651, Unit 11B
L-2672		Same as L-2302	Plate Choke V-2652, Unit 11B
L-2673		Same as L-2302	Plate Choke V-2653, Unit 11B
L-2674		Same as L-2302	Plate Choke V-2654, Unit 11B
L-2675		Same as L-2651	(10-11) mc Tuning S-2651E, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2676		Same as L-2651	(11-12) mc Tuning S-2651E, Unit 11B
L-2677		Same as L-2528	(12-13) mc Tuning $\mathrm{S}-2651 \mathrm{E}$, Unit 11 B
L-2678		Same as L-2529	(13-14) mc Tuning S-2651E, Unit 11B
L-2679		Same as L-2426	(14-15) mc Tuning S-2651E, Unit 11B
L-2680		Same as L-2426	$\begin{aligned} & \text { (15-16) mc Tuning } \\ & \text { S-2651E, Unit 11B } \end{aligned}$
L-2681		Same as L-2657	$\begin{aligned} & \text { (6-7) mc Tuning } \\ & \mathrm{S}-2651 \mathrm{E}, \text { Unit } 11 \mathrm{~B} \end{aligned}$
L-2682		Same as L-2658	$\begin{aligned} & (9-8) \mathrm{mc} \text { Tuning } \\ & \mathrm{S}-2651 \mathrm{E}, \text { Unit } 11 \mathrm{~B} \end{aligned}$
L-2683		Same as L-2526	$\begin{aligned} & \text { (8-9) mc Tuning } \\ & \text { S-2651E, Unit 11B } \end{aligned}$
L-2684		Same as L-2527	$\begin{aligned} & \text { (9-10) mc Tuning } \\ & \mathrm{S}-2651 \mathrm{E} \text {, Unit } 11 \mathrm{~B} \end{aligned}$
L-2685		Same as L-2651	$\begin{aligned} & \text { (10-11) mc Tuning } \\ & \mathrm{S}-2651 \mathrm{~F} \text {, Unit } 11 \mathrm{~B} \end{aligned}$
L-2686		Same as L-2651	(11-12) mc Tuning S-2651F, Unit 11B
L-2687		Same as L-2528	$\begin{aligned} & \text { (12-13) mc Tuning } \\ & \mathrm{S}-2651 \mathrm{~F} \text {, Unit } 11 \mathrm{~B} \end{aligned}$
L-2688		Same as L-2529	(13-14) mc Tuning S-2651F, Unit 11B
L-2689		Same as L-2426	(14-15) mc Tuning S-2651F, Unit 11B
L-2690		Same as L-2426	(15-16) mc Tuning $\mathrm{S}-2651 \mathrm{~F}$, Unit 11B
L-2691		Same as L-2657	(6-7) mc Tuning S-2651F, Unit 11B
L-2692		Same as L-2658	$\begin{aligned} & \text { (7-8) mc Tuning } \\ & \text { S-2651F, Unit } 11 \mathrm{~B} \end{aligned}$
L-2693		Same as L-2526	(8-9) mc Tuning S-2651F, Unit 11B
L-2694		Same as L-2527	(9-10) mc Tuning S-2651F, Unit 11B
$\begin{aligned} & \mathrm{L}-2695 \\ & \text { thru } \\ & \mathrm{L}-2800 \end{aligned}$		Not Used	
L-2801		Same as L-2426	(20-21) mc Tuning S-2801B, Unit 11C

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2802		Same as L-2426	(21-22) mc Tuning S-2801B, Unit 11C
L-2803		Same as L-2426	(22-23) mc Tuning S-2801B, Unit 11C
L-2804		Same as L-2427	(23-24) mc Tuning S-2801B, Unit 11C
L-2805		Same as L-2427	(24-25) mc Tuning S-2801B, Unit 11C
L-2806		Same as L-2536	(25-26) mc Tuning S-2801B, Unit 11C
L-2807		Same as L-2528	($16-17$) mc Tuning S-2801B, Unit 11C
L-2808		Same as L-2529	(17-18) mc Tuning S-2801B, Unit 11C
L-2809		Same as L-2529	($18-19$) mc Tuning S-2801B, Unit 11C
L-2810		Same as L-2529	(19-20) mc Tuning S-2801B, Unit 11C
L-2811		Same as L-2426	(20-21) mc Tuning S-2801C, Unit 11C
L-2812		Same as L-2426	$\begin{aligned} & \text { (21-22) mc Tuning } \\ & \text { S-2801C, Unit 11C } \end{aligned}$
L-2813		Same as L-2426	(22-23) mc Tuning S-2801C, Unit 11C
L-2814		Same as L-2427	(23-24) mc Tuning S-2801C, Unit 11C
L-2815		Same as L-2427	(24-25) mc Tuning S-2801C, Unit 11C
L-2816		Same as L-2536	(25-26) mc Tuning S-2801C, Unit 11C
L-2817		Same as L-2528	(16-17) mc Tuning S-2801C, Unit 11C
L-2818		Same as L-2529	(17-18) mc Tuning S-2801C, Unit 11C
L-2819		Same as L-2529	(18-19) mc Tuning S-2801C, Unit 11C
L-2820		Same as L-2529	(19-20) mc Tuning S-2801C, Unit 11C
L-2821		Same as L-2302	RF Plate Choke V-2801, Unit 11C
L-2822		Same as L-2302	RF Plate Choke V-2802, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2823		Same as L-2302	RF Plate Choke V-2803, Unit 11C
L-2824		Same as L-2302	RF Plate Choke V-2804, Unit 11C
L-2825		Same as L-2427	(24-25) mc Tuning S-2801D, Unit 11C
L-2826		Same as L-2536	(25-26) mc Tuning S-2801D, Unit 11C
L-2827		Same as L-2528	($16-17$) mc Tuning S-2801D, Unit 11C
L-2828		Same as L-2528	($17-18$) mc Tuning S-2801D, Unit 11C
L-2829		Same as L-2529	(18-19) mc Tuning S-2801D, Unit 11C
L-2830		Same as L-2529	(19-20) mc Tuning S-2801D, Untt 11C
L-2831		Same as L-2426	(20-21) mc Tuning S-2801E, Unit 11C
L-2832		Same as L-2426	(21-22) mc Tuning S-2801E, Unit 11C
L-2833		Same as L-2426	(22-23) mc Tuning S-2801E, Unit 11C
L-2834		Same as L-2427	(23-24).mc Tuning S-2801E, Unit 11C
L-2835		Same as L-2427	(24-25) mc Tuning S-2801E, Unit 11C
L-2836		Same as L-2536	(25-26) mc Tuning S-2801E, Unit 11C
L-2837		Same as L-2528	($16-17$) mc Tuning S-2801E, Unit 11C
L-2838		Same as L-2528	(17-18) mc Tuning S-2801E, Unit 11C
L-2839		Same as L-2529	(18-19) mc Tuning S-2801E, Unit 11C
L-2840		Same as L-2529	(19-20) mc Tuning S-2801E, Unit 11C
L-2841		Same as L-2426	(20-21) mc Tuning S-2801D, Unit 11C
L-2842		Same as L-2¢26	(21-22) mc Tuning S-2801D, Unit 11C
L-2843		Same as L-2426	(22-23) mc Tuning S-2801D, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-2844		Same as L-2427	(23-24) mc Tuning S-2601D, Unit 11C
L-2845		Same as L-2658	$\begin{aligned} & 20 \mathrm{mc} \text { Trap } \\ & \text { S-2801B, Unit 11C } \end{aligned}$
L-2846		Same as L-2658	$\begin{aligned} & 20 \text { mc Trap } \\ & \text { S-2801C, Unit 11C } \end{aligned}$
N-2916	Low Failure Item	CARD, dial number: aluminum, black $w /$ white characters spaced 60° apart; 0.064 in . thk by $2-1 / 4 \mathrm{in}$. diam w/0. 4370 in. diam hole; numerals equally spaced in CCW direction; CBTL part/dwg NL-900622-1	For S-2996 "FF"
N-2917	Low Failure Item	CARD, dial number: aluminum, black w/white characters spaced 60° apart; 0.064 in . thk by $2-1 / 4 \mathrm{in}$. diam w/0. 4370 in. diam hole; numerals 0 to 3 incl reading CCW; CBTL part/dwg NL-900621-1	Freq Selection "AA"
N-2918	Low Failure Item	CARD, dial number: aluminum, black w/white characters spaced 30° apart; 0.064 in . thk by 2-1/4 in. diam w/0. 4370 in . diam hole; numerals reading CCW from 0 to 10 incl ; CBTL part/dwg NL-900620-1	Freq Selection "BB"
N-2918. 1		Same as N-2918	10 cps Indicator "EE"
N-2919	Low Failure Item	CARD, dial number: aluminum; black $w /$ white characters spaced 30° apart; 0.064 in . thk by $2-1 / 4 \mathrm{in}$. diam w/0. 4370 in . diam hole; numerals 0 to 9 incl reading CCW; CBTL part/dwg NL-900635-1	100 cps Indicator "DD"
N-2919. 1		Same as N-2919	kc Indicator "CC"
N-2919. 2		Same as N-2919	10 kc Indicator "JJ"
N-2919. 3		Same as N-2919	100 kc Indicator "HH"
N-2919. 4		Same as N-2919	mc Indicator "GG"
0-2001	N16-S-34520-3864	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; $1-3 / 8 \mathrm{in} . \lg , 0.958 \mathrm{in}$. diam o/a dimen; bayonet mtg; per spec JAN-S-28A; JAN type TS102U01; same as 0-1001	$\begin{aligned} & \text { u/w XV-2001, } \\ & \text { Unit } 1 \end{aligned}$
0-2002	N16-S-34576-6514	SHIELD, ELECTRON TUBE: brass, nickel pl; cylindrical shape; 1-15/16 in. lg; 1.093 in . diam o/a dimen; bayonet mtg; per spec JAN-S-28A; JAN type TS103U02; same as O-1002	$\begin{aligned} & \text { u/w XV-2002, } \\ & \text { Unit } 1 \end{aligned}$
0-2003		Same as 0-2002	$\begin{aligned} & \text { u/w XV-2003, } \\ & \text { Unit } 1 \end{aligned}$
$\begin{aligned} & \text { O-2004 } \\ & \text { thru } \\ & \text { O-2030 } \end{aligned}$		Not Used	
0-2031		Same as 0-2001	u/w XV-2031, Unit 2
O-2032		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2032, } \\ & \text { Unit } 2 \end{aligned}$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

AN/SRT 14, 14A, 15, 15A, 16, 16A
TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-2102		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2102, } \\ & \text { Unit } 4 \end{aligned}$
$\begin{aligned} & 0-2103 \\ & \text { thru } \\ & 0-2125 \end{aligned}$		Not Used	
0-2126		Same as 0-2051	$\begin{aligned} & u / w \text { XV-2126, } \\ & \text { Unit } 12 \end{aligned}$
0-2127	Low F'ailure Item	SHIELD, ELECTRON TUBE: brass, cad pl; cylindrical shape; $1-5 / 16 \mathrm{in} . \lg , 1-1 / 8 \mathrm{in}$. diam; $1 \mathrm{in} .-20$ extra fine thd mtg; CBTL part/dwg NL-960344-1	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2127, } \\ & \text { Ûnit } 12 \end{aligned}$
0-2128		Same as 0-2051	$\begin{aligned} & \text { w/w XV-2128, } \\ & \text { Unit } 12 \end{aligned}$
0-2129 thru O-2150		Not Used	
0-2151		Same as 0-2001	u/w XV-2151, Unit 5
0-2152		Same as 0-2001	u/w XV-2152, Unit 5
0-2153		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2153, } \\ & \text { Unit } 5 \end{aligned}$
0-2154		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2154, } \\ & \text { Unit } 5 \end{aligned}$
0-2155 thru O-2200		Not Used	
0-2201		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2201, } \\ & \text { Unit } 6 \end{aligned}$
0-2202		Same as 0-2002	$\begin{aligned} & \text { u/w XV-2202, } \\ & \text { Unit } 6 \end{aligned}$
0-2203		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2203, } \\ & \text { Unit } 6 \end{aligned}$
0-2204		Same as 0-2001	$\begin{aligned} & u / w \text { XV-2204, } \\ & \text { Unit } 6 \end{aligned}$
0-2205		Same as 0-2051	u/w XV-2205, Unit 6
0-2206		Same as O-2001	u/w XV-2206, Unit 6
0-2207		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2207, } \\ & \text { Unit } 6 \end{aligned}$
0-2208		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2208, } \\ & \text { Unit } 6 \end{aligned}$
0-2209		Same as O-2001	u/w XV-2209, $\text { Unit } 6$

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-2210	N17-C-99999-1189	COUPLING, SHAFT, FLEXIBLE: female; straight bore; brass, cad pl; 1 in . OD by $9 / 16 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; incl floating coupling; $1 / 8 \mathrm{in}$. by $1 / 4 \mathrm{in}$. keyway across diam; 0.250 in . by 0.187 in . axial mtg slot indexed 30°; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of keyway; CBTL part/dwg NL-900094-1	u/w S-2201, Unit 6
0-2211		Same as 0-2053	u/w S-2201, Unit 6
0-2212		Same as 0-2054	u/w S-2201, Unit 6
$\begin{aligned} & \mathrm{O-2213} \\ & \text { thru } \\ & \mathrm{O-2300} \end{aligned}$		Not Used	
0-2301		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2301, } \\ & \text { Unit } 7 \end{aligned}$
0-2302		Same as 0-2001	u/w XV-2302, Unit 7
0-2303		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2303, } \\ & \text { Unit } 7 \end{aligned}$
0-2304		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2304, } \\ & \text { Unit } 7 \end{aligned}$
$\begin{aligned} & 0-2305 \\ & \text { thru } \\ & 0-2325 \end{aligned}$		Not Used	
0-2326		Same as 0-2002	$\begin{aligned} & u / w \text { XV-2326, } \\ & \text { Unit } 8 \end{aligned}$
0-2327		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2327, } \\ & \text { Unit } 8 \end{aligned}$
0-2328		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2328, } \\ & \text { Unit } 8 \end{aligned}$
0-2329		Same as 0-2051	$\begin{aligned} & \text { u/w XV-2329, } \\ & \text { Unit } 8 \end{aligned}$
0-2330		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2330, } \\ & \text { Unit } 8 \end{aligned}$
0-2331		Same as 0-2001	$\begin{aligned} & u / w ~ X V-2331, \\ & \text { Unit } 8 \end{aligned}$
0-2332		Same as 0-2001	u/w XV-2332, Unit 8
0-2333		Same as 0-2001	u/w XV-2333, Unit 8
0-2334		Same as 0-2051	$\begin{aligned} & u / w ~ X V-2334, \\ & \text { Unit } 8 \end{aligned}$
0-2335		Same as 0-2053	u/w S-2326, Unit 8
0-2336		Same as 0-2054	u/w S-2326, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-2337	N17-C-98436-8599	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in. OD by $9 / 16$ $\mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; straight bore; $1 / 4 \mathrm{in}$. by $1 / 4 \mathrm{in}$. keyway off center across diam; 0.250 in . by 0.187 in . axial mtg slot indexed 45°; $5 / 16 \mathrm{in}$. diam by $1 / 4 \mathrm{in}$. deep counterbore; two no. 6-32 tapped holes through one wall only, spaced 90°; CBTL part/dwg NL-960199-1	p/o S-2326 Switch Drive, Unit 8
O-2338 thru $0-2425$		Not Used	
O-2426		Same as O-2001	$\begin{aligned} & \text { u/w XV-2426, } \\ & \text { Unit } 9 \end{aligned}$
0-2427		Same as O-2001	$\begin{aligned} & \text { u/w XV-2427, } \\ & \text { Unit } 9 \end{aligned}$
O-2428		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2428, } \\ & \text { Unit } 9 \end{aligned}$
O-2429		Same as 0-2051	w/w XV-2429, $\text { Unit } 9$
O-2430	Low Failure Item	BEARING, sleeve: porous bronze; flange type; $3 / 8 \mathrm{in}$. OD, $1 / 4 \mathrm{in} . \mathrm{D}, 1 / 4 \mathrm{in} . \lg$, flange is $0.481 \mathrm{in} .0 \mathrm{O}, 3 / 64 \mathrm{in}$. thk; CBH part no. FB-46-2	p/o Support for Drive Assy, Unit 9
O-2430. 1		Same as 0-2430	p/o Support for Drive Assy, Unit 9
O-2430. 2		Same as 0-2430	p/o Support for Drive Assy, Unit 9
O-2430. 3		Same as 0-2430	p/o Support for Drive Assy, Unit 9
0-2431	Low Failure Item	SPROCKET, chain: brass, nickel pl; round w/19 teeth; 0.972 in. OD, $3 / 8 \mathrm{in}$. wd o/a dimen; hub $1 / 2 \mathrm{in}$. diam, $1 / 4 \mathrm{in}$. projection; 0.250 in . diam center hole; two no. 6-32 tapped holes 90° apart; CBKH type 9100-19 modified per CBTL part/dwg NL-900223-1	p/o Drive Assy for S-2427, Unit 9
O-2431. 1		Same as 0-2431	p/o Drive Assy for S-2427, Unit 9
O-2432		Same as O-2210	p/o S-2427 Switch Drive, Unit 9
0-2433	N17-C-99999-1187	COUPLING, SHAFT, FLEXIBLE: female; straight bore, brass, cad $\mathrm{pl} ; 1 \mathrm{in}$. OD by $9 / 16 \mathrm{in} .\mathrm{lg} \mathrm{o/a;} \mathrm{incl} \mathrm{floating} \mathrm{coupling;} 1 / 8$ in. by $1 / 4 \mathrm{in}$. keyway across diam; 0.250 in . by 0.187 in . axial mtg slot indexed 75°; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of keyway; CBTL part/dwg NL-900697-1	p/o S-2426 Switch Drive, Unit 9
O-2434	Low Failure Item	PIN, clevis: stainless steel; no dimen of this item is greater than one in. ; disconnect pin of CBKH series 75-SS mechanical chain; same as 0-1353	Used to Join Ends of Chain Assy
O-2435	Low Failure Item	RING, bearing: stainless steel; no dimen of this item is greater than one in.; tubular pin of CBKH series 75-SS mechanical chain; same as 0-1354	u/w Chain Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-2436	Low Failure Item	RING, RETAINING: stainless steel; no dimen of this item is greater than one in; keeper of CBKH series 75-SS mechanical chain; same as 0-1355	u/w Chain Assy
0-2437	N17-D-905001-107	IDLER ASSEMBLY: c/o block, shaft, and sprocket; block, stainless steel, $5 / 8 \mathrm{in} . \mathrm{lg}, 3 / 8 \mathrm{in} . \mathrm{wd}, 1 / 8 \mathrm{in} . \mathrm{h}$ o/a; one no. 6-32 NC-2 tap and one 0.093 in . diam hole $3 / 8 \mathrm{in}$. c to c; shaft, stainless steel, $41 / 64 \mathrm{in} . \lg , 3 / 16 \mathrm{in}$. diam o/a; CBKH sprocket, brass, 0.395 in . OD, 13/64 in. diam hub extends $1 / 4$ in., 0.125 in . diam bore, 7 teeth; mtd by no. 6-32 tap hole in block; CBTL part/dwg NL-900233-1	p/o Freq. Converter Drive Assy, Unit 9
$\begin{aligned} & \mathrm{O}-2438 \\ & \text { thru } \\ & \mathrm{O}-2525 \end{aligned}$		Not Used	
0-2526		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2526, } \\ & \text { Unit } 10 \end{aligned}$
0-2527		Same as O-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2527, } \\ & \text { Unit } 10 \end{aligned}$
0-2528		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2528, } \\ & \text { Unit } 10 \end{aligned}$
0-2529		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2529, } \\ & \text { Unit } 10 \end{aligned}$
0-2530		Same as 0-2054	u/w S-2526, Unit 10
0-2531		Same as 0-2210	p/o S-2526 Switch Drive, Unit 10
0-2531. 1		Same as 0-2210	p/o S-2426 Switch Drive, Unit 10
0-2531.2		Same as 0-2210	p/o S-2427 Switch Drive, Unit 10
0-2532	N17-C-99999-1194	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in . OD by $7 / 16$ in. $\lg \mathrm{o} / \mathrm{a}$; straight bore; $1 / 8 \mathrm{in}$. by $1 / 4 \mathrm{in}$. key across diam; 0.250 in . by 0.187 in . axial mtg slot indexed $60^{\circ}, 5 / 16 \mathrm{in}$. diam by $1 / 8 \mathrm{in}$. deep counterbore; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of key; CBTL part/dwg NL-900692-1	p/o S-2426 Switch Drive, Unit 10
0-2532. 1		Same as 0-2532	S-2427 Switch Drive, Unit 10
0-2533		Same as 0-2053	u/w S-2427, Unit 10
$\begin{aligned} & \mathrm{O}-2534 \\ & \text { thru } \\ & 0-2625 \end{aligned}$		Not Used	
0-2626		Same as 0-2001	$\begin{aligned} & \mathrm{u} / \mathrm{w} \text { XV-2626, } \\ & \text { Unit 11A } \end{aligned}$
0-2627		Same as 0-2001	$\begin{aligned} & \text { u/w XV-2627, } \\ & \text { Unit 11A } \end{aligned}$
0-2628		Same as 0-2001	$\begin{aligned} & \text { u} / \mathrm{w} \text { XV -2628, } \\ & \text { Unit 11A } \end{aligned}$

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-2629	For Replacement Use N16-S-34576-6514	SHIELD, ELECTRON TUBE: brass, ferro black finish; cylindrical shape; 1-15/16 in. $\mathrm{lg}, 1.093 \mathrm{in}$. diam o/a dimen; bayonet mtg; w/eight heat dissipating vents, each $1 / 8 \mathrm{in}$. wd by 100° along the periphery of the tube shield, four spaced $1 / 4 \mathrm{in}$. c to c and four 180° opposite; per spec JAN-S-28A; JAN type TS103U02 modified; CBTL part/dwg NL-901546-1	u/w XV-2629, Unit 11A
$0-2630$ thru $0-2650$		Not Used	
O-2651		Same as O-2001	$\begin{aligned} & u / w ~ X V-2651, \\ & \text { Unit 11B } \end{aligned}$
O-2652		Same as O-2001	$\begin{aligned} & u / w ~ X V-2652, \\ & \text { Unit 11B } \end{aligned}$
O-2653		Same as 0-2001	$\begin{aligned} & u / w \text { XV }-2653, \\ & \text { Unit 11B } \end{aligned}$
O-2654		Same as O-2051	$\begin{aligned} & u / w ~ X V-2654, \\ & \text { Unit 11B } \end{aligned}$
O-2655		Same as O-2054	$\begin{aligned} & u / w ~ S-2651, \\ & \text { Unit 11B } \end{aligned}$
O-2655. 1		Same as O-2054	$\begin{aligned} & u / w ~ S-2652, \\ & \text { Unit 11B } \end{aligned}$
O-2656		Same as O-2053	$\begin{aligned} & u / w S-2651, \\ & \text { Unit 11B } \end{aligned}$
O-2656. 1		Same as O-2053	$\begin{aligned} & u / w S-2652, \\ & \text { Unit 11B } \end{aligned}$
O-2657	N17-C-99999-1193	COUPLING, SHAFT, FLEXIBLE: female; straight bore; brass, cad pl; 1 in. OD by $9 / 16 \mathrm{in} . \lg \mathrm{o} / \mathrm{a}$; incl floating coupling, $1 / 8 \mathrm{in}$. by $1 / 4 \mathrm{in}$. keyway across diam; 0.250 in . by 0.187 in. axial mtg slot indexed 45°; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of keyway; CBTL part/dwg NL-900695-1	p/o S-2651 Switch Drive, Unit 11B
O-2658	N17-C-98436-8983	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in. OD by 7/16 in. $\lg \mathrm{o} / \mathrm{a} ; 1 / 8 \mathrm{in}$. by $1 / 4 \mathrm{in}$. key across diam; 0.250 in . by 0.187 in . axial mtg slot indexed $45^{\circ} ; 5 / 16 \mathrm{in}$. diam by $1 / 8 \mathrm{in}$. deep counterbore; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of key; CBTL part/ dwg NL-900693-1	p/o S-2801 Switch Drive, Unit 11B
O-2659		Same as O-2532	p/o S-2802 Switch Drive, Unit 11B
O-2660		Same as O-2210	p/o S-2652 Switch Drive, Unit 11B
$\begin{aligned} & \mathrm{O}-2661 \\ & \text { thru } \\ & \mathrm{O}-2800 \end{aligned}$		Not Used	
O-2801		Same as O-2001	u/w XV-2801, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-2802		Same as 0-2001	u/w XV-2802, Unit 11C
0-2803		Same as 0-2001	u/w XV-2803, Unit 11C
0-2804		Same as 0-2051	u/w XV-2804, Unit 11C
0-2805		Same as 0-2053	u/w S-2801, Unit 11C
O-2805. 1		Same as 0-2053	u/w S-2802, Unit 11C
0-2806		Same as 0-2054	u/w S-2801, Unit 11C
0-2806. 1		Same as 0-2054	u/w S-2802, Unit 11C
O-2807		Same as 0-2657	p/o S-2801 Switch Drive, Unit 11C
0-2808		Same as O-2210	p/o S-2802 Switch Drive, Unit 11C
$0-2809$ thru O-2915		Not Used	
O-2916		Same as 0-2430	Shaft Bearings
$\begin{aligned} & \text { O-2916.1 } \\ & \text { thru } \\ & \text { O-2916.34 } \end{aligned}$		Same as 0-2430	Shaft Bearings
O-2917	N16-R-99999-0858	RING, RETAINING: beryllium copper, Berylco no. 25, plain, iridite dip; external; for $5 / 32 \mathrm{in}$. diam shaft; face diam 0.142 in. by 0.010 in . thk; installed by means of special pliers no. 0015; CCDE Truarc part no. 5100-15-CMI	Retaining Ring
O-2917. 1		Same as 0-2917	Retaining Ring
O-2917. 2		Same as 0-2917	Retaining Ring
O-2917. 3		Same as 0-2917	Retaining Ring
0-2918		Same as 0-2210	p/o S-2053 Switch Drive
O-2918.1		Same as O-2210	p/o S-2052 Switch Drive
O-2918. 2		Same as 0-2210	p/o S-2051 Switch Drive
O-2918. 3		Same as 0-2210	p/o S-2996 Switch Drive

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-2919	N17-C-98436-8727	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in . OD by 7/16 in. $\lg \mathrm{o} / \mathrm{a}$; straight bore; $1 / 8 \mathrm{in}$. by $1 / 4 \mathrm{in}$. key across diam; 0.250 in . diam hole through center for shaft opening; 5/16 in. diam by $1 / 8 \mathrm{in}$. deep counterbore; two no. 6-32 NC-2 tapped holes through one wall only, spaced 90°; red dot at one end of key; CBTL part/dwg NL-900766-1	p/o S-2201 Switch Drive
O-2919. 1		Same as O-2919	p/o S-2652 Switch Drive
O-2919. 2		Same as O-2919	p/o S-2651 Switch Drive
O-2919. 3		Same as O-2919	p/o S-2996 Switch Drive
O-2919. 4		Same as O-2919	p/o S-2426 Switch Drive
O-2919. 5		Same as O-2919	p/o S-2526 Switch Drive
O-2919.6		Same as O-2919	p/o S-2427 Switch Drive
O-2920	N17-C-98436-9187	COUPLING, SHAFT, RIGID: brass, cad pl; 1 in . OD by $9 / 16$ in. $\lg \mathrm{o} / \mathrm{a}$; straight bore; $1 / 4 \mathrm{in}$. by $1 / 4 \mathrm{in}$. key off center across diam; 0.250 in . diam hole through center for shaft opening; two no. 6-32 tapped holes through one wall only; spaced 90 ${ }^{\circ}$; CBTL part/dwg NL-900652-1	p/o S-2326 Switch Drive
O-2921	Low Failure Item	SPROCKET ASSEMBLY, CHAIN: c/o two CBKH type 24-tooth sprockets modified w/hubs press-fitted together; brass, nickel pl; round, approximate o/a dimen 1.209 in . OD by $1 / 2 \mathrm{in} . \mathrm{wd}$; outer hub 9/16 in. OD with $3 / 16 \mathrm{in}$. projection; $1 / 4 \mathrm{in}$. diam shaft hole; one $5 / 64 \mathrm{in}$. diam hole thru 1 wall of both hubs for pin mtg; CBKH type 9100-24 modified; CBTL part/dwg NL-900648-1	p/o S-2326 Switch Drive
O-2922	Low Failure Item	IDLER ASSEMBLY: c/o corrosion resisting steel idler arm and idler shaft, and CBKH 12-tooth sprocket; approximate o/a dimen 1-1/8 in. lg, $3 / 4 \mathrm{in}$. wd, $41 / 64 \mathrm{in} . \mathrm{h}$; mtd by means of 0.257 in. diam hole and two no. 6-32 NC-2 tapped holes 120° apart; CBTL part/dwg NL-900616-1	Adjustable Chain Idler
O-2922. 1		Same as O-2922	Adjustable Chain Idler
O-2922. 2		Same as O-2922	Adjustable Chain Idler
O-2922. 3		Same as O-2922	Adjustable Chain Idler
O-2922. 4		Same as O-2922	Adjustable Chain Idler
O-2922. 5		Same as O-2922	Adjustable Chain Idler
O-2922. 6		Same as O-2922	Adjustable Chain Idler

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-2923	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: upper; c/o rectangular, corrosion, resisting steel, electropolish finish, ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \mathrm{lg}$, 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg no. A-9019. 9-1 (Revision no. 3); p/o H-2921; same as O-506	p/o Chassis Slide
O-2923. 1		Same as O-2923; p/o H-2922	p/o Chassis Slide
O-2924	Low Failure Item	SPRING: helical compression type; 0.032 in . diam music wire per NAVY spec 22W11C; 3/8 in. h, 1/2 in. diam o/a; 3-1/2 turns, RH or LH wound; first and last $3 / 4$ turns are flat; cad pl; CBTL part/dwg NL-900018-1; u/w H-2921; same as O-507	Stop Button Spring for Chassis Slide
O-2924. 1		Same as O-2924; u/w H-2922	Stop Button Spring for Chassis Slide
O-2925	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: lower; c/o rectangular, corrosion resisting steel, electropolish finish, ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; $10.844 \mathrm{in} . \mathrm{lg}$, 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg no. A-9019. 9-2 (Revision no. 3); p/o H-2921; same as O-508	p/o Chassis Slide
O-2925. 1		Same as O-2925; p/o H-2922	p/o Chassis Slide
O-2926	Low Failure Item	DETENT: steel, cad pl; 6 position; 3/4 in. diam, 1/4 in. lg by 3/16 in. wd slot, clears shaft; CCCY type A-30510P	u/w S-2996
O-2927	Low Failure Item	SPRING: helical compression type, for spring loading tube socket, 0.032 in . diam spring steel; 7/32 in. ID by 2 in . lg o/a; 0.062 in. pitch; squared ends, ground; CBTL part/dwg NL-900780-1	Position V-2917
O-2927. 1		Same as O-2927	Position V-2917
O-2928	N17-C-200982-301	CAP, ELECTRICAL CONNECTOR: brass, silver pl; 9/16 in. diam by $5 / 8 \mathrm{in} . \lg ; \mathrm{mtd} \mathrm{w} / \mathrm{chain}$ approx $2-1 / 4 \mathrm{in} . \lg$ with mtg hole at end of chain; used as a protective cover for type BNC female connector; type CW-123A/U; CARO no. 1500	Protective Cover for J-2931
$\text { O-2928. } 1$ thru $\text { O-2928. } 5$		Same as O-2928	$\begin{aligned} & \text { Protective Covers } \\ & \text { for J-2929, J-2930, } \\ & \mathrm{J}-2932, \mathrm{~J}-2933, \\ & \mathrm{~J}-2934 \end{aligned}$
0-2929	Low Failure Item	SPROCKET, chain: brass, nickel pl; round, w/12 teeth; o/a dimen 0.639 in . OD by $3 / 8 \mathrm{in}$. wd; hub $3 / 8 \mathrm{in}$. diam $1 / 4 \mathrm{in}$. projection; shaft hole in center 0.156 in . diam; CBKH type 9100-12 modified; CBTL part/dwg NL-900610-1	Chain Drive
O-2929. 1		Same as O-2929	Chain Drive
O-2930	Low Failure Item	SPROCKET, chain: brass, nickel pl; round w/24 teeth; o/a dimen 1.209 in . OD by 7/16 in. wd; hub 9/16 in. diam 5/16 in. projection; one 0.078 in . diam hole drilled thru 1 wall for mtg $\mathrm{w} / \mathrm{pin}$; shaft hole in center 0.251 in . diam; CBKH type 9100-24. modified; CBTL part/dwg NL-900628-1	Chain Drive
O-2930. 1		Same as 0-2930	Chain Drive
O-2930. 2		Same as O-2930	Chain Drive
O-2930. 3		Same as 0-2930	Chain Drive

TABLE 8-3. TABLE OF κ EPPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-2930. 4		Same as 0-2930	Chain Drive
O-2930. 5		Same as 0-2930	Chain Drive
O-2930.6		Same as 0-2930	Chain Drive
O-2930. 7		Same as 0-2930	Chain Drive
O-2930. 8		Same as O-2930	Chain Drive
0-2930. 9		Same as 0-2930	Chain Drive
O-2930. 10		Same as 0-2930	Chain Drive
O-2930.11		Same as 0-2930	Chain Drive
O-2930.12		Same as 0-2930	Chain Drive
0-2931		Same as 0-2053	u/w S-2996
O-2932	N16-R-99999-0865	RING, RETAINING: steel, SAE 1060-1090, plain, iridite dip; external, for $1 / 4 \mathrm{in}$. diam shaft, ID 0.225 in , 0.025 in . thk; installed by means of special pliers no. 2; CCDE Truarc part no. $5100-25-$ SMI; same as $0-1338$	Retaining Ring
$\begin{aligned} & \text { O-2932.1 } \\ & \text { thru } \\ & \text { O-2932.19 } \end{aligned}$		Same as O-2932	Retaining Rings
0-2933		Same as 0-2436	Used to Join Ends of Chain Assy
$\begin{aligned} & \mathrm{O}-2933.1 \\ & \text { thru } \\ & \mathrm{O}-2933.6 \end{aligned}$		Same as 0-2436	Used to Join Ends of Chain Assy
O-2934		Same as 0-2435	u/w Chain Assy
$\begin{aligned} & \mathrm{O}-2934.1 \\ & \text { thru } \\ & \mathbf{O - 2 9 3 4 . 6} \end{aligned}$		Same as 0-2435	u / w Chain Assy
O-2935		Same as O-2434	Used to Join Ends of Chain Assy
$\begin{aligned} & \mathrm{O}-2935.1 \\ & \text { thru } \\ & \mathbf{O - 2 9 3 5 . 6} \end{aligned}$		Same as 0-2434	Used to Join Ends of Chain Assy
0-2936	Low Failure Item	SPRING: loop type; for latch; 0.038 in . diam corrosion resisting steel spring wire; 2-1/2 in. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{h} \mathrm{o} / \mathrm{a}$; one end semi-hook type, one end open; irregular shape; CBTL part/dwg NL-900991-1; p/o H-2921; same as O-509	For Latch in Chassis Slide
0-2936. 1		Same as O-2936; p/o H-2922	For Latch in Chassis Slide
0-2937	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 cond. $1 / 4 \mathrm{H}$, 0.025 in . thk strip per MIL-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8 in. $\mathrm{lg}, 15 / 16 \mathrm{in}$. h; CBTL part/dwg NL-900142-1; p/o S-2919; same as 0-510	For Contact in S-2919

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-2001	N17-C-71408-5333	CONNECTOR, PLUG, ELECTRICAL: 1 contact, male, round; straight type; BNC connector; 31/32 in. $\mathrm{lg}, 9 / 16 \mathrm{in}$. diam o/a; RF connector, 50 ohms nominal impedance; constant frequency impedance; cylindrical shape, brass, silver pl; locking type; teflon insert; 0.206 in . diam max cable opening; NAVY dwg RE49F246; MIL type UG-88/U; same as P-601	1d Output
P-2002		Same as P-2001	1b Output
P-2003		Same as P-2001	1a Output
P-2004		Same as P-2001	1c Output
P-2005		Same as P-2001	1e Output
P-2006	N17-C-73301-5358	CONNECTOR, RECEPTACLE, ELECTRICAL: 14 contacts, male, round, no. 20 AWG; polarized; straight type; 1-1/4 in. $\mathrm{lg}, 7 / 16 \mathrm{in} . \mathrm{wd}, 25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen; rectangular shape body, molded melamine; two no. 4-40 NC-2 thd screws, 0.937 in . mtg centers; contacts brass, gold pl; CCCK type MRE-14P-G; same as J-1111	Unit 1 Power
$\begin{aligned} & \mathbf{P}-2007 \\ & \text { thru } \\ & \mathbf{P - 2 0 3 0} \end{aligned}$		Not Used	-
P-2031		Same as P-2001	1a Input
F-2032		Same as P-2001	2b Output
P-2033		Same as P-2001	2c Output
P-2034		Same as P-2001	2a Output
P-2035		Same as P-2001	2d Output
P-2036		Same as P-2001	2e Output
P-2037		Same as P-2006	Unit 2 Power
$\begin{aligned} & \mathrm{P}-2038 \\ & \text { thru } \\ & \mathrm{P}-2050 \end{aligned}$		Not Used	
P-2051		Same as P-2001	3b Output
P-2052		Same as P-2001	3a Output
P-2053	N17-C-73619-5096	CONNECTOR, RECEPTACLE, ELECTRICAL: 21 contacts, male, round; polarized; straight type; 2-1/4in. $\mathrm{lg}, 3 / 8 \mathrm{in}$. wd, 27/32 in. h o/a including mtg studs and polarizing pins; rectangular shape, molded melamine; two no. 4-40 NC-2 thd mtg studs, $1 / 4 \mathrm{in} . \lg$, spaced 1.937 in . c to c ; pin contacts brass, gold pl; CCCK part/dwg MRE 21P-G	Unit 3 Power
$\begin{aligned} & \mathbf{P - 2 0 5 4} \\ & \text { thru } \\ & \mathbf{P - 2 1 0 0} \end{aligned}$		Not Used	
P-2101		Same as P-2001	2a Input
P-2102		Same as P-2001	4a Output

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathbf{P - 2 1 0 3} \\ & \text { P-2104 } \\ & \text { thru } \\ & \mathbf{P - 2 1 2 5} \end{aligned}$	\%	Same as P-2006 Not Used	Unit 4 Power
P-2126		Same as P-2053	Unit 12 Power
$\begin{aligned} & \text { P-2127 } \\ & \text { thru } \\ & \text { P-2150 } \end{aligned}$		Not Used	
P-2151		Same as P-2001	4a Input
P-2152		Same as P-2001	2b Input
P-2153		Same as P-2001	1b Input
P-2154		Same as P-2001	12a Input
P-2155		Same as P-2001	3a Input
P-2156		Same as P-2001	5a Output
P-2157		Same as P-2006	Unit 5 Power
$\begin{aligned} & \mathbf{P - 2 1 5 8} \\ & \text { thru } \\ & \mathbf{P - 2 2 0 0} \end{aligned}$,	Not Used	
P-2201		Same as P-2001	1c Input
P-2202		Same as P-2001	6c Output
P-2203		Same as P-2001	6a Output
P-2204		Same as P-2001	2c Input
P-2205		Same as P-2001	5a Input
P-2206		Same as P-2001	6b Output
P-2207		Same as P-2053	Unit 6 Power
P-2208 thru P-2300		Not Used	
P-2301		Same as P-2001	2d Input
P-2302		Same as P-2001	7b Output
P-2303		Same as P-2001	7a Output
P-2304		Same as P-2006	Unit 7 Power
$\begin{aligned} & \text { P-2305 } \\ & \text { thru } \\ & \mathbf{P - 2 3 2 5} \end{aligned}$		Not Used	
P-2326		Same as P-2001	1d Input

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-2327		Same as P-2001	8a Output
P-2328		Same ass P-2001	7a Input
P-2329		Same as $\mathrm{P}=2001$	6b Input
P-2330		Same as P-2001	8b Output
P-2331		Not Used	
P-2332		Same as P-2006	Unit 8 Power
$\begin{aligned} & \text { P-2333 } \\ & \text { thru } \\ & \text { P-2425 } \end{aligned}$		Not Used	
P-2426		Same as P-2001	8b Input
P-2427		Same as P-2001	7b Input
P-2428		Same as P-2001	9 Output
P-2429		Same as P-2006	Unit 9 Power
$\begin{aligned} & \text { P-2430 } \\ & \text { thru } \\ & \text { P-2525 } \end{aligned}$		Not Used	
P-2526		Same as P-2001	2e Input
P-2527		Same as P-2001	10 Output
P-2528		Same as P-2006	Unit 10 Power
$\begin{aligned} & \text { P-2529 } \\ & \text { thru } \\ & \text { P-2625 } \end{aligned}$		Not Used	
P-2626		Same as P-2001	10a Input
P-2627		Same as P-2001	9a Input
P-2628	N17-C-71408-3425	CONNECTOR, PLUG, ELECTRICAL: 1 contact, male, round; straight type; 31/32 in. $\mathrm{lg}, 9 / 16 \mathrm{in}$. diam o/a; RF connector, non-constant frequency impedance; cylindrical shape, brass, silver pl; locking type; styramic insert; 0.250 in . diam max cable opening; NAVY dwg RE49F380; MLI type UG-260/U	11a Output
P-2629		Same as P-2006	Unit 11A Power
$\begin{aligned} & \text { P-2630 } \\ & \text { thru } \\ & \text { P-2650 } \end{aligned}$		Not Used	
P-2651		Same as P-2001	10b Input
P-2652	,	Same as P-2001	9b Input
P-2653		Same as P-2628	11b Output
P-2654		Same as P-2006	Unit 11B Power

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { P-2655 } \\ & \text { thru } \\ & \text { P-2800 } \end{aligned}$		Not Used	
P-2801		Same as P-2001	10c Input
P-2802		Same as P-2001	9c Input
P-2803		Same as P-2628	11c Output
P-2804		Same as P-2006	Unit 11C Power
R-2001		Not Used	
R-2002	N16-R-50821-431	RESISTOR, FIXED, COMPOSITION: 470, 000 ohms, $\pm 5 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF474J	Screen Filter V-2001, Unit 1
R-2003		Not Used	
R-2004	N16-R-50065-431	RESISTOR, FIXED, COMPOSITION: 3300 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF332J	B+ Filter, Unit 1
R-2005	N16-R-50713-431	RESISTOR, FIXED, COMPOSITION: 220, 000 ohms, $\pm 5 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF224J; same as R-1090	Plate Load V-2001, Unit 1
R-2006		Same as R-2005	Plate Load V-2001, Unit 1
R-2007	N16-R-50974-431	RESISTOR, FIXED, COMPOSITION: 1.0 megohm, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF105J	Grid Leak V-2001, Unit 1
R-2008	N16-R-50353-431	RESISTOR, FIXED, COMPOSITION: 18, 000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF183J; same as R-1017	Voltage Divider, Unit 1
R-2009		Same as R-2002	Grid Leak V-2002, Unit 1
R-2010	N16-R-50129-811	RESISTOR, FIXED, COMPOSITION: 4700 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF472K	Cathode Voltage Divider V-2002, Unit 1
R-2011	N16-R-50012-811	RESISTOR, FIXED, COMPOSITION: 2, 200 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF222K; same as R-1010	Cathode Voltage Divider V-2002, Unit 1
R-2012		Same as R-2011	Cathode Bias V-2002, Unit 1
R-2013	N16-R-50372-811	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 10 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF223K	Cathode Voltage Divider V-2002, Unit 1
R-2014		Same as R-2013	Cathode Bias V-2002, Unit 1
R-2015	N16-R-50822-811	RESISTOR, FIXED, COMPOSITION: 470, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF474K; same as R-1035	Grid Leak V-2002, Unit 1
R-2016	N16-R-49941-511	RESISTOR, FIXED, COMPOSITION: 1200 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF122K	Plate Filter V-2002, Unit 1
R-2017		Same as R-2015	Grid Leak V-2003, Unit 1

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2018		Same as R-2013	Cathode Voltage Divider V-2003, Unit 1
R-2019		Same as R-2013	$\begin{aligned} & \text { Cathode Bias } \\ & \text { V-2003, Unit } 1 \end{aligned}$
R-2020		Same as R-2013	Cathode Voltage Divider V-2003, Unit 1
R-2021		Same as R-2013	Cathode Bias V-2003, Unit 1
R-2022		Same as R-2015	Grid Leak V-2003, Unit 1
R-2023		Same as R-2011	Voltage Divider J-2004, Unit 1
R-2024	N16-R-50282-811	RESISTOR, FIXED, COMPOSITION: 10, 000 ohms $\pm 10 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF103K	Voltage Divider J-2005, Unit 1
R-2025		Same as R-2013	Voltage Divider J-2005, Unit 1
R-2026		Same as R-2011	Voltage Divider J-2003, Unit 1
R-2027	N16-R-49922-811	RESISTOR, FIXED, COMPOSITION: 1000 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF102K; same as R-1033	Voltage Divider J-2002, Unit 1
R-2028		Same as R-2011	Voltage Divider J-2001, Unit 1
R-2029		Not Used	
R-2030		Not Used	
R-2031	N16-R-50165-811	RESISTOR, FIXED, COMPOSITION: 5600 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF562K; same as R-1026	1A Input Load V-2031, Unit 2
R-2032		Same as R-2015	Grid Leak V-2031, Unit 2
R-2033	N16-R-50634-234	RESISTOR, FIXED, COMPOSITION: 100, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF104K	Screen Filter V-2031, Unit 2
R-2034		Same as R-2015	Grid Leak V-2032, Unit 2
R-2035		Same as R-2033	Screen Filter V-2032, Unit 2
R-2036		Same as R-2027	Voltage Divider J-2032, Unit 2
R-2037		Same as R-2027	Voltage Divider J-2033, Unit 2
R-2038	N16-R-50480-811	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF473K; same as R-1018	Grid Leak V-2033, Unit 2

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2039		Same as R-2013	Cathode Bias V-2033, Unit 2
R-2040		Same as R-2013	Cathode Bias V-2034, Unit 2
R-2041		Same as R-2013	Cáthode Bias V-2034, Unit 2
R-2042		Same as R-2013	Cathode Bias V-2033, Unit 2
R-2043		Same as R-2016	Plate Filter V-2033, Unit 2
R-2044	N16-R-49660-431	RESISTOR, FIXED, COMPOSITION: 220 ohms, $\pm 5 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF221J	Parasitic Suppressor V-2033, Unit 2
R-2045		Same as R-2044	Parasitic Suppressor V-2033, Unit 2
R-2046		Same as R-2044	Parasitic Suppressor V-2034, Unit 2
R-2047		Same as R-2044	Parasitic Suppressor V-2034, Unit 2
$\begin{aligned} & R-2048 \\ & \text { thru } \\ & \text { R-2050 } \end{aligned}$		Not Used	
R-2051		Same as R-2011; p/o Z-2051	Parasitic Suppressor V-2051, Unit 3
R-2052	N16-R-50759-811	RESISTOR, FIXED, COMPOSITION: 330, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF334K; p/o Z-2051	Grid Leak V-2051, Unit 3
R-2053		Same as R-2031	Filter Loading V-2051, Unit 3
R-2054	N16-R-50236-940	RESISTOR, FIXED, COMPOSITION: 8200 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF822J	B+ Filter, Unit 3
R-2055		Same as R-2054	$\begin{aligned} & \text { B+ Filter V-2051, } \\ & \text { Unit } 3 \end{aligned}$
R-2056	N16-R-50201-811	RESISTOR, FIXED, COMPOSITION: 6800 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF682K	Filter Loading J-2051, Unit 3
R-2057	N16-R-49841-811	RESISTOR, FIXED, COMPOSITION: 680 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF681K	Voltage Divider J-2052, Unit 3
R-2058		Same as R-2013	Cathode Voltage Divider V-2002, Unit 3
R-2059	N16-R-50164-431	RESISTOR, FIXED, COMPOSITION: 5600 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF562J	Voltage Divider J-2051, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2060		Same as R-2011	Thermostat Protection S-2054, Unit 3
R-2061	N16-R-49580-811	RESISTOR, FIXED, COMPOSITION: 100 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF101K; same as R-1124	Thermostat Spark Suppressor S-2054, Unit 3
$\begin{aligned} & \text { R-2062 } \\ & \text { thru } \\ & \text { R-2100 } \end{aligned}$		Not Used	
R-2101		Same as R-2011	2a Input Load J-2101, Unit 4
R-2102		Same as R-2015	Grid Leak V-2101, Unit 4
R-2103		Same as R-2033	Screen Filter V-2101, Unit 4
R-2104		Same as R-2015	Grid Leak V -2102, Unit 4
R-2105	N16-R-50445-233	RESISTOR, FIXED, COMPOSITION: 39, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF393K	Screen Filter V-2102, Unit 4
$\begin{aligned} & \mathrm{R}-2106 \\ & \text { thru } \\ & \mathrm{R}-2125 \end{aligned}$		Not Used	
R-2126	N16-R-80350-2142	RESISTOR, FIXED, WIRE WOUND: 10,000 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB51B10001F; p/o Z-2126	Cathode Load V-2126, Unit 12
R-2127	N16-R-50633-811	RESISTOR, FIXED, COMPOSITION: 100,000 ohms, $\pm 10 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF104K; p/o Z-2126; same as $R-1072$	Cathode Coupling V-2126, Unit 12
R-2128	N16-R-99999-0866	RESISTOR, FLXED, WIRE WOUND: 4900 ohms, $\pm 1 \% ; 1 / 4 \mathrm{w}$; $3 / 4 \mathrm{in} . \mathrm{lg}, 7 / 16 \mathrm{in}$. diam; inductive winding; resistor shall consist of 1000 turns of wire having approximately 75 ohms per foot at 100 kc ; effective series inductance of 1 mh ; ceramic coating; 2 axial wire lead term; term mtd; CSM type BX-181-A Part no. 32 per CBTL specification dwg NL-962305-1; p / o Z-2126	Control Tube Plate Load V-2127, Unit 12
R-2129		Same as R-2024	Voltage Divider, Unit 12
R-2130		Same as R-2052; p/o Z-2126	Grid Leak V-2128, Unit 12
R-2131		Same as R-2128	Cathode Bias V-2127, Unit 12
R-2132	N16-R-80304-8039	RESISTOR, FIXED, WIRE WOUND: 5000 ohms, $\pm 1 \% ; 0.6 \mathrm{w}$; per spec JAN-R-93; JAN type RB42B50000F	B+ Filter, Unit 12
R-2133		Same as R-2132	B+ Filter, Unit 12
R-2134		Same as R-2010	Filter Loading T-2126, Unit 12

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2135	N16-R-50013-466	RESISTOR, FIXED, COMPOSITION: 2200 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF222K	Thermostat Protection S-2126, Unit 12
R-2136		Same as R-2061	Spark Suppressor S-2126, Unit 12
R-2137		Same as R-2010	Voltage Divider, Unit 12
R-2138	N16-R-49706-811	RESISTOR, FIXED, COMPOSITION: 330 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF331K	Parasitic Suppressor V-2126, Unit 12
R-2139		Same as R-2138	Parasitic Suppressor V-2127, Unit 12
R-2140	N16-R-99999-0852	RESISTOR, FIXED, FILM: body style no. 110, Ref Dwg Group 2; 5000 ohms, $\pm 5 \%$; $1 / 2 \mathrm{w}$; metal film; temp coefficient $\pm 0.03 \%$ of total resistance $/{ }^{\circ} \mathrm{C}$; o/a dimen $15 / 32 \mathrm{in} . \mathrm{lg}$ by 0.155 in. diam; enamel coating, resistant to humidity; 2 axial wire lead term, 1-1/2 in. lg; CCC Nobeloy type NF 1/2	B+ Filter, Unit 12
$\mathrm{R}-2141$ thru $\mathbf{R - 2 1 5 0}$		Not Used	
R-2151	N16-R-49444-431	RESISTOR, FIXED, COMPOSITION: 51 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF510J	4a Input Load J-2151, Unit 5
R-2152		Same as R-2027	2b Input Load J-2152, Unit 5
R-2153	N16-R-51065-811	RESISTOR, FIXED, COMPOSITION: 2.2 megohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF225K; same as R-1127	Grid Leak V-2151, Unit 5
R-2154		Not Used	
R-2155		Same as R-2013	Grid Leak V-2151, Unit 5
R-2156	N16-R-49805-818	RESISTOR, FIXED, COMPOSITION: 560 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF561K	Cathode Bias V-2151, Unit 5
R-2157		Same as R-2105	Screen Filter V-2151, Unit 5
R-2158		Not Used	
R-2159		Not Used	
R-2160	N16-R-49625-811	RESISTOR, FIXED, COMPOSITION: 150 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF151K	3a Input Load J-2155, Unit 5
R-2161		Same as R-2156 :	Cathode Bias V-2152, Unit 5
R-2162		Same as R-2105	Screen Filter V-2152, Unit 5
R-2163		Same as R-2156	Cathode Bias V-2153, Unit 5

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2164		Same as R-2105	Screen Filter V-2153, Unit 5
R-2165		Same as R-2156	Voltage Divider J-2154, Unit 5
R-2166		Same as R-2024	Voltage Divider J-2154, Unit 5
R-2167		Not Used	
R-2168		Not Used	
R-2169	N16-R-50400-240	RESISTOR, FIXED, COMPOSITION: 27, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF273K	Screen Filter V-2154, Unit 5
R-2170	N16-R-49688-811	RESISTOR, FIXED, COMPOSITION: 270 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF271K; same as R-1005	Cathode Bias V-2154, Unit 5
R-2171	N16-R-50066-811	RESISTOR, FIXED, COMPOSITION: 3300 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF332K	Parasitic Suppressor V-2152, Unit 5
R-2172 thru $\mathbf{R - 2 2 0 0}$	-	Not Used	
R-2201		Same as R-2024	1c Input Load, Unit 6
R-2202		Same as R-2015	Grid Leak V-2201, Unit 6
R-2203	N16-R-50282-725	RESISTOR, FIXED, COMPOSITION: 10,000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF103K	Plate Load V-2201, Unit 6
R-2204	N16-R-50373-423	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF223K	Plate Dropping Resistor V-2201, Unit 6
R-2205	N16-R-50740-431	RESISTOR, FIXED, COMPOSITION: 270, 000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF274J	Decoupling Resistor, Unit 6
R-2206		Same as R-2170	Cathode Bias V-2201, Unit 6
R-2207	N16-R-79309-4739	RESISTOR, FIXED, WIRE WOUND: $30,000 \mathrm{ohms}, \pm 1 \% ; 1 / 4 \mathrm{w}$; per spec JAN-R-93; JAN type RB10B30001F	Grid Leak V-2202, Unit 6
R-2208		Not Used	
R-2209		Same as R-2038	10 kc Output J-2202, Unit 6
R-2210	N16-R-90868-2997	RESISTOR, VARIABLE: wire wound; 2500 ohms, $\pm 10 \% ; 2 \mathrm{w}$; per spec JAN-R-19; JAN type RA20A1SD252AK; same as R-1068	Cathode Bias Adj. V-2202, Unit 6
R-2211	N16-R-50741-811	RESISTOR, FIXED, COMPOSITION: 270, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF274K; same as R-1095	Decoupling Resistor, Unit 6
R-2212	N16-R-50236-754	RESISTOR, FIXED, COMPOSITION: 8200 ohms; $\pm 5 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF822J	Plate Dropping Resistor V-2202, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2213	N16-R-50418-483	RESISTOR, FIXED, COMPOSITION: 33, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF333K	Plate Filter V-2202, Unit 6
R-2214	N16-R-49840-431	RESISTOR, FIXED, COMPOSITION: 680 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF681J	Cathode Bias V-2203, Unit 6
R-2215	N16-R-50146-758	RESISTOR, FIXED, COMPOSITION: 5100 ohms, $\pm 5 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF512J	Screen Bleeder V-2203, Unit 6
R-2216	N16-R-50677-431	RESISTOR, FIXED, COMPOSITION: 150, 000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF154J; same as R-1108	Plate Load V-2203, Unit 6
R-2217		Same as R-2059	10 kc Rejection Filter, Unit 6
R-2218	N16-R-50371-431	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF223J	10 kc Rejection Filter, Unit 6
R-2219		Same as R-2218	10 kc Rejection Filter, Unit 6
R-2220	N16-R-50281-431	RESISTOR, FIXED, COMPOSITION: $10,000 \mathrm{ohms}, \pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF103J; same as R-1089	Low Pass Filter, Unit 6
R-2221	N16-R-50128-431	RESISTOR, FIXED, COMPOSITION: 4700 ohms, $\pm 5 \%$; 1/2 w; per spec JAN-R-11; JAN type RC20BF472J	Reactance Phase Shift, Unit 6
R-2222	N16-R-50372-131	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF223J	Screen Filter V-2204, Unit 6
R-2223		Same as R-2002	Suppressor Grid Leak V-2203, Unit 6
R-2224	For Replacement Use N16-R-50011-438	RESISTOR, FIXED, COMPOSITION: 2200 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF222J	Osc. Plate Load V-2205, Unit 6
R-2225	N16-R-50552-142	RESISTOR, FIXED, COMPOSITION: 68, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF683J	Plate Dropping Resistor V-2205, Unit 6
R-2226	N16-R-50416-431	RESISTOR, FIXED, COMPOSITION: 33, 000 ohms, $\pm 5 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF333J	Osc. Grid Leak V-2206, Unit 6
R-2227	N16-R-50236-431	RESISTOR, FIXED, COMPOSITION: 8200 ohms, $\pm 5 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF822J	Cathode Divider V-2205, Unit 6
R-2228	N16-R-49687-431	RESISTOR, FIXED, COMPOSITION: 270 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF271J	Cathode Divider V-2205, Unit 6
R-2229	N16-R-49876-431	RESISTOR, FIXED, COMPOSITION: 820 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF821J	Voltage Divider, Unit 6
R-2230		Same as R-2044	Voltage Divider, Unit 6
R-2231		Same as R-2027	2c Input Load J-2204, Unit 6
R-2232		Same as R-2013	Suppressor Grid Leak V-2206, Unit 6

ORIGINAL

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2233	N16-R-49444-438	RESISTOR, FIXED, COMPOSITION: 51 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF510J	5b Input Load J-2205, Unit 6
R-2234		Same as R-2156	Cathode Bias V-2206, Unit 6
R-2235		Same as R-2105	Screen Filter V-2206, Unit 6
R-2236		Same as R-2156	Cathode Bias V-2207, Unit 6
R-2237		Same as R-2105	Screen Filter V-2207, Unit 6
R-2238		Same as R-2156	Cathode Bias V-2208, Unit 6
R-2239	N16-R-50714-818	RESISTOR, FIXED, COMPOSITION: 220, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF224K	Screen Filter V-2208, Unit 6
R-2240		Same as R-2170	Cathode Bias V-2209, Unit 6
R-2241	N16-R-50400-511	RESISTOR, FIXED, COMPOSITION: 27, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF273K	Cathode Bias V-2209, Unit 6
R-2242	N16-R-49804-431	RESISTOR, FIXED, COMPOSITION: 560 ohms, $\pm 5 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF561J	Parasitic Suppressor V-2208, Unit 6
R-2243		Same as R-2242	Parasitic Suppressor V-2209, Unit 6
R-2244	N16-R-49579-431	RESISTOR, FIXED, COMPOSITION: 100 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF101J; same as R-1304	Cathode Bias V-2204, Unit 6
$\begin{aligned} & \mathrm{R}-2245 \\ & \text { thru } \\ & \mathrm{R}-2300 \end{aligned}$		Not Used	
R-2301		Same as R-2011	2d Input Load J-2301, Unit 7
R-2302		Same as R-2015	Grid Leak V-2301, Unit 7
R-2303	N16-R-50652-233	RESISTOR, FIXED, COMPOSITION: 120, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF124K	Screen Filter V-2301, Unit 7
R-2304		Same as R-2156	Cathode Bias V-2302, Unit 7
R-2305	N16-R-50337-518	RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF153K	Screen Filter V-2302, Unit 7
R-2306		Same as R-2015	Grid Leak V-2303, Unit 7
R-2307	N16-R-50481-233	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF473K	Screen Filter V-2303, Unit 7

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2308		Same as R-2305	Screen Filter V-2304, Unit 7
R-2309		Same as R-2170	Cathode Bias V-2304, Unit 7
R-2310	N16-R-49427-811	RESISTOR, FIXED, COMPOSITION: 47 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF470K; same as R-1031	Output Coupling J-2303, Unit 7
$\mathbf{R - 2 3 1 1}$ thru $\mathrm{R}-2325$		Not Used	
R-2326		Same as R-2031	1d Input Load, Unit 8
R-2327	N16-R-50093-811	RESISTOR, FIXED, COMPOSITION: 3, 900 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF392K	Grid Leak V-2326, Unit 8
R-2328		Same as R-2010	Plate Load V-2326, Unit 8
R-2329	N16-R-50481-461	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF473K; same as R-407	Plate Filter V-2326, Unit 8
R-2330		Same as R-2038	Grid Leak V-2326, Unit 8
R-2331		Same as R-2213	Plate Filter V-2326, Unit 8
R-2332		Same as R-2214	Cathode Bias V-2327, Unit 8
R-2333	N16-R-50281-763	RESISTOR, FIXED, COMPOSITION: 10, 000 ohms, $\pm 5 \%$; 1 w; per spec JAN-R-11; JAN type RC30GF103J	Screen Supply V-2327, Unit 8
R-2334		Same as R-2002	Suppressor Grid Leak V-2327, Unit 8
R-2335		Same as R-2216	Plate Load V-2327, Unit 8
R-2336		Same as R-2218	100 kc Rejection Filter, Unit 8
R-2337		Same as R-2218	100 kc Rejection Filter, Unit 8
R-2338		Same as R-2221	100 kc Rejection Filter, Unit 8
R-2339	N16-R-50335-431	RESISTOR, FIXED, COMPOSITION: 15,000 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF153J	Low Pass Filter, Unit 8
R-2340		Same as R-2224	Reactance Phase Shift V-2328, Unit 8
R-2341		Same as R-2222	Screen Filter V-2328, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2342		Same as R-2226	Grid Leak V-2329, Unit 8
R-2343		Same as R-2225	Screen Filter $\mathrm{V}-2329$, Unit 8
R-2344		Same as R-2221	Plate Load V-2329, Unit 8
R-2345		Same as R-2227	Cathode Divider V-2329, Unit 8
R-2346		Same as R-2214	Cathode Divider V-2329, Unit 8
R-2347		Same as R-2214	Filter Load, Unit 8
R-2348	N16-R-49921-431	RESISTOR, FDXED, COMPOSITION: 1000 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF102J	Cathode Load V-2334, Unit 8
R-2349		Same as R-2151	7a Input Load J-2328, Unit 8
R-2350	N16-R-49805-811	RESISTOR, FIXED, COMPOSITION: 560 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF561K; same as R-1373	Cathode Bias V-2330, Unit 8
R-2351		Same as R-2105	Plate Dropping V-2330, Unit 8
R-2352		Same as R-2151	6b Input Load J-2329, Unit 8
R-2353		Same as R-2350	Cathode Bias V-2331, Unit 8
R-2354		Same as R-2105	Plate Dropping V-2331, Unit 8
R-2355		Same as R-2170	Cathode Bias V-2332, Unit 8
R-2356	N16-R-50355-498	RESISTOR, FIXED, COMPOSITION: 18, 000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF183K	Plate Dropping V-2332, Unit 8
R-2357		Same as R-2160	Cathode Bias V-2333, Unit 8
R-2358	N16-R-50445-503	RESISTOR, FIXED, COMPOSITION: 39,000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF 393 K	Plate Dropping V-2333, Unit 8.
R-2359	N16-R-50237-811	RESISTOR, FIXED, COMPOSITION: 8200 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF822K; same as R-1028	Filter Loading Z-2327, Unit 8
R-2360		Same as R-2359	Filter Loading Z-2327, Unit 8
R-2361		Same as R-2359	Filter Loading Z-2328, Unit 8
R-2362		Same às R-2359	Filter Loading Z-2328, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2363	N16-R-50353-945	RESISTOR, FIXED, COMPOSITION: 18, 000 ohms, $\pm 5 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF183J	Plate Filter V-2334, Unit 8
R-2364	N16-R-50479-431	RESISTOR, FIXED, COMPOSITION: 47, 000 ohms, $\pm 5 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF473J	Grid Leak V-2334, Unit 8
$\mathbf{R - 2 3 6 5}$ thru $\mathbf{R - 2 4 2 5}$		Not Used	
R-2426	N16-R-50516-818	RESISTOR, FIXED, COMPOSITION: 56, 000 ohms, $\pm 10 \% ; \mathbf{1 / 2}$ w; per.spec JAN-R-11; JAN type RC20GF563K	(22-23) mc Gain Control S-2426B, Unit 9
R-2427	N16-R-50372-833	RESISTOR, FIXED, COMPOSITION: 22, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF223K	(27-28) mc Gain Control S-2426B, Unit 9
R-2428	N16-R-50336-815	RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF153K	(32-33) mc Gain Control S-2426B, Unit 9
R-2429	N16-R-50130-241	RESISTOR, FIXED, COMPOSITION: 4700 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF472K	(37-38) mc Gain Control S-2426B, Unit 9
R-2430	N16-R-50012-816	RESISTOR, FIXED, COMPOSITION: 2200 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF222K	100 kc Step Gain Control S-2427B, Unit 9
R-2431		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2432		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2433		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2434		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2435		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2436		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2437		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9
R-2438		Same as R-2430	100 kc Step Gain Control S-2427B, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2439		Same as R-2151	8b Input Load J-2426, Unit 9
R-2440	N16-R-49283-811	RESISTOR, FIXED, COMPOSITION: 15 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF150K	7b Input Load, Unit 9
R-2441		Same as R-2350	Cathode Bias V-2426, Unit 9
R-2442	N16-R-50418-233	RESISTOR, FIXED, COMPOSITION: 33, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF333K	Screen Filter V-2426, Unit 9
R-2443		Same as R-2221	(27-28) mc Filter Loading S-2426C, Unit 9
R-2444		Same as R-2138	Cathode Bias V-2427, Unit 9
R-2445	N16-R-50310-238	RESISTOR, FIXED, COMPOSITION: 12, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF123K	Screen Filter V-2427, Unit 9
R-2446		Same as R-2221	(27-28) mc Filter Loading S-2426D, Unit 9
R-2447		Same as R-2138	Cathode Bias V-2428, Unit 9
R-2448		Same as R-2445	Screen Filter V-2428, Unit 9
R-2449		Same as R-2024	(27-28) mc Filter Loading S-2426E, Unit 9
R-2450		Same as R-2138	Cathode Bias V-2429, Unit 9
R-2451		Same as R-2445	Screen Filter V-2429, Unit 9
R-2452	N16-R-49923-533	RESISTOR, FIXED, COMPOSITION: 1000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF102K	B+ Filter, Unit 9
R-2453		Same as R-2452	B+ Filter, Unit 9
R-2454	N16-R-49364-811	RESISTOR, FIXED, COMPOSITION: 33 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF330K	7b Input Level J-2427, Unit 9
R-2455 thru $R-2525$		Not Used	
R-2526		Same as R-2011	2e Input Load, Unit 10
R-2527		Same as R-2127	Grid Leak V-2526, Unit 10
R-2528		Same as R-2305	Screen Filter V-2529, Unit 10

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2529		Same as R-2452	B+ Filter, Unit 10
R-2530	N16-R-50633-785	RESISTOR, FIXED, COMPOSITION: 100, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20GF104K	Screen Filter V-2526, Unit 10
R-2531		Same as R-2127	Grid Leak V-2527, Unit 10
R-2532	N16-R-50336-811	RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF153K; same as R-1052	Filter Load, Unit 10
R-2533		Same as R-2530	Screen Filter V-2527, Unit 10
R-2534		Same as R-2310	Parasitic Suppressor V-2528, Unit 10
R-2535		Same as R-2138	Cathode Bias V-2528, Unit 10
R-2536		Same as R-2442	Screen Filter V-2528, Unit 10
R-2537		Same as R-2310	Parasitic Suppressor V-2529, Unit 10
R-2538		Same as R-2138	Cathode Bias V-2529, Unit 10
R-2539		Same as R-2454	Output Coupling to J-2527, J-2530, Unit 10
R-2540		Same as R-2532	Filter Load, Unit 10
R-2541		Same as R-2532	Filter Load, Unit 10
R-2542		Same as R-2532	Filter Load, Unit 10
$\mathbf{R - 2 5 4 3}$ thru $R-2625$		Not Used	
R-2626		Same as R-2151	9a Input V-2626, Unit 11A
R-2627	$*$	Same as R-2151	10a Input V-2626, Unit 11A
R-2628		Same as R-2350	Cathode Bias V-2626, Unit 11A
R-2629		Same as R-2105	Plate Filter, Unit 11A
R-2630	:	Same as R-2011	Filter Load, Unit 11A
R-2631		Same as R-2203	Grid Return V-2626, Unit 11A

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2632		Same as R-2038	Grid Leak V-2627, Unit 11A
R-2633		Same as R-2138	Cathode Bias V-2627, Unit 11A
R-2634		Same as R-2011	Plate Load V-2627, Unit 11A
R-2635	N16-R-50337-243	RESISTOR, FIXED, COMPOSITION: 15, 000 ohms, $\pm 10 \%$; 1 w ; per spec JAN-R-11; JAN type RC30GF153K	Plate Filter V-2627, Unit 11A
R-2636		Same as R-2010	Compensating Coil Loading L-2629, Unit 11A
R-2637		Same as R-2038	Grid Leak V-2628, Unit 11A
R-2638		Same as R-2138	Cathode Bias V-2628, Unit 11A
R-2639		Same as R-2635	Plate Filter. V-2628, Unit 11A
R-2640	N16-R-50039-811	RESISTOR, FIXED, COMPOSITION: 2700 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF272K	Plate Load V-2628, Unit 11A
R-2641		Same as R-2024	Compensating Coil Loading L-2630, Unit 11A
R-2642		Same as R-2038	Grid Leak V-2629, Unit 11A
R-2643		Same as R-2061	Cathode Bias V-2629, Unit 11A
R-2644		Same as R-2452	B+ Filter, Unit 11A
R-2645		Same as R-2452	B+ Filter, Unit 11A
R-2646		Same as R-2224	Keying Voltage Decoupling, Unit 11A
R-2647	N16-R-49499-811	RESISTOR, FIXED, COMPOSITION: 68 ohms, $\pm 10 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20BF680K	Parasitic Suppressor V-2629, Unit 11A
R-2648		Same as R-2647	Parasitic Suppressor V-2629, Unit 11A
R-2649	For Replacement Use N16-R-66103-7646	RESISTOR, FIXED, WIRE WOUND: 2000 ohms, $\pm 5 \% ; 10 \mathrm{w}$; per spec JAN-R-26A; JAN type RW31G202	Load Resistor, Unit 11A
R-2650		Not Used	
R-2651		Same as R-2010	(10-11) mc Gain Control S-2651B, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2652		Same as R-2010	(11-12) mc Gain Control S-2651B, Unit 11B
R-2653		Same as R-2010	(12-13) mc Gain Control S-2651B, Unit 11B
R-2654		Same as R-2010	(13-14) mc Gain Control S-2651B, Unit 11B
R-2655		Same as R-2010	(14-15) mc Gain Control S-2651B, Unit 11B
R-2656		Same as R-2010	(6-7) mc Gain Control S-2651B, Unit 11B
R-2657		Same as R-2010	(7-8) mc Gain Control S-2651B, Unit 11B
R-2658		Same as R-2010	(8-9) mc Gain Control S-2651B, Unit 11B
R-2659		Same as R-2010	(9-10) mc Gain Control S-2651B, Unit 11B
R-2660		Not Used	
R-2661		Same as R-2151	9b Input V-2651, Unit 11B
R-2662		Same as R-2151	10b Input V-2651, Unit 11B
R-2663		Same as R-2350	Cathode Bias V-2651, Unit 11B
R-2664		Same as R-2442	Screen Filter V-2651, Unit 11B
R-2665		Same as R-2138	Cathode Bias V-2652, Unit 11B
R-2666		Same as R-2445	Screen Filter V-2652, Unit 11B
R-2667		Same as R-2010	Filter Loading V-2653, Unit 11B
R-2668		Same as R-2138	Cathode Bias V-2653, Unit 11B
R-2669		Same as R-2445	Screen Filter V-2653, Unit 11B
R-2670		Same as R-2010	Filter Loading V-2654, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2671		Same as R-2138	Cathode Bias V-2654, Unit 11B
R-2672	N16-R-50130-511	RESISTOR, FIXED, COMPOSITION: 4700 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42GF472K	Screen Filter V-2654, Unit 11B
R-2673		Same as R-2452	B+ Filter, Unit 11B
R-2674		Same as R-2452	B+ Filter, Unit 11B
R-2675	N16-R-50309-811	RESISTOR, FIXED, COMPOSITION: 12, 000 ohms, $\pm 10 \%$; $1 / 2$ w; per spec JAN-R-11; JAN type RC20BF123K	Filter Loading J-2653, Unit 11B
R-2676		Same as R-2010	Eliminate Oscillation, Unit 11B
R-2677		Same as R-2224	Keying Voltage Decoupling, Unit 11B
$\begin{aligned} & \mathrm{R}-2678 \\ & \text { thru } \\ & \mathrm{R}-2800 \end{aligned}$		Not Used	
R-2801	N16-R-50129-815	RESISTOR, FIXED, COMPOSITION: 4700 ohms, $\pm 10 \%$; $1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF472K	(20-21) mc Gain Control S-2801A, Unit 11C
R-2802		Same as R-2801	(21-22) mc Gain Control S-2801A, Unit 11C
R-2803		Same as R-2801	(22-23) mc Gain Control S-2801A, Unit 11C
R-2804		Same as R-2801	(23-24) mc Gain Control S-2801A, Unit 11C
R-2805		Not Used	
R-2806		Same as R-2801	($16-17$) mc Tuning S-2801A, Unit 11C
R-2807		Not Used	
R-2808		Same as R-2801	(18-19) mc Tuning S-2801A, Unit 11C
R-2809		Same as R-2801	(19-20) mc Gain Control S-2801A, Unit 11C
R-2810		Not Used	
R-2811		Same as R-2151	$\begin{aligned} & \text { 10c Input V-2801, } \\ & \text { Unit 11C } \end{aligned}$
R-2812		Same as R-2151	9c Input V-2801, Unit 11C

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2813		Same as R-2350	Cathode Bias V-2801, Unit 11C
R-2814		Same as R-2442	Screen Filter V-2801, Unit 11C
R-2815		Same as R-2024	Filter Loading V-2802, Unit 11C
R-2816		Same as R-2138	Cathode Bias V-2802, Unit 11C
R-2817		Same as R-2445	Screen Filter V-2802, Unit 11C
R-2818		Same as R-2010	Filter Loading V-2803, Unit 11C
R-2819		Same as R-2138	Cathode Bias V-2803, Unit 11C
R-2820		Same as R-2445	Screen Filter V-2803, Unit 11C
R-2821		Same as R-2010	Filter Loading V-2804, Unit 11C
R-2822		Same as R-2138	Cathode Bias V-2804, Unit 11C
R-2823	N16-R-50166-512	RESISTOR, FIXED, COMPOSITION: 5600 ohms, $\pm 10 \% ; 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC42GF562K	Screen Filter V-2804, Unit 11C
R-2824		Same as R-2452	B+ Filter, Unit 11C
R-2825		Same as R-2452	B+ Filter, Unit 11C
R-2826		Same as R-2224	Keying Voltage Decoupling, Unit 11C
R-2827		Same as R-2224	Decoupling V-2802, Unit 11C
R-2828 thru R-2915		Not Used	
R-2916	N16-R-90298-5420	RESISTOR, VARIABLE: wire wound, one section, 200 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-19; JAN type RA20A1SD201AK	Freq. Shift Zero Adjust
R-2917	N16-R-91288-6596	RESISTOR, VARIABLE: wire wound element; sliding brush type contact; 1 section, 10,000 ohms, $\pm 5 \% ; 5 \mathrm{w}$; not tapped; special G2. 5 taper; 3 solder lug term; phenolic case, eaclosed, 1-13/16 in. diam by 2 in . d; stainless steel shaft, round, 1/4 in. diam by 1-1/8 in. lg from mtg surface, normal torque; contact arm insulated, no "off" position; mtd by bushing 3/8 in. -32 NEF thd, $5 / 8 \mathrm{in} . \lg$; thds nickel or cad pl ; $\mathrm{w} /$ nut and lockwasher; resistance at 0° rotation shall be not more than 25 ohms; CAUY Model A, part/dwg SA311; CBTL part/dwg NL-961594-2	Freq. Shift Control

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-2918	N16-R-78138-3684	RESISTOR, FIXED, WIRE WOUND: 6500 ohms, $\pm 10 \%$; 0.4 w ; per spec JAN-R-93; JAN type RB40B65000F	Voltage Divider
R-2919	N16-R-91291-4935	RESISTOR, VARIABLE: wire wound; 10,000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-19; JAN type RA20A1SD103AK	Freq. Shift Range Adjust
$\begin{aligned} & \mathrm{R}-2920 \\ & \text { thru } \\ & \mathrm{R}-2939 \end{aligned}$		Not Used	
R-2940	N16-T-53080	RESISTOR, THERMAL: nominal operating current 0.28 amps , 11.2 w , maximum operating current $0.32 \mathrm{amps}, 19.2 \mathrm{w}, 40-60$ volts, AC-DC; ballast tube type, ST-16 bulb MBCA Ref Group 7, 5-5/16 in. lg o/a; octal base for socket mtg; CAGK size ST-16, type 3-38	Filament Regulation
$\begin{aligned} & \text { R-2941 } \\ & \text { thru } \\ & \text { R-2951 } \end{aligned}$		Not Used	
R-2952	N16-R-66066-8901	RESISTOR, FIXED, WIRE WOUND: 1,400 ohms, $\pm 5 \% ; 10 \mathrm{w}$; per spec JAN-R-26A; JAN type RW31F142	Oper. Point Adj. $\mathbf{R - 2 9 4 0}$
R-2953	N16-R-90870-9198	RESISTOR, VARIABLE: wire wound; 2500 ohms, $\pm 10 \%$; 25 w ; linear taper; per spec JAN-R-22; JAN type RP101SD252KK	Oper. Point Adj. $\mathbf{R - 2 9 4 0}$
R-2954		Not Used	
R-2955	N16-R-91291-4929	RESISTOR, VARIABLE: wire wound; 10,000 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-19; JAN type RA20B1RD103AK; incl S-2997	Wobbulator Control
$\begin{aligned} & \mathrm{R}-2956 \\ & \text { thru } \\ & \mathrm{R}-2966 \end{aligned}$		Not Used	
R-2967		Same as R-2127	RF Filter
R-2968		Same as R-2127	DC Return for CR-2920
R-2969		Same as R-2153	Plate Load for V-2917
$\begin{aligned} & \text { S-2001 } \\ & \text { thru } \\ & \text { S-2050 } \end{aligned}$		Not Used	
S-2051	Assemble from Component Parts	SWITCH, ROTARY: 2 sect each 1 pole, 12 pos, Mycalex \#410 wafers; solid silver alloy shorting rotor contacts; solder lug type term; 2 studs 1-9/16 in. c to $\mathrm{c} w /$ no. 5-40 thd for wafer mtg; w/30 detent mechanism; per BuShips 16S19; CBTL part/ dwg NL-960071-2 (2 sections); c/o S-2051B and S-2051C	Interpolation Osc. 1 kc Step Function, Unit 3
S-2051B	N17-S-91897-8912	SWITCH SECTION, ROTARY: 1 pole, 12 pos, spaced 30° apart; Mycalex \#410 body; solid silver alloy shorting rotor contacts; $1-7 / 8 \mathrm{in} . \lg \max , 1-5 / 8 \mathrm{in} . \mathrm{wd}, 1 / 8 \mathrm{in}$. thk; mtd by 2 holes for no. 5-40 screw 1-9/16 in. c to c; rotor c/o one pole which selects a single contact; per BuShips 16S19; CBTL part/ dwg NL-960071-2-1; p/o S-2051	Inductance Switching Wafer, Unit 3
S-2051C		Same as S-2051B; p/o S-2051; p/o Z-2052	Capacitance Switching Wafer, Unit 3

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-2052	Assemble from Component Parts	SWITCH, ROTARY: 1 section, 1 pole, 12 pos, spaced 30°; solid silver alloy shorting rotor contacts; Mycalex \#410 body; solder lug type term; 2 studs 1-9/16 in. c to c w/no. 5-40 thd for wafer mtg; w/30 detent mechanism; incl S-2052B; per BuShips 16S19; CBTL part/dwg NL-960071-2 (12 position)	100 Cycle Step Switch, Unit 3
S-2052B		Same as S-2051B; p/o S-2052	Inductance Switching Wafer, Unit 3
S-2053		Same as S-2052; incl S-2053B	10 Cycle Step Switch, Unit 3
S-2053B		Same as S-2051B; p/o S-2053	Inductance Switching Wafer, Unit 3
S-2054	N17-S-69904-5886	SWITCH, THERMOSTATIC: SPST; normally closed, contacts open on temp increase, $158^{\circ} \mathrm{F}$ operating temp setting, $1 / 10^{\circ} \mathrm{F}$ temp differential; bi-metal element; 120 v AC, 0.35 amp ; two wire lead term, $4 \mathrm{in} . \mathrm{lg}$, axially located at one end; glass encasing tube; 2-3/8 in. lg, 0.388 in . diam; shimmed as required until thermostat is a slide fit into crystal oven; CEE type S1-1A; CBTL part/dwg NL-960149-2; p/o Z-2051	Temp. Stabilization of Oven, Unit 3
$\begin{aligned} & \mathrm{S}-2055 \\ & \text { thru } \\ & \mathrm{S}-2125 \end{aligned}$		Not Used	
S-2126		Same as S-2054; p/o Z-2126	Temp. Stabilization of Oven, Unit 3
S-2201	Assemble from Component Parts	SWITCH, ROTARY: 3 section each 1 pole, 12 position, solid silver alloy contacts; shorting rotor contact; 3 Mycalex \#410 wafers; solder lug term; 2 studs 1-9/16 in. c to c w/no. 5-40 thd for wafer mtg; 30° detent mechanism; per BuShips 16S19; CBTL part/dwg NL-960071-2; c/o S-2201B, C and D	10 kc Step Switch, Unit 6
S-2201A		Not Used	
S-2201B		Same as S-2051B; p/o S-2201	(1. 21-1.3) mc Filter Steps, Unit 6
S-2201C		Same as S-2051B; p/o S-2201	$(1.21-1.3) \mathrm{mc}$ Filter Steps, Unit 6
S-2201D		Same as S-2051B; p/o S-2201	(210-300) kc Osc. Steps, Unit 6
$\begin{aligned} & \mathrm{S}-2202 \\ & \text { thru } \\ & \mathrm{S}-2325 \end{aligned}$	\cdots	Not Used	
S-2326		Same as S-2201; c/o S-2326E, F and G	100 kc Step Switch, Unit 8
S-2326E		Same as S-2051B; p/o S-2326	(16. 6-17. 5) mc Filter, Unit 8
S-2326F		Same as S-2051B; p/o S-2326	(16.6-17. 5) mc Filter, Unit 8
S-2326G		Same as S-2051B; p/o S-2326	(1.6-2.5) mc Tank, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{S}-2327 \\ & \text { thru } \\ & \mathrm{S}-2425 \end{aligned}$		Not Used	
S-2426	Assemble from Component Parts	SWITCH, ROTARY: 5 section, 4 section each 1 pole, 12 pos, spaced 30° apart, 1 section 2 pole, 5 pos, only 4 pos used; solid silver alloy shorting and nonshorting rotor contacts; 1 phenolic and 4 Mycalex no. 410 wafers; solder lug term; 2 studs 1-9/16 in. c to c w/no. 5-40 thd for wafer mtg; per BuShips 16S19; CBTL part/dwg NL-960071-2 (1 and 4 sections); c/o S-2426B, C, D, E and F	5 mc Filter Selector, Unit 9
S-2426A		Not Used	
S-2426B	N17-S-91897-8915	SWITCH SECTION, ROTARY: 2 pole, 5 pos, spaced 30°, only 4 pos used; plastic body; solid silver alloy nonshorting rotor contacts; $1-7 / 8 \mathrm{in} . \lg \max$ by $1-9 / 16 \mathrm{in}$. wd by $1 / 16 \mathrm{in}$. thk; mtd by 2 holes for no. $5-40$ thd screw 1-9/16 in. c to c; rotor c/o 2 poles which selects a single contact; per BuShips 16S19; CBTL part/dwg NL-960071-2-4; p/o S-2426	Gain Equalizer Wafer V-2426, Unit 9
S-2426C		Same as S-2051B; p/o S-2426	5 mc Filter Selector V-2427, Unit 9
S-2426D		Same as S-2051B; p/o S-2426	5 mc Filter Selector V-2428, Unit 9
S-2426E		Same as S-2051B; p/o S-2426	5 mc Filter Selector V-2429, Unit 9
S-2426F		Same as S-2051B; p/o S-2426	5 mc Filter Selector J-2428, Unit 9
S-2427	Assemble from Component Parts	SWITCH, ROTARY: 5 section each 1 pole, 12 pos; solid silver alloy shorting and non-shorting rotor contacts; 1 plastic and 4 Mycalex no. 410 wafers; solder lug type term; 2 studs 1-9/16 in. c to $\mathrm{c} \mathrm{w} / \mathrm{no}$. 5-40 thd for wafer mtg; with 30° detent mechanism; per BuShips 16S19; CBTL part/dwg NL-960071-2 (5 sections); c/o S-2427B, C, D, E and F	100 kc Steps, Unit 9
S-2427A		Not Used	
S-2427B	N17-S-91897-8914	SWITCH SECTION, ROTARY: 1 pole, 12 pos, spaced 30°, plastic body; solid silver alloy non-shorting rotor contacts; $1-7 / 8 \mathrm{in} . \lg \max$ by 1-9/16 in. wd by $1 / 16 \mathrm{in}$. thk; mtd by 2 holes for no. 5-40 screw 1-9/16 in. c to c; rotor connects a single contact to pole; per BuShips 16S19; CBTL part/dwg NL-960071-2-2; p/o S-2427	Gain Equilizer Wafer, Unit 9
S-2427C		Same as S-2051B; p/o S-2427	100 kc Filter Selector V-2427, Unit 9
S-2427D		Same as S-2e51B; p/o S-2427	100 kc Filter Selector V-2428, Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-2427E		Same as S-2051B; p/o S-2427	100 kc Filter Selector V-2429, Unit 9
S-2427F		Same as S-2051B; p/o S-2427	100 kc Filter Selector J-2428, Unit 9
S-2428 thru S-2525		Not Used	
S-2526	Assemble from Component Parts	SWITCH, ROTARY: 5 section each 1 pole, 12 pos; solid silver alloy contact; shorting rotor contacts; 5 Mycalex no. 410 wafers; solder lug terms; 2 studs 1-9/16 in. c to c w/no. 5-40 thd for wafer mtg; 30° detent mechanism; per BuShips 16S19; CBTL part/dwg NL-960071-2 (5 sections); c/o S-2526B, C, D, E and F	1 mc Step Switch Unit 10
S-2526A		Not Used	
S-2526B		Same as S-2051B; p/o S-2526	1 mc Step Filter Selector J-2527, Unit 10
S-2526C		Same as S-2051B; p/o S-2526	1 mc Step Filter Selector J-2527, Unit 10
S-2526D		Same as S-2051B; p/o S-2526	1 mc Step Filter Selector V-2529, Thit 10
$S=2526 E$		Same as S-2051B; p/o S-2526	1 mc Step Filter Selector V-2529, Unit 10
S-2526F		Same as S-2051B; p/o S-2526	1 mc Step Filter Selector V-2528, Unit 10
$\begin{aligned} & S-2527 \\ & \text { thru } \\ & S-2650 \end{aligned}$		Not Used	
S-2651	Assemble from Component Parts	SWITCH, ROTARY: 5 section each 1 pole, 11 pos; solid silver alloy shorting rotor contacts; 1 plastic and 4 Mycalex no. 410 wafers; solder lug term; 2 studs 1-9/16 in. c to $\mathrm{c} w /$ no. 5-40 thd for wafer mtg; with 30° detent mechanism; per BuShips 16S19; CBTL part/dwg NL-960071-2 (1 and 4 sections); c/o S-2651B, C, D, E and F	1 mc Step Filter Switch, Unit 11B
S-2651A		Not Used	
S-2651B	N17-S-91747-3033	SWITCH SECTION, ROTARY: 1 pole, 11 pos; spaced 30° apart; plastic body; solid silver shorting rotor contacts; 1-7/8 in. lg max by 1-9/16 in. wd by $1 / 16 \mathrm{in}$. thk; mtd by 2 holes for no. $5-40$ screw 1-9/16 in. c to c; rotor c/o one pole which selects a single contact; per BuShips 16S19; COC part no. $55421-\mathrm{H}$; CBTL part/dwg NL-960071-2-8; p/o S-2651	Gain Equalizer, Unit 11B

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers' Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-2651C		Same as S-2051B; p/o S-2651	1 mc Step Filter Selector V-2652, Unit 11B
S-2651D		Same as S-2051B; p/o S-2651	1 mc Step Filter Selector V-2653, Unit 11B
S-2651E		Same as S-2051B; p/o S-2651	1 mc Step Filter Selector V-2654, Unit 11B
S-2651F		Same as S-2051B; p/o S-2651	1 mc Step Filter Selector J-2653, Unit 11B
S-2652	Assemble from Component Parts	SWITCH, ROTARY: 4 section each 1 pole, 11 pos; solid silver alloy contacts; shorting rotor contacts; 4 Mycalex no. 410 wafers; solder lug term; 2 studs 1-9/16 in. c to $\mathrm{c} w /$ no. $5-40$ thd for wafer mtg, 30° detent mechanism; per BuShips 16S19; CBTL part/dwg NL-960071-2 (4 sections); c/o S-2652B, C, D and E	100 kc Step Filter Switch, Unit 11B
S-2652A		Not Used	
S-2652B		Same as S-2051B; p/o S-2652	100 kc Step Filter Selector V-2652, Unit 11B
S-2652C		Same as S-2051B; p/o S-2652	100 kc Step Filter Selector V-2653, Unit 11B
S-2652D		Same as S-2051B; p/o S-2652	100 kc Step Filter Selector V-2654, Unit 11B
S-2652E		Same as S-2051B; p/o S-2652	100 kc Step Filter Selector J-2653, Unit 11B
$\begin{aligned} & S-2653 \\ & \text { thru } \\ & S-2800 \end{aligned}$		Not Used	
S-2801		Same as S-2427; c/o S-2801A, B, C, D, E	1 mc Filter Step Switch, Unit 11C
S-2801A		Same as S-2651B; p/o S-2801	Gain Equalizer, Unit 11C
S-2801B		Same as S-2051B; p/o S-2801	1 mc Step Filter Selector V-2802, Unit 11C
S-2801C		Same as S-2051B; p/o S-2801	1 mc Step Filter Selector V-2803, Unit 11C
S-2801D		Same as S-2051B; p/o S-2801	1 mc Step Filter Selector V-2804, Unit 11C

NAVSHIPS 92121(A)

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-2801E		Same as S-2051B; p/o S-2801	1 mc Step Filter Selector V-2804 Output, Unit 11C
S-2802		Same as S-2652; c/o S-2802A, B, C and D	100 kc Filter Step Switch, Unit 11C
S-2802A		Same as S-2051B; p/o S-2802	100 kc Step Filter Selector V-2802, Unit 11C
S-2802B		Same as S-2051B; p/0 S-2802	100 kc Step Filter Selector V-2803, Unit 11C
S-2802C		Same as S-2051B; p/o S-2802	100 kc Step Filter Selector V-2804, Unit 11C
S-2802D		Same as S-2051B; p/o S-2802	100 kc Step Filter Selector J-2803, Unit 11C
$\begin{aligned} & \text { S-2803 } \\ & \text { thru } \\ & \text { S-2916 } \end{aligned}$		Not Used	
S-2917	N17-S-72396-1763	SWITCH, TOGGLE: SPDT; 125v DC, 40 amp ; phenolic body; 2-7/32 in. lg, 1-9/64 in. h, 41/64 in. wd max o/a dimen; bat type actuating handle $11 / 16 \mathrm{in}$. lg excluding bushing; "OFF" in center pos; 3 solder lug type term; single hole mtg for 15/32 in. - 32 thd bushing per JAN-S-23; JAN type ST42E	Zero Beat Selector
S-2918		Not Used	
S-2919	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; double pole single throw, male and female type, beryllium copper alloy strip contact; thermosetting plastic molding body; 1-1/2 in. lg by $1-1 / 2 \mathrm{in}$. wd by $1 / 2 \mathrm{in}$. thk o / a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in . apart; interrupts 24v DC; CBTL part/dwg NL-900059-2; same as S-501	Interlock Switch
S-2920	N17-S-56407-2863	SWITCH, PUSH: SPST; AC, $2 \mathrm{amps} ; 24 \mathrm{v}$; momentary, normally open; nickel pl metal; 1-29/64 in. lg, 5/8 in. diam; pushbutton type; 2 screw type term located on bottom; single mtg bushing no. 15-32 in. thd; CAE type CH8450K1; same as S-1304	Freq. Selector Door Interlock
$\begin{aligned} & \mathrm{S}-2921 \\ & \text { thru } \\ & \mathrm{S}-2995 \end{aligned}$		Not Used	
S-2996		Same as S-2652; e/o S-2996A, B, C, D	Output Chassis Selector Freq. Range
S-2996A		Same as S-2051B; p/o S-2996	Output Chassis Selector B+ Deck

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-2996B		Same as S-2051B; p/o S-2996	Output Chassis Selector (Unit 9 Deck)
S-2996C		Same as S-2051B; p/o S-2996	Output Chassis Selector (Unit 10 Deck)
S-2996D		Same as S-2051B; p/o S-2996	Output Chassis Selector (RF Output Deck)
S-2997	For Reference Only	SWITCH, ROTARY: SPST; $3 \mathrm{amp} ; 125 \mathrm{v}$ AC; bakelite body; rotate 30° for actuation; $\mathrm{p} / \mathrm{o} \mathbf{R - 2 9 5 5}$	Wobbulator
$\begin{aligned} & \text { T-2001 } \\ & \text { thru } \\ & \text { T-2050 } \end{aligned}$		Not Used	
T-2051	N-17-T-81400-1626	TRANSFORMER, RADIO FREQUENCY: two windings; 2 pie universal wound, no core, primary $2170 \mu \mathrm{~h}$ at $1000 \mathrm{cps} \mathrm{w} / \mathrm{o}$ shield can, secondary $2170 \mu \mathrm{~h}$ at 1000 cps w/o shield can, primary 420 turns no. 38 EF AWG copper wire, secondary 420 turns no. 38 EF AWG copper wire, primary 38 ohms, secondary 38 ohms DC resistance; 90 to 100 kc frequency range; untapped; aluminum cylindrical shield can; 2-25/32 in. lg o/a, $1.089 \mathrm{in} . \mathrm{wd}, 0.928 \mathrm{in} . \mathrm{h}$; molded thermosetting plastic form, air core; o/a dimen of coil form 2-7/32 in. $\mathrm{lg}, 0.828 \mathrm{in}$. diam; mtd by clamp; 4 solder lug type ter:n located on one end of coil form; T-2051 stamped on coil form and shield can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-5	(90-100) kc Output Filter, Unit 3
$\begin{aligned} & \mathrm{T}-2052 \\ & \text { thru } \\ & \mathrm{T}-2125 \end{aligned}$		Not Used	
T-2126	For Replacement Use N17-T-81400-1626	TRANSFORMER, RADIO FREQUENCY: two windings, 2 pie universal wound, no core, primary $2170 \mu \mathrm{~h}$ at 1000 cps w/o shield can, secondary $2170 \mu \mathrm{~h}$ at 1000 cps w/o shield can, primary 420 turns no. 38 EF AWG copper wire, secondary 420 turns no. 38 EF AWG copper wire, 38 ohms in primary, 38 ohms in secondary DC resistance; frequency range of 90 to 100 kc; untapped; cylindrical aluminum shield can; 2-25/32 in. lg $\mathrm{o} / \mathrm{a}, 1.089 \mathrm{in} . \mathrm{wd}, 0.928 \mathrm{in} . \mathrm{h}$; molded thermosetting plastic form, air core; o/a dimen of coil form 2-7/32 in. $\lg , 0.828 \mathrm{in}$. diam; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32$ in. mtg/c; 4 solder lug type term located on one end of coil form; T-2126 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-8	100 kc Output Filter, Unit 12
$\begin{aligned} & \mathrm{T}-2127 \\ & \text { thru } \\ & \mathrm{T}-2200 \end{aligned}$		Not Used	
T-2201	N17-T-79607-5001	TRANSFORMER, PULSE: blocking oscillator type; pulse repetition frequency of $10,000 \mathrm{cps}$, pulse width $10-20$ microseconds; primary impedance 10,000 ohms, secondary impedance 44, 000 ohms, DC resistance not rated; primary peak signal voltage 110 v negative, 10 v positive, current 0.005 amp , secondary peak voltage 225 v positive; test voltage primary term no. 3 at +250 v DC, secondary term no. 2 at ground potential; metal case hermetically sealed; o/a dimen 2 in . h by	10 kc Blocking Osc. Transformer, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
T-2201 (cont) $\mathrm{T}-2202$	N17-T-81403-1626	1-11/16 in. max diam; 4 solder lug type term on insulators 7/16 in. diam max by $3 / 4 \mathrm{in}$. h located on bottom; two no. 6-32 thd mtg studs $15 / 32 \mathrm{in}$. lg max on $1-3 / 16 \mathrm{in} . \operatorname{mtg} / \mathrm{c}$; CBE Y part/dwg OD-1544A; CBTL part/dwg NL-960048-1 TRANSFORMER, RADIO FREQUENCY: two windings, 1 pie universal wound, primary inductance $230 \mu \mathrm{~h}$ at $1000 \mathrm{cps} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary inductance $230 \mu \mathrm{~h}$ at 1000 cps w/o slug and shield can, 160 turns no. 34 EF2 AWG copper wire on primary, 160 turns no. 34 EF2 AWG copper wire on secondary, 5.1 ohms primary DC resistance, 5.1 ohms secondary DC resistance; untapped; cylindrical aluminum shield can; 2-25/ 32 in. lg o/a by 1.089 in. wd by 0.828 in . diam; screwdriver adjustable iron slug adjusted by shaft at either end of shield can; mtd with two no. 4-40 thd spade bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; T-2202 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-16	Ringing Coil, Unit 6
T-2203	N17-T-81457-1626	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary inductance $2.8 \mu \mathrm{~h}$ at $7.9 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary inductance $2.8 \mu \mathrm{~h}$ at $7.9 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, primary has 19 turns of no. 32 EF2 AWG copper wire, secondary 19 turns of no. 32 EF2 AWG copper wire; frequency range of 1.0 .4 to 10.5 mc ; untapped; aluminum cylindrical shield can; 2-25/32 in. $\lg \mathrm{o} / \mathrm{a}$ by 1.089 in . wd by 0.928 in. h ; molded thermosetting plastic form with iron core inserted next to shield can; o/a dimen of coil form 2-7/32 in. lg by 0.828 in . diam; screwdriver adjustable iron slug adjusted by shaft on either end of shield can; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; T-2203 stamped on coil form and shield can; coils moisture and fungus proofed; per spec MIL-T-27; CBTL part/dwg NL-960140-14-19	(10.4-10.5) mc Filter, Unit 6
T-2204		Same as T-2203	(10.4-10. 5) mc Filter, Unit 6
T-2205		Same as T-2203	(10.4-10.5) mc Filter, Unit 6
$\begin{aligned} & \mathrm{T}-2206 \\ & \text { thru } \\ & \mathrm{T}-2325 \end{aligned}$		Not Used	
T-2326	N17-T-81430-1800	TRANSFORMER, RADIO FREQUENCY: two windings, 2 pie universal wound, primary inductance $16.0 \mu \mathrm{~h}$ at $1000 \mathrm{cps} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary $16.0 \mu \mathrm{~h}$ at 1000 cps w/o slug and shield can, 38 turns of no. 7/41 EF2 AWG Litz copper wire on primary, 38 turns of no. 7/41 EF2 AWG Litz copper wire on secondary, 0.79 ohms primary DC resistance, 0.79 ohms secondary DC resistance; untapped; aluminum cylindrical shield can; 2-25/32 in. lg o/a by 1.089 in . wd by $0.928 \mathrm{in} . \mathrm{h}$; molded thermosetting plastic form with iron core inserted next to shield can; o/a dimen of coil form 2-7/32 in. lg by 0.828 in . diam; screwdriver adjustahle iron slug adjusted by shaft on either end of shield can; mtd with two no. 4-40 thd spade bolts $51 / 64 \mathrm{in}$. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; 4 solder lug type term located at one end of coil form; T-2326 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-27	Ringing Coil, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
T-2327 thru $\mathrm{T}-2915$		Not Used	-
T-2916	N17-T-65748-4629	TRANSFORMER, AUDIO FREQUENCY: plate coupling type; 15,000 ohms primary impedance, 60,000 ohms secondary impedance; 750v RMS test voltage; upright steel case with hi-mu steel core; o/a dimen $1-13 / 32 \mathrm{in}$. lg by $15 / 16 \mathrm{in}$. diam; 0 db max audio operating level; primary to secondary turns ratio 2 to 1 ; rated frequency from 40 to $15,000 \mathrm{cps}$, not tuned; 4 solder lug type term iocated on mtg surface; 2 mtg holes 0.120 in . diam, $1-1 / 8 \mathrm{in}$. c to c ; CUT part no. $89564-\mathrm{A}$, dwg no. SH5722	Phase Mod.
T-2917		Not Used	
T-2918		Not Used	
T-2919		Not Used	
T-2920	N17-T-69160-1001	TRANSFORMER, POWER, STEP-DOWN: hermetically sealed metal case; 60v AC, 50/60 cycles, single ph input; one output winding 6.3 v at $2.4 \mathrm{amps} ; 1500 \mathrm{v}$ RMS test voltage; Robertson potting compound; 2-3/16 in. diam by 2-7/8 in. h on mtg base $2-3 / 16$ in. sq; 4 standoffs, $5 / 16$ in. diam by $7 / 16 \mathrm{in}$. h , solder lug type term located on mtg surface; four 0.177 in . diam mtg holes on $1-13 / 16 \mathrm{in}$. by $1-13 / 16 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; electrostatic shield; per spec MIL-T-27; CUT part F-3610, CBTL part/dwg NL-980604-1	Regulated Fil. Supply
T-2921	N17-T-70221-3877	TRANSFORMER, POWER, STEP-DOWN: hermetically sealed metal case; 110 v AC, $50 / 60$ cycles, single ph input; one output winding 6.3 v at 9.5 amps center tapped; Robertson potting compound, $2-15 / 16$ in. diam by $3-3 / 4 \mathrm{in}$. h on 3 in . sq mtg base; MBCA Ref Dwg Group 12; 5 standoffs, $7 / 16 \mathrm{in}$. diam by $1 / 2 \mathrm{in}$. h, solder lug type term located on mtg surface; four 0.177 in . diam mtg holes on 2-3/8 in. by 2-3/8 in. $\mathrm{mtg} / \mathrm{c}$; electrostatic shield; per spec MIL-T-27; CUT part no. F-3608; CBTL part/ dwg NL-980603-1	Unregulated Fil. Supply
T-2922	N17-T-70220-1704	TRANSFORMER, POWER, STEP.-DOWN: fully enclosed hermetically sealed metal case; 110v AC, 50/60 cycles, single ph input; one output winding 6.3 v at $2.0 \mathrm{amp} ; 1500 \mathrm{v}$ RMS test voltage; Roberts on potting compound; 2-3/16 in. diam by 2-7/8 in. lg ; MBCA Ref Dwg Group 12; 4 solder lug type term on insulators $5 / 16 \mathrm{in}$. diam by $7 / 16 \mathrm{in}$. lg o/a on bottom; four 0.177 in . diam on $1-13 / 16 \mathrm{in}$. by $1-13 / 16 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ on $2-3 / 16 \mathrm{in}$. sq mtg flange; electrostatic shield; per spec ML-T-27; CUT part/dwg F-4237; CBTL part/dwg NL-960398-1	Xtal Heater Supply
V-2001	N16-T-75654	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 5654	Oscillator, Unit 1
V-2002	N16-T-75814	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 5814; same as V-1004	Cathode Follower, Unit 1
V-2003		Same as V-2002	Cathode Follower, Unit 1
$\begin{aligned} & \text { V-2004 } \\ & \text { thru } \\ & \text { V-2030 } \end{aligned}$		Not Used	
RIGINAL			8-22

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
V-2031		Same as V-2001	Multiplier, Unit 2
V-2032		Same as V-2001	Multiplier, Unit 2
V-2033		Same as V-2002	Cathode Follower, Unit 2
V-2034		Same as V-2002	Cathode Follower, Unit 2
$\begin{aligned} & \mathrm{V}-2035 \\ & \text { thru } \\ & \mathrm{V}-2050 \end{aligned}$		Not Used	
V-2051	N16-T-56192	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 6AK6	Oscillator, Unit 3
$\begin{aligned} & \mathrm{V}-2052 \\ & \text { thru } \\ & \mathrm{V}-2100 \end{aligned}$		Not Used	
V-2101		Same as V-2001	Multiplier, Unit 4
V-2102		Same as V-2001	Multiplier, Unit 4
$\begin{aligned} & \mathrm{V}-2103 \\ & \text { thru } \\ & \mathrm{V}-2125 \end{aligned}$		Not Used	
V-2126	N16-T-56175	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 6AG5	Control Follower, Unit 12
V-2127		Same as V-2126	Control Tube, Unit 12
V-2128		Same as V-2051	Oscillator, Unit 12
$\begin{aligned} & \mathrm{V}-2129 \\ & \text { thru } \\ & \mathrm{V}-2150 \end{aligned}$		Not Used	
V-2151	N16-T-75725	ELECTRON TUBE: pentode; per spec JAN-1A; JAN type 5725; same as V-1001	Mixer, Unit 5
V-2152		Same as V-2151	Mixer, Unit 5
V-2153		Same as V-2151	Mixer, Unit 5
V-2154		Same as V-2001	Amplifier, Unit 5
$\begin{aligned} & \mathrm{V}-2155 \\ & \text { thru } \\ & \mathrm{V}-2200 \end{aligned}$		Not Used	
V-2201		Same as V-2001	Decoupling Tube, Unit 6
V-2202	N16-T-58241	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 12AU7	10 kc Blocking Osc. \& Shaper, Unit 6
V-2203		Same as V-2151	Mixer, Unit 6
V-2204		Same as V-2001	Reactance Tube, Unit 6

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
V-2205		Same as V-2051	10 kc Step Osc. (210-300) kc, Unit 6
V-2206		Same as V-2151	Mixer, Unit 6
V-2207		Same as V-2151	Mixer, Unit 6
V-2208		Same as V-2001	Amplifier, Unit 6
V-2209		Same as V-2001	Amplifier, Unit 6
$\begin{aligned} & \mathrm{V}-2210 \\ & \text { thru } \\ & \mathrm{V}-2300 \end{aligned}$		Not Used	
V-2301		Same as V-2001	Multiplier, Unit 7
V-2302		Same as V-2001	Amplifier, Unit 7
V-2303		Same as V-2001	Multiplier, Unit 7
V-2304		Same as V-2001	Amplifier, Unit 7
$\begin{aligned} & \mathrm{V}-2305 \\ & \text { thru } \\ & \mathrm{V}-2325 \end{aligned}$		Not Used	
V-2326	For Replacement Use N16-T-58240-14	ELECTRON TUBE: dual triode; per spec JAN-1A; JAN type 6201; same as V-1015	Clipper and Shaper, Unit 8
V-2327		Same as V-2151	Mixer, Unit 8
V-2328		Same as V-2001	Reactance Tube, Unit 8
V-2329		Same as V-2051	(1.6-2.5) mc Osc., Unit 8
V-2330		Same as V-2151	Mixer, Unit 8
V-2331		Same as V-2151	Mixer, Unit 8
V-2332		Same as V-2001	Amplifier, Unit 8
V.-2333		Same as V-2001	Amplifier, Unit 8
V-2334		Same as V-2051	Cathode Follower, Unit 8
V-2335 thru V-2425		Not Used	
V-2426		Same as V-2151	Mixer, Unit 9
V-2427		Same as V-2001	Amplifier, Unit 9
V-2428		Same as V-2001	Amplifier, Unit 9
V-2429		Same as V-2051	Amplifier, Unit 9

AN/SRT 14, 14A, 15, 15A, 16, 16A
TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { V-2430 } \\ & \text { thru } \\ & \text { V-2525 } \end{aligned}$		Not Used	
V-2526		Same as V-2001	Harmonic Gen., Unit 10
V-2527		Same as V-2001	Amplifier, Unit 10
V-2528		Same as V-2001	Amplifier, Unit 10
V-2529		Same as V-2001	Amplifier, Unit 10
$\begin{aligned} & \mathrm{V}-2530 \\ & \text { thru } \\ & \mathrm{V}-2625 \end{aligned}$		Not Used	
V-2626		Same as V-2151	Mixer, Unit 11A
V-2627		Same as V-2001	Video Amplifier, Unit 11A
V-2628		Same as V-2001	Video Amplifier, Unit 11A
V-2629	N16-T-75687	ELECTRON TUBE: dual-triode; per spec JAN-1A; JAN type 5687	Cathode Follower, Unit 11A
$\begin{aligned} & V-2630 \\ & \text { thru } \\ & V-2650 \end{aligned}$		Not Used	
V-2651		Same as V-2151	Mixer, Unit 11B
V-2652		Same as V-2001	Amplifier, Unit 11B
V-2653		Same as V-2001	Amplifier, Unit 11B
V-2654		Same as V-2051	Amplifier, Unit 11B
$\begin{aligned} & \mathrm{V}-2655 \\ & \text { thru } \\ & \mathrm{V}-2800 \end{aligned}$		Not Used	
V-2801		Same as V-2151	Mixer, Unit 11C
V-2802		Same as V-2001	Amplifier, Unit 11C
V-2803		Same as V-2001	Amplifier, Unit 11C
V-2804		Same as V-2051	Amplifier, Unit 11C
$\begin{aligned} & \mathrm{V}-2805 \\ & \text { thru } \\ & \mathrm{V}-2916 \end{aligned}$		Not Used	
V-2917	N16-T-56255	ELECTRON TUBE: electron ray; JAN type 6E5	Cathode Ray Indicator
XF-2917	Low Failure Item	FUSEHOLDER: extractor post type; 250v, 30 amp ; accommodates 1 fuse, cartridge type, $1-1 / 2 \mathrm{in} . \mathrm{lg}, 13 / 32 \mathrm{in}$. diam; black bakelite body; bright alloy pl brass contacts; 2-1/4 in. lg , $1.775 \mathrm{in} . \mathrm{wd}, 1.2 \mathrm{in} . \mathrm{h}$ o/a dimen; 2 solder lug type term, hot	Holder for F-2917

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XF-2917 $\begin{aligned} & \text { XF-2918 } \\ & \text { XI-2916 } \end{aligned}$	N17-L-76763-1597	tin dipped; two 0.167 in . mtg holes 1.312 in . c to c for fastening to panel; one mtg hole 0.865 in . diam; waterproof; CFA type HPC-DZ; CBTL part/dwg NL-900068-2; same as XF-501 Same as XF-2917 LIGHT, INDICATOR: supplied w/lens, 5/8 in. diam, clear, fluted, screw type holder; accommodates neon T3-1/4 NE 51 lamp, single contact miniature bayonet base, 110 v ; brass shell, black nickel finish, enclosed; 2-5/16 in. lg, $15 / 16 \mathrm{in}$. diam oýa dimen, 1 mtg hole required, $11 / 16 \mathrm{in}$. diam; accommodates up to $1 / 4$ in. max thk panel; horizontally mtd; lamp replaceable from front of panel; 2 term, solder lug type, located on socket base, both insulated from shell; includes built in 51000 ohm, 1/3 watt, composition resistor; CAYZ type 53408-XP18-997; same as XI-503	Holder for F-2918 Retainer for I-2916
XI-2917		Same as XI-2916	Retainer for I-2917
XI-2918	For Replacement Use N17-L-76689-4654	LIGHT, INDICATOR: supplied with 5/8 in. diam lens, amber, multivue, long plastic cap; screw type holder; accommodates T3-1/4 Mazda 47 lamp, single contact, miniature bayonet base; 125v, 75 w ; brass and molded bakelite, black nickel finish, enclosed; 2-7/32 in. \lg by 15/16 in. diam; 1 mtg hole required, $11 / 16$ in. diam; accommodates up to $9 / 32$ in. max panel thickness; horizontally mtd; lamp replaceable from front of panel; 2 term, solder lug type, located on socket base, both insulated from shell; CAYZ typs 53410-XP18-993	Retainer for I-2918
XR-2940		Same as E-2919	Socket for R-2940
XV-2001	N16-S-62603-6702	SOCKET, ELECTRON TUBE: 7 contacts, brass, nickel pl; miniature; incl metal shield base, 0.800 in . diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, 0.125 in . ID; oval; 1-1/8 in. lg, 0.800 in . wd, $25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; molded thermosetting plastic body; one piece saddle $\mathrm{mtg}, 5 / 8 \mathrm{in}$. diam chassis hole required, 2 mtg holes, 0.125 in . diam, 0.375 in . c to c ; per spec JAN-S-28A; JAN type TS102PO1; same as XV-1303	Socket for V-2001, Unit 1
XV-2002	N16-S-64063-6713	SOCKET, ELECTRON TUBE: 9 contacts, brass, nickel pl; miniature; incl metal shield base, 0.940 in. diam, $0.611 \mathrm{in} . \mathrm{h}$; incl center shield, 0.125 in . D ; oval; 1-3/8 in. lg, 0.940 in . wd, $25 / 32 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; molded thermosetting plastic body; one piece saddle mtg, $3 / 4 \mathrm{in}$. diam chassis hole required, 2 mtg holes, 0.125 in . diam, 1.125 in . c to c ; per spec JAN-S-28A; JAN type TS103PO1	Socket for V-2002, Unit 1
XV-2003		Same as XV-2002	Socket for V-2003, Unit 1
$\begin{aligned} & \text { XV-2004 } \\ & \text { thru } \\ & \text { XV-2030 } \end{aligned}$		Not Used	
XV-2031		Same as XV-2001	Socket for V-2031, Unit 2
XV-2032		Same as XV-2001	Socket for V-2032, Unit 2
XV-2033		Same as XV-2002	Socket for V-2033, Unit 2

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XV -2034		Same as XV-2002	Socket for V-2034, Unit 2
$\begin{aligned} & \text { XV }-2035 \\ & \text { thru } \\ & \text { XV - } 2050 \end{aligned}$		Not Used	
XV-2051	N16-S-62603-6700	SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver pl; miniature; incl metal shield base, 0.800 in . diam, 0.611 in . h ; incl center shield, 0.125 in . ID ; oval; $1-1 / 8 \mathrm{in} . \mathrm{lg}$, 0.800 in . wd, $25 / 32 \mathrm{in}$. h o/a dimen excluding term; ceramic insulator; one piece saddle $\mathrm{mtg}, 5 / 8 \mathrm{in}$. diam chassis hole required, 2 mtg holes, 0.125 in . diam; 0.875 in . c to c ; per spec JAN-S-28A; JAN type TS102CO1; same as XV-1001	Socket for V-2051, Unit 3
$\begin{aligned} & \text { XV - } 2052 \\ & \text { thru } \\ & \text { XV - } 2100 \end{aligned}$		Not Used	
XV-2101	N16-S-62603-6330	SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver pl; miniature; metal shock shield not incl; incl center shield $3 / 16$ in. diam; round shape; $1-1 / 8 \mathrm{in} . \lg , 3 / 4 \mathrm{in}$. wd, $9 / 16$ in. h o/a dimen excluding term; mica plexicon body; one piece saddle $\mathrm{mtg} ; 0.687 \mathrm{in}$. diam chassis hole required; 2 mtg holes 0.125 in . diam spaced 0.875 in . c to c ; incl one capacitor of 0.001 mf in each of pins 3 and 6; CMG part/dwg 43, type 43AM36; incl C-2102 and C-2110	Socket for V-2101, Unit 4
XV-2102		Same as XV-2101; incl C-2106 and C-2111	Socket for V-2102, Unit 4
$\begin{aligned} & \text { XV - } 2103 \\ & \text { thru } \\ & \text { XV-2125 } \end{aligned}$		Not Used	
XV-2126	N16-S-63509-2037	SOCKET, ELECTRON TUBE: 8 contacts, phosphor bronze, silver pl; medium; oval; 1-9/16 in. $\mathrm{lg}, 1-7 / 32 \mathrm{in}$. diam, $1 / 2$ in. h o/a dimen excluding term; mica phenolic body; one piece saddle $\mathrm{mtg} ; 0.084 \mathrm{in}$. diam chassis hole required, 2 mtg holes 0.136 in . diam, spaced $1-5 / 16 \mathrm{in}$. c to c; low loss mica phenolic; contact tails hot tin dipped; CMG dwg 9905, type 51A13203; same as VX-1301	Socket for V-2126, Unit 12
XV-2127	N16-S-62603-6925	SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver pl; miniature; metal shock shield not incl; incl center shield $3 / 16 \mathrm{in}$. diam; round shape; $1-3 / 32 \mathrm{in} . \lg , 51 / 64 \mathrm{in}$. wd, $25 / 64 \mathrm{in} . \mathrm{h}$ o/a dimen excluding term; ceramic dielectric body; one piece saddle mtg ; $5 / 8 \mathrm{in}$. chassis hole required, 2 mtg holes 0.120 in . diam, spaced 0.875 in . c to c; CMG part/dwg 53C13142	Socket for V-2127, Unit 12
XV-2128		Same as XV-2001	Socket for V-2128, Unit 12
$\begin{aligned} & \text { XV - } 2129 \\ & \text { thru } \\ & \text { XV - } 2150 \end{aligned}$		Not Used	
XV-2151		Same as XV-2001	Socket for V-2151, Unit 5
XV-2152		Same as XV-2001	Socket for V-2152, Unit 5

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XV-2153	N16-S-62603-6338	SOCKET, ELECTRON TUBE: 7 contacts, beryllium copper, silver pl; miniature; metal shock shield not incl; incl center shield $3 / 16 \mathrm{in}$. diam; round shape; $1-1 / 8 \mathrm{in} . \mathrm{lg}, 3 / 4 \mathrm{in} . \mathrm{wd}$, $9 / 16 \mathrm{in}$. $\mathrm{h} \mathrm{o} / \mathrm{a}$ dimen excluding term; mica plexicon body; one piece saddle mtg; 0.687 in . diam chassis hole required; 2 mtg holes 0.125 in . diam spaced 0.875 in . c to c ; incl capacitor of 0.001 mf in each of pins 2, 3 and 6; CMG dwg 43, type 43AM236; incl C-2163, C-2164 and C-2167	Socket for V-2153, Unit 5
XV-2154		Same as XV-2153; incl C-2168, C-2172, and C-2173	Socket for V-2154, Unit 5
$\begin{aligned} & \mathrm{XV}-2155 \\ & \text { thru } \\ & \mathrm{XV}-2200 \end{aligned}$		Not Used	
XV-2201		Same as XV-2051	Socket for V-2201, Unit 6
XV-2202		Same as XV-2002	Socket for V-2202, Unit 6
XV-2203		Same as XV-2051	Socket for V-2203, Unit 6
XV-2204		Same as XV-2051	Socket for V-2204, Unit 6
XV-2205		Same as XV-2051	Socket for V-2205, Unit 6
XV-2206		Same as XV-2051	Socket for V-2206, Unit 6
XV-2207		Same as XV-2153; incl C-2235, C-2236, and C-2248	Socket for V-2207, Unit 6
XV-2208		Same as XV-2153; incl C-2240, C-2241, and C-2249	Socket for V-2208, Unit 6
XV-2209		Same as XV-2153; incl C-2243, C-2244, and C-2250	Socket for V-2209, Unit 6
$\begin{aligned} & \text { XV-2210 } \\ & \text { thru } \\ & \text { XV-2300 } \end{aligned}$		Not Used	
XV-2301		Same as XV-2101; incl C-2302, C-2310	Socket for V-2301, Unit 7
XV-2302		Same as XV-2153; incl C-2305, C-2306, and C-2311	Socket for V-2302, Unit 7
XV-2303		Same as XV-2101; incl C-2312, C-2316	Socket for V-2303, Unit 7
XV-2304		Same as XV-2153; incl C-2313, C-2319, and C-2320	Socket for V-2304, Unit 7
XV-2305 thru XV-2325		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XV-2326		Same as XV-2002	Socket for V-2326, Unit 8
XV-2327		Same as XV-2153; incl C-2401, C-2402, and C-2403	Socket for V-2327, Unit 8
XV-2328		Same as XV-2153; incl C-2338, C-2398, and C-2400	Socket for V-2328, Unit 8
XV-2329		Same ás XV-2101; incl C-2346, and C-2399	Socket for V-2329, Unit 8
XV-2330		Same as XV-2153; incl C-2350, C-2351, and C-2394	Socket for V-2330, Unit 8
XV-2331		Same as XV-2153; incl C-2380, C-2381, and C-2395	Socket for V-2331, Unit 8
XV-2332		Same as XV-2153; incl C-2385, C-2386, and C-2396	Socket for V-2332, Unit 8
XV-2333		Same as XV-2153; incl C-2389, C-2390, and C-2397	Socket for V-2333, Unit 8
XV-2334		Same as XV-2101; incl C-2408 and C-2409	Socket for V-2334, Unit 8
XV-2335 thru XV-2425		Not Used	
XV-2426		Same as XV-2153; incl C-2429, C-2445, and C-2502	Socket for V-2426, Unit 9
XV-2427		Same as XV-2153; incl C-2489, C-2490, and C-2503	Socket for V-2427, Unit 9
XV-2428		Same as XV-2153; incl C-2491, C-2492, and C-2504	Socket for V-2428, Unit 9
XV-2429		Same as XV-2153; incl C-2494, C-2495, and C-2505	Socket for V-2429, Unit 9
$\begin{aligned} & \text { XV-2430 } \\ & \text { thru } \\ & \text { XV-2525 } \end{aligned}$		Not Used	
XV-2526		Same as XV-2101; incl C-2531 and C-2544	Socket for V-2526, Unit 10
XV-2527		Same as XV-2101; incl C-2533 and C-2545	Socket for V-2527, Unit 10
XV-2528		Same as XV-2153; incl C-2535, C-2536, and C-2546	Socket for V-2528, Unit 10
XV-2529		Same as XV-2153; incl C-2538, C-2539, and C-2547	Socket for V-2529, Unit 10
$\begin{aligned} & \text { XV-2530 } \\ & \text { thru } \\ & \text { XV-2625 } \end{aligned}$		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XV-2626		Same as XV-2153; incl C-2627, C-2628, and C-2634	Socket for V-2626, Unit 11A
XV-2627		Same as XV-2153; incl C-2633, C-2637, and C-2643	Socket for V-2627, Unit 11A
XV-2628		Same as XV-2153; incl C-2636, C-2638, and C-2639	Socket for V-2628, Unit 11A
XV-2629		Same as XV-2002	Socket for V-2629, Unit 11A
$\begin{aligned} & \text { XV-2630 } \\ & \text { thru } \\ & \text { XV-2650 } \end{aligned}$		Not Used	
XV-2651		Same as XV-2153; incl C-2754, C-2755, and C-2771	Socket for V-2651, Unit 11B
XV-2652		Same as XV-2153; incl C-2757, C-2758, and C-2772	Socket for V-2652, Unit 11B
XV-2653		Same as XV-2153; incl C-2760, C-2761, and C-2773	So ket for V-2653, Unit 11B
XV-2654		Same as XV-2153; incl C-2763, C-2764, and C-2774	Socket for V-2654, Unit 11B
$\begin{aligned} & \text { XV-2655 } \\ & \text { thru } \\ & \text { XV-2800 } \end{aligned}$		Not Used	
XV-2801		Same as XV-2153; incl C-2890, C-2891, and C-2910	Socket for V-2801, Unit 11C
XV-2802		Same as XV-2153; incl C-2893, C-2894, and C-2909	Socket for V-2802, Unit 11C
XV-2803		Same as XV-2153; incl C-2896, C-2897, and C-2908	Socket for V-2803, Unit 11C
XV-2804		Same as XV-2153; incl C-2899, C-2900, and C-2907	Socket for V-2804, Unit 11C
$\begin{aligned} & \text { XV-2805 } \\ & \text { thru } \\ & \text { XV-2916 } \end{aligned}$		Not Used	
XV-2917	N16-S-62152-2631	SOCKET, ELECTRON TUBE: 6 contacts, phosphor bronze, silver pl, S type; medium size, round shape; $1-1 / 4 \mathrm{in}$. diam, $0.420 \mathrm{in}, \mathrm{h}$ o/a dimen excluding term; steatite body; retainer ring mtg; 1.172 in . keyed chassis hole required; per BuShips RE13A524; CPH type 49-SS6M	Socket for V-2917
XY-2001	N16-S-62833-8849	SOCKET, ELECTRON TUBE: 7 cadmium pl brass clip contacts; jumbo size; rectangular shape; $2-5 / 8 \mathrm{in} . \lg$ by $2-5 / 8 \mathrm{in}$. wd by $9 / 32 \mathrm{in}$. thk; steatite body; molded in plate; $2-7 / 8 \mathrm{in}$. chassis hole required, 4 mtg holes 0.174 in . diam spaced 1-7/8 in. by 1-7/8 in. c to c; clear glazed top and sides, cad pl steel spring, solder lug type term; CEJ part no. 122-237	Socket for Y-2001, Unit 1

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
Y-2001	N16-C-96177-3011	CRYSTAL UNIT, QUARTZ: one crystal plate; nominal freq 100 kc ; CADI part no. H22 crystal holder; 8 solid type pins in standard octal base located on bottom, 0.093 in . diam by $13 / 32$ in. lg. , cylindrical metal shield can, 3.240 in . lg by 2.050 in . diam; air gap not adjustable; hermetically sealed; crystal ground to such tolerance to obtain 100 kc exactly by slug tuning of coil in circuit, 7 pin base on stabilized heat oven, etched crystal plate, operating temp of oven $70^{\circ} \mathrm{C} \pm 1^{\circ}$; CADI type JKO7 (stabilized heat unit) and type H-22 (crystal holder); CBTL part/dwg NL-960008-2	Stabilizer Output of 100 kc Crystal, Unit 1
Z-2001	For Replacement Use N16-O-54121-2625	OSCILLATOR, RADIO FREQUENCY: frequency range, 100 kc ; four outputs, 11.5 v into 5600 ohms, 0.44 v into 3300 mmf , 6.4 v into 10,000 ohms, 6.3 v into 5600 ohms; crystal frequency control; power requirements 6 . 3 v AC at $19 \mathrm{ma}, 60$ cycles, single ph, and 250v DC reg at 19 ma ; external power supply; integral coils; 6-3/4 in. lg, 5-3/8 in. wd, 5-7/8 in. h o/a dimen; plugs into RFO chassis; includes crystal oven (temp network compensating); accurate to $\pm 1.5 \mathrm{PPM}$ over a temperature range of $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ and a humidity range of 0 to 100%; CBTL part/ dwg NL-960223-14	Unit 1
$\begin{aligned} & \mathrm{Z}-2002 \\ & \text { thru } \\ & \mathrm{Z}-2030 \end{aligned}$		Not Used	
Z-2031	N17-T-81415-1626	TRANSFORMER, RADIO FREQUENCY: 2 one pie universal windings, primary $75 \mu \mathrm{~h} / 1000$ cycles w / o slug and shield can, 78 turns no. 7/41 EF2 AWG Litz copper wire, 1.86 ohms, secondary $75 \mu \mathrm{~h} / 1000$ cycles w / o slug and shield can, 78 turns no. 7./ 41 EF2 Litz copper wire, 1.86 ohms; 500 kc peak frequency; untapped; shielded aluminum cylindrical can; 2-25/32 in. lg, 1.089 in. wd, 0.928 in. h o/a dimen; molded thermosetting plastic form, iron core inserted next to shield can; 2-7/32 in. $\mathrm{lg}, 0.828 \mathrm{in}$. diam o/a coil form dimen; adjustable iron slug w/shaft on either end of can; mtd by 2 no. 4-40 thd bolts $51 / 64 \mathrm{in}$. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; 4 solder lug type term located at one end of coil form; Z-2031 stamped on coil form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-2; incl C-2034 and C-2035	500 kc Filter, Unit 2
Z-2032	N17-T-81430-1801	TRANSFORMER, RADIO FREQUENCY: 2 windings, 2 pie universal wound; primary and secondary $75 \mu \mathrm{~h} / 1000$ cycles w/o slug and shield can, 78 turns no. 7/41 EF2 AWG Litz copper wire, $1.86 \mathrm{ohms} ; 1.0 \mathrm{mc}$ peak frequency; untapped; shielded aluminum cylindrical can; 2-25/32 in. $1 \mathrm{~g}, 1.089 \mathrm{in}$. wd, 0.928 in. h o/a dimen; molded thermosetting plastic form; iron core next to can; 2-7/32 in. lg, 0.828 in . diam o/a dimen of coil form; adjustable screwdriver iron slug tuning from either end of can; mtd by 2 no. 4-40 thd bolts $51 / 64 \mathrm{in}$. $\lg \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; $\mathrm{Z}-2032$ stamped on coil and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-3; incl C-2039 and C-2040	1 mc Filter, Unit 2
Z-2033	N17-T-81430-1802	TRANSFORMER, RADIO FREQUENCY: 2 windings, 2 pie universal wound, primary and secondary $75 \mu \mathrm{~h} / 1000$ cycles w / o slug and can, 78 turns no. 7/41 EF2 AWG Litz copper wire, 1.86 ohms; 1 mc peak frequency; untapped; shielded cylindrical aluminum can; 2-2 $5 / 32 \mathrm{in} . \mathrm{lg}, 1.089 \mathrm{in} . \mathrm{wd}, 0.928 \mathrm{in} . \mathrm{h}$ o/a dimen; molded thermosetting plastic form; iron core next to can; 2-7/32 in. lg, 0.828 in . diam o/a dimen of coil form; adjustable screwdriver iron slug tuning from either end of can;	1 mc Filter, Unit 2

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{Z}-2033 \\ & \text { (cont) } \end{aligned}$		mtd by 2 no. 4-40 thd bolts 51/64 in. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; Z-2033 stamped on coil and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-4; incl C-2041	
Z-2034	N16-A-33499-6870	FREQUENCY MULTIPLIER: incoming frequency 100 kc , resultant frequency 1 mc ; power requirements 6.3 v AC at 1.0 amp, 60 cycles, single ph, 250 v DC at 23 ma ; five outputs 9.2 v into 2200 ohms, 1.55 v into 1000 ohms, 1.40 v into 1000 ohms , 8.8 v into 2200 ohms, 9 . 0 v into 2200 ohms; RF input 11.5 v into 5600 ohms; aluminum case; supersat finish; 7-1/2 in. $\mathrm{lg}, 3 \mathrm{in}$. wd, 4-9/16 in. h o/a dimen; plugs in RFO chassis; CBTL part/ dwg NL-960108-14	Unit 2
$\begin{aligned} & \mathrm{Z}-2035 \\ & \text { thru } \\ & \mathrm{Z}-2050 \end{aligned}$		Not Used	
Z-2051	N16-N-66976-1004	NETWORK, TEMPERATURE COMPENSATING: 4 solder lug term located on top of oven; melamine covers; 4-1/16 in. lg , 3 in. wd, $3-3 / 8 \mathrm{in}$. h o/a dimen; 2 mtg holes 0.173 in . diam on 1-7/8 in. mtg centers; CBTL part/dwg NL-959915-3; incl 400 ohm oven heater, C-2060, C-2061, L-2051, R-2051, R-2052, S-2054	Temp Stability of Osc., Unit 3
Z-2052	N16-O-66002-4251	OSCILLATOR SUB-ASSEMBLY: principal parts c/o capacitors, one 12 position rotary switch, 1 mtg panel; $4 \mathrm{in} . \mathrm{lg}, 4-1 / 8 \mathrm{in}$. $\mathrm{h}, 1-13 / 16 \mathrm{in} . \mathrm{d}$ o/a dimen; mtd by 4 pem fasteners $\mathrm{w} / 3 \mathrm{in} . \mathrm{mtg}$ centers, panel is bent at right angles to a wd of $1 / 2 \mathrm{in}$. top and bottom; CBTL part/dwg NL-960241-12; incl C-2051, C-2052, C-2053, C-2054, C-2055, C-2056, C-2057, C-2058, C-2059, C-2066 and S-2051C	1 kc Steps, Unit 3
Z-2053	N16-O-55006-1877	OSCILLATOR, RADIO FREQUENCY: frequency range 90 to 100 kc , one band, 10 cps steps; 0.3 v into 15 ohms power output; inductance capacity frequency control; power requirements 110 v AC and 6.3 v AC regulated, 60 cycles, single ph, and regulated 250v DC, external power supply; integral coils; 13 in. lg, 5-15/16 in. wd, 5-3/8 in. h; plugs in RFO chassis; accurate to $\pm 20 \mathrm{cps}$ over temp and humidity range $-20^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$; CBTL part/dwg NL-960225-25	Unit 3
$\begin{aligned} & \mathrm{Z}-2054 \\ & \text { thru } \\ & \mathrm{Z}-2100 \end{aligned}$		Not Used	
Z-2101	N17-Tं-81439-1201	TRANSFORMER, RADIO FREQUENCY: 2 windings, single layer wound; primary and secondary $8.4 \mu \mathrm{~h}$ at $3.95 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and can, 41 turns no. 34 EF2 AWG Litz copper wire; 4.0 mc peak frequency; untapped; cylindrical shielded aluminum can; 2-25/32 in. lg, 1.089 in. wd, 0.928 in. h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. $\mathrm{lg}, 0.828$ in. diam o/a dimen of coil form; adjustable screwdriver slug tuning from either end of can; mtd by 2 no. $4-40$ thd bolts $51 / 64 \mathrm{in} . \mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; Z-2101 stamped on coil form and can; moisture and fungus proofed; CBTL part/ dwg NL-960140-14-6; incl C-2103 and C-2104	4 mc Filter, Unit 4
Z-2102	N17-T-81451-1311	TRANSFORMER, RADIO FREQUENCY: 2 windings, single layer wound; primary and secondary $2.8 \mu \mathrm{~h} / 7.9 \mathrm{mc}$ w/o slug and can, 19 turns no. 32 EF2 AWG Litz copper wire; 8.0 mc	8 mc Filter, Unit 4

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
Z-2102	N17-T-81451-1311	peak frequency; untapped; cylindrical aluminum shield can; $2-25 / 32$ in. lg, 1.089 in. wd, 0.928 in . h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. $\mathrm{lg}, 0.828 \mathrm{in}$. diam o/a dimen coil form; adjustable screwdriver iron slug tuning from either end of can; 2 no. 4-40 thd bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end; Z-2102 stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-7; incl C-2107	
Z-2103	N16-A-33681-6350	FREQUENCY MULTIPLIER: incoming frequency 1 mc , resultant frequency 8 mc ; power requirements 6.3 v AC at 0.35 amp, 60 cycles, single ph, 250v DC at 7 ma; power output 1.15 v into 51 ohms; RF input 9.2 v into 2200 ohms; aluminum case; supersat finish; 4-1/2 in. lg, 2-7/8 in. wd, 4-11/16 in. h o/a dimen; plugs in RFO chassis; CBTL part/dwg NL-96011414	Unit 4
$\begin{aligned} & \mathrm{Z}-2104 \\ & \text { thru } \\ & \mathrm{Z}-2125 \end{aligned}$		Not Used	
Z-2126	N16-N-66976-1005	NETWORK, TEMPERATURE COMPENSATING: 4 solder lug type term located on top of oven; melamine covers; 4-1/16 in. $\mathrm{lg}, 3 \mathrm{in}$. wd, 2-29/32 in. h o/a dimen; 4 mtg holes 0.128 in. diam countersunk far no. 4-40 FHMS; CBTL part/dwg NL-960323-3; incl C-2126, C-2127, C-2128, C-2130, C-2135, C-2137, L-2126, R-2126, R-2127, R-2128, R-2130, S-2126	Temp. Stabilization, Unit 12
Z-2127	F16-O-55006-2498	OSCILLATOR, RADIO FREQUENCY: incoming frequency 99.5 to 102.0 kc , frequency shift signal, one band, one channel, variable from 99.5 to 102.0 kc ; power output 10.7 v into 10,000 ohms; inductance capacity frequency control; power requirements 110 v AC and regulated 6.3 v AC at $0.75 \mathrm{amp}, 60$ cycles, single ph, regulated 250 v DC, external power supply; integral coils; $9 \mathrm{in} . \lg , 3 \mathrm{in} . \mathrm{wd}, 4-1 / 4 \mathrm{in}$. h o/a dimen; plugs in RFO chassis; linear frequency shift by means of a reactor tube whose deviation is dependent on the input signal, receives keying or facsimile voltage from LLRM; CBTL part/dwg NL-960285-14	Unit 12
$\begin{aligned} & \mathrm{Z}-2128 \\ & \text { thru } \\ & \mathrm{Z}-2150 \end{aligned}$		Not Used	
Z-2151	N17-T-81430-4326	TRANSFORMER, RADIO FREQUENCY: 2 windings, 2 pie universal wound; primary and secondary $75 \mu \mathrm{~h} / 1000$ cycles w/o slug and can, 78 turns no. 7/41 EF2 AWG Litz copper wire, 1. 86 ohms DC resistance; 1.1 mc peak frequency; untapped; cylindrical aluminum shield can; $2-25 / 32 \mathrm{in} . \mathrm{lg}, 1.089 \mathrm{in}$. wd, 0.928 in . h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. $1 \mathrm{lg}, 0.828 \mathrm{in}$. diam o/a coil form dimen; adjustable screwdriver iron slug tuning from either end of can; mtd by 2 no. $4-40$ thd bolts $51 / 64 \mathrm{in}$. $\lg \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of form; Z-2151 stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-9; incl C-2155 and C-2156	1. 1 mc Filter, Unit 5
Z-2152		Same as Z-2151; incl C-2157 and C-2158	1. 1 mc Filter, Unit 5

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
Z-2153	N17-T-81430-7026	TRANSFORMER, RADIO FREQUENCY: 2 windings, 2 pie universal wound; primary and secondary $75 \mu \mathrm{~h} / 1000$ cycles w/o slug and can, 78 turns no. 7/41 EF2 AWG Litz copper wire, $1.86 \mathrm{ohms} ; 1.2 \mathrm{mc}$ peak frequency; untapped; cylindrical aluminum shield can; 2-25/32 in. $\mathrm{lg}, 1.089 \mathrm{in}$. wd, 0.928 in . h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. lg, 0.828 in . diam o/a coil form dimen; adjustable screwdriver iron slug tuning from either end of can; 2 no. 4-40 thd bolts $51 / 64 \mathrm{in}$. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; Z-2153 stamped on coil and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-11; incl C-2159 and C-2160	1.2 mc Filter, Unit 5
Z-2154		Same as Z-2153; incl C-2161 and C-2162	1.2 mc Filter, Unit 5
Z-2155	N17-T-81454-7026	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound; primary and secondary $2.8 \mu \mathrm{~h} / 7.9 \mathrm{mc}$ w/o slug and can, 19 turns no. 32 EF2 AWG copper wire; 9.2 mc peak frequency; untapped; cylindrical aluminum shield can; 2-25/32 in. $\mathrm{lg}, 1.089 \mathrm{in} . \mathrm{wd}, 0.928 \mathrm{in}$. h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. lg, 0.828 in. diam o/a form dimen; adjustable screwdriver iron slug tuning from either end of can; mtd by 2 no. 4-40 thd bolts $41 / 64$ in. $\lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of form; Z-2155 stamped on coil form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-13; incl $\mathrm{C}-2165$ and $\mathrm{C}-2166$	9.2 mc Filter, Unit 5
Z-2156	N17-T-81454-7027	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound; primary and secondary $2.8 \mu \mathrm{~h} / 7.9 \mathrm{mc}$ w/o slug and can, 19 turns no. 32 EF2 AWG copper wire; 9.2 mc peak frequency; untapped; cylindrical aluminum shield can; 2-25/32 in. $\mathrm{lg}, 1.089 \mathrm{in}$. wd, 0.928 in . h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/32 in. $\mathrm{lg}, 0.828$ in. diam o/a dimen of form; adjustable screwdriver iron slug tuning from either end of can; mtd by 2 no. 4-40 thd bolts 51/64 in. $\lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located at one end of coil form; Z-2156 stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-14; incl C-2176	9.2 mc Filter, Unit 5
Z-2157		Same as Z-2153; incl C-2179 and C-2180	1.2 mc Filter, Unit 5
Z-2158	N16-C-90869-9301	CONVERTER, FREQUENCY, ELECTRONIC: incoming frequencies $1 \mathrm{mc}, 100 \mathrm{kc}$ or $100 \mathrm{kc} \pm$ frequency shift signal, 90 to $100 \mathrm{kc}, 8 \mathrm{mc}$; resultant frequencies 9.19 to 9.20 mc in 10 cycle steps; power requirements 6.3 v AC, 60 cycles, single ph, 250v DC and -24v DC; power output 1.0 v into 51 ohms; five RF inputs, 1.15 v into 51 ohms, 1.55 v into 1000 ohms, 0.44 v into $3300 \mathrm{mmf}, 0.3 \mathrm{v}$ into $150 \mathrm{ohms}, 10.7 \mathrm{v}$ into $10,000 \mathrm{ohms} ;$ aluminum case, supersat finish, $13 \mathrm{in} . \lg , 4-3 / 4 \mathrm{in} . \mathrm{wd}, 5 \mathrm{in}$. h o/a dimen; plugs in RFO chassis, CBTL part/dwg NL-960283-25	Unit 5
$\begin{aligned} & \mathrm{Z}-2159 \\ & \text { thru } \\ & \mathrm{Z}-2200 \end{aligned}$		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
Z-2201	N16-C-76853-2573	COIL, RADIO FREQUENCY: $410 \mu \mathrm{~h} / 1000$ cycles w / o slug and can, 6. 5 ohms DC; 250 turns no. 7/41 EF2 AWG Litz copper wire, single enamel double polyamide fiber covered, one winding, 1 pie universal wound, untapped, cylindrical aluminum shield can, molded thermosetting plastic form, iron core next to can; 2-25/32 in. lg, 0.928 in . diam o/a dimen; 2-7/32 in. lg, 0.828 in . diam o/a coil form dimen; adjustable screwdriver iron slug tuning from one end of can; 4 solder lug type term located at one end of can; mtd by 2 no. 4-40 thd bolts $51 / 64 \mathrm{in}$. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; \mathrm{Z}-2201$ stamped on coil form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-17; incl. C-2218	(210-300) kc Main Tank, Unit 6
Z-2202	N16-C-76794-8812	COIL, RADIO FREQUENCY: $36 \mu \mathrm{~h} / 1000$ cycles w / o slug, 1.3 ohms DC resistance; 56 turns no. 7/41 EF2 AWG Litz copper wire, single enamel, double polyamide fiber covered conductor, one winding, 1 pie universal wound, untapped, cylindrical aluminum shield can, molded thermosetting plastic form, iron core next to can; 2-25/32 in. $\mathrm{lg}, 0.928 \mathrm{in}$. diam coil dimen excluding term, mtg and tuning devices; 2-7/32 in. lg, 0.828 in. diam o/a coil form dimen; adjustable screwdriver iron slug tuning located at one end of can; mtd by 2 no. 4-40 thd bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; \mathrm{Z}-2202$ stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-18; incl C-2230	(1.21-1.3) mc Filter, Unit 6
Z-2203		Same as Z-2202; incl C-2234	(1.21-1.3) mc Filter, Unit 6
Z-2204	N16-C-90869-9303	CONVERTER, FREQUENCY, ELECTRONIC: incoming frequencies $100 \mathrm{kc}, 1 \mathrm{mc}, 9.19$ to 9.20 mc ; resultant frequencies $10 \mathrm{kc}, 10.4$ to 10.5 mc in 10 cycle steps and $210-300 \mathrm{kc}$ in 10 kc steps; power requirements 6.3 v AC and 6.3 v AC regulated, 60 cycles, single ph, 250 v DC and regulated 250 v DC, power output 1.0 v into 51 ohms, three RF inputs 6.4 v into 10,000 ohms, 1.4 v into 1000 ohms, 1.0 v into 51 ohms ; aluminum case; supersat finish; 14-7/8 in. lg, 5-3/8 in. wd, 4-3/4in. ho/a dimen; plugs in RFO chassis; CBTL part/dwg NL-960293-25	Unit 6
$\begin{aligned} & \mathrm{Z}-2205 \\ & \text { thru } \\ & \mathrm{Z}-2300 \end{aligned}$		Not Used	
Z-2301	N17-T-81442-1626	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary $5.5 \mu \mathrm{~h}$ at $3.95 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary $5.5 \mu \mathrm{~h}$ at $3.95 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, primary 33 turns no. 32 EF2 AWG copper wire, secondary 33 turns no. 32 EF2 AWG copper wire; 5 mc peak frequency; untapped; cylindrical shield can, aluminum; 2-25/32 in. $\lg , 1.089$ in. wd, 0.928 in. h o/a; molded thermosetting plastic form, iron core inserted next to shield can; o/a coil form dimen 2-7/32 in. lg, 0.828 in. diam; adjustable iron slug, screwdriver adjustment, adjusted by shaft on either end of can; two no. 4-40 threaded spade mtg bolts $51 / 64 \mathrm{in} . \mathrm{lg}, \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; 4$ term, solder lug type, located on one end of coil form; part no. Z-2301 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-23; includes C-2303 and C-2304	5 mc Filter, Unit 7
Z-2302	N17-T-81442-1627	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary $5.5 \mu \mathrm{~h}$ at $3.95 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary $5.5 \mu \mathrm{~h}$ at $3.95 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can,	5 mc Filter, Unit 7

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { Z-2302 } \\ & \text { (cont) } \end{aligned}$		primary 33 turns no. 32 EF2 AWG copper wire, secondary 33 turns no. 32 EF2 AWG copper wire; 5 mc peak frequency; untapped; cylindrical shield can, aluminum; 2-25/32 in. $\mathrm{lg}, 1.089$ in. wd, $0.928 \mathrm{in} . \mathrm{h} \mathrm{o} / \mathrm{a}$; molded thermosetting plastic form, iron core inserted next to shield can; o/ a coil form dimen $2-7 / 32 \mathrm{in} . \mathrm{lg}, 0.828 \mathrm{in}$. diam; adjustable iron slug, screwdriver adjustment, adjusted by shaft on either end of can; two no. $4-40$ thd spade mtg bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; 4 term, solder lug type, located on either end of coil form; Z-2302 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-24; includes C-2307	
Z-2303	N17-T-81458-6126	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary $1.19 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary $1.19 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, primary 10 turns no. 32 EF2 AWG copper wire, secondary 10 turns no. 32 EF2 AWG copper wire; 15 mc peak frequency; untapped; cylindrical shield can, aluminum; 2-25/32 in. $\mathrm{lg}, 1.089$. in. wd, $0.928 \mathrm{in} . \mathrm{h}$ o/a; molded thermosetting plastic form, iron core inserted next to shield can; o/a coil form dimen $2-7 / 32 \mathrm{in} . \lg , 0.828 \mathrm{in}$. diam; adjustable iron slug screwdriver adjustment, adjusted by shaft on either end of can; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c} ; 4$ term, solder lug type, located on one end of coil form; Z-2303 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-25; incl C-2317 and C-2318	15 mc Filter, Unit 7
Z-2304	N17-T-81458-6127	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary $1.19 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, secondary $1.19 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and shield can, primary 10 turns no. 32 EF2 AWG copper wire, secondary 10 turns no. 32 EF2 AWG copper wire; 15 mc peak frequency; untapped; shielded; cylindrical shield can, aluminum; 2-25/32 in. $\mathrm{lg}, 1.089 \mathrm{in}$. wd, $0.928 \mathrm{in} . \mathrm{h}$ o/a; molded thermosetting plastic form, iron core inserted next to shield can; o/a coil form dimen 2-7/32 in. lg, 0.828 in . diam; adjustable iron slug, screwdriver adjustment, adjusted by shaft on either end of can; two no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} /$ c; 4 term, solder lug type, located on one end of coil form; Z-2304 stamped on coil form and shield can; coils moisture and fungus proofed; CBTL part/dwg NL-960140-14-26; incl C-2321	15 mc Filter, Unit 7
Z-2305	N16-A-33798-6960	FREQUENCY MULTIPLIER: incoming frequency 1 mc , resultant frequency 5 and 15 mc ; power requirements 6.3 v AC at $0.7 \mathrm{amp}, 60$ cycles, single ph, 250 v DC at 23 ma ; two outputs, 1.55 v into $51 \mathrm{ohms}, 2.35 \mathrm{v}$ into 48 ohms; RF input 8.8 v into 2200 ohms; aluminum case, supersat finish; 5-3/8 in. lg, 4-3/8 in. wd, $4-11 / 16 \mathrm{in}$. h o/a dimen; plugs in RFO chassis; CBTL part/dwg NL-960091-14	Unit 7
$\begin{aligned} & \mathrm{Z}-2306 \\ & \text { thru } \\ & \mathrm{Z}-2325 \end{aligned}$		Not Used	
Z-2326	N16-C-76792-5211	COIL, RADIO FREQUENCY: $31 \mu \mathrm{~h} / 1000$ cycle w/o slug and can, 1.24 ohms DC resistance; 51 turns no. 7/41 EF2 AWG Litz copper wire, one winding, 1 pie universal wound; untapped; cylindrical aluminum shield can; molded thermosetting plastic form; iron core inserted next to shield can; 2-25/32 in. lg , 0.928 in . diam o/a; coil form dimen 2-7/32 in. $\mathrm{lg}, 0.828 \mathrm{in}$.	(1.6-2.5) mc Tuned Circuit, Unit 8

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \mathrm{Z}-2326 \\ & \text { (cont) } \end{aligned}$		diam; adjustable tuning; adjustable iron slug, screwdriver adjustment located at top of can; 4 solder lug type term located at one end of can; 2 no. 4-40 thd spade intg bolts $51 / 64 \mathrm{in}$. lg $\mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; \mathbf{Z - 2 3 2 6}$ stamped on coil form and shield can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-28; incl C-2340	
Z-2327	N17-T-81462-2526	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary and secondary each $0.66 \mu \mathrm{~h}$ at 12.5 mc w/o slug and can, 6-1/2 turns no. 32 EF2 AWG copper wire; 27 to 28 mc frequency range; untapped; shielded cylindrical aluminum can; 2-25/32 in. lg, 1.089 in . wd, 0.928 in . h; molded thermosetting plastic form; iron core inserted next to can; o/a coil form dimen 2-7/32 in. $\mathrm{lg}, 0.828 \mathrm{in}$. diam; adjustable iron slug tuning, screwdriver adjustment at each end of can; 2 no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in}$. $\mathrm{lg} \mathrm{w} / 31 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c} ; 4$ solder lug type term located on one end of coil form; Z-2327 stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-29; incl C-2383, C-2384	(27-28) mc Filter, Unit 8
Z-2328		Same as Z-2327; incl C-2387, C-2388	(27-28) mc Filter, Unit 8
Z-2329	N17-T-81462-2527	TRANSFORMER, RADIO FREQUENCY: two windings, single layer wound, primary'and secondary $0.66 \mu \mathrm{~h}$ at $12.5 \mathrm{mc} \mathrm{w} / \mathrm{o}$ slug and can, 6-1/2 turns no. 32 EF2 AWG copper wire; frequency range of 27 to 28 mc ; untapped; aluminum cylindrical shield can; 2-25/32 in. lg, 1.089 in. wd, 0.928 in. h o/a dimen; molded thermosetting plastic form, iron core next to can; 2-7/.32 in. $\mathrm{lg}, 0.828 \mathrm{in}$. diam o/a coil form dimen; screwdriver, adjustment from either end of can; 2 no. 4-40 thd spade mtg bolts $51 / 64 \mathrm{in} . \lg \mathrm{w} / 31 / 32 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; 4 solder lug type term located at one end of coil form; Z-2329 stamped on form and can; moisture and fungus proofed; CBTL part/dwg NL-960140-14-31; incl C-2391	(27-28) mc Filter, Unit 8
Z-2330	N16-C-90869-9302	CONVERTER, FREQUENCY, ELECTRONIC: incoming frequencies $100 \mathrm{kc}, 15 \mathrm{mc}$, and 10.4 to 10.5 mc , resultant frequencies, 27 to 28 mc in 10 cycle steps, 1.6 to 2.5 mc in 100 kc steps; power requirements 6.3 v AC and regulated 6.3 v AC, 60 cycles, single ph, 250v DC and regulated 250 v DC; power output $1.3 v$ into 51 ohms; three RF inputs, $6.3 v$ into 5,600 ohms, 1.55 v into $51 \mathrm{chms}, 1.0 \mathrm{v}$ into 51 ohms ; aluminum case, supersat finish; 11-3/4in. lg, 4-1/2 in. wd, 7 in. h o/a dimen; plugs in RFO chassis; CBTL part/dwg NL-960363-25	Unit 8
$\begin{aligned} & \mathrm{Z}-2331 \\ & \text { thru } \\ & \mathrm{Z}-2425 \end{aligned}$		Not Used	
Z-2426	N16-C-90869-9300	CONVERTER, FREQUENCY, ELECTRONIC: incoming frequencies $5 \mathrm{mc}, 27$ to 28 mc , resultant frequencies 22 to 38 mc in 10 cycle steps; power requirements 6.3 v AC, 60 cycles, single ph, 250 v DC; power output 2.35 v into 51 ohms ; two RF inputs, $1.3 v$ into 51 ohms, 2.45 v into 48 ohms ; aluminum case, supersat finish; 8-11/16 in. lg, 5-13/16 in. wd, $5 \mathrm{in} . \mathrm{h}$ o/a dimen; plugs in RFO chassis; CBTL part/dwg NL-959889-14 Not Used	Unit 9

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
3001-3099	F16-P-68408-2451	POWER SUPPLY, PP-1094/SRT: electronic and metallic type rectification; full wave; output data +300 v DC, $200 \mathrm{ma},+250 \mathrm{v}$ DC, 200 ma ; -24v DC, $4 \mathrm{amps},-220 \mathrm{v}$ DC, 115 ma ; input data 115 v AC, 60 cyc, single ph; o/a dimen 25-1/4 in. lg, $16 \mathrm{in} . \mathrm{wd}$, 7-15/32 in. h; filter incl; drawer mtd; p/o AN/SRT-14, 15, 16; CBTL part/dwg NL-981206-14	
C-3001	For Replacement Use N16-C-20811-5421	CAPACITOR, FIXED, ELECTROLYTIC: 1 section; 800 mf ; 50v DCW; per spec JAN-C-62; JAN type CE51E801G	Filter for Control 24v Power Supply
C-3002		Same as C-3001	Filter for Control 24v Power Supply
C-3003		Not Used	
C-3004	N16-C-21944-6026	CAPACITOR, FIXED, ELECTROLYTIC: 2 sections; 35-35 mf; 450v DCW; per spec JAN-C-62; JAN type CE52E350R	
C-3004A		p/o C-3004	Filter for 250v Power Supply
C-3004B		p/o C-3004	Filter for 250v Power Supply
C-3005		Same as C-1036	Filter for 300v Power Supply
C-3006		Same as C-1036	Filter for 300v Power Supply
C-3007		Same as C-1036	Filter for 300v Power Supply
C-3008		Same as C-1036	Filter for 300v Power Supply
C-3009		Not Used	
C-3010		Same as C-1036	Filter for 220v Power Supply
C-3011	N16-C-49981-9993	CAPACITOR, FIXED, PAPER DIELECTRIC: 4 mf ; 600v DCW; per spec JAN-C-25; JAN type CP41B1DF405V	Relay Holding Capacitor
CR-3001	N17-R-51071-1358	RECTIFIER, METALLIC: selenium, single ph full wave CT circuit, MBCA Ref Dwg Group 23; 39v AC input at $35^{\circ} \mathrm{C}$, ambient per arm; 30v DC new and 28v DC aged output, 9.5 amp, self-cooled, resistive or inductive load, $35^{\circ} \mathrm{C}$, ambient; rectangular shape, dimen less term $5 \mathrm{in} . \mathrm{wd}, 4-3 / 8 \mathrm{in} . \mathrm{lg}$, $6-1 / 8$ in. h o/a; three 0.193 in . diam mtg holes each bracket spaced 1 in. c to c, two brackets; three solder lug type term 3/4 in. lg located on each end; salt spray-resistant coating, tropicalized per JAN-T-152, forced air cooling; CFT type no. 135D4985; CBTL part/dwg NL-982585-1	-24v Control Power Supply Rectifier
$\begin{aligned} & E-3001 \\ & \text { thru } \\ & E-3010 \end{aligned}$		Not Used	

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-3011	Low Failure Item	TERMINAL BOARD: melamine glass sheet type GMG; incl 8 double turret lug type term; w/o barriers; o/a dimen 2-9/16 in. lg, 1-3/4 in. wd, 15/32 in. thk approx; two 0.169 in . diam mtg holes 2-1/16 in. c to c; term silver pl; used to mt R-3010, R-3011, R-3012, R-3013; CBTL part/dwg NL-981138-1	Component Mounting
E-3012	Low Failure Item	TERMINAL BOARD: c/o term board, fuse clips, and 4 spacers; material of board melamine glass sheet type GMG; incl 6 fuse clip type term soldered to solder lug term and screw mtd; w/ o barriers; o/a dimen $4-15 / 16 \mathrm{in} . \mathrm{lg}, 3-3 / 4 \mathrm{in} . \mathrm{wd}$, 1-9/8 in. thk approx; four no. 8-32 thd mtg holes on 1-3/8 in. by 2-3/16 in. mtg/c; used to mt R-3007, R-3008, R-3009; CBTL part/dwg NL-981221-2	Component Mounting
E-3013	Low Failure Item	INSULATION SLEEVING, ELECTRICAL: rigid; laminated phenolic, form Tr, type LTS-E4 amended no. 3, per spec MIL-P-79; $1.406 \mathrm{in} . \mathrm{D} ; 0.11 \mathrm{in}$. wall thickness, $4.438 \mathrm{in} . \mathrm{lg}$ o / a; w/laminated phenolic top cover; CBTL part/dwg NL-981216-1; same as E-1020	u/w C-3001
E-3013.1		Same as E-3013	u/w C-3002
F-3001	N17-F-14578-0050	FUSE, CARTRIDGE: 10 amp , 125 v ; time delay, 150% for $0-1$ minute, 300% for 6 second min; ferrule type; silver pl; fiber body; one time; non-indicating; 1-1/2 in. lg by 0.406 in . diam; per spec MIL-F-15160A; MIL type FO9D10ROB (four spares for F -3001 incl in equipment)	Space Heater Protection
F-3002		Same as F-3001	Space Heater Protection
F-3003	N17-F-14690-5875	FUSE, CARTRIDGE: $5 \mathrm{amp}, 250 \mathrm{v}$; time delay, 150% for $0-1$ minute, 300% for 6 second min; ferrule type; silver pl; fiber body; one time; non-indicating; 1-1/2 in. \lg by 0.406 in . diam; per spec MIL-F-15160A; MIL type FO9G5R00B (four spares for F-3003 incl in equipment)	Fused Line Protection
F-3004		Same as F-3003	Fused Line Protection
F-3005	For Replacement Use N17-F-17449-50	FUSE, CARTRIDGE: 15 amp , 250v max; normal blowing time, 150% for 0-1 minute, 300% for instantaneous; o/a dimen 1-1/2 in. lg, 13/32 in. diam; per spec MIL-F-15160A; MIL type FO9G15ROA (three spares for $\mathbf{F - 3 0 0 5} \mathrm{incl}$ in equipment)	Main AC Line Protection
F-3006		Same as F-3005	Main AC Line Protection
F-3007	N17-F-14690-5775	FUSE, CARTRDGE: $1 \mathrm{amp}, 250 \mathrm{v}$ AC; time delay; 150% for $0-1$ minute, 300% for 6 second minimum; ferrule type, silver $\mathrm{pl} ; 1-1 / 2 \mathrm{in} . \mathrm{lg}, 0.406 \mathrm{in}$. diam; fiber body; one time; nonindicating; vibration resistant; per spec MIL-F-15160A; MIL type FO9G1ROOB; same as F-503	Start-Stop Current Protection
F-3008		Same as F-3007	Start-Stop Current Protection
F-3009		Same as F-3003	T-3001 Protection
F-3010		Same as F-3001	-24v Control Line Protection

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-3001	Low Failure Item	SLIDE, chassis: left hand, c/o inner and outer slide, front latch, ball spacer w/stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced 2-1/2 in. c to c, two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes spaced 1 in . c to c located on back end; CBTL part/dwg NL-900037-12-2; same as H-501	For LVPS Chassis
H-3002	Low Failure Item	SLIDE, chassis: $\mathrm{r}_{\mathrm{L}_{5} \text { It }}$ hand; c / o inner and outer slide, front latch, ball spacer w/'stainless steel balls, and pin stop; corrosion resisting steel, electropolish finish; 23-1/8 in. lg closed, 1-5/8 in. h, 9/16 in. wd o/a; nine 0.169 in . diam mtg holes, countersunk, spaced $2-1 / 2 \mathrm{in}$. c to c ; two $1 / 4 \mathrm{in}$. -28 NF-2 thd mtg holes, $1 \mathrm{in}$.c to c located on back end; CBTL part/dwg NL-900037-12-1; same as H-502	For LVPS Chassis
H-3003	N16-C-300798-866	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; 1 hole in bracket for no. 10 machine screw for mtg; 1-3/8 in. diam by $3 / 4 \mathrm{in} . \mathrm{h}$ o/a; CAIS type $926-\mathrm{C}$; same as $\mathrm{H}-1005$.	u/w V-3001
H-3003. 1		Same as H-3003	u/w V-3002
H-3003. 2		Same as H-3003	u/w V-3003
H-3004	N17-C-99999-489	CLAMP, tube: stainless steel; c/o strap w/clip and bracket; one hole in bracket for no. 10 machine screw for mtg; 1.625 in . diam by $7 / 8 \mathrm{in}$. ho/a; CAIS type $926-\mathrm{H}-5$; same as $\mathrm{H}-1001$	u/w C-3001
H-3004. 1		Same as H-3004	u/w C-3002
H-3005	Procured on demand by nearest Naval Shore Supply Activity	WRENCH: straight, $7 / 32 \mathrm{in}$. hex key, $4 \mathrm{in} . \mathrm{lg}$; o/a dimen $4-1 / 2 \mathrm{in} . \lg , 4-1 / 2 \mathrm{in}$. wd; alloy steel, nickel pl; flat " T " handle w/no. 6-32 socket hd steel set screw; CAYT type no. 609-732T; CBTL part/dwg NL-983010-1	For Securing Fasteners on Front Panels
H-3006	Procured on demand by nearest Naval Shore Supply Activity	GROMMET, RUBBER: synthetic rubber, per MIL-G-3036; style no. 1, MBCA Ref Dwg Group 156, Section A; o/a dimen $1-1 / 16 \mathrm{in}$. OD of large flange, $13 / 16 \mathrm{in}$. OD of groove, $1 / 8 \mathrm{in}$. thk flange, $1 / 2 \mathrm{in}$. diam hole; $3 / 8 \mathrm{in}$. o/a h, $1 / 8 \mathrm{in}$. wd groove; hot oil and coolant resistant; MIL type AN931-A8-13 modified; CBTL part/dwg NL-901547-1	Wire Protector
H-3006. 1		Same as H-3006	Wire Protector
H-3006. 2		Same as H-3006	Wire Protector
H-3006. 3		Same as H-3006	Wire Protector
H-3007	Procured on demand by nearest Naval Shore Supply Activity	GROMMET, RUBBER: synthetic rubber, per MIL-G-3036; style no. 1, MBCA Ref Dwg Group 156, Section A; o/a dimen $1-5 / 8 \mathrm{in}$. OD of large, flange, $1-1 / 4 \mathrm{in}$. OD of groove, $1 / 8 \mathrm{in}$. thk flange, $7 / 8 \mathrm{in}$. diam hole, $3 / 8 \mathrm{in} .\mathrm{o} / \mathrm{a} \mathrm{h}, 1 / 8 \mathrm{in}$. wd groove; hot oil and coolant resistant; MIL type AN931-A14-20 modified; CBTL part/dwg NL-901548-1	Wire Protector
H-3007. 1		Same as H-3007	Wire Protector
H-3007. 2		Same as H-3007	Wire Protector
I-3001	N17-L-3917-300	LAMP, INCANDESCENT: 125v DC, 6 w; MBCA Ref Dwg Group 7, double contact bayonet candelabra base, S-6, clear, 1 tungsten filament, C-7A; 1-13/16 in. max o/a h; over 25 hrs rated	Power "On"

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { I-3001 } \\ & \text { (cont) } \\ & \text { I-3602 } \end{aligned}$	N17-L-6491-63	life; any burning position; CAYZ type no. 6S6DC-125; same as I-501 LAMP, INCANDESCENT: 28v, 0.035 amp ; special 952 base w/ 5/16 in. -32 NEF-2 thread and knurled sleeve, T-1-3/4, cloudy, red color plastic cap, 1 tungsten filament, C-21; 3/4 in. max o/a h; over 25 hrs rated jié; any burning position; CG type 320R, dwg no. 165-22-327E	Time Delay 'On'
I-3003	N17-L-6806-130	LAMP, GLOW: neon, $105-125 v, 1 / 25 \mathrm{w}$; MBCA Ref Dwg Group 7, single contact bayonet candelabra base, $T-3-1 / 4$, clear, orange-red glow; 1-3/16 in. max o/a h; CG type NE-51; same as I-503	Cabinet Heater "on"
I-3004		Same as I-3003	+250v "ON"
I-3005		Same as I-3003	+300v "ON"
I-3006		Same as I-3003	-220v "ON"
I-3007		Same as I-3003	Interlock Battle Short
J-3001	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts and term; w/ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600 v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in \lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	Inter-Unit Wiring
J-3002		Same as J-3001	Inter-Unit Wiring
J-3003		Same as J-3001	Inter-Unit Wiring
J-3004	N17-C-73107-5183	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric green nylon; 29/32 in. lg. $5 / 16 \mathrm{in}$. wd incl hex coupling nut o/a dimen; 1000v peak; w/inclosing shell, cylindrical shape, brass, nickel pl; not polarized, 1 hole, $1 / 4 \mathrm{in}$. diam; $1 / 4 \mathrm{in} .-32$ thd on receptacle for mating w/coupling nut; CARO part 225D; same as J-1606	Test Point -220v
J-3005	N17-C-99999-1196	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric red nylon; 29/32 in. lg, 5/16 in. wd incl hex coupling nut o/a dimen; 1000v peak w/inclosing shell, cylindrical shape, brass, nickel pl; not polarized, 1 hole, $1 / 4$ in. diam; 1/4 in. -32 thd on receptacle for mating w/coupling nut; CARO part 225A; same as J-504	+250v Test Point
J-3006		Same as J-3005	+300v Test Point
J-3007	N17-C-99999-1197	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female; straight type; phone type connector; dielectric blue nylon; 29/32 in. lg, $5 / 16 \mathrm{in}$. wd incl hex coupling nut o/a dimen; 1000v peak; w/inclosing shell, cylindrical shape, brass, nickel pl; not polarized, 1 hole, $1 / 4 \mathrm{in}$. diam; $1 / 4 \mathrm{in} .-32$ thd on receptacle for mating w/coupling nut; CARO part 225G	Interlock Test
J-3008		Same as `J-3007	Interlock Test

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\mathrm{K}-3001$ K-3002	N17-R-99999-0851	RELAY, SOLENOID: 4PST, normally open, double break, 115 v AC, 20 amp non-inductive current; one winding, $75 \pm 10 \%$ ohms resistance of winding, 0.156 amp operating current, 60 cyc; 8 term for contacts, 2 term for coil; 4-3/4 in. wd, 5-1/2 in. $\mathrm{lg}, 3 \mathrm{in} . \mathrm{d}$; mtd by four holes 0.221 in . diam located in mtg board spaced $4-3 / 4 \mathrm{in}$. by 4 in . c to c; CPB part 3319-2: CBTL part/dwg NL-900047-12 Not Used	Master Control Relay
K-3003	N17-R-99999-0857	RELAY, MOTOR DRIVEN: TPDT, normally closed, contacts microswitch 3C arrangement, MBCA Ref Dwg Group 4, contacts 250v DC, $1 / 4 \mathrm{amp}$; switch no. 124 v DC, 5 amp , switch no. 224 v DC, 1 amp , switch no. 3110 v AC, $5 \mathrm{amp}, 50 / 60$ cps; 1 rpm 24 v DC gear train motor $\mathrm{w} / \mathrm{clutch} ; 2$ solder lug term for motor, 9 screw term for contacts; adjustable type, operating range for $24 \mathrm{v} \pm 10 \%,-20^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}, 18.7$ seconds to 46.6 seconds time delay on switch no. 2 and no. 3 , switch no. 1 to operate 0.7 seconds to 5 seconds after switches no. 2 and no. 3; 0-9 seconds dial range; reset facilities not provided; $5-1 / 16$ in. $\mathrm{lg}, 3-1 / 32 \mathrm{in}$. wd, $2-31 / 32 \mathrm{in}$. h o/a dimen excluding term; mts by four no. 6-32 elastic stop nuts on 3-17/64 in. by $1-3 / 4$ in. $\mathrm{mtg} / \mathrm{c}$; moisture and fungus resistant; CHP part/dwg 5153-002; CBTL part/dwg NL-980986-1, incl R-3025 and R-3026	Time Delay
K-3004	N17-R-65144-1150	RELAY, ARMATURE: contact arrangement 4A2B, MBCA Ref Dwg Group 4, single break; 1 inductive winding, $24 v$ DC operating voltage; 2 term on contact, 2 term on coil; continuous duty; 2-1/2 in. lg, 1 in . wd, 1-7/8 in. h o/a dimen; mtd by means of 4 no. 6-32 tapped holes, $3 / 4 \mathrm{in}$. horizontal centers, 7/8 in. vertical centers; CSD type 218 frame part no. 218DXB103, dwg no. 17593; CBTL part/dwg NL-982599-1; same as K-503	Rectifier Plate Switching Relay
K-3005	N17-R-65155-6222	RELAY, ARMATURE: contact arrangement 2C, Ref Dwg Group $4,115 \mathrm{v}$ AC, $5 \mathrm{amp} ; 1$ inductive winding, 140 ohms DC, 24 v operating voltage, 0.130 amps operating current; 2 term on contact, 2 term on coil; continuous duty; 1-3/4in. lg, 1 in . wd, 2-1/16 in. ho/a dimen; mtd by six no. 6-32 tapped mtg holes $3 / 4 \mathrm{in}$. c to c, 2 holes on one side, four on bottom; CSD type no. 218XBX; CBTL part/dwg NL-982577-1; same as K-501	"Stand-By" Relay
L-3001	N16-R-29915-5094	REACTOR: swinging choke; one section; three hy min o/a inductance, 0.023 amp min DC current, 12 hy max o/a inductance, $0.230 \mathrm{amp} \max$ AC current; 85 ohms DC resistance; 1840v RMS test voltage; hermetically sealed steel case; o/a dimen 3-13/32 in. diam approx, 4-1/8 in. lg; four 0.201 in. diam mtg holes spaced $2-11 / 16$ in. by $2-11 / 16 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ on 3-13/32 in. sq mtg flange; two solder lug type term on insulators $1 / 2$ in. lg, 7/16 in. diam o/a, located on mtg surface; CUT part/dwg no. F-3574; CBTL part/dwg NL-980692-1	Filter 300v Power Supply
L-3002	N16-R-29955-2250	REACTOR: swinging choke; single section; 10 hy min o/a inductance, 0.0125 amp min DC current, $40 \mathrm{hy} \max \mathrm{o} / \mathrm{a}$ inductance, $0.125 \mathrm{amp} \max$ DC current; 135 ohms DC resistance; 1700v RMS test voltage; hermetically sealed steel case; o/a dimen approx 3-13/32 in. diam, 4-1/8 in. lg; four 0. 201 in. diam mtg holes on $2-11 / 16 \mathrm{in}$. by $2-11 / 16 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$ on 3-13/32 in. sq mtg flange; two solder lug type term on insulators $1 / 2$ in. $\lg , 7 / 16$ in. diam o/a, located on mtg surface; CUT part/ dwg no. F-3576; CBTL part/dwg NL-980680-1	Filter -220v Power Supply

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
L-3003	N16-R-29871-6781	REACTOR: swinging choke; dual section; section 1 two hy at 0.230 amp DC, section 2 two hy min o/a inductance, 0.023 amp $\min \mathrm{DC}$, section 210 hy max o/a inductance, $0.230 \mathrm{amp} \max$ o/a DC; section 135 ohms DC resistance, section 260 ohms DC resistance; 1850v RMS test voltage; hermetically sealed steel case; o/a dimen $3-1 / 4 \mathrm{in}$. \lg by $2-1 / 2 \mathrm{in}$. wd by $5-11 / 32$ in. h ; four no. 8-32 thd mtg stud 15/32 in. lg mtd on 2-1/4 in. by $1-15 / 16 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; three solder lug type term, located on mtg standoffs 7/16 in. diam; CUT part/dwg no. F-3572; CBTL part/dwg NL-980679-1	Filter 250v Power Supply
O-3001	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: upper; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in. diam stainless steel balls, self-retained; $11.344 \mathrm{in} . \mathrm{lg}$, 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg A-9019. 9-1 (Revision no. 3), p/o H-3001; same as 0-506	p/o Chassis Slide
O-3001. 1		Same as O-3001; p/o H-3002	p/o Chassis Slide
O-3002	Procured on demand by nearest Naval Shore Supply Activity	RETAINER, bearing: lower; c/o rectangular, corrosion resisting steel, electropolish finish ball spacer w/twelve 0.125 in . diam stainless steel balls, self-retained; 10.844 in . lg, 1/4 in. wd, 0.125 in. thk o/a dimen; CCCS dwg A-9019. 9-2 (Revision no. 3); p/o H-3001; same as 0-508	p/o Chassis Slide
O-3002. 1		Same as O-3002; p/o H-3002	p/o Chassis Slide
O-3003	Low Failure Item	SPRING: helical compression type; 0.032 in. diam music wire per NAVY spec 22W11C; 3/8 in. h, $1 / 2 \mathrm{in}$. diam o/a; 3-1/2 turns, RH or LH wound; first and last 3/4 turns are flat; cad pl; CBTL part/dwg NL-900018-1; u/w H-3001; same as O-507	Stop Button Spring for Chassis Slide
O-3003. 1		Same as O-3003; u/w H-3002	Stop Button Spring for Chassis Slide
O-3004	Low Failure Item	SPRING: loop type; for latch; 0.038 in . diam corrosion resisting steel spring wire; 2-1/2 in. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{h} o / \mathrm{a}$; one end semi-hook type, one end open; irregular shape; CBTL part/dwg NL-900991-1; p/o H-3001; same as O-509	For Latch in Chassis Slide
O-3004. 1		Same as O-3004, p/o H-3002	For Latch in Chassis Slide
O-3005	Low Failure Item	SPRING: flat type; beryllium copper alloy no. 25 cond $1 / 4 \mathrm{H}$, 0.025 in . thk strip per MIL-C-947, silver pl; one no. 3-48 thd mtg hole on term; 1-3/8 in. lg, 15/16 in. h; CBTL part/dwg NL-900142-1; p/o S-3006; same as 0-510	For Contact in S-3006
$\begin{aligned} & \mathrm{R}-3001 \\ & \text { thru } \\ & \mathrm{R}-3006 \end{aligned}$		Not Used	
R-3007	N16-R-61476-2975	RESISTOR, FIXED, WIRE WOUND: 90 ohms, $\pm 5 \%$; 40 w; per spec JAN-R-26A; JAN type RW14F900	Bleeder -24v Supply
R-3008	N16-R-62072-1995	RESISTOR, FIXED, WIRE WOUND: 10, 000 ohms, $\pm 5 \%$; 40 w ; per spec JAN-R-26A; JAN type RW14F103	Bleeder 250v Supply
R-3009		Same as R-3008	Bleeder 300v Supply
R-3010	N16-R-50130-469	RESISTOR, FIXED, COMPOSITION: 4, 700 ohms, $\pm 10 \%$; 2 w ; per spec JAN-R-11; JAN type RC42BF472K	Bleeder -220v Supply

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-3011		Same as R-3010	Bleeder -220v Supply
R-3012		Same as R-3010	Bleeder -220v Supply
R-3013		Same as R-3010	Bleeder -220v Supply
$\begin{aligned} & \mathrm{R}-3014 \\ & \text { thru } \\ & \mathrm{R}-3018 \end{aligned}$		Not Used	
R-3019	N16-R-50741-811	RESISTOR, FIXED, COMPOSITION: 270, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF274K; same as R-1095	Dropping Resistor I-3004
R-3020	N16-R-50786-811	RESISTOR, FIXED, COMPCSITION: 390, 000 ohms, $\pm 10 \% ; 1 / 2$ w; per spec JAN-R-11; JAN type RC20BF394K; same as R-1011	Dropping Resistor I-3005
$\mathbf{R - 3 0 2 1}$ thru $\mathbf{R - 3 0 2 3}$		Not Used	
R-3024	For Replacement Use N16-R-65818-6746	RESISTOR, FIXED, WIRE WOUND: 350 ohms, $\pm 5 \%$; 22 w ; per spec JAN-R-26A; JAN type RW21G351	Relay Holding Resistor
R-3025	For Replacement Use N16-R-65735-1016	RESISTOR, FIXED, WIRE WOUND: 160 ohms, $\pm 5 \%$; 22 w ; per spec JAN-R-26A; JAN type RW29G161; p/ o K-3003	Dropping Resistor K-3003
R-3026		Same as R-3025; p/o K-3003	Dropping Resistor K-3003
S-3001	N17-S-72831-1101	SWITCH, TOGGLE: DPST; $55 \mathrm{amps} ;$ phenolic body; 2-1/4 in. lg max, $2-5 / 32 \mathrm{in} . \mathrm{h}, 1-33 / 64 \mathrm{in}$. wd max o/a dimen; bat type actuating type handle, $7 / 8 \mathrm{in} . \mathrm{lg}$; locking action; four screw type term, located on back; 3 hole mtg, 2 holes for no. 6-32 screw, one hole for actuating handle, $1 / 2 \mathrm{in}$. diam, flush mtg; per spec JAN-S-23; JAN type ST55K	Emergency "On-Off" Switch
S-3002	N17-S-72828-2596	SWITCH, TOGGLE: DPST; 30 amp ; phenolic body; 2-7/32 in. lg max, $1-21 / 64 \mathrm{in} . \mathrm{h}, 49 / 64 \mathrm{in}$. wd max o/a dimen; bat type actuating handle, $11 / 16 \mathrm{in} . \lg$ excluding $15 / 32 \mathrm{in}$. lg bushing; locking action; four screw type term, located on back; 1 hole mtg for $15 / 32$ in. -32 thd bushing; per spec JAN-S-23; JAN type ST50K	Space Heater "OnOff" Switch
S-3003		Not Used	
S-3004	N17-S-58883-3104	SWITCH, PUSH: contact arrangement 2 units, SPST (buttons mechanically interlocked); DC, 550 v , not rated for nominal load, not rated for resistive load, 10 amp for inductive load; momentary action, normally open; metal body; 3-23/32 in. lg , 1-3/4 in. wd, 1-21/32 in. h; push button type, 13/32 in. max $\mathrm{lg}, 9 / 32 \mathrm{in} . \mathrm{lg} \mathrm{min}$ from surface; 4 screw type term; mts by 2 elongated holes $3 / 16 \mathrm{in} . \lg$ by $5 / 32 \mathrm{in}$. wd on $3-9 / 32 \mathrm{in} \mathrm{mtg} /$.c ; black button marked "start" at top, red button marked "stop" at bottom; CAE cat no. 10250-H2544, dwg no. A-86-305, rev C; CBTL part/dwg NL-983355-1	"Stop-Start" Switch

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-3005	N17-S-70412-4406	SWITCH, TOGGLE: SPST; 40 amps; phenolic body; 2-7/32 in. $\mathrm{lg}, 1-9 / 64 \mathrm{in} . \mathrm{h}, 41 / 64 \mathrm{in}$. wd max o/a dimen; bat type actuating handle, $11 / 16 \mathrm{in} . \lg$ excluding $15 / 32 \mathrm{in}$. bushing; locking action; 2 solder lug type term, located on back; 1 hole mtg for 15/32 in. -32 thd bushing; per spec JAN-S-23; JAN type ST42A	"Standby" Switch
S-3006	N17-S-99999-0626	SWITCH, INTERLOCK: push with snap action cheater; 2 piece door type; DPST, male and female type, beryllium copper alloy strip contact; thermosetting plastic molding body; 1-1/2 in. lg by $1-1 / 2 \mathrm{in}$. wd by $1 \not / 2 \mathrm{in}$. thk o/a dimen excluding term posts and push rod; 2 screw type term located on both ends of switch; mtd by means of two 0.128 in . diam countersunk holes spaced 0.875 in . apart; interrupts 24v DC; CBTL part/dwg NL-900059-2; same as S-501	Interlock Switch
S-3007	N17-S-73082-9028	SWITCH, TOGGLE: DPST; 6 amps ; phenolic body; $2-1 / 8 \mathrm{in} . \mathrm{lg}$, $1-9 / 32$ in. $\mathrm{h}, 23 / 32 \mathrm{in}$. wd max o/a dimen; bat type actuating handle, $11 / 16 \mathrm{in} . \lg$ excluding $15 / 32 \mathrm{in} . \lg$ bushing; locking action; 6 solder lug type term, mtd on back; single hole mtg, 15/32 in. -32 thd bushing; per spec JAN-S-23; JAN type ST22K	Interlock Battle Short
T-3001	N17-T-73831-2066	TRANSFORMER, POWER, STEP-DOWN AND STEP-UP: hermetically sealed metal case; 110v AC, $50 / 60$ cyc, single ph input; 6 output windings, no. 1 secondary 64 . 0 v at 3 amp tapped to give 48 v between taps, no. 2 secondary 5 v at 2 amp , no. 3 secondary 5 v at 2 amp , no. 4 secondary 5 v at 2 amp , no. 5 secondary 840 v at 0.230 amp tapped to give 740 v between taps, no. 6 secondary 590 v at 0.125 amp center tapped; no. 5 secondary 2700v RMS test voltage others 1500 v RMS; wax impregnated, pitch filled; 7 in. lg, 6 in. wd, 5-3/8 in. h per MBCA Ref Dwg Group 12;21 solder lug type term on insulator bushing 13/16 in. h ; four $1 / 4 \mathrm{in} .-20$ thd studs on $5-1 / 4 \mathrm{in}$. by $5-3 / 16 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; electrostatic shield; special features, no. 1 secondary 50% duty cyc; CAVM part/dwg S-2566-1; CBTL part/dwg NL-982565-1	$\begin{aligned} & \text { Power for }-24 v \text {, } \\ & -220 v, 250 v, 300 v \\ & \text { Supplies } \end{aligned}$
V-3001	N16-T-55446-5	ELECTRON TUBE: dual diode; per spec ML-E-1B; JAN type 5R4WGB; same as V-1009	Rectifier +250v Power Supply
V-3002		Same as V-3001	Rectifier $+300 v$ Power Supply
V-3003		Same as V-3001	Rectifier -220v Power Supply
XC-3001	N16-S-63515-4151	SOCKET, ELECTRON TUBE: 8 contacts, brass, silver pl; octal type; oval; 1-7/8 in. $\lg , 1-3 / 8 \mathrm{in}$. wd, $11 / 16 \mathrm{in} . \mathrm{h}$ excluding term; phenolic dielectric insulator; one piece saddle mtg , bottom mtg; 1-1/8 in. diam chassis hole required, 2 mtg holes, 0.156 in. diam, 1.500 in. c to c; per spec JAN-S-28A; JAN type TS101PO1; same as XC-1034	u/w C-3001
XC-3002		Same as XC-3001	u/w C-3002
XC-3003		Not̂ Used	
XC-3004		Same as XC-3001	u/w C-3004
XC-3005		Same as XC-3001	u/w C-3005
XC-3006		Same as XC-3001	u/w C-3006
XC-3007		Same as XC-3001	u/w C-3007

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XC-3008		Same as XC-3001	u/w C-3008
XC-3009		Not Used	
XC-3010		Same as XC-3001	u/w C-3010
XF-3001	Low Failure Item	FUSEHOLDER: extractor post type; 250v, 30 amp ; accommodates 1 fuse, cartridge type, 1-1/2 in. lg, 13/32 in. diam; black bakelite body; bright alloy pl brass contacts; 2-1/4 in. lg , 1.775 in . wd, $1.2 \mathrm{in} . \mathrm{h}$ o/a dimen; 2 solder lug type term, hot tin dipped; two 0.167 in . mtg holes 1.312 in . c to c for fastening to panel; one mtg hole 0.865 in . diam; waterproof; CFA type HPC-DZ; CBTL part/dwg NL-900068-2; same as XF-501	For F-3001
XF-3002		Same as XF-3001	For F-3002
XF-3003		Same as XF-3001	For F-3003
XF-3004		Same as XF-3001	For F-3004
XF-3005		Same as XF-3001	For F-3005
XF-3006		Same as XF-3001	For F-3006
XF-3007		Same as XF-3001	For F-3007
XF-3008		Same as XF-3001	For F-3008
XF-3009		Same as XF-3001	For F-3009
XF-3010		Same as XF-3001	For F-3010
XI-3001	N17-L-99999-0129	LIGHT, INDICATOR: supplied w/lens, 1 in . diam, red convex; screw type lens holder; accommodates S6 DC bulb w/bayonet base of double contact type; 125v DC, $0.6 \mathrm{amp}, 75 \mathrm{w}$; brass, black nickel shell, enclosed; $3 \mathrm{in} . \lg , 1-1 / 8 \mathrm{in}$. diam o/a dimen; 1 mtg hole required 1 in . diam; accommodates $21 / 32 \mathrm{in}$. thk panel; horizontally mtd; lamp replaceable from front of panel; 2 solder lug type term, located on socket base, both insulated from shell; CAYZ type 51202-111; same as XI-501	Retainer for I-3001
XI-3002	N17-L-50812-3395	LAMPHOLDER: single holder; accommodates 952 base, MBCA Ref Dwg Group 7; 28v, 0.035 amp ; brass shell; $0.865 \mathrm{in} . \mathrm{lg}$, $1 / 2 \mathrm{in}$. across flats of hexagonal top, 19/32 in. wd approx; 1 solder lug type term; mtd by 7/16 in. - 28 NEF thd; body cad pl; CBTL part/dwg NL-981474-2; same as XI-401	Retainer for I-3002
XI-3003	N17-L-76763-1597	LIGHT, INDICATOR: supplied w/lens, 5/8 in. diam clear, fluted, screw type holder; accommodates neon T3-1/4, NE51 lamp, single contact miniature bayonet base, 110 v ; brass shell, black nickel finish, enclosed; 2-5/16 in. lg, 15/16 in. diam o / a dimen; 1 mtg hole required $11 / 16 \mathrm{in}$. diam, accommodates up to $1 / 4 \mathrm{in}$. thk panel; horizontally mtd; lamp replaceable from front of panel; 2 solder lug type term, located on socket base, both insulated from shell; incl built in $51,000 \mathrm{ohm} 1 / 3 \mathrm{w}$ composition resistor; CAYZ type 53408-XP18-997; same as XI-503	Retainer for I-3003
XI-3004		Same as XI-3003	Retainer for I-3004
XI-3005		Same as XI-3003	Retainer for I-3005

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
XI-3006		Same as XI-3003	Retainer for I-3006
XI-3007	N17-L-76682-1298	LIGHT, INDICATOR: w/lens, $5 / 8 \mathrm{in}$. diam, amber, fluted, screw type holder, accommodates neon T3-1/4, NE 51 lamp, single contact miniature bayonet base; $125 \mathrm{v}, 75 \mathrm{w}$; brass shell, black nickel finish, enclosed; 2-7/32 in. $\mathrm{lg}, 15 / 16 \mathrm{in}$. diam; accommodates up to $9 / 32 \mathrm{in}$. thk panel; horizontally mtd; lamp replaceable from front of panel; 2 solder lug type term, located on socket base, both insulated from shell; w/built in 51, 000 ohm 1/3 w comp resistor; CAYZ type 53408-XP18-993	Retainer for I-3007
XV-3001		Same as XC-3001	u/w V-3001
XV-3002		Same as XC-3001	u/w V-3002
XV-3003		Same as XC-3001	u/w V-3003
3201-3299	F16-C-92096-1008	TRANSMITTER COUPLER, CU-402/SRT (COUPLER, DETECTOR, R. F.): auto-transformer type, RF, impedance matching, tapped; standing wave indicator c/o current transformer and sensing network excluding indicating meter; no operating power requirements; aluminum case; grey enamel finish; o/a dimen 8-3/4 in. $\mathrm{h}, 7-11 / 16 \mathrm{in}$. wd, $10-1 / 16 \mathrm{in}$. d ; four 0.290 in . diam mtg holes on 5 in . by $8-11 / 16 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; special features c/o 2 rotary switches incl to select input and output taps of autotransformer, RF ammeter provided to measure RF line current, shock mtd on mtg bracket; w/o spares; p/o AN/SRT-14, 15, 16; CBTL part/dwg NL-901100-14	
A-3201	N17-M-75107-3901	MOUNT, RESILIENT: irregular shape; 10 lbs max allowable load; 1-3/4 in. lg, 1-1/4 in. wd, 13/16 in. thk o/a; rubber form cushion approx 1 in. diam by $5 / 8$ in. thk; steel center sleeve w/no. 8-32 thd, $1 / 2$ in. d bolt hole; two 0.141 in . diam mtg holes 180° apart, spaced $1-13 / 32 \mathrm{in}$. c to c; CAYU type no. 6550-2.5T	Shock Mount
A-3202		Same as A-3201	Shock Mount
A-3203		Same as A-3201	Shock Mount
A-3204		Same as A-3201	Shock Mount
C-3201	N16-C-99999-1169	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; Ref Dwg Group 1 style $25-\mathrm{K}$; $0.15 \mathrm{mf} \pm 20 \%$ tolerance; 100 v DCW; $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ ambient temp range; hermetically sealed metal case; $13 / 16 \mathrm{in} . \mathrm{lg}, 0.400 \mathrm{in}$. diam o/a dimen excluding term; 2 wire type term, located in center of each end; vitamin " Q " impregnated; internally grounded; w/inserted tab; CSF type 86P15401; p/o Z-3201	By-Pass
C-3202		Same as C-3201; p/o Z-3201	By-Pass
C-3203		Same as C-3201; p/o Z-3201	By-Pass
C-3204		Same as C-3201; p/o Z-3201	By-Pass
CR-3201	N16-T-67040	CRYSTAL UNIT, RECTIFYING: germanium type; 0.035 amp maximum continuous forward current @ $25^{\circ} \mathrm{C}$; 0.100 amp maximum peak forward current @ $25^{\circ} \mathrm{C}$; 100v peak inverse voltage @ $25^{\circ} \mathrm{C} ; 1 \mathrm{mmf}$ shunt capacitance; $0.400 \mathrm{in} . \mathrm{lg}, 0.175 \mathrm{in}$. diam, excluding term; 2 wire pigtail type term, located axially at each end; transient surge current for 1 second, 0.5 amp at 25° C; CRP type CK708; p/o Z-3201	Diode

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
CR-3202		Same as CR-3201; p/o Z-3201	Diode
E-3201	N16-K-700346-101	KNOB: round; black thermosetting phenolic, dull matt finish; designed to accommodate $1 / 4 \mathrm{in}$. diam shaft, $9 / 16 \mathrm{in}$. d shaft hole; two no. 8-32 thd by $1 / 4 \mathrm{in}$. lg hex set screws, cad pl, spaced 120° apart; brass, nickel pl insert; w/pointer; 1-1/2 in. diam by $7 / 8$ in. wd b / a; fluted; CMI part no. RE10F479C, type B (dull matt finish)	Input Tap
E-3202		Same as E-3201	Output Tap
J-3201	N17-C-73108-5906	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; 1 in. sq by $1.082 \mathrm{in} . \lg$ approx o/a dimen; RF cable connector, 50 ohms nominal impedance, non-constant frequency impedance characteristic; cylindrical body w / sq mtg flange, silver pl; $5 / 8 \mathrm{in}$. -24 thd one end only; teflon insulator insert; 0.332 in. diam max cable opening; 4 mtg holes $1 / 8 \mathrm{in}$. diam spaced $23 / 64 \mathrm{in}$. c to c; weatherproof construction w/sealing gasket; per spec JAN-C-71A; JAN type UG-58A/U	RF Input from Transmitter
J-3202		Same as J-3201	RF Output to Antenna
J-3203	N17-C-72240-1522	CONNECTOR, RECEPTACLE, ELECTRICAL: 3 size 16 contacts, female, round; polarized; 1-3/16 in. sq by 1-3/32 in. lg excluding contacts $0 /$ a dimen; contacts rated at $20 \mathrm{amp}, 200 \mathrm{v}$ DC, 150v AC RMS; box mtg receptacle, straight type, cylindrical w/sq mtg flange; aluminum alloy, tin pl; molded thermosetting plastic insert; 7/8 in. -20 coupling thd; 4 mtg holes 0.120 in . diam spaced $29 / 32 \mathrm{in}$. c to c; panel mtg, pressure tight fitting; per spec MIL-C-5015; MIL type AN-3102A-14S-7S	S. W. R. Output to Control Indicate Unit
M-3201	N17-M-18250-8256	AMMETER: RF thermoammeter type; panel mtd; RF amperes; 0 to 5 CW ; graduated in increments of tenths; linear expanding scale; round, plastic; flush mtd; flange 3-1/2 in. wd; 2% accuracy full scale to 65 mc ; calibrated for non-magnetic panel; internal thermocouple; black numerals on white background; per spec JAN-I-6; JAN type MR35W005RLAA; same as M-3102	Antenna Current
R-3201	Assemble from Component parts	RESISTOR ASSEMBLY: 16 resistors mtd on fiberglass board, $1-5 / 8 \mathrm{in} . \mathrm{lg}, 1-1 / 4 \mathrm{in} . \mathrm{wd}, 1 / 16 \mathrm{in}$. thk o/a; 8 resistors, fixed composition type, 1000 ohms resistance, $\pm 5 \%$ tolerance, 1/2 w power dissipation, per spec JAN-R-11; JAN type RC20BF102J; 8 resistors fixed composition type, 510 ohms resistance, $\pm 5 \%$ tolerance, $1 / 2 \mathrm{w}$ power dissipation, per spec JAN-R-11; JAN type RC20BF511J; connected as follows, eight 510 ohm resistors in series, connected in series with eight 1000 ohm resistors in parallel; total resistance 6080 ohms, 8 w total power dissipation; CBTL part/dwg NL-961074-1; p/o Z-3201	RF Voltage Divider
R-3202	N16-R-49237-995	RESISTOR, FIXED, COMPOSITION: 10 ohms, $\pm 5 \%$; 2 w; per spec JAN-R-11; JAN type RC42GF100J; p/o Z-3201	Damping T-3202
R-3203		Same as R-3202; p/o Z-3201	Damping T-3202
R-3204		Same as R-3203; p/o Z-3201	Damping T-3202
R-3205		Same as R-3202; p/o Z-3201	Damping T-3202
R-3206	N16-R-49768-438	RESISTOR, FIXED, COMPOSITION: 470 ohms, $\pm 5 \% ; 1 / 2 \mathrm{w}$; per spec JAN-R-11; JAN type RC20GF471J; p/o Z-3201	RF Voltage Divider

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
R-3207		Same as R-3206; p/o Z-3201	RF Voltage Divider
R-3208		Same as R-3206; p/o Z-3201	DC Voltage Divider
R-3209		Same as R-3206; p/o Z-3201	DC Voltage Divider
S-3201	N17-S-99999-0594	SWITCH, ROTARY: one section; 17 positions max number of switching positions possible, adjustable stop incl, 20° positioning increments; non-pile-up, one moving contact, 5 fixed contact, (Looking at rear of switch with mtg holes in vertical position and contacts at upper half the first contact CW is located at approx 310°), 6 dummy term, single pole, 4 throws; AC, 115 v max rated voltage, 7-1/2 amp max nominal current; solid silver alloy contact; L-5 steatite section insulation; not inclosed; 2-1/16 in. $\lg , 1-7 / 8 \mathrm{in}$. wd, 2-13/16 in. h; mtd by two no. 6-32 NC-2 tapped standoffs, 2-7/16 in. c to c; solder lug term; non-shorting type; CBN part JV-9001 modified; CBTL part/dwg NL-901124-2	Input Tap Changing
S-3202	N17-S-060651-8653	SWITCH, ROTARY: one section; 17 positions max number of switching positions possible, adjustable stop incl, 20° positioning increments; non-pile-up, one moving contact, 5 fixed contact, (Looking at rear of switch with mtg holes in vertical position and contacts at upper half the first contact CW is located at approx 10°) 6 dummy term, single pole, 4 throw; AC, 115 v max rated voltage, $7-1 / 2 \mathrm{amp}$ max nominal current; solid silver alloy contact; L-5 steatite section insulation; not inclosed; 2-1/16 in. lg, 1-7/8 in. wd, 2-13/ $16 \mathrm{in} . \mathrm{h}$; mtd by two no. 6-32 NC-2 tapped standoffs, 2- $7 / 16 \mathrm{in}$. c to c ; solder lug term; non-shorting type; CBN part JV-9001 modified; CBTL part/dwg NL-901590-2	Output Tap Changing
T-3201	N17-T-81892-7318	TRANSFORMER, RADIO FREQUENCY: impedance; single winding, multi-layer wound; at 1 mc impedance from tap G-1 is $\max 370+\mathrm{j} 100$ ohms min. from tap $1-2$ is $\max 170+\mathrm{j} 45$ ohms \min, from tap 2-3 is max $42+\mathrm{j} 10$ ohms min, from tap $3-4$ is $\max 42+\mathrm{j} 10$ ohms min; 7 turns of .021 in . silver pl copper sheet insulated by electrical tape; 4 taps, no. 1 tapped at 3 turns, no. 2 tapped at 5 turns, no. 3 tapped at 6 turns, no. 4 tapped at 7 turns; 3-3/8 in. h, 3 in. wd, 1-13/16 in. thk o/a less tap leads; toroidal cores wound of 0.001 in . thk Allegheny Mumetal hydrogen annealed after winding; CBTL part/dwg NL-901601-14	Impedance Matching
T-3202	N17-T-99999-0428	TRANSFORMER, RADIO FREQUENCY: single winding, single layer close toroidal wound; total impedance at 1.0 mc is $330+$ j240 ohms; at 3.0 mc is $800+\mathrm{j} 330$ ohms; 10 turns no. 24 AWG triple coated formex wire; insulated by $1 / 4 \mathrm{im}$. wd fiberglass tape; winding center tapped to grounding strap; grounding strap composed of 0.010 in . thk soft copper per FED. spec QQ-C105a; enclosed in case; shielded; 1-3/16 in. diam, 2-1/16 in. wd excluding term; core wound of 0.001 in . thk Allegheny Mumetal hydrogen annealed; mts by one no. 6-32 in. by 1-1/4 in. screw; four stud type term, located on each side and bottom; CBTL part/dwg NL-961094-2; p/o Z-3201	Sensing Circuit Current Transformer
Z-3201	N16-C-92096-1009	COUPLER-DETECTOR, RADIO FREQUENCY: transmission line standing wave ratio detector and monitor; 0.3 mc to 26 mc frequency range; crystal type rectifiers, CRP type no. CK-708; crystals mtd by wire leads; rectangular case, brass, cad pl; o/a dimen 3-15/32 in. $\mathrm{lg}, 2-27 / 64 \mathrm{in} . \mathrm{wd}, 3 \mathrm{in} . \mathrm{h}$; CBTL part/ dwg NL-961080-14	SWR Monitor

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
3301-3399	N16-M-384502-0436	*INSTALLATION KIT, MK-230/SRT-14: provides material to install Radio Transmitting Set AN/SRT-14; consists of shockmounts, interstack cable harness, connectors and accessories, cable assembly, main test cable accessories, mtg hardware, nameplate, and instruction book; CBTL part/dwg NL-983336-1-1	
3301-3399	N16-M-384502-0437	* INSTALLATION KIT, MK-231/SRT-14A; provides material to install Radio Transmitting Set AN/SRT-14A; consists of shockmounts, interstack cable harness, connectors and accessories, cable assembly, main test cable accessories, mtg hardware, nameplate, and instruction book; CBTL part/dwg NL-983336-1-4	
A-3301	N17-M-99999-129	MOUNT, RESILIENT: sq mtg; 250 to 350 lb load rating; 5-1/4 in. sq by $2-1 / 2 \mathrm{in} . \mathrm{h}$; natural rubber cushion material, $5 / 32 \mathrm{in}$. thk mtg form; center sleeve mild steel, 5/8 in. $\mathbf{- 1 1}$ tapped center hole, $7 / 8 \mathrm{in}$. d; holder mild steel; four $15 / 32 \mathrm{in}$. diam mtg holes spaced $4-1 / 4 \mathrm{in}$. c to c 90° apart; CAYU type C-4300T10; CBTL part/dwg NL-983345-1-3	Shock Mount
A-3302		Not Used	
A-3303		Same as A-3301	Shock Mount
A-3304		Same as A-3301	Shock Mount
A-3305		Same as A-3301	Shock Mount
H-3301	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey; 0.828 in . ID open for friction mtg to cable; $4.105 \mathrm{in} . \mathrm{lg}, 1.510 \mathrm{in}$. diam; mts to connector by 1.3750 in . -18 NEF-2 internal thd; designed to hold cable 0.680 in . diam min to 0.820 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-244	Cable Clamp
H-3302		Same as H-3301	Cable Clamp
H-3303		Same as H-3301	Cable Clamp
H-3304	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey, 1. 490 in. ID open for friction mtg to cable; $4.230 \mathrm{in} . \lg 2.010 \mathrm{in}$. diam; mts to connector by $1.8750 \mathrm{in} .-16 \mathrm{~N}-2$ internal thd; designed to hold cable 1.310 in . diam min to 1.490 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-321	Cable Clamp
H-3305		Same as H-3304	Cable Clamp
H-3306		Same as H-3304	Cable Clamp
H-3307	Shop Manufacture	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; $1.209 \mathrm{in} . \lg$ less chain, 1.750 in . wd across wrench flats, chain approx 5.500 in . lg; internal thread 2 in . - 18 NEF2, has internal key; CBET part 10-35963-32	Connector Cover
H-3308		Same as H-3307	Connector Cover
H-3309		Same as H-3307	Connector Cover
H-3310	Shop Manufacture *These kits are	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; $1.209 \mathrm{in} . \lg$ less chain, 1.250 in . wd across wrench flats, chain approx 5.000 lg ; external thread 1-1/2 in. -18 NEF-2, has internal key; CBET part 10-35963-24 the same in every respect except for the nameplates and covers.	Connector Cover

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-3311		Same as H-3310	Connector Cover
H-3312		Same as H-3310	Connector Cover
H-3313	Low Failure Item	BOLT, eye: forged steel, zinc pl; 1/2 in. - 13 machine thd; $3-1 / 8 \mathrm{in} . \lg \mathrm{o} / \mathrm{a} ; 3 / 4 \mathrm{in}$. lg thd portion; shoulder, 1 in . diam by $3 / 16 \mathrm{in}$. thk; 1-3/16 in. ID of eye; less nuts; CBTL part/dwg NL-983347-1	For Installation
$\begin{aligned} & \mathrm{H}-3313.1 \\ & \text { thru } \\ & \mathrm{H}-3313.3 \end{aligned}$		Same as H-3313	For Installation
H-3314	Low Failure Item	INSERT, leveling: corrosion resisting steel, passivate; $5 / 8$ in. -18 NF-2 external thd, $9 / 32$ in. wd, 0.316 in. ID; CBTL part/dwg NL-982598-1	For Leveling Cabinets
$\begin{aligned} & \text { H-3314.1 } \\ & \text { thru } \\ & \text { H-3314.9 } \end{aligned}$		Same as H-3314	For Leveling Cabinets
H-3315	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, plug: brass, cad pl; for 7/16 in. diam hole; 3/4 in. diam, 5/16 in. h o/a; CUF part 51117	Cabinet Plug
$\begin{aligned} & \text { H-3315. } \\ & \text { thru } \\ & \text { H-3315. } 11 \end{aligned}$		Same as H-3315	
H-3316	N17-C-781366-251	CLAMP, ELECTRICAL: aluminum alloy; tin pl; saddle clamp fastening device $\mathbf{w} / 2$ filister hd machine screws; o/a dimen $29 / 32 \mathrm{in} . \lg$ by 1.047 in . OD; no mtg facilities; designed to hold material 7/16 in. diam max; 3/4 in. -20 NEF coupling thd; rubber bushing \& fibre washer incl; per spec ML-C-5015; MIL type AN-3057-6; p/o W-3301	Cable Clamp
H-3317	Low Failure Item	INSERT, leveling: corrosion resisting steel, pàssivate; 9/16 in. -18 NF-2 external thd, $9 / 32 \mathrm{in}$. wd, 0.316 in . ID; CBTL part/dwg NL-901561-1	For Leveling Cabinets
H-3317. 1		Same as H-3317	For Leveling Cabinets
H-3318	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, plug: brass, cad pl; for 5/16 in. diam hole; 7/16 in. diam, 7/32 in. h o/a; CUF part 48199	Cabinet Plug
$\begin{aligned} & \text { H-3318.1 } \\ & \text { thru } \\ & \text { H-3318. } 11 \end{aligned}$		Same as H-3318	Cabinet Plug
P-3301	N17-C-71339-4961	CONNECTOR, PLUG, ELECTRICAL: 30 contacts; 6 size 12 contacts, 24 size 16 contacts; one mating end; female, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \lg , 2.251 \mathrm{in} . \operatorname{diam} \mathrm{o} / \mathrm{a}$; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, $2 \mathrm{in} .-18$ NEF-2 thd coupling nut; 2.047 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64632-8S	Mates w/J-3502

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-3302	N17-C-71330-8888	CONNECTOR, PLUG, ELECTRICAL: 24 contacts; size 16 m ; one mating end; female, 22 amp current rating; 700v DCW, 500 v RMS; synthetic rubber; straight shape; $1.827 \mathrm{in} . \mathrm{lg}, 1.742$ in. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64624-28S	Mates w/J-3504
P-3303	N17-C-71628-3701	CONNECTOR, PLUG, ELECTRICAL: 24 contacts, size 16 m ; one mating end; male, 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.827 \mathrm{in} . \mathrm{lg}, 1.742$ in. diam o/a; w/enclosing shell, aluminum base alloy; resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64624-28P	Mates w/J-3503
P-3304	N17-C-71643-3555	CONNECTOR, PLUG, ELECTRICAL: 30 contacts, 6 size 12 contacts; 24 size 16 contacts; one mating end; male, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \lg , 2.251 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 2 in. -18 NEF-2 thd coupling nut; 2.047 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64632-8P	Mates w/J-3501
P-3305		Same as P-3302	Mates w/J-302
P-3306		Same as P-3301	Mates w/J-301
P-3307	N17-C-71422-3137	CONNECTOR, PLUG, ELECTRICAL: 1 contact, one mating end; male, insulation and center contact provided by dielectric and center conductor of cable; straight shape; $3 \mathrm{in} . \mathrm{lg}, 1-1 / 2$ in. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 1-1/4 in. - 18 internal thd coupling nut; environment resistant; per MIL-C-3650; MIL type UG-154/U	Mates w/J-3506
P-3308	N17-C-71419-4088	CONNECTOR, PLUG, ELECTRICAL: 1 contact; one mating end; male, 50 ohm impedance; low loss plastic; straight shape; $2-3 / 8 \mathrm{in} . \lg , 1-5 / 16 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per ML-C-71A; MIL type UG-167A/U	Mates w/J-3202
P-3309		Same as P-3307	Mates w/J-3505
P-3310		Same as P-3307	Mates w/J-303
P-3311	Low Failure Item	ADAPTER: brass, cad pl; 3/4in. OD, 1-3/4 in. lg, 0.357 in . ID one end, 0.193 in . D other end; four no. 6-32 NC-2 tapped holes thru one wall; CBTL part/dwg A2011254	Mates w/J-3502
P-3312		Same as P-3311	Mates w/W-301
P-3313	For Replacement Use N17-C-71117-2439	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; female, 50 ohms impedance; low loss plastic; straight shape; 1-15/16 in. lg, 11/16 in. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 5/8 in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MIL type UG-23B/U	Mates w/P-610

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-3314	For Replacement Use N17-C-71417-9699	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; male, 50 ohm impedance; low loss plastic; straight shape; $1-7 / 8 \mathrm{in} . \lg , 13 / 16 \mathrm{in} . \operatorname{diam} \mathrm{o} / \mathrm{a}$; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 5/8 in. - 24 thd coupling nut; environment resistant; per MLL-C-71A; MIL type UG-21B/U; same as P-301	Mates w/J-3201
P-3315	For Replacement Use N17-C-70588-1524	CONNECTOR, PLUG, ELECTRICAL: 3 size 16 contacts, male, round; polarized; straight type; 1-1/8 in. OD by 2-1/16 in. $\lg \mathrm{o} / \mathrm{a}$ dimen; contacts rated at $20 \mathrm{amps}, 200 \mathrm{v}$ DC, 150 v AC (RMS); cylindrical, aluminum alloy, tin pl, split shell; molded thermosetting plastic insert; $3 / 4 \mathrm{in}$. -20 conduit thd; 1-1/8 in. OD of coupling nut, 7/8 in. -20 coupling thd; per spec ML-C5015; MLl type AN-3106B-14S-7P; p/o W-3301	Mates w/J-3203
W-3301	Assemble from Component Parts	CABLE ASSEMBLY: special purpose; ML type CO-02LGF (2/18)SJ 0350 per MIL-C-3432; 14 ft lg ; one end terminated incl P-3315 and H-3316; CBTL part/dwg NL-901214-2	Interconnecting Cable Assembly
3301-3399	N16-M-384502-0438	* INSTALLATION KIT, MK-232/SRT-15: provides material to install Radio Transmitting Set AN/SRT-15; consists of shockmounts, interstack cable harnesses, connectors and accessories, cable assembly, main test cable accessories, mtg hardware, nameplate, instruction book and Cover CW-341/SRT; CBTL part/dwg NL-983336-1-2	
3301-3399	N16-M-384502-0439	* INSTALLATION KIT, MK-233/SRT-15A: provides material to install Radio Transmitting Set AN/SRT-15A; consists of shockmounts, interstack cable harnesses, connectors and accessories, cable assembly, main test cable accessories, mtg hardware, nameplate, instruction book and Cover CW341A/SRT; CBTL part/dwg NL-983336-1-5	
A-3301	N17-M-99999-129	MOUNT, RESLLIENT: sq mtg; 250 to 350 lb load rating; 5-1/4 in . sq by $2-1 / 2 \mathrm{in}$. h ; natural rubber cushion material, $5 / 32 \mathrm{in}$. thk mtg form; center sleeve mild steel, 5/8 in. $\mathbf{- 1 1}$ tapped center hole, $7 / 8 \mathrm{in}$. d; holder mild steel; four $15 / 32 \mathrm{in}$. diam mtg holes spaced $4-1 / 4 \mathrm{in}$. c to c 90° apart; CAYU type C-4300T10; CBTL part/dwg NL-983345-1-3	Shock. Mount
A-3302	N17-M-75284-2052	MOUNT, RESILIENT: sq mtg; 100 to 125 lb load rating; 5-1/4 in . sq by 2-1/2 in. h ; natural rubber cushion material; 5/32 in. thk, mtg form; center sleeve mild steel; 5/8 in. -11 tapped center hole, $7 / 8 \mathrm{in}$. d; holder mild steel; four $15 / 32 \mathrm{in}$. diam holes spaced $4-1 / 4 \mathrm{in}$. c to c 90° apart; CAYU type C-4125-T10; CBTL part/dwg NL-983345-1-1	Shock Mount
A-3303		Same as A-3301	Shock Mount
A-3304		Same as A-3301	Shock Mount
A-3305		Same as A-3301	Shock Mount
A-3306		Same as A-3302	Shock Mount
A-3307		Same as A-3302	Shock Mount
A-3308		Same as A-3302	Shock Mount
A-3309	N16-C-650002-157 * These kits are	COVER, CW-341/SRT: steel; grey enamel finish; o/a dimen $24-9 / 16 \mathrm{in} . \mathrm{lg}, 16 \mathrm{in}$. wd, 2-7/16 in. h; mts by means of 6 machine screws which are tack welded to the cover; same as e same in every respect except for the nameplates and covers.	For Modulator- Power Supply Group OA-685/SRT

TABLE 8-3. TABLE OF REPLACEABLE PARTS

R.eference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { A-3309 } \\ & \text { (cont) } \\ & \text { A-3310 } \end{aligned}$	N16-C-650002-158	COVER CW-341A/SRT except for material; p/o AN/SRT-15; CBTL part/dwg NL-981628-14 COVER, CW-341A/SRT: aluminum; grey enamel finish; o/a dimen 24-9/16 in. lg, 16 in . wd, 2-7/16 in. h; mts by means of 6 machine screws which are tack welded to the cover; same as COVER, CW-341/SRT except for material; non-magnetic version; p / o AN/SRT-15A; CBTL part/dwg NL-901219-14	For Modulator- Power Supply Group OA-685A/SRT
H-3301	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey; 0.828 in . ID open for friction mtg to cable; $4.105 \mathrm{in} . \mathrm{lg}, 1.510 \mathrm{in}$. diam; mts to connector by 1.3750 in . -18 NEF-2 internal thd; designed to hold cable 0.680 in . diam min to 0.820 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-244	Cable Clamp
H-3302		Same as H-3301	Cable Clamp
H-3303		Same as H-3301	Cable Clamp
H-3304	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey; 1. 490 in . ID open for friction mtg to cable; $4.230 \mathrm{in} . \mathrm{lg}, 2.010 \mathrm{in}$. diam; mts to connector by $1.8750 \mathrm{in}-.16 \mathrm{~N}-2$ internal thd; designed to hold cable 1.310 in . diam min to 1.490 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-321	Cable Clamp
H-3305		Same as H-3304	Cable Clamp
H-3306		Same as H-3304	Cable Clamp
H-3307	Shop Manufacture	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; 1. $209 \mathrm{in} . \lg$ less chain, 1.750 in . wd across wrench flats, chain approx 5.500 in . lg; internal thd 2 in . -18 NEF-2, has internal key; CBET part 10-35963-32	Connector Cover
H-3308		Same as H-3307	Connector Cover
H-3309		Same as H-3307	Connector Cover
H-3310	Shop Manufacture	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; $1.209 \mathrm{in} . \lg$ less chain, 1.250 in. wd across wrench flats, chain approx 5.000 lg ; external thd $1-1 / 2 \mathrm{in}$. $-18 \mathrm{NEF-2}$, has internal key; CBET part 10-35963-24	Connector Cover
H-3311		Same as H-3310	Connector Cover
H-3312		Same as H-3310	Connector Cover
H-3313	Low Failure Item	BOLT, eye: forged steel, zinc pl; 1/2 in. - 13 machine thd; $3-1 / 8 \mathrm{in} . \lg \mathrm{o} / \mathrm{a} ; 3 / 4 \mathrm{in} . \lg$ thd portion; shoulder, 1 in . diam by 3/16 in. thk; 1-3/16 in. ID of eye; less nuts; CBTL part/dwg NL-983347-1	For Installation
$\begin{aligned} & \text { H-3313.1 } \\ & \text { thru } \\ & \text { H-3313. } \end{aligned}$		Same as H-3313	For Installation
H-3314	Low Failure Item	INSERT, leveling: corrosion resisting steel, passivate; 5/8 in. -18 NF-2 external thd, $9 / 32$ in. wd, 0.316 in . ID; CBTL part/dwg NL-982598-1	For Leveling Cabinets
$\begin{aligned} & \mathrm{H}-3314.1 \\ & \text { thru } \\ & \mathrm{H}-3314.13 \end{aligned}$		Same as H-3314	For Leveling Cabinets

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-3315	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, plug: brass, cad pl; for 7/16 in. diam hole; 3/4 in. diam, 5/16 in. h o/a; CUF part 51117	Cabinet Plug
$\begin{aligned} & \mathrm{H}-3315.1 \\ & \text { thru } \\ & \mathrm{H}-3315.17 \end{aligned}$		Same as H-3515	Cabinet Plug
H-3316	N17-C-781366-251	CLAMP, ELECTRICAL: aluminum alloy; tin pl; saddle clamp fastening device $\mathbf{w} / 2$ filister hd machine screws; o/a dimen $29 / 32 \mathrm{in} . \lg$ by 1.047 in . OD; no mtg facilities; designed to hold material $7 / 16 \mathrm{in}$. diam max; $3 / 4 \mathrm{in}$. - 20 NEF coupling thd; rubber bushing \& fibre washer incl; per spec ML-C-5015; MIL type AN-3057-6; p/o W-3301	Cable Clamp
H-3317	Low Failure Item	INSERT, leveling: corrosion resisting steel, passivate; 9/16 in. -18 NF-2 external thd, $9 / 32 \mathrm{in} . \mathrm{wd}, 0.316 \mathrm{in}$. ID; CBTL part/dwg NL-901561-1	For Leveling Cabinets
H-3317. 1		Same as H-3317	For Leveling Cabinets
H-3318	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, Plug: brass, cad pl; for 5/16 in. diam hole; 7/16 in. diam, 7/32 in. h o/a; CUF part 48199	Cabinet Plug
$\begin{aligned} & \mathrm{H}-3318.1 \\ & \text { thru } \\ & \mathrm{H}-3318.17 \end{aligned}$		Same as H-3318	Cabinet Plug
P-3301	N17-C-71339-4961	CONNECTOR, PLUG, ELECTRICAL: 30 contacts; 6 size 12 contacts, 24 size 16 contacts; one mating end; female, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \lg , 2.251 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 2 in. -18 NEF-2 thd coupling nut; 2.047 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64632-8S	Mates w/J-3502
P-3302	N17-C-71330-8888	CONNECTOR, PLUG, ELECTRICAL: 24 contacts; size 16 m ; one mating end; female, 22 amp current rating; 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.827 \mathrm{in} . \mathrm{lg}, 1.742$ in. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to sh*ck and vibration; CBET part 10-64624-28S	Mates w/J-3504
P-3303	N17-C-71628-3701	CONNECTOR, PLUG, ELECTRICAL: 24 contacts, size 16 m ; one mating end; male, 22 amp current rating, 700 v DCW, 500 v RMS; synthetic rubber; straight shape, $1.827 \mathrm{in} . \mathrm{lg}, 1.742 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy; resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64624-28P	Mates w/J-3503
P-3304	N17-C-71643-3555	CONNECTOR, PLUG, ELECTRICAL: 30 contacts, 6 size 12 contacts, 24 size 16 contacts; one mating end; male, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \mathrm{lg}, 2.251 \mathrm{in}$. diam o/a; w/enclosing	Mates w/J-3501

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { P-3304 } \\ & \text { (cont) } \end{aligned}$		shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 2 in. -18 NEF-2 thd coupling nut; 2.047 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64632-8P	
P-3305		Same as P-3302	Mates w/J-302
P-3306		Same as P-3301	Mates w/J-301
P-3307	N17-C-71422-3137	CONNECTOR, PLUG, ELECTRICAL: 1 contact; one mating end; male; insulation and center contact provided by dielectric and center conductor of cable; straight shape; $3 \mathrm{in} . \mathrm{lg}, 1-1 / 2 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 1-1/4 in. -18 internal thd coupling nut; environment resistant; per MIL-C-3650; MIL type UG-154/U	Mates w/J-3506
P-3308	N17-C-71419-4088	CONNECTOR, PLUG, ELECTRICAL: 1 contact; one mating end; male, 50 ohm impedance; low loss plastic; straight shape; $2-3 / 8 \mathrm{in} . \mathrm{lg}, 1-5 / 16 \mathrm{in}$. diam c / a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MIL type UG-167A/U	Mates w/J-3202
P-3309		Same as P-3307	Mates w/J-3505
P-3310		Same as P-3307	Mates w/J-303
P-3311	Low Failure Item	ADAPTER: brass, cad pl; 3/4in. OD, 1-3/4in. lg, 0.257 in. ID one end, 0.193 in . ID other end; four no. 6-32 NC-2 tapped holes thru one wall; CBTL part/dwg A2011254	Mates w/W-3502
P-3312		Same as P-3311	
P-3313	For Replacement Use N17-C-71117-2439	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; female, 50 ohms impedance; low loss plastic; straight shape; 1-15/16 in. lg, 11/16 in. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MIL type UG-23B/U	Mates w/P-610
P-3314	For Replacement Use N17-C-71417-9699	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; male; 50 ohm impedance; low loss plastic; straight shape; $1-7 / 8 \mathrm{in} . \lg , 13 / 16 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MIL type UG-21B/U; same as P-301	Mates w/J-3201
P-3315	For Replacement Use N17-C-70588-1524	CONNECTOR, PLUG, ELECTRICAL: 3 size 16 contacts, male, round; polarized; straight type; 1-1/8 in. OD by $2-1 / 16 \mathrm{in} . \mathrm{lg}$ o/a dimen; contacts rated at $20 \mathrm{amps}, 200 \mathrm{v}$ DC, 150 v AC (RMS); cylindrical, aluminum alloy, tin pl, split shell; molded thermosetting plastic insert; 3/4 in. -20 conduit thd; 1-1/8 in. OD of coupling nut, $7 / 8$ in. -20 coupling thd; per spec MIL-C-5015; MIL type AN-3106B-14S-7P; p/o W-3301	Mates w/J-3203
W-3301	Assemble from Component Parts	CABLE ASSEMBLY: special purpose; MIL type CO-02LGF (2/18)SJ 0350 per ML-C-3432; 14 ft lg ; one end terminated incl P-3315 and H-3316; CBTL part/dwg NL-901214-2	Interconnecting Cable Assembly

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
3301-3399	N16-M-384502-0440	*INSTALLATION KIT, MK-234/SRT-16; provides material to install Radio Transmitting Set AN/SRT-16; consists of shockmounts, interstack cable harnesses, connectors and accessories, cable assemblies, main test cable accessories, mtg hardware, nameplate and instruction book; CBTL part/dwg NL-983336-1-3	
3301-3399	N16-M-384502-0441	*INSTALLATION KIT, MK-235/SRT-16A; provides material to install Radio Transmitting Set AN/SRT-16A; consists of shockmounts, interstack cable harnesses, connectors and accessories, cable assemblies, main test cable accessories, mtg hardware, nameplate and instruction book; CBTL part/dwg NL-983336-1-6	
A-3301	N17-M-99999-129	MOUNT, RESILIENT: sq mtg; 250 to 350 lb load rating; 5-1/4 $\mathrm{in} . \mathrm{sq}$ by $2-1 / 2 \mathrm{in} . \mathrm{h}$; natural rubber cushion material, $5 / 32 \mathrm{in}$. thk mtg form; center sleeve mild steel, 5/8 in. -11 tapped center hole, $7 / 8 \mathrm{in}$. d; holder mild steel; four $15 / 32 \mathrm{in}$. diam mtg holes spaced $4-1 / 4 \mathrm{in}$. c to c 90° apart; CAYU type C-4300T10; CBTL part/dwg NL-983345-1-3	Shock Mount
A-3302		Not Used	
A-3303		Same as A-3301	Shock Mount
A-3304		Same as A-3301	Shock Mount
A-3305		Same as A-3301	Shock Mount
$\begin{aligned} & \text { A-3306 } \\ & \text { thru } \\ & \text { A-3310 } \end{aligned}$		Not Used	
A-3311		Same as A-3301	Shock Mount
A-3312		Same as A-3301	Shock Mount
A-3313		Same as A-3301	Shock Mount
A-3314		Same as A-3301	Shock Mount
H-3301	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey; 0.828 in . ID open for friction mtg to cable; $4.105 \mathrm{in} . \lg , 1.510 \mathrm{in}$. diam; mts to connector by 1.3750 in . -18 NEF-2 internal thd; designed to hold cable 0.680 in . diam min to 0.820 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-244 (2 required)	Cable Clamp
H-3302		Same as H-3301 (2 required)	Cable Clamp
H-3303		Same as H-3301 (2 required)	Cable Clamp
H-3304	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: aluminum; anodized grey; 1. 490 in. ID open for friction mtg to cable; $4.230 \mathrm{in} . \mathrm{lg}, 2.010 \mathrm{in}$. diam; mts to connector by $1.8750 \mathrm{in} .-16 \mathrm{~N}-2$ internal thd; designed to hold cable 1.310 in . diam min to 1.490 in . diam max; eyelet for chain provided, wrench flats; CBET part 10-35952-321 (2 required)	Cable Clamp
H-3305		Same as H-3304 (2 required)	Cable Clamp
H-3306	* These kits ar	Same as H-3304 (2 required) the same in every respect except for the nameplates and covers.	Cable Clamp

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-3307	Shop Manufacture	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; $1.209 \mathrm{in} . \lg$ less chain, 1.750 in . wd across wrench flats, chain approx 5.500 in . lg; internal thd $2 \mathrm{in} .-18$ NEF-2, has internal key; CBET part 10-35963-32 (2 required)	Connector Cover
H-3308		Same as H-3307 (2 required)	Connector Cover
H-3309		Same as H-3307 (2 required)	Connector Cover
H-3310	Shop Manufacture	COVER, ELECTRICAL EQUIPMENT: metallic, corrosion resistant; $1.209 \mathrm{in} . \lg$ less chain, 1.250 in . wd across wrench flats, chain approx 5.000 lg ; external thd $1-1 / 2 \mathrm{in} .-18$ NEF-2, has internal key; CBET part 10-35963-24 (2 required)	Connector Cover
H-3311		Same as H-3310 (2 required)	Connector Cover
H-3312		Same as H-3310 (2 required)	Connector Cover
H-3313	Low Failure Item	BOLT, eye: forged steel, zinc pl; 1/2 in. - 13 machine thd; $3-1 / 8 \mathrm{in}$. $\lg \mathrm{o} / \mathrm{a} ; 3 / 4 \mathrm{in}$. lg thd portion; shoulder, 1 in . diam by $3 / 16 \mathrm{in}$. thk; 1-3/16 in. ID of eye; less nuts; CBTL part/dwg NL-983347-1	For Installation
$\begin{aligned} & \mathrm{H}-3313.1 \\ & \text { thru } \\ & \mathrm{H}-3313.7 \end{aligned}$		Same as H-3313	For Installation
H-3314	Low Failure Item	INSERT, leveling: corrosion resisting steel, passivate; 5/8 in. $-18 \mathrm{NF}-2$ external thd, $9 / 32 \mathrm{in}$. wd, 0.316 in . ID; CBTL part/dwg NL-982598-1	For Leveling Cabinets
$\begin{aligned} & \mathrm{H}-3314.1 \\ & \text { thru } \\ & \mathrm{H}-3314.23 \end{aligned}$		Same as H-3314	For Leveling Cabinets
H-3315	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, plug: brass, cad pl; for 7/16 in. diam hole; 3/4 in. diam, 5/16 in. h o/a; CUF part 51117	Cabinet Plug
$\begin{aligned} & \mathrm{H}-3315.1 \\ & \text { thru } \\ & \mathrm{H}-3315.27 \end{aligned}$		Same as H-3315	Cabinet Plug
H-3316	N17-C-781366-251	CLAMP, ELECTRICAL: aluminum alloy; tin pl; saddle clamp fastening device $\mathrm{w} / 2$ filister hd machine screws; o/a dimen 29/32 in. lg by 1.047 in . OD; no mtg facilities; designed to hold material 7/16 in. diam max; 3/4 in. -20 NEF coupling thd; rubber bushing \& fibre washer incl; per spec ML-C-5015; MIL type AN-3057-6; p/o W-3301	Cable Clamp
H-3316. 1		Same as H-3316	Cable Clamp
H-3317	Low Failure Item	INSERT, leveling: corrosion resisting steel, passivate; 9/16 in. -18 NF-2 external thd, $9 / 32 \mathrm{in}$. wd, 0.316 in . ID; CBTL part/dwg NL-901561-1	For Leveling Cabinets
$\begin{aligned} & \mathrm{H}-3317.1 \\ & \text { thru } \\ & \mathrm{H}-3317.3 \end{aligned}$		Same as H-3317	For Leveling Cabinets

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
H-3318	Procured on demand by nearest Naval Shore Supply Activity	BUTTON, plug: brass, cad pl; for 5/16 in. diam hole; 7/16 in. diam, 7/32 in. ho/a; CUF part 48199	Cabinet Plug
$\begin{aligned} & \mathrm{H}-3318.1 \\ & \text { thru } \\ & \mathrm{H}-3318.27 \end{aligned}$		Same as H-3318	Cabinet Plug
P-3301	N17-C-71339-4961	CONNECTOR, PLUG, ELECTRICAL: 30 contacts; 6 size 12 contacts, 24 size 16 contacts; one mating end; female, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \mathrm{kg}, 2.251 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 2 in. -18 NEF-2 thd coupling nut; 2.047 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10646-32-8S (2 required)	Mates w/J-3502
P-3302	N17-C-71330-8888	CONNECTOR, PLUG, ELECTRICAL: 24 contacts; size 16 m ; one mating end; female, 22 amp current rating; 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.827 \mathrm{in} . \lg , 1.742$ in. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64624-28S (2 required)	Mates w/J-3504
P-3303	N17-C-71628-3701	CONNECTOR, PLUG, ELECTRICAL: 24 contacts, size 16 m ; one mating end; male, 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.827 \mathrm{in} . \mathrm{lg}, 1.742 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy; resistant to corrosion; polarized; locking type, 1-1/2 in. -18 NEF-2 thd coupling nut; 1.547 in . diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64624-28P (2 required)	Mates w/J-3503
P-3304	N17-C-71643-3555	CONNECTOR, PLUG, ELECTRICAL: 30 contacts, 6 size 12 contacts, 24 size 16 contacts; one mating end; male, 41 and 22 amp current rating, 700v DCW, 500v RMS; synthetic rubber; straight shape; $1.890 \mathrm{in} . \mathrm{lg}, 2.251 \mathrm{in}$. diam o/a; w/enclosing shell, aluminum base alloy, resistant to corrosion; polarized; locking type, 2 in. -18 NE F-2 thd coupling nut; 2.047 in. diam max cable accommodated; watertight; resistant to shock and vibration; CBET part 10-64632-8P (2 required)	Mates w/J-3501
P-3305		Same as P-3302 (2 required)	Mates w/J-302
P-3306		Same as P-3301 (2 required)	Mates w/J-301
P-3307	N17-C-71422-3137	CONNECTOR, PLUG, ELECTRICAL: 1 contact; one mating end; male, insulation and center contact provided by dielectric and center conductor of cable; straight shape; $3 \mathrm{in} . \lg , 1-1 / 2$ in. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 1-1/4 in. -18 internal thd coupling nut; environment resistant; per MIL-C-3650; MIL type UG-154/U (2 required)	Mates w/J-3506
P-3308	N17-C-71419-4088	CONNECTOR, PLUG, ELECTRICAL: 1 contact; one mating end; male; 50 ohm impedance; low loss plastic; straight shape; $2-3 / 8 \mathrm{in} . \lg , 1-5 / 16 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MLL type UG-167A/U (2 required)	Mates w/J-3202

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
P-3309		Same as P-3307 (2 required)	Mates w/J-3505
P-3310		Same as P-3307 (2 required)	Mates w/J-303
P-3311	Low Failure Item	ADAPTER: brass, cad pl; 3/4 in. OD, 1-3/4 in. lg, 0.257 in . ID one end, 0.193 in . ID other end; four no. $6-32 \mathrm{NC}-2$ tapped holes thru one wall; CBTL part/dwg A2011254 (2 required)	Mates w/W-3502
P-3312		Same as P-3311 (2 required)	Mates w/W-301
P-3313	For Replacement Use N17-C-71117-2439	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; female, 50 ohms impedance; low loss plastic; straight shape; 1-15/16 in. $\mathrm{lg}, 11 / 16 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, 5/8 in. -24 thd coupling nut; environment resistant; per ML-C-71A; MLL type UG-23B/U (2 required)	Mates w/P-610
P-3314	For Replacement Use N17-C-71417-9699	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; male, 50 ohm impedance; low loss plastic; straight shape; $1-7 / 8$ in. $\mathrm{lg}, 13 / 16 \mathrm{in}$. diam o/a; w/enclosing shell, copper base alloy, resistant to corrosion, precious metal pl; polarized; locking type, $5 / 8$ in. -24 thd coupling nut; environment resistant; per MIL-C-71A; MIL type UG-21B/U (2 required); same as P-301	Mates w/J-3201
P-3315	For Replacement Use N17-C-70588-1524	CONNECTOR, PLUG, ELECTRICAL: 3 size 16 contacts, male, round; polarized; straight type; 1-1/8 in. OD by 2-1/16 in. lg o/a dimen; contacts rated at $20 \mathrm{amps}, 200 \mathrm{v}$ DC, 150 v AC (RMS); cylindrical, aluminum alloy, tin pl, split shell; molded thermosetting plastic insert; $3 / 4 \mathrm{in} .-20$ conduit thd; $1-1 / 8 \mathrm{in}$. OD of coupling nut, 7/8 in. -20 coupling thd; per spec MIL-C5015; MIL type AN-3106B-14S-7P; p/o W-3301 (2 required)	Mates w/J-3203
W-3301	Assemble from Component Parts	CABLE ASSEMBLY: special purpose; MIL type CO-02LGF (2/18)SJ 0350 per MIL-C-3432; 14 ft lg ; one end terminated incl P-3315 and H-3316; CBTL part/dwg NL-901214-2 (2 required)	Interconnecting Cable Assembly
3501-3599	F16-C-91733-5588	COUPLER, ANTENNA, CU-372/SRT: electronic coupling; frequency range 300 kc to 26 mc ; operating power requirements 110v AC, 60 cyc; variable type tuning; RF level 100-600 w max power capacity; 8 term, connector and cable extrusion type; aluminum case; o/a dimen $28 \mathrm{in} . \mathrm{lg}, 16 \mathrm{in} . \mathrm{wd}, 13-1 / 2 \mathrm{in} . \mathrm{h}$; clamp-type shock mtg; pressurized capsule assembly containing high voltage switches, capacitors and conductors; w/o spares; p/o AN/SRT-14, 15, 16; CBTL part/dwg J-2011110	
A-3501	N17-M-75320-6496	MOUNT, RESILIENT: round mtg; 30-40 lb load rating; 3 in . sq by $1-1 / 2 \mathrm{in}$. h o/a; natural rubber cushion, irregular shape; 3/8 in. - 16 coarse thd center core; mild steel case; four 0.266 in. diam holes 2-1/2 in. c to c; CAYU part 2040T6; CBTL part/ dwg A-2010941-2	Shock Mount
A-3502		Same as A-3501	Shock Mount
A-3503	N17-M-75361-8113	MOUNT, RESILIENT: round mtg; 15-20 lb load rating; 3 in . sq by 1-1/2 in. h o/a; natural rubber cushion; irregular shape; 3/8 in. - 16 coarse thd center core; mild steel case; four 0.266 in. diam holes 2-1/2 in. c to c; CAYU part 2020T6; CBTL part/ dwg A-2010941-1	Shock Mount
A-3504		Same as A-3503	Shock Mount

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
B-3501	N17-E-39071-3797	ELECTROMAGNETIC ACTUATOR: rotary type moving element; rotary motion produced, approx $3 / 4$ degree arc stroke with 6 lb in. torque; 120 impulses per second max; 115v, 60 cyc AC operating voltage, 150 w full load input power, nonpolarized, coil ungrounded; 2 flexible wire lead term, 12 in. lg ; o/a dimen $3-19 / 64 \mathrm{in} . \lg$ including $1-1 / 8 \mathrm{in}$. shaft projection, $2 \mathrm{in} . \mathrm{wd}, 2 \mathrm{in} . \mathrm{h}$; four no. 8-32 thd mtg holes irregularly spaced as indicated by bosses; operates at $125^{\circ} \mathrm{C}$ ambient temp; CCDD Model AM-200 per CBTL part/dwg C-2011052; p/o S-3513; same as B-303	Switch Drive
B-3502		Same as B-3501; p/o S-3514	Switch Drive
C-3501	N16-C-99999-1177	CAPACITOR, FIXED, VACUUM DIELECTRIC: 1 section; 75 mmf, 20, 000v RF peak rating; 60 amp max (RMS); style no. 28-P, Ref Dwg Group 1; pyrex glass enclosure; 2 end cap type term located one at each end, $13 / 16 \mathrm{in}$. diam by $3 / 4 \mathrm{in}$. lg; cap mtd; 4-1/2 in. lg by 2-5/8 in. OD o/a dimen; non magnetic, no RF pickup; copper to glass seals; CCCQ type VC 75-20; CBTL part/dwg B-2011044	Loading Capacitor
C-3502	N16-C-17088-6751	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 1 section; 15, 000v DCW, $100 \mathrm{mmf}, \pm 10 \%$; style no. $29-\mathrm{P}$, Ref Dwg Group 1; insulated body; o/a dimen 1.270 in . diam of case, 1.890 in . lg of case; two term tapped hole type, $1 / 2 \mathrm{in}$. OD by 0.289 in . lg ; schematic diagram no. 1-R, Ref Dwg Group 1; two no. 10-32 NF-2 thd mtg holes $1 / 4 \mathrm{in}$. d, axially located one at each end; humidity resistant; CBN part no. 857-100N; CBTL part/ dwg B-2011476	Loading Capacitor
C-3503		Same as C-3502	Loading Capacitor
E-3501	N17-C-81587-8340	CONTACT, ELECTRICAL: contact incl conducting point, 1 point, solid rivet, silver, dimen 0.245 in . diam, $0.187 \mathrm{in} . \mathrm{h}$; phosphor bronze, silver pl finish; o/a dimen $0.906 \mathrm{in} . \mathrm{lg}$, 0.375 in . OD; contact inserted and soft soldered on 1 end, other end slotted (6 slots); spring mtd; CBTL part/dwg A-2011100; same as E-302	Stator Contact
E-3502		Same as E-3501	Stator Contact
E-3503		Same as E-3501	Stator Contact
E-3504		Same as E-3501	Stator Contact
E-3505		Same as E-3501	Stator Contact
E-3506		Same as E-3501	Stator Contact
E-3507		Same as E-3501	Stator Contact
E-3508		Same as E-3501	Stator Contact
E-3509		Same as E-3501	Stator Contact
E-3510		Same as E-3501	Stator Contact
E-3511		Same as E-3501	Stator Contact
E-3512		Same as E-3501	Stator Contact
E-3513		Same as E-3501	Stator Contact

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
E-3514		Same as E-3501	Stator Contact
E-3515		Same as E-3501	Stator Contact
E-3516		Same as E-3501	Stator Contact
E-3517	N17-T-24601-1453	CHAMBER, CABLE TERMINAL: single hole, straight type; o/a dimen $2-7 / 16 \mathrm{in} . \lg$ by $1-5 / 8 \mathrm{in}$. across flats incl hex coupling nut; cylindrical $\mathrm{w} /$ hex flange $1-1 / 2 \mathrm{in}$. across flats; steel, 1 in. $-11-1 / 2 \mathrm{NP}$ thd at both ends; tapered silicon rubber bushing insert; 0.875 in . diam max cable opening; watertight; CCH type CGB 397; CBTL part/dwg B-2010834; same as E-317	Cable Support for W-3502
E-3518		Same as E-3517	Cable Support for W-3501
E-3519	For Reference Only	CONTACT, ELECTRICAL: contacts incl conducting points; 2 points; $4-3 / 8 \mathrm{in} . \lg , 3 / 8 \mathrm{in}$. wd, 1-1/16 in. h o/a; brass casting per Navy spec 46B31, silver pl finish; 1-3/8 in. from first mtg hole to contact surface; three no. 6-32 in. NC-2 tapped mtg holes spaced 0.750 in. c to c; CBTL part/dwg B-2011155; p/ o S-3512	p/o S-3512
E-3520		Same as E-3519; p/o S-3512	p/o S-3512
E-3521	For Reference Only	CONTACT, ELECTRICAL: contacts incl conducting points; 2 points; 4-15/16 in. lg, 3/8 in. wd, $1 \mathrm{in} . \mathrm{h}$ o/a; brass casting per Navy spec 46B31, silver pl finish; 1-1/2 in. from first mtg hole to contact surface; three no. 6-32 in. NC-2 tapped mtg holes spaced 0.875 in . c to c ; CBTL part/dwg B-2011154; p/ o S-3511	p/o S-3511
E-3522		Same as E-3521; p/o S-3511	p/o S-3511
E-3523	N17-I-70074-6701	INSULATOR, STANDOFF: ceramic body, bronze base; glazed sides on insulator, nickel pl base; cylindrical shape w/metal base and cap, item code no. 28, MBCA Ref Dwg Group 9; $1-1 / 4 \mathrm{in}$. diam of insulator, o/a $\lg 6 \mathrm{in}$., dimen of base 3-5/16 in. lg by $1 \mathrm{in} . \mathrm{h}$; two $11 / 32 \mathrm{in}$. diam mtg holes in base on $2-5 / 8$ in. $\mathrm{mtg} / \mathrm{c}$; two $1 / 4 \mathrm{in}$. $-20 \mathrm{NC}-2$ thd holes in top spaced $13 / 16$ in. c to c; heavy duty type insulator, low power and loss factor; CBU type no. 414-C-6; CBTL part/dwg B-2011447	Antenna Lead-In Support
E-3524	N17-T-28255-2601	INSULATOR, STANDOFF: molded, asbestos filled, melamine; $14,000 \mathrm{v}$ DC breakdown voltage; turret type, not in MBCA Ref Dwg Group 9; 7/8 in. h by $1 / 4 \mathrm{in}$. across flats of hex base o/a dimen; term hot tin dip; mtg by means of no. 4-40 thd by $5 / 32$ in. d, brass, cad pl insert w/ no. 4-40 thd brass, cad pl machine screw; CCCK type 763; CBTL part/dwg A-2011167-2	Tie Point
E-3525		Same as E-3524	Tie Point
H-3501	Low Failure Item	GLAND: silicone rubber; OD 24° taper, $3 / 4 \mathrm{in}$. OD at large end, $1 / 2 \mathrm{in}$. diam at smaller end, $5 / 8 \mathrm{in}$. wd, $3 / 16$ in D ; CBTL part/dwg A-2010840; same as H-301	u/w J-3505
H-3502		Same as H-3501	u/w J-3506
H-3503	Low Failure Item	WRENCH: c/o $1 / 4 \mathrm{in}$. hex stem, cup $13 / 16 \mathrm{in}$. OD and two $1 / 2$ in. lg by 0.625 in . diam pins; cold rolled steel, nickel pl; 7/8 in. lg by $13 / 16 \mathrm{in}$. diam o/a dimen; 0.750 in . diam by 90°	Special Wrench for Contact Button Assy

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { H-3503 } \\ & \text { (cont) } \\ & \text { 1-3501 } \end{aligned}$	N17-G-99999-0329	countersink opening in cup; $1 / 8 \mathrm{in}$. diam hole thru cup $7 / 32 \mathrm{in}$. from stem end; CBTL part/dwg A-2011489; same as H-302 GAUGE, PRESSURE, DIAL INDICATING: dial and pointer type; 0 to 30 psi ; single reading; 1-1/2 in. dial size; black pointer; brass case, black enamel finish, $1-5 / 8 \mathrm{in}$. OD by $1-17 / 32 \mathrm{in} . \lg$ o/a; equipment mtd; $5 / 8 \mathrm{in}$. lg pipe with $1 / 8 \mathrm{in}$. pipe thd $3 / 8 \mathrm{in}$. lg; CBTL part/dwg A-2010896; same as I-301	Pressure Gauge
J-3501	N17-C-99999-1180	CONNECTOR, RECEPTACLE, ELECTRICAL: 6 size 12 contacts, 24 size 16 contacts, female, round; polarized; 2-1/4 in. sq by 1.578 in . lg excluding contacts o/a dimen; size 12 contacts rated at 35 amp , size 16 contacts $20 \mathrm{amp}, 200 \mathrm{v}$ DC, 150v AC (RMS); box mtg receptacle, straight type, cylindrical with sq mtg flange; aluminum alloy, cadmium pl; molded resilient polychloroprene insert; 2 in. -18 NEF-2 thread on shell; 4 mtg holes 0.173 in . diam spaced 1.750 in . c to c ; panel mtg , pressure tight fitting; moisture proof-vibrant resistant; per spec MIL-C-5015A; MIL type AN 3102E-32-8S	Control Cable Connection
J-3502	For Replacement Use N17-C-99999-1183 modified per description	CONNECTOR, RECEPTACLE, ELECTRICAL: 6 size 12 contacts, 24 size 16 contacts, male, round; polarized; 2 in . diam by 59/64 in. lg excluding contacts o/a dimen; size 12 contacts rated at 35 amp , size 16 contacts $20 \mathrm{amp}, 200 \mathrm{v}$ DC, 150 v AC (RMS); straight type, cylindrical, steel, cadmium pl; vitreous insulator inserts fused to pins and shell; hermetically sealed; 2 in. -18 thd on shell; solder mtd to panel; CED type GS02-328P001 modified by undercut; CBTL part/dwg B-2011484 Part 2	Control Cable Connection
J-3503	N17-C-99999-1182	CONNECTOR, RECEPTACLE, ELECTRICAL: 24 size 16 contacts, female, round; polarized; $1-3 / 4 \mathrm{in}$. sq by $1.578 \mathrm{in} . \lg$ excluding contacts o/a dimen; contacts rated $22 \mathrm{amp}, 70 \mathrm{v} \mathrm{DC}$, 50v AC (RMS); box mtg receptacle, straight type, cylindrical $\mathrm{w} / \mathrm{sq} \mathrm{mtg}$ flange; aluminum alloy, cadmium pl; molded resilient polychloroprene insert; 1-1/2 in. no. 18 NEF-2 thd on shell; 4 mtg holes 0.147 in . diam spaced 1.375 in . c to c; panel mtg, pressure tight fitting; moisture proof-vibrant resistant; per spec MIL-C-5015A; MIL type AN3102E-24-28S	Control Cable Connection
J-3504	For Replacement Use N17-C-99999-1181 modified per description	CONNECTOR, RECEPTACLE, ELECTRICAL: 24 size 16 contacts, male, round; polarized; 59/64 in. lg , by 1.5 in . diam excluding term; contacts rated $22 \mathrm{amp}, 70 \mathrm{v}$ DC, 50 v AC(RMS); straight type receptacle, cylindrical, steel, cad pl; vitreous insulator inserts fused to pins and shell; hermetically sealed; 1-1/2 in, -18 thd on shell; solder mtd to panel; CED type GS02-24-28P-001 modified by undercut; CBTL part/dwg B-2011484 Part 1	Control Cable Connection
J-3505	N17-C-99999-1186	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round at each end; straight type; 2-1/2 in. lg by 2 in . sq o/a dimen; 5 kilovolts peak rating; RF connector, 50 ohm nominal impedance, non-constant frequency impedance characteristics; cylindrical shape w / sq mtg flange; brass, cad pl, silver pl inner conductor; 4 mtg holes 0.257 in . diam spaced 1.437 in . c to $\mathrm{c} ; 1-1 / 4 \mathrm{in} .-18$ thd at both ends; panel mtg; weatherproof; MLL type UG-287/U except for pl; CBTL part/dwg B-2010849; same as J-304	RF Connection from Tuner
J-3506		Same as J-3505	RF Connection from Transmitter

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-3507	N17-C-99999-1185	CONNECTOR, RECEPTACLE, ELECTRICAL: 24 size 16 contacts, male, round; polarized; $2-1 / 2 \mathrm{in}$. sq by $1-15 / 64 \mathrm{in} . \mathrm{lg}$ o/a dimen; contacts rated $22 \mathrm{amps}, 70 \mathrm{v}$ DC, 50 v AC (RMS); box mtg receptacle, straight type, cylindrical, steel, grey enamel-cad pl finish; vitreous insulator inserts fused to pins and shell; 1-1/2 in. -18 thd; 4 mtg holes $9 / 32 \mathrm{in}$. diam spaced 1.875 in . c to c ; panel mtg, hermetically sealed; c/o CED type GS02-24-28P-001 with CBTL flange soldered to it; CBTL part/ dwg A-2010844; same as J-302	Control Lines Connection
K-3501	N17-R-99999-0850	RELAY, ARMATURE: 2C, MBCA Ref Dwg Group 4; DPDT, single break, $150 \mathrm{v}, 15 \mathrm{amp}$; 1 winding, 1 inductive winding, DC, 164 ohms, 24 v operating voltage, 0.146 amp , operating current; 6 term for contacts, 2 term for coil; 1-15/16 in. lg , $1-5 / 8 \mathrm{in} . \mathrm{wd}, 1-1 / 2 \mathrm{in}. \mathrm{h;} \mathrm{mts} \mathrm{by} \mathrm{means} \mathrm{of} \mathrm{four} \mathrm{no}. \mathrm{6-32} \mathrm{in}$. tapped holes $1-5 / 16 \mathrm{in}$. by $1 / 2 \mathrm{in}$. c to c ; fast operate, fast release, high temp coil, open frame; CBTL part/dwg A-2011223; same as K -401	Transfer Switch Control
L-3501	For Reference Only	COIL, RF: $1 \mathrm{mh} \pm 10 \%$ at $250 \mathrm{kc} ; 79$ turns no. 85-36 Litz wire double silk enamel; bank wound; 2-13/32 in. winding lg; functions as series inductor; $\mathrm{p} / \mathrm{oL} \mathrm{L}-3503$	Series Inductor
L-3502	For Reference Only	COIL, RF: $700 \mathrm{mh} \pm 10 \%$ at 790 kc ; 58 turns no. $85-36$ Litz wire double silk enamel; bank wound; 1-13/16 in. winding lg; functions as series inductor; $\mathrm{p} / \mathrm{o} \mathrm{L-3503}$	Series Inductor
L-3503	N16-C-73350-1819	COIL, RF: each section bank wound; silicone bonded fiberglass coil form; 8-1/8 in. lg, 5.620 in . diam o/a; eight 0.266 in. diam mtg holes spaced 30° apart; CBTL part/dwg D-2011139; c/o L-3501 and L-3502	Series Inductor
O-3501	Shop Manufacture	GASKET: for bottom ring; Felpak, AN type F-3033; 13 holes; round, $7-15 / 16$ in. OD, 6-7/16 in. ID, $1 / 16$ in. thk; CBTL part/dwg C-2010994	For Junction Box
O-3502	Low Failure Item	SPRING: helical compression type; contact spring; 0.0254 in . diam beryllium copper wire, silver pl; $0.906 \mathrm{in} . \lg$ by 0.170 in. OD, 17 turns; R.H. turns; square ends; CBTL part/dwg A-2010781; same as O-310	u/w Stator Contact
O-3503		Same as O-3502	u/w Stator Contact
O-3504		Same as O-3502	u/w Stator Contact
O-3505		Same as O-3502	u/w Stator Contact
O-3506		Same as 0-3502	u/w Stator Contact
O-3507		Same as O-3502	u/w Stator Contact
O-3508		Same as O-3502	u/w Stator Contact
O-3509		Same as O-3502	u/w Stator Contact
O-3510		Same as O-3502	u/w Stator Contact
O-3511		Same as O-3502	u/w Stator Contact
O-3512		Same as O-3502	u/w Stator Contact
O-3513		Same as O-3502	u/w Sitator Contact

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
0-3514		Same as 0-3502	u/w Stator Contact
0-3515		Same as 0-3502	u/w Stator Contact
0-3516		Same as 0-3502	u/w Stator Contact
0-3517		Same as 0-3502	u/w Stator Contact
0-3518	Low Failure Item	GEAR: spur; brass; straight teeth; 54 teeth; 24 pitch, 2.250 in . pitch diam; 0.437 in . bore, $1 / 4 \mathrm{in}$. face, $9 / 16 \mathrm{in}$. wd; straight face; hub $11 / 16 \mathrm{in}$. diam by $5 / 16 \mathrm{in}$. wd; one 0.055 in . diam hole in hub; 14-1/2 ${ }^{\circ}$ pressure angle; web style; CBH no. G265 modified; CBTL part/dwg A-2010967; p/o S-3514	p/o S-3514
0-3519	N17-B-99999-0035	BAR, ACTUATOR, ELECTRICAL SWITCH: stainless steel; irregular shape, w/oil impregnated bronze roller, $3 / 16 \mathrm{in}$. diam; o/a dimen 1-3/32 in. lg, 0.915 in . h, 11/32 in. wd excluding mtg screws; two 0.130 in . diam mtg holes located 0.96 in. c to c; side mtg, winterized, u/w micro switch V3-1; w/ two no. $4-40$ by $5 / 8 \mathrm{in}$. round head machine screws; two no. 4-40 std hex nuts, two lockwashers; CMU type JV-5; p/o S-3513; same as 0-315	Actuator for S-3501
0-3520		Same as 0-3519, p/o S-3513	Actuator for S-3502
0-3521		Same as 0-3519, p/o S-3513	Actuator for S-3503
0-3522		Same as 0-3519, p/o S-3513	Actuator for S-3504
0-3523		Same as 0-3519, p/o S-3513	Actuator for S-3505
0-3524		Same as O-3519, p/o S-3513	Actuator for S-3506
0-3525		Same as 0-3519, p/o S-3514	Actuator for S-3507
0-3526		Same as O-3519, p/o S-3514	Actuator for S-3508
O-3527		Same as 0-3519, p/o S-3514	Actuator for S-3509
O-3528		Same as 0-3519, p/o S-3514	Actuator for S-3510
0-3529		Same as 0-3518, p/o S-3513	p/o S-3513
0-3530	Low Failure Item	GEAR: spur; brass; straight teeth; 54 teeth; 24 pitch, 2.250 in . pitch diam; 0.250 in . kore, $1 / 4 \mathrm{in}$. face, $9 / 16 \mathrm{in}$. wd ; straight face; hub 11/16 in. diam by $5 / 16 \mathrm{in}$. wd; one no. 6-32 tapped hole and one 0.055 in . diam hole 90° apart on hub; $14-1 / 2^{\circ}$ pressure angle; web style; CBH part G265 modified and CBTL bushing; CBTL part/dwg A-2010995	u/w S-3511
0-3531		Same as 0-3530	u/w S-3512
0-3532	N17-P-99999-0138	PACKING, PREFORMED: neoprene; 2-1/8 in. OD, 1-3/4 in. ID, 3/16 in. thk; black; MIL type AN-6227B-30; same as 0-346	Gasket for J-3507
O-3533	N17-P-99999-0135	PACKING, PREFORMED: neoprene; 8-1/2 in. OD, 8 in . ID, $1 / 4 \mathrm{in}$. thk; black; MIL type AN-6227B-72; same as O-350	Gasket for Bottom Plate
O-3534	N17-P-99999-0137	PACKING, PREFORMED: neoprene; $1-1 / 2 \mathrm{in}$. OD, 1-1/4 in. ID, $1 / 8$ in. thk; black; MIL type AN-6227B-23; same as $0-347$	Gasket for J-3505

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
O-3535	For Replacement Use N17-G-165093-821	PACKING, PREFORMED: neoprene; 11 in . OD, 10-1/2 in. ID, 1/4 in. thk; black; ML type AN-6227B-77; same as 0-348	Gasket for End Plate
O-3536	N17-P-99999-0136	PACKING, PREFORMED: neoprene; 3/8 in. OD, $1 / 4 \mathrm{in}$. ID, 1/16 in. thk; black; ML type AN-6227B-5; same as O-352	For Cap of Cable Extrusion
O-3537		Same as O-3536	For Cap of Cable Extrusion
O-3538		Same as 0-3536	For Cap of Cable Extrusion
O-3539		Same as 0-3536	For Cap of Cable Extrusion
O-3540	Shop Manufacture	GASKET: Felpak, AN type F3033; 5 holes; $1-7 / 8 \mathrm{in}$. sq by $1 / 16 \mathrm{in}$. thk o/a; four 3/16 in. mtg holes $1-3 / 8 \mathrm{in}$. c to c ; CBTL part/dwg A-2011037	For J-3503
O-3541	Shop Manufacture	GASKET: Felpak, AN type F3033; 5 holes; 2-3/8 in. sq by $1 / 16 \mathrm{in}$. thk o/a; four $3 / 16 \mathrm{in}$. mtg holes $1-3 / 4 \mathrm{in}$. c to c ; CBTL part/dwg A-2011038	For J-3501
O-3542	Low Failure Item	VALVE, relief: brass, beryllium copper, cad pl; $30 \pm 5 \mathrm{psi}$ working pressure; $1 / 8$ in. male pipe thd on valve seat; gas service; straight type; plunger check valve; spring loaded; o/a dimen $2-17 / 32$ in. lg by $7 / 8 \mathrm{in}$. across hex flats; CCDA type 5431; CBTL part/dwg B-2010918; same as O-353	Relief Valve
O-3543	Low Failure Item	VALVE, air: charge valve for nitrogen; brass, nickel pl; incl $1 / 2 \mathrm{in} . \lg$ dome cap; 1-5/16 in. lg less cap by 7/16 in. hex flange; $1 / 8$ in. I. P. thd at one end; CCDC part 1468 A8; same as 0-309	Charge Valve
O-3544	$\begin{aligned} & \text { G77-B-111-00702- } \\ & 0000 \end{aligned}$	BEARING, ball: single row radial; unshielded; light duty; 0.2756 in. bore, 0.8661 in . OD, 0.2756 in . wd; 7 balls; grease packed; ABEC-1 std tol; non-filling slot type; CCAE part 37K	For S-3511
O-3545		Same as O-3544	For S-3512
O-3546		Same as O-3544	For S-3514
O-3547		Same as O-3544	For S-3513
O-3548		Same as O-3544	For S-3511
O-3549		Same as O-3544	For S-3512
O-3550		Same as O-3534	For J-3506
O-3551	N16-R-651091-615	RING, RETADNDN: carbon spring steel, cad pl plain iridite dip; beveled; external, for shaft diam 1-7/8 in.; 1.735 in. ID by 0.062 in. thk; CCDE part 5102-187SMI	Retainer Ring
O-3552	N16-R-651091-616	RING, RETAINING: carbon spring steel, cad pl plain iridite dip; beveled; external, for shaft diam 1-3/8 in. ; 1. 272 in. ID by 0.050 in. thk; CCDE part 5102-137SMI	Retainer Ring
P-3501	For Replacement Use N17-C-70369-4194 modified per description	CONNECTOR, PLUG, ELECTRICAL: 24 size 16 contacts, female, round; polarized; straight type; 1-5/16 in. lg excluding term, $1-25 / 32 \mathrm{in}$. diam o/a dimen; 20 amp , 70v DC, 50v AC (RMS); cylindrical shape, aluminum alloy; cad pl w/chromate dip finish; molded melamine	Control Lines Connection

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
$\begin{aligned} & \text { P-3501 } \\ & \text { (cont) } \end{aligned}$		insulator insert; 1-1/2 in. -18 coupling thd; 1-23/32 in. OD coupling nut; per spec MIL-C-5015; MIL type AN3106B-2428S less split shell and retaining nut; CBTL part/dwg A-2011151	
S-3501	For Replacement Use N17-S-69192-8601	SWITCH, SENSITIVE: SPDT; 30v DC, 125 or 250 v AC, 10 amp, phenolic body; 1-3/8 in. lg including term, $13 / 32 \mathrm{in} . \mathrm{wd}$, $7 / 8 \mathrm{in} . \mathrm{h}$ excluding term screw, o / a dimen excluding actuator; snap-action plunger type actuating mechanism; beryllium copper spring $\mathrm{w} /$ silver contacts; 0.016 in . max differential movement, $3 / 64 \mathrm{in}$. max pre-travel, $1 / 32 \mathrm{in}$. min over-travel; 6 to 14 oz operating force; 1 contact normally open, 1 contact normally closed; three no. 4-40 round head machine screw type term $\mathrm{w} /$ lock washers; one 0.130 in . diam mtg hole and one 0.120 in . diam mtg hole, diagonally mtd on 0.96 in . centers; winterized unit; u/w JV-5 actuator; per spec MLL-S-6743; CMU type V3-1; p/o S-3513; same as S-301	Loading Position Switch
S-3502		Same as S-3501, p/o S-3513	Loading Position Switch
S-3503		Same as S-3501, p/o S-3513	Loading Position Switch
S-3504		Same as S-3501, p/o S-3513	Loading Position Switch
S-3505		Same as S-3501, p/o S-3513	Loading Position Switch
S-3506		Same as S-3501, p/o S-3513	Loading Position Switch
S-3507		Same as S-3501, p/o S-3514	Transfer Position Switch
S-3508		Same as S-3501, p/o S-3514	Transfer Position Switch
S-3509		Same as S-3501, p/o S-3514	Transfer Position Switch
S-3510		Same as S-3501, p/o S-3514	Transfer Position Switch
S-3511	N17-S-99999-0591	SWITCH, ROTOR SUB-ASSEMBLY: TP6T; functions as a shorting arm for stator contacts located on stator contact assembly; 2 section rotor, 6 fixed contacts each section, non-"pile-up", copper alloy, silver pl contacts; 3 poles each section, 6 throws; brass casting, silver pl; silicone bonded fiberglass body per MLL-P-997A; 5-1/4 in. lg, 5-5/16 in. wd, $5-3 / 16 \mathrm{in} . \mathrm{h} o / \mathrm{a}$; round shaft, $5-1 / 4 \mathrm{in} . \lg , 1 / 2 \mathrm{in}$. diam; stud term; CBTL part/dwg C-2011137; incl S-3511A and S-3511B	Loading Switch Rotor
S-3512	N17-S-99999-0592	SWITCH, ROTOR SUB-ASSEMBLY: DP4T; functions as a shorting arm for stator contacts located on stator contact assembly; 1 section rotor; 4 fixed contacts; non-"pile-up", copper alloy, silver pl contacts; 2 poles, 4 throws; brass casting, silver pl; silicone bonded fiberglass body per MIL-P-997A; 6 in. lg, 4-5/16 in. wd, 4-5/16 in. h o/a; round shaft, $6 \mathrm{in} . \lg$, 1/2 in. diam; stud term; CBTL part/dwg B-2011136; incl E-3519 and E-3520	Transfer Switch Rotor

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
S-3513	Assemble from Component Parts	SUB-ASSEMBLY: its function is to switch the antenna coupler into the RF circuit; 4-7/16 in. lg , 4-7/8 in. wd, $3-29 / 32 \mathrm{in} . \mathrm{h}$ o/a; sub-assembly mts by means of three 0.169 in . diam mtg holes equally spaced 120° apart on a 3.5 in . diam B. C.; CBTL part/dwg C-2011133; c/o B-3501, S-3501 thru S-3506, O-3519 thru 0-3524, 0-3529 and 2 actuating cams	Loading Switch
S-3514	Assemble from Component Parts	SUB-ASSEMBLY: functions as a by-pass for the RF signal to either the RF tuner or directly into the RF section; 4-1/4 in. $\mathrm{lg}, 5-5 / 8 \mathrm{in} . \mathrm{wd}, 4-9 / 16 \mathrm{in} . \mathrm{h}$ o/a; sub-assembly mts by means of three 0.154 in . diam mtg holes equally spaced 120° apart on a 3.5 in . diam B. C.; CBTL part/dwg C-2011132; c/o B-3502, K-3501, S-3507 thru S-3510, O-3525 thru O-3528, O-3518 and two actuating cams	Transfer Switch
TB-3501	N17-B-77840-1634	TERMINAL BOARD: material of board molded phenolic, MIL-P-14B, type CFG; incl 8 term, double screw type, barrier type; o/a dimen 3-5/8 in. lg, 7/8 in. wd, 13/32 in. thk; four 0.160 in . diam mtg holes spaced $3-3 / 8 \mathrm{in}$. c to $\mathrm{c} \lg$ by $5 / 16 \mathrm{in}$. c to c wd; CJC type 8-140-A	Terminal Strip
W-3501	For Replacement Use N15-C-12200-775	CABLE, RADIO FREQUENCY: 52 ohms nominal impedance, 29. 5 mmf nominal capacitance per ft; 14, 000v (RMS) max voltage rating; single solid inner conductor, copper, 0.250 in . diam; polyethylene dielectric; no outer jacket or wire braid; 29/32 in. diam, 8-5/8 in. lg o/a dimen; MIL type RG-19/U modified; CBTL part/dwg A-2011020-1	To Antenna
W-3502	For Replacement Use N15-C-12200-775	CABLE, RADIO FREQUENCY: 52 ohms nominal impedance, 29. 5 mmf nominal capacitance per ft; 14, 000v (RMS) max voltage rating; single solid inner conductor, copper, 0.250 in . diam; polyethylene dielectric; no outer jacket or wire braid; 29/32 in. diam, 16-1/16 in. lg o/a dimen; MLL type RG-19/U modified; CBTL part/dwg A-2011020-2 Included in this table are replaceable parts for the main test cable assembly (CBTL dwg NL-901192-29). The 56 conductor cable harness (CBTL dwg NL-901194-14) is fabricated by the Navy and is not furnished with the equipment. This group of accessories is part of the Installation Kits.	From Tuner Output
H-3601	N17-C-781724-735	CLAMP, ELECTRICAL: aluminum alloy; tin pl; saddle clamp fastening device $w / 2$ filister hd machine screws; o/a dimen $1-5 / 16 \mathrm{in} . \lg$ by $1-7 / 8 \mathrm{in}$. OD; no mtg facilities; designed to hold material $15 / 16$ in. diam min; 1-7/16 in. -18 NEF-2B coupling thd; rubber bushing \& fibre washer incl; per spec MIL-C5015; MIL type AN-3057-16	Cable Clamp
H-3602		Same as H-3601	Cable Clamp
H-3603	Procured on demand by nearest Naval Shore Supply Activity	CLAMP, ELECTRICAL: cast aluminum; designed to form a termination inside conduit boxes or panel; 1-5/8 in. hex by 11/16 in. $\lg \mathrm{o}$ a dimen; designed to hold material 1 in . in diam; 1-7/16 in. -18 coupling thd; MIL type AN-3056-16	Cable Termination
H-3604		Same as H-3603	Cable Termination
J-3601	N17-I-59628-9328	INSULATOR, FEEDTHRU: bushing and bowl w/tapped cap and thd stud; steatite, brass; silver pl; 2-3/4 in. lg, 1-1/8 in. diam o/a; $45 \mathrm{amp} ; 12,000 \mathrm{v}$; CCCV type 1125-A modified; CBTL part/ dwg NL-900217-1; same as J-1503	To P-604 or P-1404

TABLE 8-3. TABLE OF REPLACEABLE PARTS

Reference Desig.	Stock Numbers Signal Corps Standard Navy Air Force	Name and Description	Locating Function
J-3602		Same as J-3601	To P-1401 or P-1402
J-3603	N17-I-59705-1251	INSULATOR, FEEDTHRU: brass; silver pl; 15/16 in. lg , 5/8 in. o/a diam; CNA type XS-7 modified; CBTL part/dwg NL-900095-1; same as J-503	To P-605 or P-608
J-3604		Same as J-3603	To P-606 or P-1403
J-3605	N17-C-73108-1262	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; $1-1 / 32 \mathrm{in} . \lg , 3 / 4 \mathrm{in}$. wd across mtg plate; 500 v peak; RF connector, 52 ohms nominal impedance; cylindrical shape; polystyrene insert; four 3-56 tapped mtg holes in corners of mtg flange $0.50 \mathrm{in} . \mathrm{mtg} / \mathrm{c}$; JAN type UG-291/U; same as J-1303	To P-603
J-3606		Same as J-3605	To P-601 or P-607
J-3607	N17-C-73114-7071	CONNECTOR, RECEPTACLE, ELECTRICAL: 1 contact, female, round; straight type; 1-27/32 in. $\mathrm{lg}, 1 \mathrm{in}$. wd across mtg plate; RF connector, 52 ohms nominal impedance; cylindrical shape; four $1 / 8 \mathrm{in}$. mtg holes in corners of mtg flange $23 / 32 \mathrm{in}$. $\mathrm{mtg} / \mathrm{c}$; CARO type 36000 ; same as J-1304	To P-602
P-3601	N17-C-99999-2015	CONNECTOR, RECEPTACLE, ELECTRICAL: consists of double row of 8 sliding contacts per row, male, flat; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in} . \mathrm{wd}, 9 / 16 \mathrm{in} . \mathrm{h}$ excluding contacts and term; w/ partially enclosed plastic shell; polarized; non-locking; 5 amp , 600v DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in \lg and 0.460 in . c to c in wd ; CPH type 26-159-16; same as P-401	For Mating Connectors in Cabinets
P-3602		Same as P-3601	For Mating Connectors in Cabinets
P-3603		Same as P-3601	For Mating Connectors in Cabinets
P-3604	N17-C-99999-2016	CONNECTOR, RECEPTACLE, ELECTRICAL: c/o double row of 8 sliding contacts per row, female; 2-7/16 in. $\mathrm{lg}, 7 / 8 \mathrm{in}$. wd, $9 / 16 \mathrm{in}$. h; polarized; nonlocking; $5 \mathrm{amp}, 600 \mathrm{v}$ DC; mtd by two 0.125 in . diam holes in diagonal corners, spaced 2.024 in . c to c in lg, and 0.460 in . c to c in wd; CPH type 26-190-16-1; same as J-601	For Mating Connectors in Units
P-3605		Same as P-3604	For Mating Connectors in Units
P-3606		Same as P-3604	For Mating Connectors in Units
P-3607	N17-C-71408-5333	CONNECTOR, PLUG, ELECTRICAL: 1 contact, male, round; straight type; BNC connector; 31/32 in. $1 \mathrm{lg}, 9 / 16 \mathrm{in}$. diam o/a; RF connector, 50 ohms nominal impedance; constant frequency impedance; cylindrical shape, brass, silver pl, locking type; teflon insert; 0.206 in . diam max cable opening; NAVY dwg RE49F246; ML type UG-88/U; same as P-601	To J-1303 or J-2928
P-3608		Same as P-3607	To J-1305
P-3609	N17-C-99999-1179	CONNECTOR, PLUG, ELECTRICAL: one contact; one mating end; male, style 12 Ref Dwg Group 206, 52 ohms nominal im-	To J-3104

TABLE 8-3. TABLE OF REPLACEABLE PARTS

TABLE 8-4. MAINTENANCE PARTS KIT

$\begin{gathered} \text { KEY } \\ \text { DESIGNA- } \\ \text { TION } \end{gathered}$	BOX NO.	$\begin{aligned} & \text { QUANT } \\ & \text { PER } \\ & \text { BOX } \end{aligned}$	$\begin{gathered} \text { KEY } \\ \text { DESIGNA- } \\ \text { TION } \end{gathered}$	BOX NO.	$\begin{gathered} \text { QUANT } \\ \text { PER } \\ \text { BOX } \end{gathered}$	$\begin{gathered} \text { KEY } \\ \text { DESIGNA- } \\ \text { TION } \end{gathered}$	BOX NO.	$\begin{aligned} & \text { QUANT } \\ & \text { PER } \\ & \text { BOX } \end{aligned}$
B-301	TN-229/SRT	1	F-1501	OA-685/SRT	10	R-1319	OA-684/SRT	1
B-303	TN-229/SRT	1	F-2917	OA-684/SRT	5	R-1326	OA-684/SRT	1
B-305	TN-229/SRT	1	F-3001	OA-684/SRT	5	R-1327	OA-684/SRT	1
B-701A	MT-1423/SRT	1	F-3003	OA-684/SRT	5	R-1330	OA-684/SRT	1
B-1306A	OA-684/SRT	1	HR-701	MT-1423/SRT	1	R-1338	OA-684/SRT	1
C-301	TN-229/SRT	1	I-401	OA-684/SRT	2	R-1601	OA-685/SRT	1
C-401	OA-684/SRT	1	I-1301	OA-684/SRT	3	R-1603	OA-685/SRT	1
C-402	OA-684/SRT	1	J-501	OA-684/SRT	2	R-2126	OA-684/SRT	1
C-1042	OA-684/SRT	2	J-504	OA-684/SRT	1	R-2128	OA-684/SRT	1
C-1301	OA-684/SRT	1	J-601	OA-684/SRT	2	R-2132	OA-684/SRT	1
C-1303	OA-684/SRT	2	J-1109	OA-684/SRT	2	R-2140	OA-684/SRT	1
C-1304	OA-684/SRT	1	J-1111	OA-684/SRT	2	R-2918	OA-684/SRT	1
C-1305	OA-684/SRT	1	J-1306	OA-684/SRT	1	R-2955	OA-684/SRT	1
C-1315	OA-684/SRT	1	J-1401	OA-685/SRT	1	S-305	TN-229/SRT	1
C-1318	OA-684/SRT	1	J-1501	OA-685/SRT	1	S-403	OA-684/SRT	1
C-1319	OA-684/SRT	2	J-1503	OA-685/SRT	1	S-404	OA-684/SRT	1
C-1323	OA/684/SRT	1	J-1604	OA-685/SRT	1	S-501	OA-684/SRT	1
C-1601	OA-685/SRT	2	J-2931	OA-684/SRT	1	S-1101A	OA-684/SRT	3
C-1602	OA-685/SRT	2	J-3007	OA-684/SRT	1	S-1106	OA-684/SRT	1
C-2038	OA-684/SRT	1	K-503	OA-684/SRT	1	S-1107	OA-684/SRT	1
C-2137	OA-684/SRT	1	K-1101	OA-684/SRT	1	S-1109	OA-684/SRT	1
C-2170	OA-684/SRT	1	K-1102	OA-684/SRT	1	S-1301A	OA-684/SRT	1
C-2287	OA-684/SRT	1	K-1501	OA-685/SRT	1	S-1301C	OA-684/SRT	1
C-2345	OA-684/SRT	1	K-1502	OA-685/SRT	1	S-1302	OA-684/SRT	1
C-2355	OA-684/SRT	1	K-1504	OA-685/SRT	1	S-1378	OA-684/SRT	1
C-2644	OA-684/SRT	1	K-1601	OA-685/SRT	1	S-1381	OA-684/SRT	1
C-2766	OA-684/SRT	1	K-1603	OA-685/SRT	1	S-1384	OA-684/SRT	1
C-2806	OA-684/SRT	1	K-3001	OA-684/SRT	1	S-1386	OA-684/SRT	1
C-3201	OA-684/SRT	1	L-1501	OA-685/SRT	1	S-1501	OA-685/SRT	1
C-3501	CU-372/SRT	1	M-1501	OA-685/SRT	1	S-1502	OA-685/SRT	1
CR-1001	OA-684/SRT	1	O-2052	OA-684/SRT	2	S-2051B	OA-684/SRT	6
CR-1601	OA-685/SRT	1	O-2055	OA-684/SRT	1	S-2126	OA-684/SRT	2
CR-3001	OA-684/SRT	2	0-2056	OA-684/SRT	1	S-2651B	OA-684/SRT	1
CR-3201	OA-684/SRT	4	O-2210	OA-684/SRT	1	T-1001	OA-684/SRT	1
E-312	TN-229/SRT	1	O-2337	OA-684/SRT	1	T-1002	OA-684/SRT	1
E-314	TN-229/SRT	1	O-2433	OA-684/SRT	1	T-1501	OA-685/SRT	1
E-315	TN-229/SRT	1	O-2532	OA-684/SRT	1	T-1502	T-1502	1
E-1507	OA-685/SRT	1	O-2657	OA-684/SRT	1	T-1601	OA-685/SRT	1
E-1511	OA-685/SRT	3	O-2658	OA-684/SRT	1	T-1602	OA-685/SRT	1
E-1514	OA-685/SRT	2	O-2919	OA-684/SRT	1	T-3001	OA-684/SRT	1
E-1516	OA-685/SRT	2	O-2920	OA-684/SRT	1	XI-1601	OA-685/SRT	1
E-1517	OA-685/SRT	2	P-2053	OA-684/SRT	1	XV-2101	OA-684/SRT	3
E-1518	OA-685/SRT	2	R-302	TN-229/SRT	1	XV-2153	OA-684/SRT	5
E-1519	OA-685/SRT	2	R-402	OA-684/SRT	1	Z-301	TN-229/SRT	1
F-501	OA-684/SRT	5	R-1045	OA-684/SRT	1	Z-1301	OA-684/SRT	1
F-503	OA-684/SRT	5	R-1314	OA-684/SRT	1	Z-2001	OA-684/SRT	1
F-1301	OA-684/SRT	5	R-1315	OA-684/SRT	1	Z-2053	OA-684/SRT	1

TABLE 8-5. CROSS REFERENCE PARTS LIST

JAN OR MIL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN OR MLL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN OR MIL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$
AN-3056-16	H-3603	CM35C472K	C-2927	RB51BR5000F	R-3114
AN-3057-16	H-3601	CM35E103M	C-1302	RB51B10001F	R-2126
AN-3057-6	H-3316	CM35E472J	C-1026	RB51B2R500F	R-1330
AN-3102A-14S-5S	J-1106	CM45A222M	C-1316	RB51B25R00F	R-1319
AN-3102A-14S-7S	J-3203	CM45B470K	C-1367	RB51B5R000F	R-1326
AN-3102E-24-28S	J-3503	CM55E202J	C-1322	RB51B50R00F	R-1315
AN-3102E-32-8S	J-3501	CM55E333M	C-1315	RC20BF100K	R-1046
AN-3106B-14S-7P	P-3315	CM60F472G	C-2060A	RC20BF101J	R-1304
AN-3106B-24-28S	P-3501	CM65B101J	C-1327	RC20BF101K	R-1124
AN-6227B-23	O-347	CM65B131J	C-1331	RC20BF102J	R-2348
AN-6227B-30	O-346	CM65B201J	C-1325	RC20BF102K	R-1033
AN-6227B-34	O-345	CM65B620J	C-1330	RC20BF103J	R-1089
AN-6227B-5	O-352	CN30E103M	C-1004	RC20BF103K	R-2024
AN-6227B-67	O-351	CN42E 203K	C-1047	RC20BF104J	R-1084
AN-6227B-72	O-350	CN42E303K	C-1048	RC20BF104K	R-1072
AN-6227B-77	O-348	CN43E104M	C-1029	RC20BF105J	R-2007
AN-931-A14-20	H-3007	CN43E503M	C-1009	RC20BF105K	R-1013
AN-931-A8-13	H-3006	CP29A1EG103M	C-1017	RC20BF121K	R-1001
CC21CJ030C	C-2344	CP40C2FF405V	C-1040	RC20BF123K	R-2675
CC21LH050C	C-2806	CP41B1DF405V	C-3011	RC20BF124J	R-1085
CC21LH150G	C-2631	CP53B1EC504V	C-1007	RC20BF124K	R-1050
CC21LJ030C	C-2038	CP53B1EF205K	C-505	RC20BF125K	R-1094
CC21PH120J	C-2215	CP53B1EF254V	C-1041	RC20BF150K	R-2440
CC21PH240G	C-2430	CP53B1FB105V	C-1008	RC20BF151K	R-2160
CC21PK010C	C-2537	CP53B1FF504V	C-1038	RC20BF152K	R-1003
CC21PK020C	C-2337	CP53B4FF104V	C-1003	RC20BF153J	R-2339
CC21RH270G	C-2345	CP53B4FF254V	C-1037	RC20BF153K	R-1052
CC21SH300G	C-2766	CP54B1EB405K	C-1019	RC20BF154J	R-1108
CC21SK010C	C-2355	CP54B1EF104V	C-2291	RC20BF154K	R-1019
CC21TH200G	C-2410	CP55B1FF504V	C-1039	RC20BF183J	R-1017
CC21UJ030C	C-2231	CP63B1DG504X	C-1045	RC20BF184K	R-1004
CC21UJ040C	C-2175	CP63B1EF105K	C-1310	RC20BF185K	R-1086
CC21UJ300G	C-2222	CP67B4EF504V	C-1030	RC20BF221J	R-2044
CC21UJ510G	C-2066	CP69B5FF104V	C-2001	RC20BF221K	R-1118
CC25LH430G	C-2237	CP69B5FF254V	C-2206	RC20BF222K	R-1010
CC26PH470G	C-2246	CP70B1EG156X	C-501	RC20BF223J	R-2218
CC26TH680G	C-2170	CP70E1EJ805X	C-503	RC20BF223K	R-2013
CC26UJ101G	C-1050	CP70E1EN105V	C-1603	RC20BF224J	R-1090
CC26UJ820G	C-2137	CV11B130	C-2335	RC20BF225K	R-1127
CC26UJ910F	C-2060B	CV11C300	C-2219	RC20BF271J	R-2228
CC32CG680G	C-2287	CV11C450	C-2212	RC20BF271K	R-1005
CE51B152F	C-1034	CV14C300	C-1304	RC20BF272K	R-2640
CE51E101H	C-1601	CW-123A/U	O-2928	RC20BF273K	R-1126
CE51E800R	C-1036	FO9D10ROB	F-3001	RC20BF274J	R-2205
CE51E801G	C-3001	FO9G1R00B	F-503	RC20BF274K	R-1095
CE52C350Q	C-1042	FO9G15ROA	F-3005	RC20BF330K	R-2454
CE52E350R	C-3004	FO9G2R00B	F-1002	RC20BF331K	R-2138
CE61E40R	C-1602	FO9G3R00B	F-1001	RC20BF332J	R-2004
CE63C101E	C-1002	FO9G5R00B	F-3003	RC20BF 332 K	R-2171
CE63C250F	C-1001	FO9G6ROOB	F-501	RC20BF333J	R-2226
CM20A181K	C-1032	JJ-033	J-1105	RC20BF333K	R-1140
CM20A330J	C-1020	JJ-089	J-1104	RC20BF334K	R-2052
CM20A471J	C-1022	MR26W100DCUAR	M-402	RC20BF394K	R-1011
CM20A510J	C-1031	MR35WOO5RLAA	M-1302	RC20BF470K	R-1031
CM25D101G	C-1370	MR35W106SPEC	M-1301	RC20BF472J	R-2221
CM25D301G	C-1369	RA20A1SD103AK	R-2919	RC20BF472K	R-2010
CM25E102M	C-1309	RA20A1SD201AK	R-2916	RC20BF473J	R-2364
CM25E471M	C-1301	RA20A1SD252AK	R-1068	RC20BF473K	R-1018
CM30A102J	C-1024	RA20B1RD103AK	R-2955	RC20BF474J	R-2002
CM30A202J	C-1010	RB10B30001F	R-2207	RC20BF474K	R-1035
CM30A302J	C-1025	RB40B65000F	R-2918	RC20BF510J	R-2151
CM30A332K	C-2174	RB42B50000F	R-2132	RC20BF511J	R-3201
CM35C103J	C-2002	RB51BR2500F	R-1327	RC20BF514J	R-1109

TABLE 8-5. CROSS REFERENCE PARTS LIST

JAN OR MIL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN OR MIL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN OR MIL DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$
RC20BF561J	R-2242	RC42BF103J	R-1342	RW56J182	R-16
RC20BF561K	R-1373	RC42BF103K	R-1055	RW56J501	R-1601
RC20BF562J	R-2059	RC42BF123K	R-1042	ST12D	S-1103
RC20BF562K	R-1026	RC42BF153K	R-1008	ST22K	S-3007
RC20BF563K	R-1083	RC42BF183K	R-1007	ST22N	S-1102
RC20BF623J	R-1301	RC42BF221K	R-1501	ST42A	S-3005
RC20BF680K	R-2647	RC42BF222J	R-1313	ST42E	S-2917
RC20BF681J	R-2214	RC42BF223J	R-1341	ST50K	S-3002
RC20BF681K	R-2057	RC42BF223K	R-1016	ST52P	S-402
RC20BF682K	R-2056	RC42BF274J	R-1012	ST55K	S-3001
RC20BF683K	R-1030	RC42BF333K	R-1043	TS101PO1	XC-1601
RC20BF821J	R-2229	RC42BF472K	R-3010	TS102CO1	XV-1001
RC20BF822J	R-2227	RC42BF473K	R-1006	TS102PO1	XV-1303
RC20BF822K	R-1028	RC42BF511J	R-1054	TS102UO1	O-1001
RC20BF824K	R-514	RC42BF560K	R-1620	TS102UO2	O-1012
RC20GF102J	R-412	RC42BF562K	R-1063	TS102UO3	O-1021
RC20GF103K	R-2203	RC42BF623J	R-1051	TS103CO1	XV-1002
RC20GF104K	R-2530	RC42BF681J	R-1370	TS103PO1	XV-2002
RC20GF122K	R-409	RC42BF682K	R-519	TS103UO2	O-1002
RC20GF153K	R-2428	RC42BF751J	R-1389	UG-154/U	P-3307
RC20GF154K	R-408	RC42BF823J	R-1395	UG-167A/U	P-3308
RC20GF222J	R-414	RC42GF100J	R-3202	UG-21B/U	P-301
RC20GF222K	R-2430	RC42GF102K	R-2452	UG-23B/U	P-3313
RC20GF223K	R-2427	RC42GF122K	R-2016	UG-260/U	P-2628
RC20GF224K	R-2239	RC42GF153K	R-2305	UG-262/U	J-2928
RC20GF471J	R-3206	RC42GF183J	R-2363	UG-271/U	P-302
RC20GF472K	R-2801	RC42GF183K	R-2356	UG-287/U	J-304
RC20GF510J	R-2233	RC42GF222K	R-2135	UG-290A/U	J-2931
RC20GF561K	R-2156	RC42GF223J	R-2222	UG-291/U	J-1303
RC20GF563K	R-2426	RC42GF223K	R-2204	UG-535/U	J-1308
RC20GF622J	R-410	RC42GF273K	R-2241	UG-536/U	P-610
RC20GF822K	R-416	RC42GF333K	R-2213	UG-58A/U	J-3201
RC30BF100K	R-1312	RC42GF393K	R-2358	UG-88/U	P-601
RC30BF103K	R-1115	RC42GF472K	R-2672	UG-89/U	P-609
RC30BF104K	R-1024	RC42GF473K	R-407	OA2	V-1303
RC30BF124K	R-1036	RC42GF562K	R-2823	OB2	V-1021
RC30BF153J	R-1308	RC42GF621J	R-1136	1N34A	CR-1002
RC30BF154J	R-1305	RC42GF683J	R-2225	1N38	CR-2201
RC30BF154K	R-1631	RC42GF753K	R-406	12AU7	V-2202
RC30BF224K	R-518	RC42GF822J	R-2054	3B28	V-501
RC30BF273K	R-1105	RG-19/U	W-301	4D21	V-1601
RC30BF332J	R-1311	RP101SD252KK	R-2953	5R4WGB	V-1009
RC30BF392K	R-1135	RV4ATRE103A	R-301	5651	V-1012
RC30BF394K	R-515	RW12F503	R-1629	5654	V-2001
RC30BF472J	R-1306	RW13F103	R-501	5687	V-2629
RC30BF473J	R-1102	RW13F143	R-502	5725	V-1001
RC30BF514J	R-1621	RW14F103	R-3008	5726	V-1013
RC30BF563J	R-1088	RW14F900	R-3007	5751	V-1002
RC30BF563K	R-1114	RW20G161	R-1045	5814	V-1004
RC30GF103J	R-2333	RW20G162	R-1375	5933	V-1006
RC30GF104K	R-2033	RW20G252	R-1376	6AG5	V-2126
RC30GF123K	R-2445	RW20G282	R-1120	6AG7	V-1301
RC30GF124K	R-2303	RW20G632	R-1067	6AK6	V-2051
RC30GF153K	R-2635	RW20G802	R-1087	6AS7G	V-1010
RC30GF273K	R-2169	RW21G103	R-1377	6 E 5	V-2917
RC30GF333K	R-2442	RW21G123	R-1069	6201	V-1015
RC30GF393K	R-2105	RW21G252	R-1505		
RC30GF472K	R-2429	RW21G351	R-3024		
RC30GF512J	R-2307	RW21G500	R-1302	NAVY TYPE	KEY
RC30GF822J	R-2215	RWW31F142	R-3025		SYMBOL
RC42BF101K	R-1394	RW31G202	R-2649	CB11EA101G	C-2103
RC42BF102K	R-523	RW55G352	R-1344	CB11EA102G	C-2003

TABLE 8-5. CROSS REFERENCE PARTS LIST

MIL COLOR CODE FOR FIXED CERAMIC-DIELECTRIC

COLOR	$\begin{array}{\|c\|} \hline \text { CHARAC- } \\ \text { TERRITIC } \\ \text { (SEE .2.1.2.) } \\ \hline \end{array}$	NOMINAL CAPACITANCE		$\begin{aligned} & \text { CAPACI- } \\ & \text { TANCE } \\ & \text { TOLERANCE } \\ & \hline \end{aligned}$
		SIGNIIICANT FIGURE	MULTIPLIER	
				PERCENT
BLACK	--	0	1	
BROWN	W	1	10	
RED	X	2	100	
ORANGE	--	3	1,000	
YELLOW	-	4	---	
				\{-20
Green	--	5		
BLUE	--	6		
PR(VIO)	--	7		
GRAY	--	8		
WHITE	--	9		

MULTIPLIER				VOLTAGERATING	TEMPERATURE COEFFICIENT
COLOR	$\begin{aligned} & \text { CERAM MIC-DIEALECTRIC } \\ & \hline \end{aligned}$	JAN MICA AND PAPER-DIELECTRIC	JAN CERAMIC DIELECTRIC		
[BLACK	I	1	1		A
IBROWN	10	10	10	100	B
IRED	100	100	100	200	C
ORANGE	1,000	1,000	1,000	300	D
[YELLOW \|	10,000			400	E
IGREEN	100,000			500	F
BLUE	1,000,000			600	6
PURPLE	10,000,000			700	
\|GRAY	100,000,000		0.01	800	
\|WHITE	1,000,000,000		0.1	900	
GOLD	0.1	0.1		1,000	
SILVER	0.01	0.01		2,000	
				500	

ERIE RESISTOR CO.
STAND-OFF CERAMICONS

TABLE 8-7. LIST OF MANUFACTURERS

PREFEX	NAME	ADDRESS
CADI	James Knight Co.	Sandwich, Ill.
CAE	Cutler Hammer, Inc.	1333 W. St. Paul Ave. Milwaukee, Wis.
CAGK	Amperite Company	561 Broadway New York 12, N. Y.
CAI	Aladdin Radio Industries, Inc.	Nashville, Tenn.
CAIS	Birtcher Corp., The	4371 Valley Blvd. Los Angeles 32, Calif.
CAMQ	Cambridge Thermionic Corp.	445 Concord Ave. Cambridge, Mass.
CAN	Sangamo Electric Co.	Marion, Ill .
CANS	Kings Electronics Co., Inc.	40 Marbledale Rd. Tuckahoe, N. Y.
CAO	Ward Leonard Co.	23 South St. Mount Vernon, N. Y.
CAQM	Thomas B. Gibbs \& Co. Division of G. W. Borg Corp.	Delevan, Wis.
CAQN	Friedman Co.	220 E. 23rd St. New York, N. Y.
CARE	Potter \& Brumfield Mfg. Co. , Inc.	Princeton, Indiana
CARO	Industrial Products Co.	Brookfield St. Danbury, Conn.
CATK	Acro Mfg. Co.	2040 E. Main St. Columbus, Ohio
CAUY	Helipot Corp.	916 Meridian Ave. S. Pasadena 14, Calif.
CAVM	Electronic Transformer Co.	207 W. 25th St. New York 1, N. Y.
CAW	Aerovox Corp.	742 Belleville Ave. New Bedford, Mass.
CAXO	Shakeproof, Inc.	2573 N. Keeler Ave. Chicago, 111.
CAYT	Allen Mfg. Co.	100 Sheldon St. Hartford, Conn.
CAYU	Barry Corp., The	700 Pleasant St. Watertown 72, Mass.
CAYZ	Dialight Corp.	60 Stewart Ave. Brooklyn 37, N. Y.
CAZG	Jennings Radio Mfg. Co.	970 McLaughlin Ave. San Jose 12, Calif.
CBAM	SKF Industries	Front St. \& Erie Ave. Philadelphia, Pa.
CBDW	Grayhill Co.	537 Hillgrove Ave. LaGrange, Illinois

TABLE 8-7. LIST OF MANUFACTURERS

PREFIX	NAME	ADDRESS
CBEN	Air-Maze Corp.	25000 Miles Rd. Cleveland 28, Ohio
CBET	Scintilla Magneto Div. of Bendix Aviation Corp.	Sidney, New York
CBEY	K. V. Transformer Co.	20 E. Franklin St. Danbury, Conn.
CBH	Boston Gear Works	3200 Main St. Quincy 7, Mass.
CBKH	Sierra Engineering Co.	123 East Montecito Ave. Sierra Madre, Calif.
CBN	Central Radio Laboratory Division of Globe Union Inc.	900 E. Keefe Avenue Milwaukee, Wis.
CBTL	Federal Telecommunication Lab. Division of International Telephone \& Telegraph Corp.	500 Washington Ave. Nutley 10, N. J.
CBU	Isolantite Mfg. Corp.	Sterling, N. J.
CBWO	Astron Corp.	255 Grant Ave. East Newark, N. J.
CBY	Aircraft Radio Corp.	Boonton, N.J.
CBZ	Allen-Bradley Co.	136 W. Greenfield Ave. Milwaukee 4, Wis.
CBZX	Dale Products Inc.	Columbus, Nebraska
CCAE	Fafnir Bearing Co., The	New Britain, Conn.
CCBN	Rotron Mfg. Co., Inc.	7-9 Schoonmaker Pl. Woodstock, N. Y.
CCC	Continental Carbon Co.	13900 Lorain Ave. Cleveland 11, Ohio
CCCK	Winchester Electronics Inc.	Glenbrook, Conn.
CCCO	Bead Chain Mfg. Co., The	Mountain Grove \& State Sts. Bridgeport, Conn.
CCCP	Boots Aircraft Nut Corp.	Newtown Turnpike Norwalk, Conn.
CCCQ	Dolinko \& Wilkins, Inc.	1901-7 Summit Ave. Union City, N. J.
CCCR	Filtron Co., Inc., The	131-05 Fowler Ave. Flushing, Long Island, N. Y.
CCCS	Grant Pulley \& Hardware Co.	31-85 Whitestone Pkwy. Flushing, L. I. , N. Y.
CCCT	Grigsby-Allison Co., Inc.	407 No. Salen Ave. Arlington Heights, nl .
CCCU	Groov-Pin Corp.	1125 Hendricks Causeway Ridgefield, N.J.
CCCV	Heldor Bushing \& Terminal Co., Inc.	225 Belleville Ave. Bloomfield, N. J.

TABLE 8-7. LIST OF MANUFACTURERS

PREFLX	NAME	ADDRESS
CCCW	Laurel Co.	Garfield, N. J.
CCCX	Lavelle Rubber Co.	424 N. Wood Street Chicago, mlinois
CCCY	Leland, G.H., Inc.	123 Webster St. Dayton, Ohio
CCCZ	Matchless Electric Co.	564 West Randolph St. Chicago, Illinois
CCDA	Norgren, C. A., Co.	Englewood, Colorado
CCDB	Rohm \& Haas Co.	Washington Square Philadelphia 5, Pa.
CCDC	Schrader's Son, A. Div. of Scovill Mfg. Co., Inc.	470 Vanderbilt Ave. Brooklyn, N. Y.
CCDD	Viking Tool \& Machine Corp., The	14 Main St. Belleville, N. J.
CCDE	Waldes-Kohinoor, Inc.	47-16 Austil Pl. Long Island City, N. Y.
CCH	Crouse-Hinds Co.	1347 Wolf St. Syracuse 1, N. Y.
CCQ	Allied Control Co., Inc.	2 East End Ave. New York 21, N. Y.
CCX	R. W. Cramer Co., Inc., The	Miller St. Centerbrook, Conn.
CDA	Diehl Manufacturing Co. Electrical Div. of Singer Mfg. Co.	Finderne Plant Somerville, N.J.
CDP	General Ceramics Co.	Crows Mill Road Keasbey, N.J.
CED	Cannon Electric Co.	3291 Humboldt St. Los Angeles 31, Calif.
CEE	Thomas A. Edison, Inc.	West Orange, N. J.
CEJ	Johnson, E. F., Co.	Waseca, Minn.
CER	Erie Resistor Corp.	644 W. 12th St. Erie, Pa.
CFA	Bussmann Mfg. Co. Division of McGraw Electric Co.	2538 W. University St. St. Louis 7, Mo.
CFT	Federal Telephone \& Radio Co. Division of International Telephone \& Telegraph Corp.	100 Kingsland Rd. Clifton, N. J.
CG	General Electric Lamp Div.	Nela Park Cleveland, Ohio
CGM	New Departure Division of General Motors Corp.	Bristol, Conn.
CHC	Hammarlund Mfg. Co.	460 W. 34th St. New York, N. Y.

TABLE 8-7. LIST OF MANUFACTURERS

PREFIX	NAME	ADDRESS
CHH	Arrow-Hart \& Hegeman Electric Co.	102 Hawthorne St. Hartford 6, Conn.
CHP	Haydon Mfg. Co., Inc.	Torrington, Conn.
CIM	Eitel-McCullough, Inc.	San Bruno, Calif.
CJA	Millen Co., James	150 Exchange St. Malden, Mass.
CJC	Jones, Howard B., Co. Division of Cinch Mfg. Corp.	2640 W. George St. Chicago 24, 11 .
CLR	Leach Relay Co.	5915 Avalon Blvd. Los Angeles, Calif.
CMA	P. R. Mallory Co., Inc.	3029 E. Washington St. Indianapolis 6, Ind.
CMG	Cinch Mfg. Corp.	1026 S. Horman Ave. Chicago 24, 111.
CMI	Molded Insulation Co., Inc.	335 East Price Street Philadelphia, Pa.
CMM	Miller Coil Co.	5917 So. Main St. Los Angeles, Calif.
CMU	Micro-Switch Division of Minneapolis-Honeywell Regulator Co.	Freeport, IIl.
CNA	National Co., Inc.	61 Sherman St. Malden 48, Mass.
COC	Oak Mfg. Co.	1260 Clybourn Ave. Chicago 10, Il .
COM	Ohmite Manufacturing Co.	3604 W. Howard St. Chicago, Il .
CPB	Price Electric Corp.	5560 Church St. Frederick, Md.
CPD	Communication Products Co.	Marlboro, N. J.
CPH	American Phenolic Corp.	1830 S. 54th Ave. Chicago 50, Ill.
CRP	Raytheon Mfg. \& Prod. Co.	190 Willow St. Waltham, Mass.
CRY	C. P. Clare \& Co.	4719 Sunnyside Ave. Chicago 30, Ill.
CSD	Struthers-Dunn, Inc.	144 N. 13 St. Philadelphia 7, Pa.
CSF	Sprague Electric Co.	307 Marshall St. N. Adams, Mass.
CSI	Sigma Instruments, Inc.	170 Pearl St. South Braintree Boston 85, Mass.
CSM	Shallcross Mfg. Co.	24 Pusey Ave. Collingdale, Pa.

TABLE 8-7. LIST OF MANUFACTURERS

INSTRUCTION BOOK

for

RADIO TRANSMITTING SETS

 AN/SRT-14, AN/SRT-14A, AN/SRT-15, AN/SRT-15A, AN/SRT-16 AND AN/SRT-16AINDEX

FEDERAL TELEPHONE AND RADIO COMPANY A division of International telephone and Telegraph Corporation CLIFTON, NEW JERSEY

DEPARTMENT OF THE NAVY BUREAU OF SHIPS

TABLE OF SECTIONS

Section	Title
1	General Description
2	Theory of Operation
3	Installation
4	Operation
5	Operator's Maintenance
6	Preventive Maintenance
7	Corrective Maintenance
8	Parts Lists

Note

Illustrations are indexed separately

 in the front matter of this book.
Subject
 Table
 Number
 Text Page

A

Abbreviations ..	1-2	1-3
Adjustments-see individual units		
Alignment	7-118, 7-121
Amplifier stages-		
V-1006 and V-1007	2-73
V-2154	2-14
$\mathrm{V}-2332$ and V-2333		2-26
$\mathrm{V}-2427$ and V-2428	2-29
V-2429	2-29
V-2527, V-2528, and V-2529		2-30
$\mathrm{V}-2626$ and V-2628		2-33
V-2652, V-2653, and V-2654	2-35
V -2802, V-2803, and V-2804	2-38
Antenna Coupler CU-372/SRT-		
bypass switch S-3512	2-118
control-indicator	2-41
description	1-15
electrical adjustments		7-116
function		2-4
grounding cams		2-119
loading switch S-3511	2-119
location		3-7
lubrication	\ldots	6-25
mechanical adjustments	7-116
position indicator	2-46
trouble location	7-112
Antenna tuning equipment-		
assembly procedure		3-23
connector assemblies	3-5	3-26
control circuit		2-120
critical cable lengths	3-4	3-7
description	1-3
location	.	3-7
mounting	3-23
system trouble shooting	7-107
test and alignment	...	7-108
theory of operation	2-116
trial operation		3-36
trouble-shooting chart	7-40	7-107
wiring	3-25
Assembly procedure-		
AN/SRT-14 arrangement "C"	3-8
AN/SRT-15 arrangement " A_{1} "	3-13
AN/SRT-16 arrangement " D "		3-17
Audio amplifier chain		2-67

Adjustments-see individual units
Alignment
Amplifier stages-
V-1006 and V-1007 2-73
V-2154 2-14
V-2332 and V-2333 2-26
V-2427 and V-2428 2-29
V-2429 2-29
V-2527, V-2528, and V-2529 2-30
V-2652, V-2653, and V-2654 2-35
V-2802, V-2803, and V-2804 2-38
Antenna Coupler CU-372/SRT-
bypass switch S-3512 2-118
control-indicator 2-41
electrical adjustments $\mathbf{7 - 1 1 6}$
function 2-4
grounding cams 2-119
switch S-3S11
ocaion 3-1
mechanical adjustments 7-116
position indicator 2-46
trouble location 7-112
Antenna tuning equipment-
assembly procedure 3-23
connector assemblies ...
description $1-3$
location 3-7
mounting 3-23
system trouble shooting ..
theory of operation 2-116
trial operation 3-36
rouble-shooting chart ...
wiring 3-25
Assembly procedure-
AN/SRT-14 arrangement "C" 3-8
AN/SRT-15 arrangement " $\mathrm{A}_{1} "$.. 3-13
AN/SRT-16 arrangement "D" .., 3-17
Audio amplifier chain 2-67

INDEX (Cont'd)

Table Number

2-67
V-1002B and V-1004A (LLRM) 2-68
V-1601 and V-1602 (HLRM) 2-88
Audio circuits
-67, 2-71
Audio input circuit
2-67
oscillator V-1020

2-72
power amplifiers V-1006 and V-1007 2-73
push-pull cathode followers V-1005A and V-1005B 2-72

.

Band information for RFA
2-19 2-101
.
control
2-114
frequency ranges

1-1
modes of transmission 1 1 1
primary power supply
1-1
remote operation
1-1
Blocking oscillator V-2202A
2-15
B-701 and B-702 (mounting) 2-105
B-1306 (RFA)
2-103
motor control 2-124
Booster-see "Radio Modulator-Power Supply OA-685/SRT"
Buffer-IPA tuning

2-91
keying
2
tank circuit
2-91
-1301 (RFA)
2-76Carrier on2-115
V-1002B2-72
V-2002 and V-2003 2-7V-26292-33
Chassis-
replacement 5-4

INDEX (Cont'd)

Subject	Table Number	Text Page
Disable relay K-1304 (RFA)	2-98
Drive motor control		2-123
Dumping cathode follower (LLRM)	2-79
E		
Electrical adjustments-see under individual units		
Electrical information	1-17
Electrical Equipment Cabinet CY-1571/SRT (transmitter group cab-inet)-		
description		1-10
electrical adjustments	7-105
function	2-3, 2-104
mechanical adjustments		7-105
trouble location	7-101
wiring ...		3-24
Electrical Equipment Cabinet CY-1572/SRT (HLRM cabinet)-		
description	1-13
electrical adjustments	7-105
function	2-4, 2-105
mechanical adjustments	7-105
trouble location		7-105
wiring		3-24
Electrical Equipment Cabinet CY-1573/SRT (HVPS cabinet)-		
description	1-13
electrical adjustments	7-107
function	2-4, 2-105
mechanical adjustments		7-107
trouble location	7-107
wiring	3-24
Electrical equipment rack Z -2901, mounting (unit 14)-		
oscilloscope test receptacles		2-40
test points	2-12	2-40
theory of operation	2-38
see "Radio Frequency Oscillator O-275/SRT"		
wiring		3-24
zero adjust indicating circuit ..		2-41
Electron tubes-see "Tubes, electron"		
Electronic frequency converter Z-2204, 10-kc step generator (unit 6)see "Radio Frequency Oscillator O-275/SRT"		
Electronic frequency converter Z-2330, 100-kc step generator (unit 8)see "Radio Frequency Oscillator O-275/SRT"		
Electronic frequency converter Z-2426 (unit 9)-see "Radio Frequency Oscillator O-275/SRT"		
Electronic frequency converter Z-2626 (unit 11A)-see "Radio Frequency Oscillator O-275/SRT"		
Electronic frequency converter Z-2651 (unit 11B)-see "Radio Frequency Oscillator O-275/SRT"		
Electronic frequency converter Z-2801 (unit 11C)-see "Radio Frequency Oscillator O-275/SRT'		
Emergency maintenance		5-3
Emission-types of		1-17, 4-1, 4-14
Equipment required but not supplied	1-7	1-21
Equipment supplied	1-6, 3-1	1-20

INDEX (Cont'd)
Sizbject
TableNumber Number

Text Page

F

Facsimile-

operation 2-115
selection 4-14
Filters-
harmonic, PA 2-97
interference, Z-601 through Z-604 2-105
Frequency bands 2-101
Frequency converter (unit:5)-see "Radio Frequency OscillatorO-275/SRT"'
Frequencies-
control of 2-47
final output and control positions $\begin{array}{cc}2-15,4-3 & 2-47, \\ \ldots & 2-47\end{array}$
sample 2-49
unit 3 2-12
Frequency multiplier Z-2034 (unit 2)-see "Radio Frequency OscillatorO-275/SRT"
Frequency multiplier Z-2103 (unit 4)-see "Radio Frequency Oscillator O-275/SRT"
Frequency multiplier Z-2305 (unit 7)-see "Radio Frequency OscillatorO-275/SRT"
Frequency multiplier Z-2526, 1-mc generator (unit 10)-see "Radio Frequency Oscillator O-275/SRT"
Frequency selection- .
control circuits 2-114
description 1-1
generalmechanical4-1, 4-20
operation2-47

Frequency shift key operation-

Frequency shift key operation-
control circuits
control circuits 2-115 2-1154-15, 4-20
selection 4-14
theory of operation 2-115
Frequency shift oscillator (unit 12)-see "Radio Frequency Oscillator O-275/SRT"
Front panel test point voltages-weekly record 6-12
FSK operation 4-14
Fuses-
Adjustments 3-30
500-watt operation 5-9
locations 56 5-9
locations of operating spares 5-9
100-watt operation 5-7
operating spares 5-7 5-10
replacement 5-5symptoms of failure5-4, 5-5 5-7, 5-8, 5-9units without fuses5-10

NAVSHIPS 92121(A)

AN/SRT-14, 14A, 15, 15A, 16, 16A

INDEX (Cont'd)

Table Number
Text Page
G
Grounding cams-
control 2-122
tuning 2-119
H
Hand-key operation 4-14
Harmonic filters (PA) 2-97
Harmonic generator V-2526 2-30
Heaters-
cabinet 2-106
HR-701 through HR-704 (in mounting) 2-106
indicator lights 2-40
r-f oscillator 2-12
High level radio modulator (HLRM)-see "Radio Modulator
MD-230/SRT"
HLRM-see "Radio Modulator MD-230/SRT"
HVPS-see "Power Supply PP-1096/SRT"
I
Impedance transformer circuit (LAU) 2-109
Identification of controls and indicators 4-3
Indicators-location 4-3
Initial adjustments 3-28
Input circuits-
HVPS 2-61
LLRM 2-74
LVPS 2-51
Installation-
assembly procedure 38
equipment arrangement 3-5
kits-see tables 1-2, 1-6materials3-3
1-17, 3-4
Interference filters Z-601 through Z-6042-105
Interlock circuit and $\mathbf{- 2 4}$-volt d-c supply (LVPS) 2-54
Interpolation oscillator Z-2053 (unit 3)-see "Radio Frequency Oscillator O-275/SRT"
IPA-
current meter M-1304 2-103
input 2-93
meter selector switch (G) S-1386 2-21 2-103
tank circuit 2-93
tuning 2-114
V-1302 2-93
Isolating amplifier V-2201 2-15
K
Keying-high speed or tape 4-15
Keying circuit (LLRM)-
audio oscillator V-10202-81

INDEX (Cont'd)

Subject	Table Number		Text Page
Keying circuit (Cont'd)-			
buffer V-1015A		2-76	
dumping cathode follower	2-79	
functions of keying circuit outputs ..	2-16	2-75	
keyer V-1019	2-80	
keying control	2-76	
keying multivibrator outputs	2-78	
limiter V-1018	2-79	
multivibrator V-1017		2-76	
KEYING RATE switch (S) S-1109 (LLRM)	2-17	2-79	
Keying voltages (LLRM)-monthly record ...	6-8	6-12	
L			
Limiters-			
V-1013B	2-70	
V-1018	2-79	
LLRM-see "Radio Modulator MD-229/SRT"			
Localization-theory of	7-2	
Location of equipment-			
Antenna Coupler CU-372/SRT		3-7	
antenna tuning equipment	3-7	
clearance requirements	3-5	
Radio Frequency Tuner TN-229/SRT	3-7	
remote radiophone unit	3-8	
transmitter bay	3-5	
variations in transmitter bay arrangements	\ldots	3-5	
Low level radio modulator-see "Radio Modulator MD-229/SRT"			
Low voltage power supply-see "Power Supply PP-1094/SRT"			
Lubrication-			
actuator motor	6-25	
annual	6-28	
ball bearings	6-32	
bandswitch mechanism	6-22	
base mount	6-24	
biennial	6-28	
chains	6-32	
chassis slides	6-24	
control-indicator	6-24	
dry cleaning solvent (for removal of grease, oil and dirt)	6-28	
frames and base mounts	6-21	
gears and racks	6-24	
general procedure		6-21	
greases	6-12	6-28,	6-29
intervals	6-25	
IPA dial assembly	.	6-22	
jacks	6-24	
LLRM	6-24	
major overhaul	...	6-28	
motors		6-32	
oils	6-13	6-28,	6-29
PA dial assembly		6-22	
PA tuning mechanism	.	6-22	
periods :...	\ldots	6-25	

INDEX (Cont'd)

Table Number
Subject
Lubrication (Cont'd)-
quarterly 6-26
RFA 6-21
RFO 6-22
r-f tuner 6-24
semiannual 6-26
three year 6-28
tools 6-28
typical RFO points 6-22
wafer switches and detents 6-32
LVPS-see "Power Supply PP-1094/SRT"
M
Machine-key operation 2-115, 4-14
Magnetic clutch control 2-123
Main test cable assembly 3-25
Maintenance-
check charts 5-3, 6-4 5-5, 6-4
emergency 5-3
procedures 6-19
see Sections 5, 6, 7
special-
base mount motors B-701 and B-702 6-34
chains 6-32
gears and racks 6-31
jacks and plugs 6-31
motors 6-32
relays 6-30
RFA blower motor B-1306 6-34
r-f tuner and coupler motors 6-34
Major control functions 4-3
Major units-
description1-1 1-3, 2-1
trouble shooting and repairMechanical linkages7-82-47
Mechanical selection of a frequency 2-47
Medium voltage power supply-see "Power Supply PP-1095/SRT"
Metering circuits (RFA)-
IPA current meter M-1304 2-103
PA current meter M-1303 2-103
voltmeter M-1301 2-103
Meters-typical readings 3-8 3-33
Mixers-
V-2151 2-14
V-2152 2-14
V-2153 2-12
V-2203 2-16
V-2206 2-20
V-2207 2-20
V-2230 2-24
V-2327 2-22
V-2331 2-24

Subject	Table Number	Text Page
Mixers (Cont'd)-		
V-2426	2-27
V-2626.	2-33
V-2651	...	2-35
V-2801	...	2-38
Modes of transmission	1-1, 4-1
Modulation percentage check	4-15, 4-20, 7-71
Modulator-see "Radio Modulator"		
Monitoring signals	4-20
Motors-general maintenance	6-34
Mounting-		
antenna tuning equipment	3-23
Transmitter Coupler CU-402/SRT	3-23
Mounting MT-1423/SRT (mounting)-		
adjustments	7-101
blowers	2-105
description	1-11
function	2-4
heaters	2-106
lubricating	6-24
theory	...	2-105
trouble location	7-99
\mathbf{N}		
Nomenclatures-		
major units	1-1, 1-2	1-3
standard test sets	.	1-15
subunits of RFO	.	1-9
test cables	1-5	1-17
0		
Operation-see Section 4 Operator's maintenance-see Section 5		
Oscillators-		
V-2001	2-7
V-2051	2-9
V-2128	2-12
V-2329		2-22
Oscilloscope test receptacles	2-13	2-40, 2-41
Output circuit	2-12
P		
PA-		
current meter M-1303	2-103
harmonic filter	2-97
input		2-93
METER SELECTOR switch © S-1387	2-22	2-103
plate circuit	2-95
screen circuit	2-94
tube V-1304	2-93
Phase inverter V-1003B (LLRM)	2-72
Phone operation ...		4-15, 4-20

INDEX (Cont'd)

Table
Number

Text Page
2-46
4-1

Subject

Position indicator circuit
Power control
Power supplies-
control circuits 2-112
HVPS 2-114
LLRM 2-114
LVPS 2-113
MVPS 2-113
Power Supply PP-1094/SRT (low voltage power supply, LVPS)-
adjustments 7 7-95
adjustments .. 4-9
controls
description 1-10
function
2-3
indicators
4-10
input circuits 2-51
interlock circuit and -24-volt d-c supply 2-54
stop-start circuit 2-53
theory of operation 2-51
+250-volt d-c unregulated supply 2-56

+ 300-volt d-c supply 2-56
-220-volt d-c supply 2-56
trouble shooting
7-36 7-95,
7-96

Power Supply PP-1095/SRT (medium voltage power supply, MVPS)-		
adjustments	7-97, 7-99
controls		4-10
description		1-10
+500-volt d-c supply		2-58
indications of failure and probable faults	7-37	7-97
+1,050/+1,300-volt d-c supply		2-59
300 -volt switch relay	2-59
theory of operation		2-58
trouble location		7-97
voltages measured at RFA voltmeter	7-38	7-97

Power Supply PP-1096/SRT (high voltage power supply, HVPS)-
adjustments
7-38 7-97
controls
description 1-13
functions 2-3
indications of failure and probable faults ..79 7-99
indicators 4 4-12
input circuit 2-61
trouble location 7 7-99
+2,400/+3,000-volt supply 2-65
Preliminary control settings .. 5 5-2
Pressurization
Primary checks
6-1
5-3
3-36, 5-14, 6-36
Primary power

R
Radio Frequency Amplifier AM-1008/SRT (RFA)-
antenna switching relay $\mathrm{K}-1306$
2-100
bandswitching .. 2-101
blower motor B-1306 2-103

INDEX (Cont'd)

Subject	Table Number	Text Page
Radio Frequency Amplifier AM-1008/SRT (Cont'd)-		
buffer input ...	\ldots	2-91
buffer IPA tuning	2-101
buffer keying	2-93
buffer tank circuit	2-91
buffer V-1301		2-91
controi circuits	.	2-97
control functions	4-1	4-3
description	1-7
electrical adjustments	7-82
500-watt disable line	2-98
500-watt operate relay K-1304	2-98
function	2-3
identification of controls	4-3
individual functions	4-3, 4-4, 4-5
IPA V-1302	2-93
lubrication	6-21
mechanical adjustments	7-89
metering circuits \qquad meter readings-	2-103
100-watt operation	6-2	6-3
500-watt operation	6-3	6-3
weekly record	6-5	6-10
PA tuning	2-101
PA V-1304	2-93
r-f line filter Z-1301	2-103
theory of operation	2-90
trouble shooting		7-81
typical meter readings ...	7-35	7-81
Radio Frequency Oscillator O-275/SRT (RFO)-		
circuit analysis control indicator-see "Control-Indicator C-1352/SRT"	2-4
control functions	4-3
control of frequencies	2-47
control panel removed		6-23
critical adjustments	3-9	3-33
description	1-8
final output frequencies	2-15	2-47
5-mc step switch S-2426 ..	2-4	2-29
front panel control knobs	7-4	7-13
function		2-1
identification of controls	46
indicators	4-7, 4-8
lubrication	6-22
manual operation	2-49
mechanical linkages	2-47
mechanical selection of a frequency ..		2-47
metering socket voltages, weekly recortd	6-6	6-10
oscilloscope test receptacles ..		4-20
output to RFA ...	2-7	2-32
preliminary checks ...	7-2	7-10
production of a sample frequency ...		2-49
subunit functioning		2-49
subunit test cable (power)	1-5	1-17
test jack voltages, monthly record ...	6-9	6-14

NAVSHIPS 92121(A)
INDEX

INDEX (Cont'd)

Number

7-3
2-4
theory of operation
7-8
unit adjustments

3-9 $\quad 3-33,6-12,7-18$
2-7
crystal oscillator V-2001
2-7
mechanical adjustments
7-18
r-f voltage at test points
7-5
7-15
theory of operation
2-7
nit 2 (frequency multiplier Z-2034)-
adjustments
7-20
cathode followers V-2033 and V-2034

frequency doubler V-2032
8
frequency quintupler V-2031
7-6 7-15
trouble shooting
unit 3 (interpolation oscillator Z-2053)-
adjustments .. . 3-9 3-33, 6-13, 7-21, 7-25
alignment
7-23
frequency selection 2-10

1-kc steps 2-10
10-cycle steps 2-10
100-cycle steps 2-10
oscillator V-2051 2-9
output circuit
7-2 7-10
preliminary checks with external oscilloscope
7-8, 7-9
7-21, 7-25
unit 4 (frequency multiplier Z-2103)-
adjustments
-27, 7-28
frequency doubler V-2102
2-9
frequency quadrupler V-2101 2-8
unit 5 (frequency converter)-
1.1-mc mixer V-2151 2-14
1.19- to 1.2 -mc mixer V-2152 2-14
9.19- to 9.2-mc mixer V-2153 and amplifier V-2154 2-14
trouble shooting

INDEX (Cont'd)

\begin{tabular}{|c|c|c|}
\hline Subject \& \begin{tabular}{l}
Table \\
Number
\end{tabular} \& Text Page \\
\hline \multicolumn{3}{|l|}{Radio Frequency Oscillator O-275/SRT (Cont'd)-} \\
\hline r-f Foltage at test points step oscillator V-2205, mixer V-2203 and reactance tube
V-2204 \& 7-11

\ldots. \& $7-31$
2-16

\hline 10.4 - to 10.5 -mc mixer V-2207 \& \& 2-20

\hline 10-kc step oscillator check \& 6-10 \& 6-17

\hline 10-kc step switch S-2201 .. \& 2-1 \& 2-20

\hline trouble shooting ..,... \& \& 7-30

\hline \multicolumn{3}{|l|}{unit 7 (frequency multiplier Z-2305)-}

\hline frequency quintupler V-2301 and amplifier V-2302 \& \& 2-20

\hline frequency tripler V-2303 and amplifier V-2304 \& \& 2-21

\hline trouble shooting .. \& \& 7-38

\hline \multicolumn{3}{|l|}{unit 8 (electronic frequency converter $\mathbf{Z}-2330,100-\mathrm{kc}$ step gener-ator)-}

\hline adjustments ... \& $$
\begin{gathered}
3-9,7-15, \\
7-16,7-17
\end{gathered}
$$ \& 3-34, 7-41, 7-43, 7-44

\hline amplifiers V-2332 and V-2333 \& \& 2-26

\hline cathode follower V-2334 ... \& \& 2-24

\hline clipper V-2326A and shaper V-2326B \& \& 2-22

\hline lubrication ... \& \& 6-22

\hline 100-kc adjustment \& \& 6-17

\hline 100-kc step oscillator check \& 6-11 \& 6-17

\hline 100-kc step switch S-2326 \& 2-2 \& 2-24

\hline oscillator V-2329, mixer V-2327, and reactance tube V-2328 \& \& 2-22

\hline removal procedure \& \& 6-23

\hline replacement procedure \& \& 6-23

\hline 16.6- to 17.5 -mc mixer V-2230 \& \& 2-24

\hline 27- to 28 -mc mixer V-2331 \& \& 2-24

\hline \multicolumn{3}{|l|}{unit 9 (electronic frequency converter Z-2426)-}

\hline adjustments ... \& 7-20, 7-21 \& 7-45, 7-46, 7-47

\hline amplifier V-2429 \& \& 2-29

\hline amplifiers V-2427 and V-2428 ... \& \& 2-29

\hline 5-mc step switch S-2426 .. \& 2-4 \& 2-30

\hline lubrication \& ... \& 6-22

\hline mixer outputs .. \& 2-3 \& 2-26

\hline mixer V-2426 \& \& 2-27

\hline 100-kc step switch S-2427 \& \& 2-30

\hline trouble shooting \& \& 7-45

\hline \multicolumn{3}{|l|}{unit 10 (frequency multiplier \mathbf{Z}-2526, $1-\mathrm{mc}$ step generator)-}

\hline harmonic generator V-2526 ... \& \& 2-30

\hline lubrication \& \& 6-22

\hline 1-mc step switch S-2526 \& 2-6 \& 2-32

\hline trouble shooting \& 7-22, 7-23 \& 7-49, 7-51

\hline \multicolumn{3}{|l|}{unit 11A (electron frequency converter Z -2626)-}

\hline amplifiers V-2626 and V-2628 \& \& 2-33

\hline cathode follower V-2629 \& \& 2-33

\hline mixer V-2626 \& \& 2-33

\hline trouble shooting .. \& 7-24 \& 7-52

\hline unit 11B (electronic frequency converter $Z-2651$)amplifiers V-2652, V-2653, and V-2654 \& \& 2-35

\hline
\end{tabular}

INDEX (Cont'd)

Table Number
Text Page

Subject

Radio Frequency Oscillator O-275/SRT (Cont'd)-
lubrication 6-24
mixer V-2651 2-35
1-kc step switch S-2651 2-35
-
100-kc step switch S-26522-37, 2-38
trouble shooting 7-25, 7-26,7-53, 7-56, 7-57
7-27
unit 11C (electronic frequency converter Z - 2801)-
amplifiers V-2802, V-2803, and V-2804 2-38
mixer V-2801 2-38
1-mc step switch S-2801 2-10 2-38
100-kc step switch S-28022-11 2-40
trouble shooting 7-28, 7-29,7-56, 7-57, 7-60, 7-61
7-30
unit 12 (radio frequency oscillator $\mathbf{Z}-2127$, frequency shift oscil-lator)
adjustments 7-63
cathode follower V-2126 2-13
control tube V-2127 2-13
miscellaneous 2-14
oscillator V-2128 2-12
trouble shooting 7-63
unit 14 (electrical equipment rack $Z-2901$, mounting) -adjustments7-12, 7-13
heater indicator lights 2-40
oscilloscope test receptacles 2-40
test points 2-12 2-40
trouble shooting 7-12
zero adjust indicating circuit 2-41
Radio Frequency Tuner TN-229/SRT (r-f tuner) -
description 1-14
electrical adjustments 7-122
function 2-4
impedance transformer 2-117
location 3-7lubrication6-24
main tuning coil 2-116
mechanical adjustments 7-123
pressurizing procedure 6-36
purging procedure 7-126
removal and repair 7-123
trouble shooting 7-417-121, 7-122
tuning2-116
Radio Modulator-Power Supply OA-685/SRT (booster)-
BOOSTER EMERGENCY SWITCH (S) 4-12
control functions 4-1 4-3
description1-12mounting3-24
see "Radio Modulator MD-230/SRT (HLRM)," "Power SupplyPP-1096/SRT (HVPS)," "Electrical Equipment Cabinet CY-1572/SRT (HLRM Cabinet)," "Electrical Equipment CabinetCY-1573/SRT (HVPS cabinet)"
wiring3-24

Table
Number

Subject

Radio Modulator MD-229/SRT (low level radio modulator, LLRM)- AGC rectifier V-1013A 2-67
ATU bypass transfer circuit 2-86
audio amplifier chain 2-67
audio amplifiers $\dot{V}-1001$ and $\mathrm{V}-1002 \mathrm{~A}$ 2-67
audio amplifiers V-1004A and V-1002B 2-68
audio input circuit 2-67
audio output circuit 2-71
cathode follower V-1002B 2-67
clipper V-1014 2-68
control functions 4-3
description 1-8
electrical adjustments 7-73
function 2-3
identification of controls indications of failure and probable faults in the audio circuits 7-31 4-5 7-727-32
indications of failure and probable faults in the keying circuit 7-73
ind 7-33
indications of failure and probable faults in the power supplies 7-73
2-16
keying circuit2-74, 2-75
LOCAL-REM. switch © S-1106 2-83
lubrication 6-24
sidetone amplifier $\mathrm{V}-1004 \mathrm{~B}$ 2-71
squelch circuit 2-69
squelch multivibrator $\mathrm{V}-1008$ 2-69
theory of operation 2-65
trouble shooting 7-31 7-68, 7-72
-12 -volt power supply 7-77
+250 -volt regulated power supply 2-83
Radio Modulator MD-230/SRT (high level radio modulator, HLRM) -
audio amplifiers $\mathrm{V}-1601$ and $\mathrm{V}-1602$ 2-88
description 1-12
electrical adjustment 7-79
-50-volt bias supply 2-89
function 2-3
indications of failure and probable faults 7-79
indicators 4-11
mechanical adjustments 7-79
regulated +360 -volt d-c supply 2-89
theory of operation 2-87
trouble shooting 7-77
Rectifiers-see "Power supplies"
Reference data 1-17
Relays-maintenance 7-127
Remote operation- controls 4-19
description 1-14
frequency selection 4-19
preliminary settings 4-19
tuning 4-19
Remote radiophone unit

NAVSHIPS 92121(A)

INDEX (Cont'd)

Table Number

Subject
RFA-see "Radio Frequency Amplifier AM-1008/SRT"'
RFO-see "Radio Frequency Oscillator O-275/SRT"
RFO units 1 through 12 and 14-see table 1-3
Repair and àdjustments-see individual units
Routine checks and chart
5-3
5-5
Routine maintenance and check chart
6-4

S
Sample frequency 2-49
Selectiag a frequency 4-15
Selecting a service-
facsimile operation
4-14
FSK operation 4-14
hand-key operation 4-14
high-speed or tape keying 4-15
machine-key operation 4-14
phone operation 4-15
Shaper V-2202B 2-15
Shaper V-2326B. 2-22
Shipping data
Shutdown procedure
Sidetone amplifier V-1004B
Spare parts
1-8, 3-2 1-21, 3-2
............. 5-14

Squelch circuit-
multivibrator V-1008 2-69.
2-71
limiter V-1013B 2-70
rectifier CR-1002 2-70
Step switches-
S-2201 (10 kc), unit 6 ... 2-1 2-21
S-2326 (100 kc), unit 8 .. 2-22 2-24
S-2426 (5 mc), unit 9 ... 2-4 2-29
S-2427 (100 kc), unit 9 .. 2-5 2-30
S-2526 (1 mc), unit 10
S-2651 (1 mc), unit 11B
2-6 2-32
S-2652 (100 kc), unit 11B
2-8
2-35
2-9 2-37
S-2801 (1 mc), unit 11C .. 2-10 2-38
S-2802 (100 kc), unit 11C ... 2-11 2-40
Stop-start circuit 2-53
Subunits of RFO
SWR indicator circuit
1-3 1-9
SWR monitor circuit ...2-107

T

Tape keying 4-15
Test cables .. 1 . $\mathbf{1}$
1-16
Test equipment-
required
7-2
special 1 1-16
standard
1-4
1-15
Theory of localization

Theory of operation-see Section 2

Text Page

INEEX (Cont'd)

: Subject	Table Number		Text Page
Tools-special		1-16	
Transformer windings	7-43	7-129,	7-131
Transmitter bay-			
assembly procedure	\ldots	3-8	
control circuits	2-110	
location and arrangements	3-5	
sequence of operation	2-110	
summary	2-111	
trial operation	3-30	
trouble shooting	7-2	
wiring	3-24	
Transmitter Coupler CU-402/SRT (load adjusting unit, LAU)-adjustments--			
electrical	7-109	
mechanical		7-112	
controls	...	4-11	
description	1-11	
function	2-3	
impedance transformer circuit	2-109	
mounting	3-23	
standing wave ratio monitor circuit	2-107	
theory of operation		2-107	
trouble location	7-108	
wiring	3-25	
Transmitter Group OA-684/SRT (transmitter group)-			
drawer removal procedure		5-3	
power on and off	4-12	
see "Electrical Equipment Cabinet CY-1571/SRT," "Radio Frequency Amplifier AM-1008/SRT," "Radio Modulator MD229/SRT," "Radio Frequency Oscillator O-275/SRT," "Power			
Supply PP-1094/SRT," "Power Supply PP-1095/SRT," "Transmitter Coupler CU-402/SRT"			
Trouble shooting-			
Antenna Coupler CU-372/SRT	7-112	
antenna tuning equipment	\ldots	7-107	
Cabinet, CY-1571/SRT	...	7-101	
Cabinet, CY-1572/SRT		7-105	
Cabinet, CY-1573/SRT	7-107	
control-indicator		7-67	
HLRM	7-34	7-77	
HVPS	7-39	7-99	
LLRM	7-31	7-68	
LVPS	7-36	7-95	
MVPS	7-38	7-97	
Mounting MT-1423/SRT		7-99	
RFA	7-35	7-81	
RFO	7-2	7-8	
	through		
	7-30		
Radio Frequency Tuner TN-229/SRT \qquad see also individual units	7-41	7-121	

Tible Nunber
Subject Nunber
Trouble Shooting (Cont'd)-
system$7 \cdot 1$7-3
transmitter bay7-?
Transmitter Coupler CU-402/SRT 7- 08
Tubes, electron-
characteristics7-42 7-128
checking 3-30
complement
1-9 1-22
critical circuit adjustments 3-9, 5-9
location 5-9 5-11
record of tube changes
6-15
6-15 6-35 6-35
removal and replacement, special-
V-13015-13
V-1302 5-13
V-1304 5-10
units without tubes 5-13
Tuning-
bands 4-1
capacitors 4-20
operations 4-16
to a calibrated frequency 4-17
to an uncalibrated frequency 4-16
variances 4-18
Turning power on and off 4-12, 4-20
U
Unpacking procedures 3-1
Units 1 through 14 1-3 1-9
Units without controls 4-3
Units without tubes 5-13
V
Vacuum tubes-see "Tubes, electron"Voltage and resistance charts-see "Index of Illustrations"
w

w

Winding data7-437-131
Wiring the equipment-
antenna tuning equipment 3-25
mounting 3-24
radio modulator-power supply 3-24
remote radiophone unit 3-25
transmitter bay 3-24
transmitter coupler 3-25
transmitter group cabinets ,-24

transmitter group cabinets
-24
Text Fage

INDEX (Cont'd)

[^0]: Unless otherwise stated，dimensions are inches，volume cubic feet，and weight pounds
 Excluding Transmitter Coupler CUl－402／SRT

[^1]: ${ }^{1}$ Unless otherwise stated, dimensions are inches, volume cubic feet, and weight pounds

[^2]: * Removed in addition to preceding resistors in this column.

[^3]: * In the 0.3 - to $6-\mathrm{mc}$ band the position of (6) is immaterial.

[^4]: * The RFO contains a series of subunits that will be referred to by number. For example, the RFO frame is designated as Z - 2901 and referred to as unit 14 .

[^5]: * Refer to table 6-8.

[^6]: CONDITIONS: EMERGENCY SWITCH © ON, OPERATE-STANDBY switch \curvearrowleft on STANDBY, depress START on MAIN POWER switch $®$ and open frequency selection door on the RFO front panel.
 TEST EQUIPMENT REQUIRED: Oscilloscope OS-8A/U, or equivalent.

[^7]: * Depends upon setting of EXCITATION control (27).

[^8]: * For diagram (5) see page 7-156; for diagrams (29), (30), (33). (34) and (36) see pages 7-157 and 7-158

[^9]: * For diagrams (49), (51), and (52) through (55) see page 7-159.

[^10]: * For diagrams (63) and (65) through (68) see page 7-160

[^11]: * For diagram (5) see page 7-156; for diagrams (68) through (71) see page 7-160.

