NAVSHIPS 91582

INSTRUCTION BOOK for RADIO RECEIVING SET AN/FRR-28

NORTHERN RADIO CO., INC. 143-5 WEST 22ND STREET NEW YORK 11, NEW YORK

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title page	Original	$4-1$ to $4-32$	Original
A to C	Original	$5-1$ to $5-2$	Original
i to vii	Original	$6-1$ to $6-2$	Original
$1-0$ to $1-8$	Original	$7-1$ to $7-66$	Original
$2-1$ to $2-30$	Original	$8-1$ to $8-146$	Original
$3-1$ to $3-26$	Original	$i-1$ to $i-6$	Original

TEMPORARY CORRECTION T-2 TO INSTRUCIION BOOK FOR RADIO RECEIVING SET AN/FRR-28 (NAVSHIPS 91582)

In Table 8-4, "Combined Parts and Maintenance Parts List", make the following pen and ink corrections and then insert the temporary correction in front of the title page:
SYMBOL ITEM ADD OR TO: CORRECT TO: REMARKS

$C 2-137$	JAN No.	CP28AIEC254M
C3-6	SNSN	N16-C-60036-1604
C9-23	SNSN	

E2-1	SNSN	N17-B-77536-1126
E2-2	SNSN	N17-B-77639-2210
E2-61	SNSN	N16-S-34520-3862
E3-6	SNSN	N17-B-77692-6063

SNSN

E3-45 SNS
F2-1

SYMBOL	ADD OR	
DESIG.	ITEM	CORRECT TO:

S10-5	-	-	In description, change "2 poles, 6 throws" to read "2 poles, 5 throws".
T2-6	-	-	In description, change "2 inductance units" to read "3 inductance units."
V9-1	SNSN	N16-T-56665	
V9-2	SNSN	N16-T-56611	
V10-4	SNSN	N16-T-56682	
V10-6	SNSN	N16-T-56677	
W12-1	-	-	In description, change "36 conductors 4 in. Ig." to read " 36 conductors 3 in. Ig." Change " 3 conductors $1-3 / 4 \mathrm{in} .1 \mathrm{~g}$. " to read "8 conductors 1-3/4 in. lg." Change " 8 conductors 18-1/2 in. 1g." to read " 4 conductors 18-1/2 in. 1g."

WI2-10	SNSN	NI6-C-11634-1272
XF3-1	SNSN	N17-F-74267-5401

$30+4$

9 September 1952
Temporary Correction T-1
to Instruction Book for
Radio Receiving Set AN/FRR-28
NAVSHIPS "91582

RTic... is OP 3021

NOTE
The changes noted in this Temporary Correction Sheet pertain to the following equipment Serial Numbers only:
For Radio Receiver R-450/FRR-28:
Serial No. 297 and up.
For Radio Receiving Set AN/FRR-28: Serial No. 141 and up.

1. Make the following changes in Section 2:

Page 2-7:

In the last paragraph of the first colum, delete "and coupling capacitor C45".

Page 2-9:

In the second column, the second paragraph from the bottom of the page should be changed to read: "The 455-kilocycle signal from the secondary of L32 in the tuned plate circuit of the first mixer stage, $\nabla 5$, is applied across resistors R32 and R33. The signal across resistor R32 is then applied to the control grid of the gate amplifier tube, V7. Cathode bias for the stage is supplied by the cathode resistor, Rl31. Screen voltage, which....".

Page 2-11:
Change the sentence beginning on the sixth line of paragraph 3c(9) to read: "The signal from the tuned grid circuit is developed across resistor Rl32 and applied to the control grid of the driver tube, Vll, through parasitic suppressor resistor R55."

Change the second sentence in paragraph 3c(10) to read: nBias is provided by the divider network consisting of resistors R78, R79, and R133".

Page 2-12:
Delete the following sentence from paragraph 3c(14): "If an external phone signal is fed to terminal El, it is fed through potentiometer R84 to the grid of tube V16B."

Page 2-22:
Change the first sentence in the fourth paragraph of paragraph 6c(1)(a) to read: "When a keying signal is applied through grid limiting resistor $R 60$ to the control grid of tube V6, plate current flows....".

Page 2-23:
Starting on the sixth line from the top of the first column, change the text to read: "....R45 to the plate of tube V6B. A small positive bias voltage is applied to the control grid of V6A from the voltage divider network consisting of R58 and R59. Resistor R48 limits the grid current. The cathode of V6A is connected directly to ground....".

Change the first sentence of the first paragraph in the second column to read: "When a negative keying signal is applied through resistor R60 to the control grid of tube V6A, the tube stops conducting."

Page 2-24:
Change the first sentence of the second paragraph of paragraph 6c(1)(d) to read: "When a mark signal is applied to Keyer KY $\overline{79} / \mathrm{UR}$, resistor R 60 is shorted by switch S 2 and the grid of tube V5 is grounded....".
2. Make the following changes in Section 3:

Page 3-25:
In figure 3-15, delete the phono jack and relay jack on the rear panel of Receiver \#l and Receiver \#2.
3. Make the following changes in Section 5:

Page 5-2:
Make the following changes to Table 5-2: The location of fuse F2-2 to "Left rear of receiver", and the ampere rating for F2-2 to "3/8".
4. In accordance with the above changes, the following illustrations have had the indicated corrections made. The corrected illustrations are shown at the end of this Temporary Correction:

Figure No.	Deleted	Added	Value Changed
2-11			C138, C140
2-25		R60	
2-26	R49	R58, R59, R60	
3-5	Phono and	F2	
4-2	relay jacks	Spare fuse holder	
7-2	deleted.	for F1 and F2.	
)	Spare fuse deleted.		

4. (Contld)

Figure No.	Deleted	Added	Value Changed
$\left.\begin{array}{l} 7-4 \\ 7-5 \end{array}\right\}$	$\begin{aligned} & \text { F2, Cl00, R34, } \\ & \text { R102, J4 } \end{aligned}$	c185, c186,	
		C187, R130,	
		Rl31, Rl32, R	
7-6	C45		
7-20		R58, R59, R60	
7-26			Voltage and re-
			sistance values
			for V7 (pins I
			and 7), V9 (pin
			7), v10 (pin 7),
			V16 (pin 8) .
7-30	C45, Cl00, R34, R102, El, J4	$\begin{aligned} & \mathrm{Cl} 85, \\ & \mathrm{Cl187}, \mathrm{Rl} 86, \\ & \mathrm{Rl} 31, \\ & \text { R133, } \end{aligned}$	C138, C139,
			C140, C145, R65,
			R69, R103, R104,
			F2
7-31			R105 through R110
$\begin{aligned} & 7-34 \\ & 7-37 \end{aligned}$			
	$\begin{aligned} & \mathrm{ClOO}, \mathrm{R} 34, \\ & \mathrm{RlO2}, \mathrm{El}, \mathrm{~J} 4 \end{aligned}$	C185, C186,	
		$\begin{aligned} & \mathrm{C} 187, \mathrm{Rl} 30, \\ & \mathrm{Rl} 31, \mathrm{Rl} 32, \end{aligned}$	
		R133	
7-38	C45		
7-39 (New	illustration)		

5. Make the following changes in Section 8:

NOTE
For simplicity the columns in Table 8-4 will hereafter be referred to by number, reading left to right across the table. Thus the column headed "SYMBOL DESIG." will be (1)
"NAME OF PART AND DESCRIPTION", (2) "FUNCTION",
(3) "JAN AND (NAVY TYPE) NO.", (4) etc.

Page 8-4:
Item C2-3, column (8), delete $\mathbf{C 2 - 1 0 0}$; in (9) change quantity from 34 to 33.

Page 8-5:

Item C2-12, column (8), delete C2-138 and C2-145; in (9) change quantity from 3 to 1.

Item C2-15, column'(8), delete C2-139 and add C2-145.
Page 8-10:
Item C2-92, column (8), add C2-138 and C2-139; in (9) change quantity from 1 to 3.

Page 8-11:
Item C2-100, all columns, delete information.
Item C2-102, column (8), add C2-185; in (9) change quantity from 11 to 12.

Page 8-13:
Items C2-138 and C2-139, column (2), change to read: "Same as C2-92".

Item C2-140, column (2), delete description and replace with "CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $430 \mathrm{mmf} \pm 2 \%$ tolerance; 500 v DC working; molded low-loss bakelite case; case dim., $51 / 64 \mathrm{in} . \mathrm{lg}$, 15/32 in. wide, 7/32 in. thick; 2 terminals, wire lead type, located one ea end; terminal mounted; resistant to humidity; for general purpose use."; in (4) change JAN type No. from CM35Al02K to CM20C431G; in (5) change from N16-C-31090-4203 to N16-C-29998-6271; in (6) delete "AEV type No. 1467"; in (8) add C2-187; in (9) change quantity from 1 to 2.

Page 8-14:
Item C2-145, column (2), change from "Same as C2-12" to "Same as C2-15".

Page 8-18:
After symbol C2-184, add C2-185 in column (1); in (2) add "Same as C2-102"; in (3) add "Cathode By-pass V2-1.4B".

After symbol C2-185 add C2-186 in column (1); in (2) add "CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 18, MBCA Ref Dwg Group 1; 250,000 mmf $\pm 10 \%$ tolerance; 600 v DC working; hermetically sealed metal case; case dim., 2 in. $1 \mathrm{~g}, \mathrm{l}$ in. dia; 1 axial wire lead type terminal, located on end; mineral oil impregnated; mineral oil filled; with internal ground connection; single hole mtg clamp; moisture and fungus proof; for general purpose use."; in (3) add "V2-1 plate and screen filter"; in (4) add "Spec No. JAN-C-25, JAN Type No. CP27A2EF254K"; in (8) add C2-186; in (9) add quantity 1.

After symbol C2-186 add C2-187 in column (1); in (2) add "Same as Cl40"; in (3) add "P/o AVC time constant circuit".

Page 8-31:
Item E2-1, all columns, delete information.
Page 8-45:
Item F2-2, colum (2), delete description and replace with: "FUSE, CARTRIDGE: $3 / 8 \mathrm{amp}$, 250v; instantaneous; ferrule type, dim., $1 / 4 \mathrm{in} .1 \mathrm{~g}, \mathrm{l} / 4 \mathrm{in}$. dia; glass covering; indicating clear window opaques; over-all dim., l-1/4 in. 1 g ,

Page $8-45$ (Con'd)
1/4 in. dia; for general purpose use. n, in (5) delete N17-F-16302-355; in (6) change from "BUS Type No, GJV-1/4" to "BUS Type No. AGC3/8"; in (8) add F2-4; in (9) change quantity from 1 to 2.

After $\mathrm{F} 2-3$, add $\mathrm{F} 2-4$ in column (1); in (2) add "Same as F2-2"; in (3) add "Spare for F2-2".

Page 8-50:
Item J2-4, column (1), change symbol from J2-4 to J2-5; in (3) delete function and replace with "'AC' outlet receptacle"; in (8) delete J2-4 and replace with J2-5; in (9) change quantity from 2 to 1.

Item J2-5, all columns, delete information.
Page 8-57:
Item L2-47, column 2, change from "....electrical data, coil" to "....electrical data, 3.0 mh , coil...."; in (5) delete N16-C-72680-2749; in (6) change from "ARTD Part No. 15616" to "HMM Part No. 15616G1".

Page 8-73:
Item $\mathrm{R} 2-4$, column (8), delete R2-102; in (9) change quentity from 11 to 10.

Item R2-5 column (8), delete R2-103 through R2-110; in (9) change quantity from 11 to 3.

Page 8-75:
Item R-2-22, columm 8, delete R2-65; in (9) change quantity from 6 to 5 .

Page 8-76:

Item R2-38, all columns, delete information.
Item $\mathrm{R} 2-34$, column (1), change symbol from $\mathrm{R} 2-34$ to $\mathrm{R} 2-38$; in (3), delete function and replace with "V2-8A plate voltage dropper"; in (8) delete R2-34 and add R2-130 and R10-60; in (9) change quantity from 28 to 29 ; shift the information contained in columns (1), (2), (3), (4), (5), (6), (8) and (9) so that item R2-38 follows item R2-37.

Page 8-77:
Items R2-43 and R2-51, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-78:
Item R2-56, colurn (2) change from "Same as R2-39" to "Same as R2-38".

Page 8-78 (Cont'd)
Items R2-62, R2-67, and R2-68, column (2), thange from "Same as R2-34" to "Same as R2-38".

Item R2-63, column (8), add symbols R2-103 through R2-110; in (9) change quantity from 1 to 9.

Item R2-65, column (2), delete "Same as $\mathrm{R} 2-22$ " and replace with "RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 22,000 ohm total resistance, $\pm 5 \%$ tolerance; 1/2 W power dissipation; F characteristic; body dim. excluding terminals, $3 / 8$ in. $1 \mathrm{~g}, 9 / 64$ in. dia; insulated, resistant to humidity and salt water immersion; 2 terminals, axial lead type; for general purpose use."; in (4) add "Spec No. JAN-R-11, JAN Type No. RC2OBF223J"; in (5) add N16-R-50371-431; in (6) add "AB Part No. EB2235; in (8) add R2-65 and R2-96; in (9) add the quantity 2.

Page 8-79:

Item R2-69, column (2), change from "....l section, 1,000 ohms...." to "....l section, 3,500 ohms"; in (4) change from "Jan Type No. razoalsalozak" to "Jan Type no. Razoalsa352ak"; in (5) and (6) delete all information; in (8) delete R2-74; in (9) change quantity from 2 to 1.

Item R2-74, column (2), delete "Same as R2-69" and replace with the full description of R2-69 before the changes have been carried out - that is with the description of the JAN Type No. RA2OAlSAl02AK resistor with a resistance value of 1,000 ohms; in (4) add "Spec No. JAN-R-19, JaN Type No. RALOAlSAl02AK"; in (5) add N16-R-90754-3621; in (6) add CN; in (8) add R2-74; in (9) add the quantity 1.

Item R2-75, column (2), change to "Same as R2-38".
Page 8-80:
Item R2-81, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-82:
Item R2-100, column (2), change from "Same as R2-34" to "Same as R2-38".

Item R2-102, all columns, delete information.
Item R2-103, column (2), change from "Same as R2-5" to "Same as R2-63n.

Item R2-96, column (2), delete description and replace with "Same as R2-65"; in (4), (5), (6), (8), and (9) delete information.

Page 8-83:
Items R2-104 through R2-110, column (2), change from "Same as $\mathrm{R} 2-5 \mathrm{n}$ to "Same as R2-63".

Page 8-85:
Item R2-124, column (2), change from "Same as R2-39" to "Same as R2-38".

Page 8-86:
After R2-129 add R2-130 in column (1); in (2) add "Same as R2-38"; in (3) add "P/o AVC time constant circuit".

After R2-130 add R2-131 in colum (1); in (2) add nRESISTOR, FIXED, COMPOSITION: body style no. 14, MBCA Ref Dwg Group 2; 390 ohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 32 \mathrm{in}$. lg max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use."; in (3) add "V2-7 cathode resistor"; in (4) add "Spec No. JAN-R-11, JAN Type No. RC2OBF391J"; in (5) add "N16-R-49732-431"; in (6) add "AB Part No. EB3911"; in (8) add R2-131; in (9) add quantity 1.

After R2-131, add R2-132 in (1); in (2) add "RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 330,000 ohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 32$ in. $1 g$ max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use."; in (3) add "V2-11 grid resistor"; in (4) add "Spec No. JAN-R-11, JAN Type No. RC2OBF334J"; in (5) add "N16-R-50758-431"; in (6) add "AB Part No. EB3341"; in (8) add R2-132; in (9) add quantity 1.

After R2-132, add R2-133 in (1); in (2) add "RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 100 ohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in . dia max, $15 / 32 \mathrm{in}$. lg max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use".; in (3) add "Cathode resistor, tube V16A"; in (4) add "Spec No. JAN-R-11, JAN Type No. RC2OBFIO1K"; in (5) add N16-R-49580-811; in (6) add "AB Part No. EB1011", in (8) add $\mathrm{R} 2-133$ and $\mathrm{R} 3-7$; in (9) add quantity 2.

Page 8-87:
Item R3-7, columns (2), (4), (5), (6), (8), and (9), delete information; in (2) add "Same as R2-133".

Item R3-15, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-88:
Items R3-16 and R3-22, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-89:
Item R3-27, colum (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-90:
Item R3-35, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-91:

Items R3-45, R3-46, and R3-48, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-92:

Item R3-52, column (2) change from "Same as R2-34" to "Same as R2-38".

Page 8-93:
Item R9-4, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-95:
Item R9-19, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-100:

Items RlO-32, Rlo-34, and Rlo-35, column (2), change from "Same as R2-34" to "Same as R2-38".

Page 8-101:
Item R10-40, column (2), change from "Same R2-34" to "Same as R2-38".

Page 8-102:

After R10-57 add R10-58 in column (1); in (2) add "RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 270,000 ohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia $\max , 15 / 32 \mathrm{in}$. 1 g max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use."; in (3) add "Keyer amplifier grid resistor"; in (4) add "Spec No. JaN-R-11, JAN Type No. RC20BF274K"; in (5) add "N16-R-50741-811"; in (6) add "AB Part No. EB2741" in (8) add R10-58; in (9) add quantity 1.

After Rl0-58, add Rl0-59 in (1); in (2) add "RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 10 megohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia. $\max , 15 / 32 \mathrm{in} . \mathrm{lg}$ max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use."; in (3) add "Negative DC keying grid bleeder"; in (4) add "Spec No. JAN-R-11, JaN Type No. RC2OBF106K"; in (5) add "N16-R-51326-811"; in (6) add "AB Part No. EBl061"; in (8) add R10-59; in (9) add quantity 1.

Page 8-102 (Cont'd)
After R10-59 add R10-60 in (1); in (2) add "Same as R2-38".
Page 8-139:
Delete symbol R2-34 and quantity 2. Add symbol R2-38 and quantity 2.

Delete symbol R2-96 and quantity 1. Add symbol R2-65 and quantity 1.

Page 8-140:
Delete CM3 $4 \mathrm{AlO2K}$ and symbol C2-140.
After CM2OC330J add CM20C431J and symbol C2-140.
After CM35Cl03J add CP27A2EF254K and C2-186.
After RA2OAlSA102AK add RA2OAlSA352AK and R2-69.
After RC20BF105K add RC2OBF106K and R10-59.
After RC2OBF273K add RC20BF274K and R10-58.
After RC2OBF333K add RC2OBF334J and R2-132.
After RC2OBF335K add RC2OBF391J and R2-131.
For RA2OAlSAlO2AK change symbol from R2-69 to R2-74.
For RC2OBF101K change symbol from R3-7 to R2-133.
For RC2OBFIO4K change symbol from R2-34 to R2-38.
For RC20BF223J change symbol from R2-96 to R2-65.
Page 8-141:
Delete N16-C-31090-4203 and C2-140. Delete N16-C-72680-2749 and L2-47.

After N16-C-29941-1543 add N16-C-29998-6271 and C2-140.
After N16-R-49723-751 add N16-R-49732-431 and R2-131.

Page 8-142:

Delete N17-B-77639-2210 and E2-2.
After N16-R-50722-431 add N16-R-50741-811 and R10-58.
After N16-R-50741-811 add N16-R-50758-431 and R2-132.
After N16-R-51110-811 add N16-R-51326-811 and R10-59.

Page 8-142 (Cont'd)
For N16-R-49580-811 change symbol from R3-7 to R2-133.
For N16-R-50371-431 change symbol from R2-96 to R2-65.
For N16-R-50633-811 change symbol from R2-34 to R2-38.
For N17-B-77536-1126 change symbol from E2-1 to E2-2.
Page 8-143:
Delete N17-F-16302-355 and F2-2.
For N17-C-73138-3593 change symbol from J2-4 to J2-5.

Figure 2-11. Radio Receiver R-450/FRR-28, AVC Circuit, Simplified Schematic

note: all resistances in ohms unless otherwise indicated

Figure 2-25. Keyer KY-79/UR, Positive Polar Keying, Simplified Schematic

Figure 2-26. Keyer KY-79/UR, Negative Polar Keying, Simplified Schematic

Figure 3-5. Receiver R-450/FRR-28, Rear View, Pre-Operation Adjustments (of 30 page l2

UNITS 2 AND 4
Figure 4-2. Radio Receiver R-450/FRR-28, Rear View, Controls and Adjustments

Figure 7-2. Receiver R-450/FRR-28, Rear View

Figure 7-4. Receiver R-450/FRR-28, Bottom View, Location of Resistors

UNIT 2

Figure 7-5. Receiver R-450/FRR-28, Bottom View, Location of Components

Figure 7-6. Receiver R-450/FRR-28, BF Strip, Right Side

UNIT 10
Figure 7-20. Keyer KY-79/UR, Top View

Figure 7-26. Receiver K-450/FRR-28, Voltage and Resistance Chart

note: all resistances in ohms unless otherwise indicated.

Figure 7-31. Radio Receiver R-450/FRR-28, Turret Schematic Diagram

Figure 7-34. Keyer KY-79/UR, Schematic Diagram

Figure 7-37. Radio Receiver R-450/FRR-28, Main Chassis Wiring Diagram

Figure 7-39. Keyer KY-79/JR, Wiring Diagram

INSTRUCTION BOOK

 forRADIO RECEIVING SET AN/FRR-28

NORTHERN RADIO CO., INC. 143-5 WEST 22ND STREET NEW YORK 11, NEW YORK

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title page	Original	$4-1$ to $4-32$	Original
A to C	Original	$5-1$ to $5-2$	Original
i to vii	Original	$6-1$ to $6-2$	Original
$1-0$ to $1-8$	Original	$7-1$ to $7-66$	Original
$2-1$ to $2-30$	Original	$8-1$ to $8-146$	Original
$3-1$ to $3-26$	Original	$i-1$ to $i-6$	Original

NAVSHIPS 91582 AN/FRR-28

GUREAU OF SHIPS

WASHINGTON 2S, D. C.

From: Chief, Bureau of Ships
To: All Activities Concerned with the Installation, Operation and Maintenance of the Subject Equipment

Subj: Instruction Book for Radio Recelving Set AN/FRR-28 NAVSHIPS 91582

1. This publication is the instruction book for the subject equipment and is in effect upon receipt.
2. When superseded by a later edition, thls publication shall be destroyed.
3. Extracts from this publication may be made to facilitate the preparation of other Department of Defense Publications.
4. All Navy requests for NAVSHIPS Electronics publications should be directed to the nearest District Publications and Printing Office. When changes or revised books are distributed, notice will be included in the BUSHIPG ELECTRON and in the Index of BuShips General and Electronics Publications, NAVSHIPS 250-020.
H. N. WALLIN

Chief of Bureau

RECORD OF CORRECTIONS MADE

ChANGE NO.	DATE	

TABLE OF CONTENTS

SECTION 1—GENERAL DESCRIPTION
Paragraph Page

1. Introduction 1-1
2. Purpose of the Equipment 1-1
3. Description of Units 1-1
4. Cabling 1-3
5. Reference Data 1-6
6. Equipment Supplied 1-6
7. Equipment Required but not Supplied 1-7
8. Shipping Data 1-8
9. Electron Tube Complement 1-8
SECTION 2-THEORY OF OPERATION
10. Introduction 2-1
11. Block Diagram Description 2-2
12. Radio Receiver R-450/FRR-28 2-4
13. Radio Frequency Oscillator O-165/UR 2-13
14. Amplifier-Detector AM-615/UR 2-21
15. Keyer KY-79/UR 2-22
16. Loudspeaker LS-187/UR 2-28
17. Communciation Patching Panel SB-224/UR 2-28
SECTION 3-INSTALLATION
18. Unpacking 3-1
19. Installation 3-1
20. Antenna Requirements 3-3
21. Initial Adjustments and Operational Checks 3-5
SECTION 4-OPERATION
22. Introduction 4-1
23. Location and Function of Operating Controls 4-1
24. Tuning of Radio Frequency Oscillator O-165/UR 4-3
25. Radio Receiving Set AN/FRR-28 Operating Procedure 4-4
a. General 4-4
b. Operating Procedure for Individual Reception of Radio Phone Signals
SECTION 4-OPERATION (Cont)
Paragraph Page
c. Operating Procedure for Individual Reception of Tone Modulated CW Signals 4-5
d. Operating Procedure for Individual Reception of Unmodulated CW Signals $4-5$
e. Operating Procedure for Individual Reception of Unmodulated CW Signals Using Keyer Unit KY-79/UR 4-7
f. Individual Reception of Frequency Shift Signals 4-8
g. Dual Space Diversity Reception 4-9
SECTION 5-OPERATOR'S MAINTENANCE
26. Introduction 5-1
27. Routine Checks 5-1
28. Emergency Maintenance 5-1
a. Replacing Fuses 5-1
b. Replacement of Electron Tubes 5-2
SECTION 6—PREVENTIVE MAINTENANCE
29. $\mathbf{1 0 0 0}$ Hour Routine Maintenance Checks 6-1
30. Annual Check 6-1
31. Lubrication 6-1
32. Re-tropicalization 6-1
SECTION 7-CORRECTIVE MAINTENANCE
33. Introduction 7-1
34. Theory of Location 7-1
35. System Trouble Shooting 7-1
36. Unit Trouble Shooting 7-1
37. Electrical Adjustments 7-1
38. Assembly and Disassembly of RF Oscillator Oven 7-10
SECTION 8-_PARTS LIST

SECTION 1-GENERAL DESCRIPTION			SECTION 2-THEORY OF OPERATION			
Figure	Title	Page	Figure	Tit		Page
1-1	Radio Receiving Set AN/FRR-28 in Relay Rack Cabinet CY-597A/G	1-1	2-1	Radio Receiving Block Diagram,	Set AN/FRR-28, Individual Recep-	
1-2	Radio Receiver R-450/FRR-28.	1-2		tion of Phone Sig		2-2
1-3	Radio Frequency Oscillator O-165/UR	1-2				
1-4	Amplifier-Detector AM-615/UR....	1-3	2-2	Radio Receiving Block Diagram,	Set AN/FRR-28, Individual Recep-	
1-5	Keyer KY-79/UR	1-3		tion of CW Signa		2-3
1-6	Loudspeaker LS-187/UR	1-4		tion of CW Signa		2-3
1-7	Communication Patching Panel SB-224/UR	1-4	2-3	Radio Receiving Block Diagram,	Set AN/FRR-28, Individual Recep-	
1-8	Cables for AN/FRR-28 Equipment	1-5		tion of FS Signals		2-4

LIST OF ILLUSTRATIONS (Cont)

SECTION 2-THEORY OF OPERATION (Cont)

Figure

Title
Page

2-4	Radio Receiving Set AN/FRR-28, Block Diagram. Diversity Reception of Phone Signals
2-5	Radio Receiving Set AN/FRR-28, Block Diagram, Diversity Reception of CW Signals
2-6	Radio Receiving Set AN/FRR-28, Block Diagram, Diversity Reception of FS Signals, Using IF Type Converter

2-7 Radio Receiver R-450/FRR-28, Simplified Schematic of First Oscillator for Band 1

2-8
2-8 Radio Receiver R-450/FRR-28, Simplified Schematic of First Oscillator for Band 4

2-8
2-9 Radio Receiver R-450/FRR-28, Simplified Schematic of T3 for 3, 8, and 13 kc Positions

2-10
2-10 Radio Receiver R-450/FRR-28, Simplified Schematic of T3 for 1.3 kc Position
2-11 Radio Receiver R-450/FRR-28, Simplified Schematic of AVC Circuit
2-12 Radio Receiver R-450/FRR-28, Simplified Schematic of BFO Circuit
2-13 Radio Frequency Oscillator O-165/UR,

Block Diagram

2-14 Radio Frequency Oscillator O-165/UR, Simplified Schematic of Crystal HFO Circuit

$$
\text { 2-15 } \begin{gathered}
\text { Radio Frequency Oscillator O-165/UR, } \\
\text { Simplified Schematic, FREQUENCY } \\
\text { RANGE MC switch in "2-4" } \\
\text { Position }
\end{gathered}
$$

2-16 Radio Frequency Oscillator O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch in " $4-8$ " Position
17 Radio Frequency Oscillator O-165/UR,
Simplified Schematic, FREQUENCY
RANGE MC switch in " $8-16$ "
Simplified Schematic, FREQUENCY
RANGE MC switch in " $8-16$ " Position
2-18 Radio Frequency Oscillator O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch In "16-32" Position
2-19 Radio Frequency Oscillator O-165/UR, Simplified Schematic of Crystal BFO Circuit

2-19

SECTION 2-THEORY OF OPERATION (Cont)

Figure
Title
Page

2-21 Radio Frequency Oscillator O-165/UR,
Simplified Schematic, Temperature
Control Circuit

2-20

2-22 Amplifier-Detector AM-615/UR, Block Diagram
2-23 Amplifier-Detector AM-615/UR, Simplified Schematic, Oscillator-Mixer Circuit

2-22
2-24 Keyer KY-79/UR, Block Diagram 2-23
2-25 Keyer KY-79/UR, Simplified Schematic, Positive Polar Keying........
2-26 Keyer KY-79/UR, Simplified Schematic, Negative Polar Keying.
2-27 Keyer KY-79/UR, Simplified Schematic, Keyed Tone Input.
2-28 Keyer KY-79/UR, Simplified Schematic, Polar Relay Keying

2-29 Keyer KY-79/UR, Simplified Sche
matic, Keying Amplifier and Keyed
Audio Output Amplifier

2-30 Keyer KY-79/UR, Simplified Sche
matic, Wien-Bridge Oscillator Cir
cuit and Curves

2-27

2-31 Radio Receiver R-450/FRR-28, Block Diagram

SECTION 3-INSTALLATION

3-1 Radio Receiving Set AN/FRR-28, Rear View With Door Open
3-2 Radio Receiving Set AN/FRR-28 Power Distribution Diagram...... 3-4
3-3 Cable Fabrication Instructions....... 3-5
3-4 Cable Fabrication Instructions 3-6
3-5 Receiver R-450/FRR-28, Rear View, Pre-Operation Adjustments
3-6 Amplifier-Detector AM-615/UR, Top View, Pre-Operation Adjustments.
3-7 Keyer KY-79/UR, Rear View, PreOperation Adjustments
3-8 Relay Rack Cabinet CY-597A/G, Outline Dimensions
3-9 Radio Receiver R-450/FRR-28, Outline Dimensions

3-13
3-10 $\begin{gathered}\text { Radio Frequency Oscillator O-165/UR, } \\ \text { Outline Dimensions }\end{gathered}$ 3-15..........
3-11 Amplifier-Detector AM-615/UR, Out- $\begin{gathered}\text { And } \\ \text { line Dimensions }\end{gathered}$
3-12 Keyer KY-79/UR, Outline Dimensions 3-19
3-13 $\begin{gathered}\text { Loudspeaker LS-187/UR, Outline Di- } \\ \text { mensions }\end{gathered}$ 3-.......................
$\begin{array}{ll}\text { 3-14 Communication Patching Panel SB-- } \\ \text { 224/UR, Outline Dimensions. } & \\ \text { 3-23 }\end{array}$
3-15 Radio Receiving Set AN/FRR-28, Interconnecting Wiring Diagram.. 3-25

LIST OF ILLUSTRATIONS (Cont)

	SECTION 4-OPERATION	
Figure	Title	Page
4-1	Radio Receiver R-450/FRR-28, Front View, Operating Controls and Adjustments	4-5
4-2	Radio Receiver R-450/FRR-28, Rear View, Operating Controls and Adjustments	4-6
4-3	Radio Frequency Oscillator O-165/UR, Front View, Operating Controls and Adjustments	4-7
4-4	Radio Frequency Oscillator O-165/UR, Rear View, Operating Controls and Adjustments	4-8
4-5	Keyer KY-79/UR, Operating Controls and Adjustments	4-9
4-6	Amplifier-Detector AM-615/UR, Operating Controls and Adjustments.	4-9
4-7	Loudspeaker LS-187/UR, Operating Control	4-10
4-8	Radio Frequency Oscillator O-165/UR, Overall Calibration Curve	4-12
4-9	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2000-2100 \mathrm{kc}$	4-13
4-10	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2100-2200 \mathrm{kc}$.	4-14
4-11	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2200-2300 \mathrm{kc}$.	4-15
4-12	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2300-2400 \mathrm{kc}$	4-16
4-13	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2400-2500 \mathrm{kc}$.	4-17
4-14	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2500-2600 \mathrm{kc}$.	4-18
4-15	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2600-2700 \mathrm{kc}$.	4-19
4-16	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2700-2800 \mathrm{kc}$	4-20
4-17	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2800-2900 \mathrm{kc}$	4-21
4-18	Radio Frequency Oscillator O-165/UR, Calibration Curve, $2900-3000 \mathrm{kc}$	4-22
4-19	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3000-3100 \mathrm{kc}$.	4-23
4-20	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3100-3200 \mathrm{kc}$.	4-24
4-21	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3200-3300 \mathrm{kc}$.	4-25
4-22	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3300-3400 \mathrm{kc}$	4-26
4-23	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3400-3500 \mathrm{kc}$.	4-27
4-24	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3500-3600 \mathrm{kc}$	4-28
4-25	Radio Frequency Oscillator O-165/UR, Calibration Curve, $3600-3700 \mathrm{kc}$	4-29

SECTION 4-OPERATION (Cont)

Figure

Title

Page

4-26 Radio Frequency Oscillator O-165/UR, Calibration Curve, $3700-3800 \mathrm{kc} . .4-30$
4-27 Radio Frequency Oscillator O-165/UR, Calibration Curve, $3800-3900 \mathrm{kc}$.

4-31
4-28 Radio Frequency Oscillator O-165/UR,
Calibration Curve, $3900-4000 \mathrm{kc} \ldots$

SECTION 7-CORRECTIVE MAINTENANCE

7-1 Failure Report 7-2
7-2 Receiver R-450/FRR-28, Rear View . . 7-3
7-3 Receiver R-450/FRR-28, Top View . . 7-4
7-4 Receiver R-450/FRR-28, Bottom View, Location of Resistors 7-5
7-5 Receiver R-450/FRR-28, Bottom View, Location of Components
7-6 Receiver R-450/FRR-28, RF Strip, Right Side

7-7

7-8 Radio Frequency Oscillator O-165/UR, Rear View .

7-8
7-9 Radio Frequency Oscillator O-165/UR,
Top View 7-9
7-10 Radio Frequency Oscillator O-165/UR, Bottom View

7-10
7-11 Radio Frequency Oscillator O-165/UR, Power Supply, Bottom View......
7-12 Radio Frequency Oscillator O-165/UR, Middle Oven

7-12
7-13 Radio Frequency Oscillator O-165/UR, Inner Oven, Covers Removed.

7-13
7-14
$\begin{gathered}\text { Radio Frequency Oscillator O-165/UR, } \\ \text { Inner Oven, Tuning Unit Removed }\end{gathered}$
Rad
7-15 Radio Frequency Oscillator O-165/UR, Multiplier Tuning Assembly, Right Side

7-15
7-16 Radio Frequency Oscillator O-165/UR, Multiplier Tuning Assembly, Left Side

7-15
7-17 Amplifier-Detector AM-615/UR, Rear
View $7-16$
7-18 Amplifier-Detector AM-615/UR, Top $\begin{gathered}\text { View } \\ \text { 7-16 }\end{gathered}$
7-19 Keyer KY-79/UR, Rear View 7-17
7-20 Keyer KY-79/UR, Top View 7-17
7-21 Keyer KY-79/UR, Bottom View ... 7-18
7-22 Loudspeaker LS-187/UR, Rear View . . 7-19
7-23 Communication Patching Panel SB-
$224 /$ UR, Front, Top, and Rear Views $7-20$
7-24 Receiver R-450/FRR-28, Frequency
Response Curves 7-21
7-25 Receiver R-450/FRR-28, Overall Se-
lectivity at 2 Megacycles $7-22$
7-26 Receiver R-450/FRR-28, Voltage and Resistance Chart

LIST OF ILLUSTRATIONS (Cont)

SECTION 7-CORRECTIVE MAINTENANCE (Cont)
Figure Title Page
7-27 Radio Frequency Oscillator O-165/UR, Voltage and Resistance Chart 7-43
7-28 Amplifier-Detector AM-615/UR, Volt- age and Resistance Chart 7-45
7-29 Keyer KY-79/UR, Voltage and Re- sistance Chart 7-47
7-30 Radio Receiver R-450/FRR-28, Main Chassis Schematic Diagram 7-49
7-31 Radio Receiver R-450/FRR-28, Turret Schematic Diagram 7-51
7-32 Radio Frequency Oscillator O-165/UR, Schematic Diagram 7-53
SECTION 7-CORRECTIVE MAINTENANCE (Cont)FigureTitlePage
7-33 Amplifier-Detector AM-615/UR, Sche- matic Diagram 7-55
7-34 Keyer KY-79/UR, Schematic Dia- gram 7-57
7-35 Loudspeaker LS-187/UR, Schematic Diagram 7-59
7-36 Communication Patching Panel SB- 224/UR, Schematic Diagram 7-61
7-37 Radio Receiver R-450/FRR-28, Main Chassis Wiring Diagram 7-63
7-38 Radio Receiver R-450/FRR-28, Turret Wiring Diagram 7-65

LIST OF TABLES

SECTION 1—GENERAL DESCRIPTION
Table Title Page
1-1 Cables Used in Radio Receiving Set AN/FRR-28 1-5
1-2 Equipment Supplied 1-7
1-3 Equipment Required but Not Supplied 1-7
1-4 Shipping Data 1-8
1-5 Electron Tube Complement 1-8
SECTION 2-THEORY OF OPERATION
2-1 Transformers and Capacitors Placed Into Circuit by BAND CHANGE Switch S1 2-7
2-2 Modes of Operation for Different Posi- tions of Switch S13................2-3 Frequency Range of Frequency Multi-plier Sections 2-13
2-4 Meter Readings for Various Positions of Switch S5 2-20
SECTION 3—INSTALLATION
3-1 Variable Oscillator Calibration Table 3-8
SECTION 4-OPERATION
4-1 Locations and Functions of Operating Controls 4-1
4-2 Non-operating Controls 4-3
4-3 Approximate OUTPUT FREQUENCY dial settings 4-4
SECTION 5—OPERATOR'S MAINTENANCE
5-1 Operator's Routine Check Chart...... 5-15-2 Fuse Locations and Symptoms of Fuse
Failure 5-2
SECTION 6-PREVENTIVE MAINTENANCE
Table Title Page
6-1 Routine Maintenance Check Chart 6-2
6-2 Approximate Signal Input at IF and AF Stages for 20 Volt Output 6-2
SECTION 7—CORRECTIVE MAINTENANCE
7-1 Receiver Control Settings for IF Align- ment 7-3
7-2 Receiver Control Settings for RF Am- plifier and HFO Alignment 7-8
7-3 RF and HFO Alignment Frequencies and Adjustment Designation 7-9
7-4 Winding Data 7-23
7-5 Overall Trouble Shooting Chart 7-31
7-6 Receiver R-450/FRR-28 Trouble Shooting Chart 7-33
7-7 RF Oscillator O-165/UR Trouble Shooting Chart 7-35
7-8 Amplifier-Detector AM-615/UR Trouble Shooting Chart 7-37
7-9 Keyer KY-79/UR•Trouble Shooting Chart 7-39
SECTION 8—PARTS LISTS
8-1 Weights and Dimensions for S pare Parts Boxes 8-1
8-2 Shipping Weights and Dimensions for Spare Parts Boxes 8-1
8-3 List of Major Units 8-2
8-4 Combined Parts and Maintenance Parts List 8-3
8-5 Maintenance Parts Kit 8-139
8-6 Cross Reference Parts List 8-140
8-7 Color Codes and Miscellaneous Data 8-144
8-8 List of Manufacturers 8-145

GUARANTEE

The equipment, including all parts and spare parts, except vacuum tubes, batteries, rubber, and material normally consumed in operation, is guaranteed for a period of one year from the date of delivery of the equipment to and acceptance by the Government with the understanding that all such items found to be defective as to material, workmanship, or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government; provided that such guarantee will not obligate the Contractor to make repair or replacement of any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and the defect is not the result of normal expected shelf life deterioration.

To the extent the equipment, including all parts and spare parts, as defined above, is of the Contractor's design or is of a design selected by the Contractor, it is also guaranteed, subject to the foregoing conditions, against defects in design with the understanding that if ten percent (10%) or more of any such said item, but not less than two of any such item, of the total quantity comprising such item furnished under the contract, are found to be defective as to design, such item will be conclusively presumed to be of defective design and subject to one hundred percent (100%) correction or replacement by a suitably re-designed item.

All such defective items will be subject to ultimate return to the Contractor. In view of the fact that normal activities of the Naval Service may result in the use of equipment in such remote portions of the world or under such conditions as to preclude the return of the defective items for repair or replacement without jeopardizing the integrity of Naval communications, the exigencies of the Service, therefore, may necessitate expeditious repair of such items in order to prevent extended interruption of communications. In such cases the return of the defective items for examination by the Contractor prior to repair or replacement will not be mandatory. The report of a responsible authority, including details of the conditions surrounding the failure, will be acceptable as a basis for effecting expeditious adjustment under the provisions of this contractual guarantee.

The above one year period will not include any portion of time the equipment fails to perform satisfactorily due to any defects, and any items repaired or replaced by the Contractor will be guaranteed anew under this provision.

INSTALLATION RECORD

Contract Number NObsr 52132 or 57519
Date of Contract, 19 December, 1950
Serial Number of equipment.
Date of acceptance by the Navy
Date of delivery to contract destination
Date of completion of installation
Date placed in service

Blank spaces on this page shall be filled in at time of installation. Operating personnel shall also mark the "Date placed in service" on the date of acceptance plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

REPORT OF FAILURE

Report of failure of any part of this equipment, during its entire service life, shall be made to the Bureau of Ships in accordance with current regulations using form NAVSHIPS NBS 383 (revised) except for Marine Corps equipment, in which case the "Signal Equipment Failure Report" form shall be used and distributed in accordance with instructions pertaining thereto. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the Bureau of Sbips Manual or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Federal stock number or, when ordering from a Marine Corps or Signal Corps supply depot, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available the following shall be specified:

1. Equipment model or type designation, circuit symbol, and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

ABANDONED MATERIAL IN THE COMBAT ZONE

In case it should become necessary to prevent the capture of this equipment, and when ordered to do so, DESTROY IT SO THAT NO PART OF IT CAN BE SALVAGED, RECOGNIZED, OR USED BY THE ENEMY. BURN ALL PAPERS AND BOOKS.

Means:

1. Explosives, when provided.
2. Hammers, axes, sledges, machetes, or whatever heavy object is readily available.
3. Burning by means of incendiaries such as gasoline, oil, paper, or wood.
4. Grenades and shots from available firearms.
5. Burying all debris, where possible and when time permits.
6. Throwing overboard or disposing of in streams or other bodies of water.

Procedure:

1. Obliterate all identifying marks. Destroy nameplates and circuit labels.
2. Demolish all panels, castings, switch and instrument boards.
3. Destroy all controls, switches, relays, connections, and meters.
4. Rip out all wiring and cut interconnections of electrical equipment. Smash gas, oil, and water cooling systems in gas engine generators, etc.
5. Smash every electrical or mechanical part, whether rotating, moving, or fixed.
6. Break up all operating instruments such as keys, phones, microphones, etc.
7. Destroy all classes of carrying cases, straps, containers, etc.
8. Bury or scatter all debris.

SAFETY NOTICE

The attention of officers and operating personnel is directed to Chapter 67 of the Bureau of Ships Manual or superseding instructions on the subject of radio-safety precautions to be observed.

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

While every practicable safety precaution has been incorporated in this equipment, the following rules must be strictly observed:

KEEP AWAY FROM LIVE CIRCUITS:

Operating personnel must at all times observe all safety regulations. Do not change tubes or make adjustments inside equipment with high-voltage supply on. Under certain conditions dangerous potentials may exist in circuits with power controls in the off position due to charges retained by capacitors. To avoid casualties always remove power and discharge and ground circuits prior to touching them.

DON'T SERVICE OR ADJUST ALONE:

Under no circumstances should any person reach within or enter the enclosure for the purpose of servicing or adjusting the equipment without the immediate presence or assistance of another person capable of rendering aid.

DON'T TAMPER WITH INTERLOCKS:

Do not depend upon door switches or interlocks for protection but always shut down motor-generators or other power equipment. Under no circumstances should any access gate, door, or safety interlock switch be removed, short-circuited, or tampered with in any way, by other than authorized maintenance personnel, nor should reliance be placed upon the interlock switches for removing voltages from the equipment.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR, OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

Figure 1-1. Radio Receiving Sef AN/FRR-28 in Relay Rack Cabinet CY-597A/G

SECTION 1 GENERAL DESCRIPTION

1. INTRODUCTION.

(See figure 1-1.)
This instruction book includes information necessary for the installation, operation, and maintenance of the Radio Receiving Set AN/FRR-28. The units and parts that are supplied, and those that are not supplied but are used in conjunction with the receiving set, are listed in tables $1-1$ and 1-2, respectively.

2. PURPOSE OF THE EQUIPMENT.

Radio Receiving Set AN/FRR-28 is a multi-purpose receiving equipment. It is specifically designed for dual "space diversity" reception of high speed radio teleprinter, telegraph, or telephone signals, but may be used for two single receivers or for dual "frequency diversity" reception of these signals. The receiving set is capable of receiving AM radiophone signals, amplitude modulated CW signals, or unmodulated CW signals, and when the receiving set is used in conjunction with a frequency-shift converter-comparator group, it is possible to receive "frequency-shift" signals.

The receiving set may be operated for local use of the received signal in conjunction with other equipment, such as a teleprinter, or for remote service, such as part of a relay link.

Diversity reception, either space or frequency, is used to overcome one of the causes of fading signals. When the ionosphere changes its position, it is possible for two signals arriving over different paths to effectively cancel each other at the receiving antenna.

It has been experimentally shown that signals received at antennas spaced five to ten wavelengths apart will fade independently. This fact is used in space diversity reception where the antennas for the two receivers are so spaced.

In frequency diversity reception, use is made of the fact that signals of different frequencies will fade independently. Each receiver is tuned to one of the two transmitted carrier frequencies which carry the same intelligence.

A frequency-shift signal is one whose normal frequency is shifted to another frequency for a period of time corresponding to the mark or space position
of the transmitted signal.

3. DESCRIPTION OF UNITS.

(See figure 1-1.)
All units which are part of Radio Receiving Set AN/FRR-28 are mounted in Relay Rack Cabinet CY597 A/G by means of front panel screws. Provision is also made for mounting a converter-comparator group, such as Frequency Shift Converter-Comparator Group AN/URA-6, within the rack. Other converters with suitable characteristics may be used. Any frequencyshift conyerter group is provided as a separate allowance item. The unit functions are as follows:
a. RADIO RECEIVERS R-450/FRR-28. (See figure 1-2.) - Two receivers are provided for diversity signal reception. Each receiver selects and amplifies the signals received at the antenna. Means are provided to use external HFO and BFO signals which are supplied by Oscillator O-165/UR. Three signal outputs are available from each receiver:
(1) The $455-\mathrm{kc}$ signal is used in AmplifierDetector AM-615/UR and may also be used if a con-verter-comparator group is provided.
(2) The d-c output from the second detector is used in Keyer KY-79/UR.
(3) The audio output is applied to Communication Patching Panel SB-224/UR for distribution to the external lines and loudspeaker. Headphones may also be used to monitor the output signal by plugging them into the PHONES jack on the receiver front panel.
b. RADIO FREQUENCY OSCILLATOR O-165/ UR. (See figure 1-3.) -RF Oscillator O-165/UR may be used to provide HFO and BFO signals to replace the high frequency and beat frequency oscillators of each receiver. The HFO signal is either variable, with temperature-controlled high stability, or crystal controlled; the BFO signal is crystal-controlled. Use of Oscillator O-165/UR is particularly desirable when conditions warrant the use of crystal filters in the receivers, or when frequency-shift signals are received. Reception over the greater portion of the communication band is possible when the variable high-frequency HFO is used.

UNIT 2

Figure 1-2. Radio Receiver R-450/FRR-28

UNIT 3

Figure 1-3. Radio Frequency Oscillator O-165/UR

UNIT G

Figure 1-4. Amplifier-Defector AM-615/UR
c. AMPLIFIER-DETECTOR AM-615/UR. (See figure 1-4.)-This unit is used to sample the IF frequency of each individual receiver in diversity reception. It is also useful in tuning each receiver accurately to $C W$ signals in diversity reception when no receiver BFO is used. It consists of an RF amplifier stage and a local BFO oscillator stage producing an audio beatnote with the sampled IF frequency. This audio beatnote is amplified and applied to the OUTPUT MONITOR jack J1, where headphones are used for monitoring purposes. The INPUT SELECTOR switch on the front panel is provided to select the IF frequency of either of the two diversity receivers.
d. KEYER KY-79/UR. (See figure 1-5.)-This unit provides audio signals at certain preselected frequencies for external equipments, such as the teletypewriter, which are operated at these frequencies. These audio tones are keyed on and off in accordance with input intelligence signals such as positive or negative d-c signals, keyed tone input signals, or polar relay signals. The amplitude-modulated tones are then sent
to Communication Patching Panel SB-224/UR for distribution to the external lines and the loudspeaker. Headphones may also be used to monitor the keyed tone by plugging them into the OUTPUT MONITOR jack on the Keyer KY-79/UR front panel.
e. LOUDSPEAKER LS-187/UR. (See figure 1-6.) -This unit provides the means for listening to the signals being received, and is also used to monitor various audio tones produced in the units as described in the previous paragraphs.
f. COMMUNICATION PATCHING PANEL SB224/UR. (See figure 1-7.)-This unit is used, in conjunction with patch cords, to make the various interconnections between units required for the different types of operation of the Radio Receiving Set AN/ FRR-28.

4. CABLING.

(See figure 1-8.)
Information regarding the cables used in Radio Receiving Set AN/FRR-28 is listed in Table 1-1.

UNIT 10
Figure 1-5. Keyer KY-79/UR

UNIT I

Figure 1-6. Loudspeaker LS-187/UR

FRONT VIEW
UNIT 5

Figure 1-7. Communication Patching Panel SB-224/UR

Figure 1-8. Cables for AN/FRR-28 Equipment

TABLE 1-1. CABLES USED IN RADIO RECEIVING SET AN/FRR-28

CABLE NUMBER	$\begin{aligned} & \text { LENGTH } \\ & \text { IN } \\ & \text { NCHES } \end{aligned}$	PURPOSE	CABLE NUMBER	$\begin{array}{\|l\|} \hline \text { LENGTH } \\ \text { IN } \\ \text { INCHES } \end{array}$	PURPOSE
W3-11 W5-1	72 25	Power cable for RF Oscillator O-165/UR Patch cord	W12-4	38	Connects receiver \#2 IF output to the Amplifier-Detector AM-615/ UR
W5-2	25	Patch cord	W12-5	12	Connects Oscillator O-165/UR BFO output to receiver \#1
W5-3	25	Patch cord		15	
W5-4	25	Patch cord	W12-6	15	Connects Oscillator O-165/UR BFO output to receiver \#2
W5-5	25	Patch cord	W12-7	15	Connects Oscillator O-165/UR
W5-6	25	Patch cord			HFO output to receiver \#1
W9-12	24	Power cable for Amplifier-Detector AM-615/UR	W12-8	20	Connects Oscillator O-165/UR HFO output to receiver \#2
W10-13 W 12-1	24	Power cable for Keyer KY-79/UR Main relay rack cable	W12-9	54	Connects receiver \#1 IF output to FS converter \#1
W12-2	27	Links the two receiver 3.5 Mc oscillators	W12-10	44	Connects receiver \#2 IF output to FS converter \#2
W12-3	57	Connects receiver \#1 IF output to	W12-14	72	Utility servicing cable
		the Amplifier-Detector AM-615/ UR	W12-15	36	Converter-comparator group power cable

5. REFERENCE DATA.

a. Equipment Designation: Radio Receiving Set AN/FRR-28.
b. Contract number and date:

NObsr-52132 dated December 19, 1950.
NObsr-57519 dated June 30, 1952.
c. Contractor:

Northern Radio Company, Inc. New York, New York.
d. Cognizant Inspector: Inspector of Naval Material, New York Naval Shipyard, New York, New York.
e. Number of packages per complete shipment: 5 plus spare parts packages.
f. Total cubical contents (excluding spares): Crated: 78.8 cubic feet. Uncrated: 34.3 cubic feet.
g. Total weight (excluding spares):

Crated: 1040 pounds.
Uncrated: 522 pounds.
b. Frequency range: 540 kilocycles to 54 megacycles.
i. Tuning bands:
(1) Radio Receiver R-450/FRR-28, 6 bands:

Band 1:	.54 to 1.35 Mc	
Band 2:	1.35 to 3.45 Mc	
Band 3:	3.45 to 7.4 Mc	
Band 4:	7.4 to 14.8 Mc	
Band 5:	14.8 to 29.7	Mc
Band 6:	29.7	to 54

(2) Radio Frequency Oscillator O-165/UR, 4 bands:

Band 1:	2 to 4 Mc
Band 2:	4 to 8 Mc
Band 3:	8 to 16 Mc
Band 4:	16 to 32 Mc

j. Number of pre-set frequencies:

RF Oscillator O-165/UR: Provision for 3 HFO crystals. Provision for 2 BFO crystals.
k. Types of frequency control:
Radio Receiver R-450/FRR-28: Internal variable oscillator or external oscillator.

RF Oscillator O-165/UR: Temperature-controlled variable oscillator or choice of 3 crystals.
l. Type receiver:

Single superheterodyne 0.5 to 7.4 Mc .
Double superheterodyne 7.4 to 54 Mc .
m. Intermediate frequencies:
Input signal below 7.4 Mc : 455 kc .
Input signal above $7.4 \mathrm{Mc}: 3.955 \mathrm{Mc}$ and 455 kc .
n. Radio Receiver R-450/FRR-28:

Input impedance: Nominal 72 ohms.
Output impedance: Loudspeaker or external lines 600 ohms. Front panel headphone jack 8000 ohms.

Output power: 2.5 watts maximum into 600 ohm load. 15 milliwatts into 8000 ohm resistive load when 600 ohm load is adjusted to 500 milliwatts.
o. Type of reception:

A-1, A-2, A-3, and FSK (when suitable converter is used).
p. Crystals Supplied:
(HFO and BFO crystals not supplied for Oscillator O-165/UR).

Receiver:
3.5 Mc heterodyning oscillator.
$455 \mathrm{kc} \pm 50 \mathrm{cps}$ IF crystal filter.
RF Oscillator O-165/UR:
100 kc calibrating oscillator.
q. Frequency stability data:

RF Oscillator O-165/UR:
Variable $\mathrm{HFO} \pm 20 \mathrm{cps} / \mathrm{Mc}$ for ambient change of +25 or $-25^{\circ} \mathrm{C}$. over the range of $0-50^{\circ} \mathrm{C}$. for any 8 hour period. $5 \mathrm{cps} / \mathrm{Mc}$ for 10% line voltage change.

Crystal HFO--Type 1 N48 crystal.
Crystal BFO-Type 1N48 crystal.
Receiver:
Frequency drift ranges between 0.001 percent and 0.01 percent of frequency, depending on frequency used.
r. Input and/or output impedances:
(1) Antenna: Normal 72 ohms.
(2) Radio Receiver R-450/FRR-28: IF output 100 ohms nominal. Loudspeaker or external lines 600 ohms. Front panel headphones jack 8000 ohms.
(3) Keyer KY-79/UR Output: 600 ohms tone.
(4) Amplifier-Detector:

1000 ohm input. 4000 ohm output.
(5) Loudspeaker: 500 ohm input.
s. Electrical characteristic of recommended antennas: 72 ohms nominal balanced or unbalanced transmission lines.
t. Power supply:
$115 / 230$ volts, $50 / 60$ cycle, single phase AC.
u. Power required: 570 watts total.
(1) Receiver 1-130 watts.
(2) Receiver 2-130 watts.
(3) RF Oscillator O-165/UR-200 watts.
(4) Amplifier-Detector AM-615/UR-35 watts.
(5) Keyer KY-79/UR-75 watts.

6. EQUIPMENT SUPPLIED.

The complete Radio Receiving Set AN/FRR-28 equipment supplied by the manufacturer is listed in table 1-2.

TABLE 1-2. EQUIPMENT SUPPLIED

$\begin{aligned} & \text { QUAN- } \\ & \text { TITY } \\ & \text { PER } \\ & \text { EQUUP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESIGNATION	OVER-ALL DIMENSIONS			vol. UME	WEIGHT
			height	WIDTH	DEPTH		
1	Relay Rack Cabinet	CY-597A/G	871/2	24	223/8	27.2	275
2	Radio Receiver	R-450/FRR-28	101/2	19	161/2	1.9	66
1	Radio Frequency Oscillator, including cable W3-11	O-165/UR	101/2	19	14	1.6	54
1	Communication Patching Panel, including 6 patch cords W5-1 through W5-6	SB-224/UR	31/2	19	6	. 20	7
1	Amplifier-Detector, including cable W9-12	AM-615/UR	31/2	19	14	. 54	15
1	Keyer, with cable W 10-13	KY-79/UR	$31 / 2$	19	131/2	. 52	22
2	Instruction books						
12	Cables W12-1 through W1210, W12-14 and W12-15						
1	Loudspeaker	LS-187/UR	101/2	19	$3^{13 / 16}$. 44	12
2	Fuses F12-1 and F12-2						

Unless otherwise stated, dimensions are inches, volume cubic feet, weight pounds.
7. EQUIPMENT REQUIRED BUT NOT SUPPLIED.

The additional equipment and publications required
for operation of the receiving set equipment, but not supplied by the manufacturer, is listed in table $1-3$.

TABLE 1-3. EQUIPMENT REQUIRED BUT NOT SUPPLIED

$\begin{aligned} & \text { QUAN- } \\ & \text { TIIY } \\ & \text { PER } \\ & \text { EQUIP- } \\ & \text { MENT } \end{aligned}$	NAME OF UNIT	NAVY TYPE DESIGNATION	REQUIRED USE	REQUIRED CHARACTERISTICS
1	ConverterComparator Group	AN/URA-6 (recommended for communication purposes; other types may be employed)	Detection of frequency shift signals	455 kilocycles IF, 70 ohm, 2500 microvolt to 0.5 volt input or 600 ohm audio
1	Headphones			For monitoring purposes
3	HFO crystals	CR-18/U	For providing RF Oscillator O-165/UR crystal HFO signal	See Section 4, paragraph $3 \boldsymbol{a}(7)$ to determine frequencies
2	BFO crystals	CR-18/U	For providing RF Oscillator O-165/UR crystal BFO signal	See Section 4, paragraph $3 c(1)$ to determine frequencies

8．SHIPPING DATA．

Table 1－4 gives the essential shipping data of the receiving set equipment．

9．ELECTRON TUBE COMPLEMENT．
Table 1－5 lists the quantity and types of electron tubes for each unit of the receiving set．

TABLE 1－4．SHIPPING DATA

CONTENTS		OVER－ALI DIMENSIONS			volume	WEIGHT
NAME	designation	HEIGHT	WIDTH	DEPTH		
Relay Rack Cabinet including： 1 Loudspeaker 1 Communication Patching Panel 2 blank Panels 1 blank Panel 6 Patch cords W5－1 through W5－6 2 Fuses，F12－1，F12－2 Miscellaneous hardware 12 cables，W12－1 through W12－10， W12－14，W12－15	$\begin{aligned} & \text { CY-597A/G } \\ & \text { LS-187/UR } \\ & \text { S13-224/UR } \end{aligned}$	96	$321 / 4$	$313 / 4$	58.6	515
RF Oscillator，includ－ ing cable W3－11	O－165／UR	281／2	23	15	5.7	100
Radio Receiver \＃1	R－450／FRR－28	27	221／2	161／2	5.4	176
Radio Receiver \＃2	R－450／FRR－28	27	221／2	161／2	5.4	176
Keyer，including cable W10－13，and Amplifier－Detector， including cable W9－12	KY-79/UR AM-615/UR	24	191／2	131／2	3.7	73

Unless otherwise stated，dimensions are inches，volume cubic feet，weight pounds．

TABLE 1－5．ELECTRON TUBE COMPLEMENT

	number of tubes of type indicated																			
UNIT	今	仓্ৰ犬	\％	\sum_{i}	$\stackrel{\text { T }}{\mathbf{0}}$	$\begin{aligned} & \text { 色 } \\ & \text { co } \\ & \hline 0 \end{aligned}$	\sum_{i}^{2}	$\stackrel{\rightharpoonup}{0}$	\sum_{0}^{0}	皆		S	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		華	$$	$\stackrel{0}{\circ}$			¢
Radio Receiver \＃1					1	1					2				2	7	2	1	3	19
Radio Receiver \＃2					1	1					2				2	7	2	1	3	19

tABLE 1－5．ELECTRON TUBE COMPLEMENT（Continued）

	number of tubes of type indicated																			
UNIT	今	¢	$\stackrel{\square}{\circ}$	＊	§	$\begin{aligned} & \text { 10 } \\ & 0 \\ & 0 \end{aligned}$	\hat{z}_{0}^{2}	岩	旁	要		¢	$\stackrel{\text { ๕ }}{\mathbf{0}}$	$\begin{aligned} & 5 \\ & \substack{5 \\ \hline 0} \end{aligned}$	華	®o	\div	$\begin{aligned} & \frac{2}{5} \\ & \frac{3}{n} \end{aligned}$	$\frac{3}{6}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{t}} \\ & \mathbf{0} \end{aligned}$
$\begin{array}{\|c} \text { RF Oscillator } \\ \text { O-165/UR } \end{array}$					1						2	2	4	1	1					11
Keyer KY－79／UR	1			1		2	1	1	1	2										9
Amplifier－ Detector AM－615／UR	1	1	1	1	1															5
Total Number of Each Type	2	1	1	2	4	4	1	1	1	2	6	2	4	1	5	14	4	2	6	63

SECTION 2 THEORY OF OPERATION

1．INTRODUCTION．

Radio Receiving Set AN／FRR－28 is used for single or dual receiver reception of AM radiophone signals， amplitude modulated CW signals，or unmodulated CW signals．The dual receiver operational arrangement is for＂diversity＂signal reception．The received signals may be used locally or adapted for use in equipments， such as the teletypewriter，which may remote from the receiving set．Radio Receiving Set AN／FRR－28 in－ cludes the following units：Two Radio Receivers R－450／FRR－28，Radio Frequency Oscillator O－165／UR， Keyer KY－79／UR，Amplifier－Detector AM－615／UR Loudspeaker LS－187／UR，and Communication Patch－ ing Panel SB－224／UR．Provisions are made for the in－ stallation and use of a frequency－shift converter－com－ parator group in conjunction with the receiving set for frequency－shift reception．All of the equipment is mounted in Relay Rack Cabinet CY－597A／G．

Fading，or momentary loss of signal，at a receiving
antenna may be caused by the variation of the position of the ionosphere．Fading occurs when two signals reach the receiving antenna out of phase and cancel each other．To overcome fading，＂space diversity＂or ＂frequency diversity＂reception may be used．

In＂space diversity＂reception，the antennas for the two receivers in Radio Receiving Set AN／FRR－28 are spaced five to ten wavelengths apart．At this spacing it has been experimentally shown that the signals in－ duced in the antennas will tend to fade independently． Since the two receiver outputs are combined，the effect of fading will be greatly reduced．

In＂frequency diversity＂reception，the same in－ telligence is transmitted at two different frequencies， making use of the observed fact that signals of different frequencies tend to fade independently．Each receiver in Radio Receiving Set AN／FRR－28 is tuned to one of the two transmitted frequencies，and the two re－ ceiver outputs are combined to reduce fading effects．

Figure 2-1. Radio Receiving Set AN/FRR-28, Block Diagram, Individual Reception of Phone Signals

2. BLOCK DIAGRAM DESCRIPTIONS.

a. INDIVIDUAL RECEPTION OF AM RADIOPHONE SIGNALS. (See figure 2-1.)-The AM radiophone signal from the antenna is preselected, amplified, and converted to an audio signal in one of the receivers. The audio output of either receiver is fed through Communication Patching Panel SB-224/UR and a patch cord to the speaker. The HFO section of RF Oscillator O-165/UR is used when the receiver HFO is inoperative, or when greater receiver stability is desired.
b. INDIVIDUAL RECEPTION OF CW SIGNALS. (See figure 2-2.) - The keyed telegraph signal from the antenna is preselected, amplified, and detected in the receiver. The detected signal is fed directly to Communication Patching Panel SB-224/UR in receiver \#1. In receiver \#2 the detected signal is mixed with a BFO voltage from the receiver or Oscillator O $165 /$ UR, to produce an audio tone which is then fed to SB-224/UR. The detected signal from receiver \#1 or the audio tone from receiver \#2 is fed through SB-224/UR and a patch cord to Keyer KY-79/UR. The Keyer KY-79/UR monitoring output is fed through SB-224/UR and a patch cord to Loudspeaker LS-187/UR. The line output of Keyer KY-79/UR is applied to SB-224/UR and a patch cord to an external circuit, such as a teletypewriter, which operates on the tone signal produced by the Keyer KY-79/UR. The audio output of receiver \#2 may be fed directly to Loudspeaker LS-187/UR instead of Keyer KY-79/UR.

Since both receivers are identical, receiver \#1 may be used to provide the audio tone and receiver \#2 to provide the detected signal.
c. INDIVIDUAL RECEPTION OF FREQUENCYSHIFT SIGNALS. (See figure 2-3.)-When a fre-quency-shift converter is supplied with the receiving set, frequency-shift signals can be received. A CW signal, whose normal frequency is shifted to another frequency for a period of time corresponding to the transmitted intelligence, is a frequency-shift signal.

The frequency-shift signal from the antenna is preselected, amplified, and mixed in the receiver with an HFO signal from either the receiver internal oscillator or RF Oscillator O-165/UR. Since a slight drift in HFO frequency may cause loss of the frequency-shifted signal, RF Oscillator O-165/UR, which gives greater stability, is preferred. The IF or AF signal output of the receiver, depending on the type of converter employed, is fed directly to the frequency-shift converter. The tone output of the converter is fed through the patching panel and a patch cord to the speaker and external lines, and the teletypewriter output is fed through the patching panel, a patch cord, and external lines to a teletypewriter.

d. DUAL SPACE OR FREQUENCY DIVERSITY

 RECEPTION OF RADIOPHONE SIGNALS. (See figure 2-4.)-The dual space, or frequency diversity, radiophone signals are fed from the antenna to the receivers. For dual space diversity reception, either the internal oscillator of the receivers or $R F$ Oscillator

Figure 2-2. Radio Receiving Sel AN/FRR-28, Block Diagram, Individual Reception of CW Signals

O-165/UR may be used, and for received signals over 7.4 megacycles a 3.5 megacycle signal from one receiver is used for both receivers. Amplifier-Detector AM-615/UR can be used for aligning both receivers to the same frequency. Since both receivers are tuned to different frequencies in frequency diversity reception, Oscillator O-165/UR cannot supply the HFO signal to both receivers, and either both internal oscillators or Oscillator O-165/UR and one internal oscillator are used. The AVC circuits of both receivers are tied together for common AVC action. The diversity signal is preselected, amplified, and detected in each receiver. The detector outputs of both receivers are patched together at the patch panel. The common detector signal is linked at one receiver to its audio section. The audio output of this receiver is fed to the speaker through the patch panel and a patch cord.
e. DUAL SPACE OR FREQUENCY DIVERSITY RECEPTION OF CW SIGNALS. (See figure 2-5.)The dual space, or frequency diversity, CW signals are fed from the antenna to the receivers. In space diversity reception of AM CW signals, either the receiver internal oscillator or Oscillator O-165/UR is used. Amplifier-Detector AM-615/UR may be used to tune both receivers to the same frequency. In space diversity reception of unmodulated CW signals, common $\mathbf{H F O}$ and 3.5 megacycle signals are used to produce a single
tone signal output from the receiver. In frequency diversity reception, each receiver is tuned to a different frequency, requiring either both receiver internal oscillators or one receiver internal oscillator and ${ }^{-O s c i l}$ lator $\mathrm{O}-165 / \mathrm{UR}$ to be used for the HFO signal. In space or frequency diversity reception of a CW signal the AVC circuits are tied together. The second detector outputs are combined on the patching panel with patch cords and fed to both Keyer KY-79/UR and external circuits. The Keyer KY-79/UR output is fed through the patching panel and a patch cord to the speaker, and the Keyer KY-79/UR line output is applied to an external circuit through the patching panel and patch cord.

f. DUAL SPACE AND FREQUENCY DIVERSITY

 RECEPTION OF FREQUENCY-SHIFT SIGNALS. (See figure 2-6.)-Frequency-shift signals are fed from the antenna to the receivers. Either Oscillator O $165 / \mathrm{UR}$ or the receiver internal oscillators are used to provide the HFO signal for space diversity reception. RF Oscillator O-165/UR is preferred, due to its greater stability in preventing receiver drift and loss of the frequency-shifted signal. When the receiver internal oscillators are used, the receivers are tuned with the Amplifier-Detector AM-615/UR. In frequency diversity reception of frequency-shift signals, Oscillator O-165/UR cannot provide the HFO signal for both

Figure 2-3. Radio Receiving Set AN/FRR-28, Block Diagram, Individual Reception of FS Signals
receivers, and either both receiver internal oscillators or one receiver internal oscillator and Oscillator $\mathrm{O}-165 / \mathrm{UR}$ are used. The frequency-shift signals are preselected, amplified, and converted to the intermediate frequency in the receiver. A signal from one receiver is applied to one of the frecuency-shift converters that can be employed with the diversity equipment. The other receiver signal is applied to the other converter. The converter outputs are applied to the comparator. The stronger signal is converted to a tone and to a teletype signal, while the weaker signal is cut off. The tone output is fed through the patching panel and patch cords to the speaker and to external circuits. The teletype signal is fed through the patching panel and a patch cord through an external line to a teletypewriter.

3. RADIO RECEIVER R-450/FRR-28.

(See figures 1-1 and 1-2.)
a. GENERAL.-Two Radio Receivers R-450/FRR28 are contained in the Radio Receiving Set AN/FRR28. The receivers are used separately for reception of radiotelephone, $\mathrm{CW}, \mathrm{MCW}$, or frequency-shift signals, and are used together for reception of space or frequency diversity signals.
b. BLOCK DIAGRAM DESCRIPTION. (See figure 2-31.)-The RF signals from the antenna are applied to the RF amplifier stages V1 and V2 of the receiver, where the desired RF signal is preselected and amplified. The output signal of the RF amplifiers is applied to the first mixer stage V5.

An external HFO signal, from Oscillator O-165/UR which is amplified in the external HFO signal amplifier stage V4A, or a local HFO signal, which is produced in the local HFO stage $V 4 B$, is applied to the first mixer stage V5 through HFO switch S12. The HFO signal is mixed with the RF signal in the mixer tube V5 to form a beat frequency or IF signal.

When the RF signal is between .54 and 7.4 megacycles, the HFO signal frequency is such that the IF produced in the first mixer stage is 455 kilocycles. The first mixer stage output signal is fed through switch S4 to the gate amplifier tube V7, where it is amplified. The 455 kilocycle IF signal is then applied to the IF amplifier stages V9 and V10.

When the RF signal is between 7.4 and 54 megacycles, the HFO signal frequency is such that the frequency produced in the first mixer is 3.955 megacycles. The first mixer output is fed to the second mixer stage V6 through switch S4. A 3.5 megacycle

Figure 2-4. Radio Receiving Set AN/FRR-28, Block Diagram, Diversity Reception of Phone Signals

Figure 2-5. Radio Receiving Sef AN/FRR-28, Block Diagram, Diversity Reception of CW Signals

Figure 2-6. Radio Receiving Set AN/FRR-28, Block Diagram, Diversify Reception of FS Signals, Using IF Type Converfer
signal from either an external source, or from the local 3.5 megacycle oscillator and buffer stage V8, is also applied to the second mixer stage V6 through switch S13. The first mixer output and 3.5 megacycle signal are mixed in the second mixer to produce a 455 kilocycle IF signal, which is applied to the IF amplifier stages V9 and V10.

The 455 kilocycle signal from either tube V6 or V7 is amplified in the amplifier stages V9 and V10, and in the driver stage V11. The output of the driver is fed to three different stages: the IF buffer stage, the AVC stage and the second detector stage. The IF signal from the IF buffer stage V16A is applied to the AmplifierDetector AM-615/UR and Converter-Comparator Group AN/URA-6 if supplied. The AVC stage V14B provides a bias voltage to the RF and IF amplifier stages to maintain an automatic volume control. In diversity reception, the AVC stages of both receivers are combined with AVC switch S15 set in the DIV. position. The second detector stage V14A detects the amplitude modulation of the input RF signal, which is fed through the audio amplifier stage V16B and the audio output amplifier stage V17 to the speaker.

The noise limiter V15A is connected into the circuit by LIMITER switch S6. It provides a limiting action on noise pulses of higher amplitude than the signal.

To modulate a CW signal to produce an audio beat note for monitoring purposes, a beat frequency oscillator signal is provided. Either an external BFO signal
from Oscillator $\mathrm{O}-165 / \mathrm{UR}$ is fed through the external BFO signal amplifier V13B, AVC switch S14, and BFO buffer stage V12 to the second detector input, or the internal BFO signal from the BFO stage V13A is fed through AVC switch S14, and BFO buffer stage V12 to the second detector input.

Meter M1 indicates the relative RF and AF signal strengths. The detected RF signal is applied to the meter through METER switch S11 from the second detector output. The AF signal from the output of the audio output amplifier is applied to the meter through meter rectifier stage V15B and METER switch S11.
c. DETAILED CIRCUIT ANALYSIS. (See figures 7-30 and 7-31.)
(1) RF AMPLIFIERS V1 AND V2.--The RF signal from the antenna is applied to an untuned primary and tuned secondary input transformer through jack J1 of the receiver. The capacitors and transformer that are connected into the circuit for each setting of BAND CHANGE switch S1 are listed in table 2-1.

The selected frequency is tuned in by means of TUNING capacitors C1A and C1B.

The RF signal is fed from the tuned secondary of the input transformer, through coupling capacitor C18, to the grid of the first RF amplifier tube V1. Grid bias voltage is filtered by resistor R 2 and capacitors C19 and.C41, and fed through grid leak resistor R1 to the

TABLE 2-1. TRANSFORMERS AND CAPACITORS PLACED INTO CIRCUIT BY BAND CHANGE SWITCH SI

Band	Frequency Range in Megacycles	Antenna to lst RF Transformer	Capacitors in 1 st RF Input	$\begin{gathered} \text { Ist RF } \\ \text { to } 2 \mathrm{nd} \text { RF } \\ \text { Transformer } \end{gathered}$	Capacitors in 2nd RF Input	$\begin{array}{\|l\|l} \text { 2nd RF to } \\ \text { 1st Mixer } \end{array}$ Transformer	Capacitors in lst Mixer Input	HFO Transformer	HFO Copacitors
1	.54-1.35	L1	C2, C3	L8	C26,C27	L15	C46,C47	L25	$\begin{aligned} & \mathrm{C} 76, \mathrm{C} 77, \mathrm{C} 78, \\ & \mathrm{C} 79, \mathrm{C} 80 \end{aligned}$
2	1.35-3.45	L2	C4, C5	L9	C28, C29	L16	C48,C49	L26	$\begin{aligned} & \text { C79,C80,C81, } \\ & \text { C82 } \end{aligned}$
3	3.45-7.4	L3	C6,C7, C8	$\mathbf{L 1 0}$	C30,C31,C32	$\mathbf{L 1 7}$	C50,C51,C52	L27	$\begin{aligned} & \mathrm{C} 79, \mathrm{C80}, \mathrm{C} 83, \\ & \mathrm{C} 84, \mathrm{C} 85 \end{aligned}$
4	7.4-14.8	L4	C9,C10,C11	L11	C33,C34,C35	L18	C53,C54,C55	L28	$\begin{aligned} & \mathrm{C} 79, \mathrm{C} 80, \mathrm{C} 86, \\ & \mathrm{C} 87, \mathrm{C88}, \mathrm{C} 89 \end{aligned}$
5	14.8-29.7	L5	C12,C13,C14	L12	C36,C37	L19	C56,C57	L29	$\begin{aligned} & \text { C79,C80,C90, } \\ & \text { C91,C92,C93 } \end{aligned}$
6	29.7-54	L6	C15,C16,C17	L13	C38,C39	L20	C58,C59	L30	$\begin{aligned} & \text { C79,C80,C94, } \\ & \text { C95,C96 } \end{aligned}$

grid of tube V1. Screen grid voltage, which is filtered by capacitors C20 and C21, and resistor $R 4$, is fed through voltage dropping resistor R3. Plate voltage is filtered by capacitors C22 and C23, resistors R5 and R6, and choke L7. The RF signal is amplified in the first RF amplifier, and fed through coupling capacitor C24 to an untuned primary and tuned secondary of a transformer. The transformer and capacitors used in the circuit for each position of BAND CHANGE switch S1 are listed in table 2-1. The transformer secondary circuit is tuned to the RF signal frequency by TUNING capacitors C1C and C1D.

The RF signal from the transformer secondary circuit is applied to the grid of the second RF amplifier tube V2 through parasitic suppressing resistor R11 and coupling capacitor C25. Bias voltage is applied to the grid through a filter consisting of capacitors C40 and C41, resistor R12, and grid leak resistor R13. Screen grid voltage is applied through voltage dropping resistor R14 and filtered by bypass capacitor C42. Plate voltage is filtered by choke L14, resistors R15 and R16, and capacitor C43. The amplifier RF signal is fed from the plate of tube V2 through coupling capacitor C44 to an untuned-primary and tuned-secondary transformer. The transformer and capacitors placed into the circuit at each position of BAND CHANGE switch $S 1$ are listed in table 2-1. The transformer secondary circuit is tuned to the RF signal frequency by TUNING capacitors C1E and C1F.

The RF signal from the transformer secondary circuit is fed through parasitic suppressing resistor $R 21$ and coupling capacitor C45 to pin 7 of the first mixer stage V5. The RF signal is mixed with a high frequency oscillator voltage in the mixer to produce an intermediate frequency signal.
(2) EXTERNAL HFO SIGNAL AMPLIFIER V4A AND LOCAL HFO V4B.
(a) GENERAL.-For improvement of image rejection the $R F$ signals above 7.4 megacycles are converted twice to get the 455 kilocycle IF. Since the first conversion is to 3.955 megacycles, the HFO signal applied to the first mixer is 3.955 megacycles higher in frequency than the RF signal. Only single conversion is used for frequencies below 7.4 megacycles, and the HFO signal is 455 kilocycles above RF signal frequency.
(b) EXTERNAL HFO SIGNAL AMPLIFIER V4A.-An external HFO signal from Oscillator O$165 / \mathrm{UR}$ is applied to the receiver through jack J6 and a 455 kilocycle filter. The filter consists of choke L5 ${ }^{8}$, capacitors C162A and C162B, and resistors R111, R112, and R113. The HFO signal is applied to the external HFO signal amplifier tube V4A through coupling capacitor C164. HFO switch S 12 is set to the EXT position. A low negative bias voltage, which is filtered by resistor R118 and capacitors C166 and C181, is applied to the grid through voltage-divider resistors R116 and R117, and grid leak resistor R114. Plate voltage is filtered by resistors R29 and R30, capacitors C71 and C72, and choke L24. The amplified HFO signal is fed from the plate of tube V4A, through coupling capacitor $C 74$, to an untuned-primary and tuned-secondary transformer. The transformer and capacitors placed into the circuit by the position of BAND CHANGE switch S1 are fisted in table 2-1. The transformer secondary circuit is tuned to the HFO frequency by TUNING capacitors C1G and C1H. The HFO signal is fed from the tuned transformer secondary circuit, through coupling capacitors C 75 and C 165 , to pin 1 of the first mixer tube V5. When switch S 12 is in the EXT position, tube $V 4 B$ is biased beyond cut-off by the negative voltage applied to the grid from the rectifier V20 circuit.

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE SPECIFIED.

Figure 2-7. Radio Receiver R-450/FRR-28, Simplified Schematic of First Oscillator for Band 1
(c) LOCAL HFO V4B. (See figures 2-7 and 2-8.) - HFO switch S12 is set to the INT position. Bias for tube V4B is provided by grid leak resistor R22 to ground through switch S12. Capacitor C182 acts to bypass the RF present due to the comparitively long leads used in the circuit. Plate voltage is filtered by choke L24, capacitors C71 and C72, and resistors R29 and R30. The tuned grid-to-cathode circuit consists of the secondary of the transformer, and the capacitors listed in table 2-1, for each setting of BAND CHANGE switch S1. The circuit is tuned by TUNING capacitors C 1 G and $\mathrm{C1H}$. The tuned circuit is coupled to the grid through capacitor C75. The feedback from the plate is provided to the tuned circuit through coupling capaci-
tor C74. The HFO signal is fed from the grid of tube V4B to pin 1 of the first mixer tube V5. When switch S12 is in the INT position, tube V4A is biased beyond cut-off by the negative voltage applied to the grid from the rectifier V20 circuit.
(3) FIRST MIXER V5.-The RF signal from the second RF amplifier V2 is applied to pin 7 of the first mixer stage V5. The HFO signal is applied to pin 1 of tube V5 from either the external HFO signal amplifier tube V4A, or the local HFO tube V4B. Cathode bias for tube V5 is provided by resistor R27 in parallel with bypass capacitor C66. Grid bias for the HFO signal is provided by resistor R115, and for the RF signal by resistor R26. The voltage applied to the second and fourth grids is filtered by resistor R28 and

Figure 2-8. Radio Receiver R-450/FRR-28, Simplified Schematic of First Oscillator for Band 4
capacitors C68 and C73. The plate voltage is filtered by resistor R31 and capacitor C70.

When an RF signal above 7.4 megacycles is preselected in the RF amplifier stages, the HFO signal frequency is 3.955 megacycles higher than the RF signal, and the first mixer tube V 5 plate output is a 3.955 megacycle IF signal. This signal is fed to a circuit tuned to 3.955 megacycles, consisting of the primary of transformer L31 and capacitor C67. The circuit consisting of capacitor C69 and coil L32 presents a low impedance and does not interfere with the transformer T 1 operation.

When an RF signal below 7.4 megacycles is preselected in the RF amplifier stages, the HFO signal frequency is 455 kilocycles higher than the RF signal, and the first mixer plate output is a 455 kilocycle IF signal. This signal is fed to a circuit tuned to 455 kilocycles, consisting of the primary of L32 and capacitor C69.
(4) LOCAL 3.5 MEGACYCLE OSCILLATOR AND BUFFER V8.-When an RF signal above 7.4 megacycles is being received, BAND CHANGE switch S 1 is set to the proper band and switch S 4 is turned to the DOUBLE CONVERSION position by the same dial. Screen grid voltage is cut-off from the gate amplifier tube V7, which is used in single conversion only. Screen voltage is applied to tube V6 and plate voltage is applied to tube V8, which are used in double conversion.

The crystal of the local 3.5 megacycle oscillator is connected between the plate and grid of tube V8A. The signal from grid to cathode is applied by capacitor C101, which is made variable to allow for a slight adjustment of the oscillator frequency. Capacitor C167 provides the plate-to-cathode feedback necessary for oscillator operation. Bias for tube V8A is provided by grid leak resistor R36. Plate voltage is filtered by choke L35, resistors R37 and R38, and capacitors C102, C103, and C104. The 3.5 megacycle signal is fed from the grid of tube V8A, through coupling capacitor C168, to the grid of tube V8B.

The buffer stage V8B provides low impedance output for the 3.5 megacycle oscillator. Grid bias is provided by grid leak resistor R119. Plate voltage is filtered by resistor R120 and capacitor C169. The signal is fed from the cathode end of resistor R121, through coupling capacitor C170, to pin 1 of tube V6.

The 3.5 MC OSC switch S13, mounted on the rear of the receiver, permits receiver flexibility for either single or diversity operation. When switch S13 is in position " 1 ", the local 3.5 megacycle oscillator functions, and the oscillator output is available at jack J 7 . In position " 2 ", the 3.5 megacycle oscillator is disabled by removing plate voltage from tube V8, and the 3.5 megacycle signal must be externally supplied. In position " 3 " of switch $\$ 13$ the oscillator again functions, but no oscillator output is available.

In dual diversity or single receiver operation, jack J7 on both receivers is connected together and switch S13 is set according to table 2-2.

TABLE 2-2. MODES OF OPERATION FOR
DIFFERENT POSITIONS OF SWITCH S13

MODE OF OPERATION	SWITCH SI3 POSITIONS	
	Receiver \# I	Receiver \#2
Diversity: Receiver \# 1 supplying 3.5 Mc signal.	1	2
Diversity: Receiver \#2 supplying 3.5 Mc signal.	2	1
Single Receiver: Each receiver sup- plying own 3.5 Mc signal.	3	3

(5) SECOND MIXER V6.-The 3.955 megacycle signal from the tuned plate circuit of tube V5 is fed through the secondary of L31 to two tuned circuits, consisting of transformer L33 and capacitor C97, and inductor L34 and capacitor C99. Two tuned circuits are used for greater selectivity purposes. The signal is fed to pin 7 of the second mixer tube V6. The 3.5 megacycle signal from either the external source or the local 3.5 megacycle signal oscillator is applied to pin 1 of tube V6. The one-volt bias for pin 7 is filtered by resistor R35 and capacitor C98. Grid bias for pin 1 is supplied by grid leak resistor R122. Voltage to pin 6 is applied through voltage dropping resistor R40 and is filtered by bypass capacitors C102 and C106. Plate voltage is filtered by resistor R41 and capacitors C108 and C109. The two signal inputs to mixer tube V6 are mixed to form an IF difference frequency of 455 kilocycles. This IF signal is fed to the tuned plate circuit consisting of capacitor C107 and transformer L36 primary.
(6) GATE AMPLIFIER V7. - When BAND CHANGE switch S_{1} is set for the reception of signals below 7.4 megacycles, switch S 4 is simultaneously set to the SINGLE CONVERSION position. Screen grid voltage is now applied to the gate amplifier tube V7. Plate voltages for tube V8 and screen voltage for tube V6, which are used in double conversion only, are cutoff, preventing their operation.
The 455 kilocycle signal from the tuned plate circuit of the first mixer stage V5 is fed to the grid of the gate amplifier tube V 7 through the secondary of transformer L32 and grid current-limiting resistor R33. Capacitor C100 bypasses the IF signal to ground. Bias voltage is applied to the grid through grid leak resistors R32 and R34. Screen voltage, which is filtered by capacitors C105 and C102, is fed through voltage dropping resistor R39. Plate voltage is filtered by resistor R41 and capacitors C108 and C109, located in transformer T3. The amplified 455 kilocycle signal is applied to the tuned plate circuit, consisting of capacitor C107 and the primary of transformer L36, also contained in the $T 3$ can.
(7) FIRST IF AMPLIFIER V9.-The IF signal from the tuned plate circuit of the second mixer tube V6, or from the gate amplifier tube V7, is fed by inductive coupling to a circuit which provides three

note: all resistances in omms unless otherwise indicated.
Figure 2-9. Radio Receiver R-450/FRR-28, Simplified Schematic of T3 for 3, 8, and 13 ke Positions
crystal and three non-crystal selectivity positions.
When the SELECTIVITY switch S 5 is in one of the three non-crystal positions, the crystal is shorted out through the switch. See figure 2-9. The signal is fed from the secondary of transformer L36, tuned by capacitors C110 and C112, through the tuned circuit of capacitors C113 and C114 and inductor L37, and through parasitic suppressing resistor R42 to the grid of tube V9.

When switch S 5 is in one of the crystal positions, the signal is fed from the tube V6 plate circuit, through the tuned circuit consisting of transformer L36 secondary and capacitors C110 and C112, through the crystal and the tuned circuit consisting of inductor L37 and capacitors C113 and C114, and through parasitic suppressing resistor R 42 to the grid of tube V 9 . See figure 2-10.

The XTAL PHASING capacitor C111 is used to neutralize the crystal-holder capacity, and to maintain circuit balance so that the neutralization does not effect the resonant frequency of the tuned circuit of capacitors C110 and C112, and the secondary of transformer L36. The phasing control permits high attenuation of closely adjacent channel interference on either side of the signal frequency, when the crystal selectivity positions are used.

Figure 2-10 shows the simplified circuit of T3 when the SELECTIVITY switch S 5 is set to the " 1.3 " kc position. Crystal Y8 has been added to the circuit, and
resistor R 45 has been added in series with coil L37 of the parallel resonant tuned circuit, thus decreasing the impedance of the tuned circuit. This impedance is in series with the crystal circuit. As the series impedance is decreased the selectivity becomes greater. As more resistance is added to the tuned circuit by setting switch S 5 to the " .5 " kc or ".2" kc position, the selectivity is further increased. At the same time, the amplitude of the IF output signal to the grid of V9 is kept fairly constant since the impedance of the parallel tuned circuit decreases with the increase in resistance in the tuned circuit. Capacitors C113 and C114 form a voltage divider. The voltage across C114 is applied to the grid of V9.

Cathode bias for the first IF amplifier tube V9 is provided by voltage divider resistors R128 and R129, and is filtered by capacitor C183. Cathode bias is adjusted by variation of the IF GAIN control R128 on the rear of the receiver. Grid bias is fed through grid leak resistor R 43 and filtered by resistor R 44 and capacitor C115. Screen voltage is applied through voltage dropping resistor R 48 and filtered by capacitor C116. Plate voltage is filtered by resistor R49 and capacitor C118. The amplified IF signal at the plate of the first IF amplifier tube V9 is applied to a tuned circuit, consisting of the transformer primary, L38, and capacitor C117.
(8) SECOND IF AMPLIFIER V10.-The 455 kilocycle IF signal from inductor L38 is inductively

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE INDICATED
Figure 2-10. Radio Receiver R-450/FRR-28, Simplified Schemafic of T3 for 1.3 kc Position
applied to a tuned circuit consisting of inductor L39, capacitors C119 and C120, and one of the tertiary windings. When switch $S 5$ is in the " 3 " kilocycle, or one of the crystal positions, the " 3 " kilocycle winding is used. In the " 8 " kilocycle position, " 8 " kilocycle winding is used, and in the " 13 " kilocycle position the " 13 " kilocycle winding is used. The signal is fed from between the two capacitors C119 and C120, which are a part of the tuned circuit and also function as a voltage divider, to the grid of the second amplifier V10 through parasitic suppressing resistor $R 50$. Grid bias is fed through grid leak resistor R 51 and filtered by resistor R52 and capacitor C121. Screen grid voltage is fed through voltage dropping resistor R 53 and filtered by bypass capacitor C122. Cathode bias is provided by voltage divider resistors R128 and R129, and filtered by capacitor C184. Adjustment of IF GAIN potentiometer R128 varies the cathode bias. Plate voltage is filtered by resistor R 54 and capacitor C123. The IF signal, which is amplified in tube V10, is applied to the plate tuned circuit consisting of inductor L41, and capacitor C124. The signal is inductively fed from this tuned circuit to the tuned grid circuit of the driver stage V11.
(9) DRIVER STAGE V11.-The signal from the tuned plate circuit of tube V10 is applied to the tuned grid circuit of tube V11, consisting of capacitors C125 and C126, and inductor L42. One of the tertiary windings is added into the circuit, the winding used depending upon the position of switch S5. The signal is fed from the tuned grid circuit to the grid of the driver tube V11 through parasitic suppressor resistor R55. A negative ten-volt bias, which is supplied to the grid from the power supply, is filtered by resistor $\mathbf{R} 57$ and capacitors C127 and C128, and through grid leak
resistor R 56 . Screen grid voltage is filtered by resistor R58 and capacitor C129A. Plate voltage is filtered by resistor R 59 , choke L47, and capacitor C129B. The output of the driver stage V11 is fed to the IF output buffer stage V16A, second detector stage V14A, and the AVC stage V14B.
(10) IF OUTPUT BUFFER STAGE V16A. The IF signal is fed from the plate of the driver stage V11 to the grid of the IF buffer output stage V16A through coupling capacitor C145. Bias is provided by grid leak resistor R78. Plate voltage is filtered by resistor R80 and capacitor C146. The output of tube V16A, at the cathode end of cathode resistor R79, is fed to the IF OUTPUT MONITOR jack J2 through coupling capacitor C147 and autotransformer L53.
(11) VOLUME CONTROL CIRCUITS. (See figure 2-11.) -Three methods of volume control are provided in the receiver unit: manual volume control, diversity AVC, and local AVC.

Manual volume control is provided by variation of the RF GAIN potentiometer R93. This potentiometer provides a variation of bias between a negative one volt and a negative fifty volts to the grid circuits of both RF and both IF amplifier tubes, through filtering resistors and capacitors when AVC switch S8 is set to the MAN position.

Diversity AVC, which is applied to and fed from the receiver through switch S15, is filtered by capacitor C175 and inductor L55 before being fed to the RF and IF amplifiers. In diversity operation, the stronger AVC signal will cut off reception in the other receiver.

The local AVC voltage is supplied by AVC tube V 14 B . The IF signal from the plate of the driver tube is applied to the plate of the AVC tube where it is

Figure 2-11. Radio Receiver R-450/FRR-28, Simplified Schematic of AVC Circuif
rectified. A positive bias is provided to the cathode from the regulated 150 -volt supply through voltage divider resistors R 66 and R 68 . This bias causes a voltage delay in the AVC tube rectification until the signal is strong enough to overcome the bias. The rectified current flowing through resistor R61 produces a negative potential at the plate side of the AVC tube. This negative bias is filtered by resistor R60 and capacitor C 140 , and is again filtered by a resistor and capacitor network in the grid circuits of the IF and RF amplifiers.

The time constant of the resistor-capacitor combinations in the AVC circuit must be high enough to completely filter the signal modulation from the AVC signal, leaving only an average voltage which will follow the slow variations in the carrier signal, which are due to fading. Too high a time constant cannot be used since the AVC voltage would not follow rapid fading. The time constant of the AVC circuit is varied by switches S7 and S14.
(12) SECOND DETECTOR V14A.--The IF signal is fed from the plate of the driver tube V11, through coupling capacitor C139, to the plate of the second detector. The modulated IF signal is fed through RF choke L54, which passes only the modulation portion of the signal, to the detector jack J9, and through the link between screws 4 and 5 on E19, resistors $\mathrm{R} 62, \mathrm{R} 63, \mathrm{R} 64$ and R 84 , and coupling capacitor C143, to the grid of the audio amplifier tube V16B. Capacitors C141 and C142 are RF bypass capacitors.
(13) LIMITER V15A.-The output of the second detector, which is the negative portion of the modulated IF signal, is fed through inductor L54. Inductor L54 blocks the high IF signals and passes the lower modulating frequencies through resistor R62 to a parallel connection of resistor R 63 and the limiter tube V15A. When capacitor C144 is connected into the circuit by switch S6, a negative charge equal to the average audio level signal is built up on the limiter plate end of the capacitor. When a pulse noise signal, whose amplitude is greater than the negative charge, is applied across R63, the cathode of the limiter will become negative in respect to its plate, since the time constant of resistor R67 and capacitor C144 is large. The tube will conduct and thereby limit the noise.
(14) AUDIO AMPLIFIER V16B.-The signal voltage from the second detector is voltage fed through coupling capacitor C143, and the AUDIO GAIN potentiometer R84 to the grid of the audio amplifier tube V16B. If an external phone signal is fed to terminal E1, it is fed through potentiometer R84 to the grid of tube V16B. Cathode bias is provided by resistor R83. Plate voltage, which is filtered by resistor R82 and capacitor C148, is fed through plate load resistor R81. The amplified audio signal is fed from the plate of tube V16B to the audio output amplifier tube V17.
(15) AUDIO OUTPUT AMPLIFIER V17.-The audio signal is applied from tube V16B, through coupling capacitor C 149 , to the grid of the audio
amplifier tube V17. Bias for the tube is provided by grid leak resistor R98 and by cathode resistor R99 in parallel with bypass capacitor C151. The audio output amplifier amplifies the audio signal, which is then applied across the primary of transformer T7 and capacitor C150. The secondary of transformer T7 applies the signal to terminal board E2 and phone jack J3.
(16) BEAT FREQUENCY OSCILLATOR V13A. (See figure 2-12.)-When AVC switch S4 is in either of the INT BFO positions, tube V13B is inoperative due to the high negative bias applied to the grid through resistors R124 and R127. The oscillator tuned circuit between grid and cathode consists of capacitors C130, C131, and C132 and inductors L44, L45, L46. Feedback from the plate is provided through coupling capacitor C133. Grid coupling capacitor C134 couples the grid to the oscillator circuit. The cathode coupling is effected through ground. The signal output is tapped between capacitor C132 and inductor L46 which serve as a voltage divider to reduce the load effects on the oscillator. Inductor $L 46$ also provides a dc path to ground for the grid of tube V12. Bias for tube V13A is provided by grid leak resistor R75. Plate voltage for both sections of tube V13 is filtered by resistor R77 and capacitor C136, and fed through load resistor R76 and switch S 7 when in the CW position.
(17) EXTERNAL BFO AMPLIFIER V13B.When switch S14 is in either of the EXT BFO positions, the bias for tube V13B is applied at normal operating level through voltage divider R127, R125, R126 and isolating resistor R124, and the bias obtained from the power supply through resistor R127 for tube V13A drives it beyond cut-off. An external BFO signal is applied to the grid of tube V13B through EXT BFO jack J8 and coupling capacitor C171. Resistor R123 is used to match the impedance of the coaxial line feeding the BFO signal into the receiver. The amplified external BFO signal in the plate circuit is directly coupled to the plate of tube V13A.
(18) BFO BUFFER V12.-The BFO signal from either section of tube V13 is fed to the grid of BFO buffer stage V12 through a divider network, consisting of capacitor C132 and inductor L46 and through a shielded lead which prevents the BFO signal from radiating and effecting the IF signal. A variable bias and degenerative feedback voltage is provided by BFO INJECTION potentiometer R74. Screen grid voltage is fed through voltage dropping resistor R100 and filtered by bypass capacitor C135. The plate of the BFO buffer tube V12 is coupled directly to the plate of the driver tube V11, so that both the BFO signal and the IF signal are applied to the second detector tube V14A.
(19) METER M1.-The meter M1 is used as an indicator of relative RF and AF signal strength. When METER switch S11 is in the RF position, the meter is connected across part of voltage divider R65, R 69 , and R102 which, along with R62, R63, and R64, form the second detector tube V14A plate load. The METER ADJ RF potentiometer R69 is used to set the meter to

Figure 2-12. Radio Receiver R-450/FRR-28, Simplified Schematic of BFO Circuif
read plus 20 db on the RF scale when a ten-microvolt signal is applied to the receiver.
(20) OUTPUT METER RECTIFIER V15B.When switch S11 is in the AF position, the audio signal from across terminals 1 and 4 of the transformer T7 secondary is fed through resistors R70 and R101, rectified in the output meter rectifier stage V15B, and then applied across meter M1. The METER ADJ AF potentiometer R101 provides adjustment of the zero db reading on the AF scale, which is made when the AF output power applied to the meter is six milliwatts, or 1.9 volts across a $600-\mathrm{ohm}$ load.
(21) POWER SUPPLY V18, V19, AND V20.Power is applied to the receiver through plug P1 and fuse F 1 to the primary of power transformer T8. Capacitors C152A and C152B are RF filter capacitors. Transformer T8 secondary terminals 13 and 14 apply the a-c power to the cathode of rectifier tube V19, while terminals 12 and 10 apply a-c power to the plates. The center tap, terminal 11 , of the secondary winding, which feeds the plates of tube V19, is grounded through fuse $\mathbf{F} 2$. The rectified positive voltage is filtered by chokes L51 and L52, and capacitors C161A, C 161 B and C 161 C , and regulated by voltage regulator tube V18. Resistor R85 is a plate load for tube V18. This circuit provides a regulated positive 150 volts.

Terminals 10 and 12 of transformer T8 also provide a-c power to the cathodes of the tube V20. The plates are tied together and the output rectified voltage is filtered by resistors R90, R91 and R92, and capacitors C158, C159 and C160. The negative voltage is used for negative biasing of various tubes in the receiver. Terminals 15 and 16 of transformer T8 provide 6.3 volts a-c to lamps I1, I2, I3 and I4, to the filaments of tubes V3, V7, V9, V10, V11, V12, V13, V14, V15, V16, V17 and V20, and to the 6.3 volt connection on terminal board E19. Terminals 17 and 18 of transformer T8
provide a $7.5 \mathrm{a}-\mathrm{c}$ voltage, which is filtered by capacitors C156 and C157, and choke L50, to the filaments of tubes V6 and V8. Terminals 19 and 20 of transformer T8 provide 7.5 volts, filtered by capacitors C153, C154 and C 155 , and chokes L48 and L49, to the filaments of tubes V1, V2, V4 and V5. The 7.5 volts is necessary to compensate for the 1.2 volts loss in each of filter chokes L48, L49, and L50, and leave 6.3 volts for the tubes.
(22) AUXILIARY EQUIPMENT.-An a-c outlet is provided for the use of an accessory such as a lamp or electric clock.

The SEND-REC switch S9 is used to desensitize the receiver during transmission time by removing plate and screen voltage from V1 and V2, screen voltage from V6 and V7, and plate voltage from V8B, but leaves the power on to provide for instant reception between transmitting periods. Jack J4 is provided to allow for remote SEND-REC relay control of the receiver.

4. RADIO FREQUENCY OSCILLATOR O-165/UR.

a. GENERAL.-The Radio Frequency Oscillator O-165/UR is used, in diversity reception, to supply a common HFO voltage and a common BFO voltage to both receivers. In individual receiver operation, the Oscillator O-165/UR provides a stable and accurate HFO and BFO voltage to the receiver.
b. BLOCK DIAGRAM DESCRIPTION. (See figure 2-13.)-The variable HF oscillator tube V1 produces a signal which can be varied in frequency between two and four megacycles. This signal is fed through buffer stage V2 to switch S6. One of three crystals in the crystal oscillator V10A applies a fixed frequency to switch S6. The variable frequency signal, or one of the crystal frequency signals, is fed from switch S6 to the buffer amplifiers V10B and V12, where it is amplified. The amplified HF signal is applied to the frequency multiplier stages V4, V5 and V11. Table 2-3 lists the output frequency range of each stage of the frequency multipliers, and of the entire high frequency section of the Oscillator O-165/UR when switch $S 7$ is turned to each position.

TABLE 2-3. FREQUENCY RANGE OF FREQUENCY MULTIPLIER SECTIONS

Position of Switch 57 and HF Output Freq. Range (Mc)	Output Range of First Fre- quency Multi- plier V4 (Mc)	Output Range of Second Fre- quency Multi- plier V5 (Mc)	Output Range of Third Fro- quency Multi- plier V11 (Mc)
$2-4$	$2-4$	-	-
$4-8$	$4-8$	-	-
$8-16$	$4-8$	$8-16$	-
$16-32$	$4-8$	$8-16$	$16-32$

Oscillator O-165/UR is equipped with a 100 Kc crystal oscillator calibrator which is used for calibration of the variable oscillator tube V1 fundamental fre-

Figure 2-13. Radio Frequency Oscillator O-165/UR, Block Diagram
quency of two to four megacycles. The calibrator provides heterodyning signals at the twenty main check points which are spaced at 100 Kc intervals and at the sub-check points which lie approximately half way between the main check points. Calibration at these check points is accomplished by zero beating the heterodyning signals. Other heterodyning signals are produced at random frequencies and are not used for calibration purposes. These signals are considerably weaker and can be easily distinguished from the main and sub-check point signals. Calibration curves are provided which cover the range between each main and sub-check point.

The calibration frequency is produced and mixed with the variable oscillator frequency in the calibrator oscillator-mixer tube V3. The beat frequency output of tube V3 is amplified in calibrator amplifier tube V6 and fed to a pair of headphones.

A beat frequency signal is produced in the crystal BFO stage V9A. This frequency is fed through the buffer stage V9B to the receiver.

The power supply converts the external available power to power suitable for use in the RF oscillator.
c. DETAILED CIRCUIT ANALYSIS. (See figure 7-32.)
(1) VARIABLE OSCILLATOR V1.-The variable
oscillator is a grounded plate Hartley circuit. The tuned circuit consists of the main tuning capacitor $\mathrm{C1}$, fixed capacitor C56, trimmer capacitor C2, inductor L3, and slug-tuned inductor L2. One tap on inductor L3 is connected to the grid of tube V1 through coupling capacitor C3 and grid leak resistor R1. A second tap on inductor L3 is connected to the cathode of grid V1. The plate voltage is filtered by resistor R2 and capacitor C4. The ground side of the filament circuit for V1 is connected to the cathode. The circuit consisting of coil L8 and capacitor C57 acts as a filter for the filament circuit to prevent undesirable feedback.
(2) VARIABLE OSCILLATOR BUFFER V2.The buffer stage V2 has a high input impedance to prevent variations of frequency in the oscillator due to load variations. The oscillator output voltage from the cathode of tube V1 is applied to the grid of tube V2 through coupling capacitor C5. Capacitors C5 and C30 act as a voltage dividing network for the voltage input to the buffer. Resistor R3 is a grid leak resistor for tube V2. The plate voltage is filtered by capacitor C46 and resistor R4. The output from the cathode of tube V2 is ${ }^{a}$ applied to contact MO of section C of switch S6.
(3) CRYSTAL OSCILLATOR V10A. (See figure 2-14.)-When the HFO XTAL selector switch S6 is set into position " 1 ", "2" or " 3 ", one of the crystals in

NOTE ALL RESISTANCES IN OHMS UNLESS OTHERWISE SPECIFIED.

Figure 2-14. Radio Frequency Oscillator O-165/UR, Simplified Schematic of Crystal HFO Circuit
crystal holders XY15, XY16 and XY17 is placed into the circuit of tube V10A. The bias is supplied by grid leak resistor R15. Variable capacitor C6 provides the grid-to-cathode signal, and is used to vary the crystal oscillator frequency slightly. Capacitor C25 provides feedback to the cathode, and capacitor C7 is a d-c blocking condenser between the plate and the crystal. The plate voltage is filtered by resistor R17 and capacitor C11. The output of the oscillator is applied to contacts
" 1 ", " 2 " or " 3 " of section C of the HFO XTAL selector switch S6.
(4) BUFFER AMPLIFIERS V10B AND V12.The signal from the crystal or variable oscillator is applied to the grid of buffer amplifier tube V10B through section C of switch $S 6$ and coupling capacitor C12. Bias for the tube is supplied by grid leak resistor R16 and by cathode resistor R59 in parallel with bypass condenser C50. Plate voltage for tube V10B is fed from the power supply through the HFO ON-OFF switch S2, and is filtered by resistor R18 and capacitor C39. The output of tube V10B is applied to the second buffer amplifier V12 through coupling capacitor C61. Bias is supplied for this tube by cathode bias resistor R29 in parallel with bypass capacitor C62, and by grid leak resistor R63. Plate and screen voltages from the power supply are fed through the HFO-ON-OFF switch $\$ 2$. Resistor R61 is the plate load resistor; resistor R62 is the screen grid voltage-dropping resistor, and capacitor C63 is the screen grid bypass. The output of the second buffer amplifier is applied to the frequency multipliers.

(5) FREQUENCY MULTIPLIERS V4, V5

 AND V11.(a) GENERAL.-Since the frequencies of the HF variable and crystal oscillators are between two and four megacycles, it is necessary to use frequency doubler stages V4, V5 and V11 to provide the entire frequency range of the unit. Each frequency doubler stage is an amplifier whose output is tuned to twice the input frequency to the grid.
(b) 2-4 MEGACYCLES. (See figure 2-15.)FREQUENCY RANGE switch 57 is set to " $2-4$ " megacycles. The output of the second buffer amplifier is fed to the grid of the first frequency multiplier tube V4 through coupling capacitor C23. Bias for the tube is

Figure 2-15. Radio Frequency Oscillator O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch in " $2-4$ " Position
supplied by cathode resistor R 21 in parallel with bypass capacitor C20, and by grid leak resistor R23. The screen grid voltage from the power supply is fed through resistor R53, HFO OUTPUT potentiometer R25, and resistor R20. Resistor $\mathbf{R} 46$ is a screen bleeder resistor. Capacitor C21 is the screen bypass. Plate voltage is applied from the power supply through the primary winding of inductor L4, and is filtered by resistor R19 and capacitor C22. Capacitor C64 is a d-c blocking capacitor for the OUTPUT FREQUENCY capacitor C24A, and the trimmer capacitor C36. The tank circuit, which is tuned to the fundamental HF oscillator frequency, consists of inductor L4 and capacitors C36, C64, C24A, and C22. The secondary of inductor $L 4$ supplies the two to four megacycle signal to the output connectors. The screen of tube V5 is connected to ground through resistor R 24 and switch S 7 C , and the screen of tube V11 is disconnected, causing both tubes to become inoperative.
(c) 4-8 MEGACYCLES. (See figure 2-16.)FREQUENCY RANGE switch S7 is set to "4-8" megacycles. The cathode, grid, and screen connections for tube V4 are the same in operation of four to eight megacycles as in two to four megacycles. The plate voltage is filtered by resistor R54 and capacitor C38. The plate voltage from the power supply is fed through the primary of inductor L5. Capacitor C64 is a d-c blocking capacitor. The tuned circuit, consisting of the primary of inductor L 5 , main tuning capacitor C24A, trimmer capacitor C36, C64, and C38 is tuned to twice the frequency of the signal applied to the grid of tube V4. The secondary of inductor L5 applies the four to eight megacycle voltage to the Oscillator O-165/UR output. Tubes V5 and V11 are inoperative.
(d) 8-16 MEGACYCLES. (See figure 2-17.)FREQUENCY RANGE switch S7 is set to " $8-16$ " megacycles. The grid, cathode, and plate connections of tube V4 are the same as in "4-8" megacycle operation. The screen grid voltage is applied through resistors R53, R25, R46 and R20. The plate of tube V4 feeds the four to eight megacycle signal to the grid of tube V 5 through coupling capacitor C26. Bias for tube V5 is provided by grid leak resistor R27, and by cathode resistor R 55 in parallel with capacitor C15. Screen voltage is applied through resistors R24, R25 and R53, and is filtered by capacitor C29. Capacitor C65 provides a d-c block to main tuning capacitor C 24 B and trimmer capacitor C35. Plate voltage, which is filtered by resistor R30 and capacitor C27, is fed through the primary of inductor L6. The resonant plate circuit, consisting of capacitors $\mathrm{C} 24 \mathrm{~B}, \mathrm{C} 35, \mathrm{C} 65$, and C 27 , and the primary of inductor L6, is tuned to twice the frequency supplied to the grid of tube V5. The doubled frequency is fed to the output connectors from the secondary of inductor L6, and is also applied to the grid of tube V11. However, tube V11 is inoperative because the screen grid is disconnected.
(e) 16-32 MEGACYCLES. (See figure 2-18.)FREQUENCY RANGE switch $S 7$ is set to " $16-32$ " megacycles. The connections to tubes V4 and V5 are the same as in " $8-16$ " megacycle operation. The output from the plate of tube V5 is applied to the grid of tube V11 through coupling capacitor C28. Bias for tube V11 is supplied by grid leak resistor R28, and by cathode resistor R56 in parallel with capacitor C33. Resistor R49 acts as a parasitic suppressor. Screen voltage is applied through resistors R26, R25 and R53, and

Figure 2-16. Radio Frequency Oscillator O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch in " $4-8$ '' Position

Figure 2-17. Radio Frequency Oscillator O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch in " 8 -16"' Position
is filtered by capacitor C32. Capacitor C66 blocks the plate voltage from main tuning capacitor C24 and trimmer C34. Plate voltage is filtered by resistor R36 and capacitor C31. The tuned plate circuit, consisting of capacitors C34, C24C, C66, and C31, and the primary of inductor L 7 , is tuned to twice the frequency of the signal applied to the grid of V11. The doubled frequency is applied to the output connectors from inductor L7 secondary.
(6) CRYSTAL BEAT FREQUENCY OSCILLATOR V9A. (See figure 2-19.)-One of the crystals is placed into the beat-frequency oscillator circuit by switch S8. Plate voltage from the power supply is fed through meter shunt resistor R34, BFO ON-OFF switch S3, and plate load resistor R37. The plate voltage is filtered by resistor R40 and capacitor C53. Capacitor C55 feeds part of the signal from plate to ground, while capacitor C37 provides the grid excitation. Bias is supplied by grid leak resistor R35. The beat-frequency signal is applied from the plate of tube V9A to the grid of tube V9B through coupling capacitor C52.
(7) BFO BUFFER V9B.-The buffer V9B, for the beat-frequency oscillator, offers a high impedance to the oscillator. This prevents load effects from varying the oscillator frequency. The oscillator signal is applied to the buffer tube V9B grid. Bias is provided by grid
leak resistor R22. Plate voltage is filtered by resistor R39 and capacitor C51. The cathode load is potentiometer R38. The BFO output amplitude to jacks J9, J 10 and J 11 is varied by the arm of potentiometer R38.
(8) CRYSTAL CALIBRATION OSCILLATOR MIXER V3. (See figure 2-20.)-A 100 kilocycle crystal oscillator is used to calibrate the variable oscillator frequency.

Crystal Y1 is connected between the first grid, which is the oscillator grid, and the fourth grid of tube V3, which is the oscillator anode Capacitor C17 provides feedback to the cathodes, Capacitors C16 and C49 provide the grid excitation. Bias for the oscillator is provided by grid leak resistor R8 and by cathode resistor R7 in parallel with capacitor C18.

The output of the variable oscillator buffer stage V2 is applied to the third grid of tube V3 through coupling capacitor C 9 . The crystal calibration frequency and the variable oscillator frequency are mixed in tube V3 to produce a different beat signal. Bias for the variable oscillator signal is provided by grid leak resistor R6 and by cathode resistor R7, in parallel with the bypass capacitor C18. Tube V3 plate voltage is filtered by resistor R50 and capacitors C13 and C40. The plate load is resistor R48. The output of tube V3 is applied to the calibrator amplifier V6.

Figure 2-18. Radio Frequency Oscillafor O-165/UR, Simplified Schematic, FREQUENCY RANGE MC Switch in "16-32" Position

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE SPECIFIED.

Figure 2-19. Radio Frequency Oscillator O-165/UR, Simplified Schematic of Crystal BFO Circuit
(9) CALIBRATOR AMPLIFIER V6.--The beat signal output is fed from the plate of tube V3 to the grid of tube V6 through coupling capacitor C19 and CAL OUTPUT potentiometer R42. Bias is supplied by
unbypassed cathode resistor R43. Plate voltage is applied through load resistor R44. The amplified signal is fed from the plate of tube V6 to a parallel connection of CAL OUTPUT jack J6 and resistor R45 through coupling capacitor C41.
(10) POWER SUPPLY V8 AND V9.-The external a-c power is applied through jacks $J 1$ and $J 12$, plugs P1 and P12, fuses F1 and F2 and POWER switch S 1 to the primary of transformer T 1 . The secondary winding terminals 7 and 8 supply filament voltage for all the tubes in the RF oscillator, and for pilot light 11, which is in series with R41.

Since the pilot light circuit is in parallel with the filament line, resistor R41 serves to limit the current in the light 11 circuit. Secondary winding terminals 9 and 11 are connected across the plate of full-wave rectifier tube V8, and terminals 5 and 6 are connected across the filament of the tube. The rectified voltage output of tube V8 is filtered by capacitors C44, C45 and C47, and choke L1. For stable voltage from the power supply, voltage regulator tube V7 is provided. The plate load is resistor R47. Plate and screen voltages are supplied from this regulated voltage.
(11) METER M1.-METER SELECTOR switch S5 is used to connect the meter into various circuits. Table $2-4$ gives the meter readings at each setting of the switch S5.

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE INICATED.
Figure 2-20. Radio Frequency Oscillator O-165/UR, Simplified Schematic of Calibrator Oscillator-Mixer

THEORY OF

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE INDICATED

Figure 2-21. Radio Frequency Oscillafor O-165/UR, Simplified Schematic, Temperature Control Circuif

TABLE 2-4. METER READINGS FOR VARIOUS POSITIONS OF SWITCH S5

POSITION OF SWITCHES	METER READING
HFO	Plate current of variable oscillator tube V1. Plate current of beat frequency oscilla- lator tube V9A.
BF OUT	Rectified high frequency output signal current. Rectified beat frequency output signal current.

Since the HFO and BFO outputs are ac, they cannot be read directly on the d-c meter, making it necessary to rectify the a-c outputs. The HFO output is applied to crystal rectifier CR1 through coupling capacitor C8. The meter is shunted by resistor R31. The rectified output of the crystal is filtered by capacitor C43 and then applied to the meter. The BFO output is applied through coupling capacitor C10 to
crystal rectifier CR2 and shunt resistor R32. The rectified output of crystal CR2 is filtered by capacitor C48 and then applied to the meter.
(12) TEMPERATURE CONTROL. (See figure 2-21.)-Three ovens in RF Oscillator O-165/UR are provided to control the temperature. The ovens control the temperature of the variable oscillator V1, buffer tube V 2 , and the calibrator oscillator mixer tube V3. Power is applied to the inner and middle ovens from the POWER switch S1. The outer oven consists of insulation only and uses no power.

When the temperature of the middle oven goes below $60^{\circ} \mathrm{C}$. $\left(140^{\circ} \mathrm{F}\right.$.) thermostat M2 opens and relay K1 is energized. Pilot light I2, in series with resistor R52, middle oven heater resistors R11, R12, R13 and R14, and inner oven resistors R5, R57, R65, and R66 are connected into the circuit. Resistors R58 and R64 are added to drop the voltage to the inner oven resistors when operating from a 220 volt source.

When the temperature of the middle oven goes above $60^{\circ} \mathrm{C}$. $\left(140^{\circ} \mathrm{F}\right.$.), the main thermostat M2 closes. This shorts out relay K 1 , causing it to be de-energized. No current flows through the heater resistors of both ovens or the OVEN HEATER pilot light I2.

Thermostat S 9 is provided to prevent overheating of Oscillator $\mathrm{O}-165 / \mathrm{UR}$ when thermostat M2 or relay K1 fails to function. Thermostat S9 opens the circuit at a slightly higher temperature than thermostat M2.

5. AMPLIFIER-DETECTOR AM-615/UR.

a. GENERAL.-The Amplifier-Detector AM-615/ UR is used in the Radio Receiving set AN/FRR-28 to monitor the IF frequency of each receiver. It is particularly useful in tuning the receivers to the input frequencies.
b. BLOCK DIAGRAM DESCRIPTION. (See figure 2-22.) - The IF signal from one of the receivers is amplified in the input amplifier stage V1 of AmplifierDetector AM-615/UR. An IF signal is locally produced and mixed with the amplified IF signal in the oscillator and mixer stage $V 2$. The audio beat frequency tone, which is formed in tube V2, is amplified in the output amplifier stage V4 and fed to a pair of headphones for monitoring purposes. The power supply converts the available power to suitable power for use in AmplifierDetector AM-615/UR.
c. DETAILED CIRCUIT ANALYSIS. (See figure 7-33.)
(1) INPUT AMPLIFIER STAGE V1.-The 455 kilocycle IF signal from each receiver is applied to the Amplifier-Detector AM-615/UR jacks J2 and J4. One of the two input signals is switched into the monitor circuit by setting the INPUT SELECTOR switch S2 to "CH 1" or "CH 2". This sample IF frequency is fed through coupling capacitor $C 7$ to the grid of the input amplifier tube V1. Stage V1 is an untuned voltage amplifier. Grid leak bias is provided by resistor R1, and cathode bias is provided by resistor R 2 in parallel with bypass capacitor C1. The plate and screen voltages are filtered by resistor R7 and capacitor C3. Plate voltage is applied through load resistor $R 4$, and screen voltage is applied through divider resistors R3 and R19. Capacitor C2 is the screen bypass capacitor. The amplified IF signal is fed from the output of stage V1, through coupling capacitor C 4 , to the oscillator mixer tube V2.
(2) OSCILLATOR-MIXER STAGE V2. (See figure 2-23.)-The oscillator-mixer is a pentagrid tube in which a local oscillator frequency is produced and mixed with the IF frequency to form an audio beat note.

The local IF signal is produced in a tuned grid, plate tickler oscillator circuit. The tuned circuit, consisting of capacitors C22, C23 and C24, and the primary of transformer $T 2$, is connected berween ground and pin 5 of tube V2. The feedback signal, necessary to maintain oscillation, is fed to the secondary of transformer T2 from pin 4 of tube V2. The voltage to pin 4 is filtered by capacitor C11 and resistor R16.

The signal from tube V1 is applied to pin 8 of tube V2. Grid leak resistor R5 provides grid bias. Cathode bias is provided by resistor R 6 in parallel with bypass capacitor C6. Plate voltage, which is filtered by resistor $\mathrm{R8}$ and capacitor C14, is fed through load resistor $R 9$. The IF signal is mixed with the local oscillator signal to produce audio beat frequency at the plate output. The audio frequency is passed through an RF filter, consisting of choke L2 and capacitors C12 and C21, and through coupling capacitor C13 to the output amplifier V4.
(3) OUTTPUT AMPLIFIER V4.-The amplitude of the audio beat frequency applied to the output amplifier V4 is varied by the OUTPUT LEVEL potentiometer R11. Bias for the tube is supplied by cathode resistor $\mathbf{R} 12$. The amplified audio signal is fed through coupling capacitor C17 to a parallel connection of terminal board E1, OUTPUT MONITOR jack J1, and resistor R17. The output signal is about five volts ac across 4,000 ohm headphones.
(4) POWER SUPPLY V3 AND V5.-The primary of transformer T1 is connected to either a 110 or 220 volt a-c source. There are three secondary windings on the transformer. Terminals 5 and 7 provide 6.3 volts to the filaments of tubes V1, V2 and V4. Terminals 9 and 11 are connected to the plates of tube V3, and terminals 8 and 12 are connected to the cathodes of tube V3. The a-c voltage is rectified in tube V3 and

Figure 2-22. Amplifier-Detector AM-615/UR, Block Diagram

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE INDICATED.

Figure 2-23. Amplifier-Detector AM-615/UR, Simplified Schematic, Oscillator-Mixer Circuif
filtered by capacitors C18, C19 and C20, and by chokes L1 and L2. The rectified voltage is regulated by tube V5 whose plate load is resistor R14.

6. KEYER KY-79/UR.

a. GENERAL.-The Keyer KY-79/UR provides a keyed audio tone of a selected frequency for use in a circuit external to the receiving set. The keying signal supplied to Keyer KY-79/UR is combined with a locally produced tone to form a tone signal which is keyed on and off. The keyed tone signal is used for remote keying of a radio transmitter or teletypewriter, and for monitoring purposes.
b. BLOCK DIAGRAM DESCRIPTION. (See figure 2-24.) -The keying input signal is applied to the keyer circuit, consisting of tubes V6, V7, V10 and V11, where it is converted to suitable keying control voltage for the output stage. The control voltage is amplified in the keying amplifier tube V5, and fed to the output amplifier stage V4. An audio tone produced in the oscillator tubes V1 and V2 is also applied to the output amplifier stage V4. The keying control voltage keys the audio tone in tube V4 on and off. The power supply converts the available electrical power to power suitable for use in Keyer KY-79/UR.

c. DE'TAILED CIRCUIT ANALYSIS. (See figure

 7-34.)(1) KEYING CIRCUIT V6, V7, V10 AND V11.Four different types of keying signals can be applied to Keyer KY-79/UR to key the tone signal: positive polar keying, in which a positive voltage is applied to represent the mark condition and zero voltage to represent the space condition; negative polar keying, in which a negative voltage is applied to represent the mark condition and zero voltage to represent the space condition; keyed tone, in which an audio frequency voltage is applied to represent the mark condition and no signal to represent the space condition; polar relay keying, in which a single-pole double-throw relay is connected to ground one terminal to represent the mark condition, and to ground a second terminal to represent the space condition. Since the keying circuit functions differently for each type of keying signal, they are discussed separately.
(a) POSITIVE POLAR KEYING. (See figure $2-25$.) -When a positive polar keying signal is applied to Keyer KY-79/UR, KEYING LEVEL switch S2 is set to the $\mathrm{DC}+$ position.

Plate voltage is applied to tube V6A through plate load resistor R44 and voltage divider resistors R39 and R40. Resistor $\mathbf{R} 48$ limits the grid current and resistor R49 is a grid leak. Cathode bias is applied through voltage divider resistors $R 56$ and R47.

When no signal is applied to the grid, no plate current will flow in tube V6A since the tube is normally cut-off. Current flowing through the circuit, consisting of neon tube V10 and resistors R40, R44 and R41, will drive the grid of V5 positive.

When a keying signal is impressed on the grid of tube V6, plate current flows through resistors R40 and R44. The voltage drop in these two resistors reduce the voltage across neon tube V10 sufficiently to extinguish it. When tube V10 is not conducting, the grid of tube V 5 is at zero potential.

When no signal is impressed on Keyer KY-79/UR, a positive voltage is applied to the grid of tube V5 from the keying circuit. When signal is impressed on Keyer KY-79/UR, no grid voltage is applied to tube V5.
(b) NEGATIVE POLAR KEYING. (See figure 2-26.)-KEYING LEVEL switch $S 2$ is turned to the

Figure 2-24. Keyer KY-79/UR, Block Diagram

DC - position when a negative polar keying signal is being received by Keyer KY-79/UR.

Plate voltage for both sections of tube V6 is supplied from divider resistors R39, and R40, through plate load resistor R44 to the plate of tube V6A, and through plate load resistor R 45 to the plate of tube V6B. Resistor R48 limits the grid current, and resistor R49 is a grid leak bias resistor for tube V6A. The cathode of tube V6A is connected directly to ground through switch S2B. Cathode bias for tube V6B is supplied from voltage divider resistors R51 and R52.

When no keying signal is applied to the grid of tube V6A, the tube conducts and plate current flows through resistors R44 and R40. Due to the voltage drop in these resistors, no current flows in tube V10. Since tube V6B is biased beyond cut-off by resistors R51 and R52 when no positive voltage is applied to its grid, it will not conduct. The current flowing through resistors R40, R45 and R42, and neon tube

V11, causes the grid of tube V5 to become positive. When a negative keying signal is applied to the grid of tube V6A, the tube stops conducting. Current flows through resistors R40, R44 and R41, and neon tube V10, causing the grid of tube V6B to become positive. The plate current of tube V6B flowing through resistors R 45 and R 40 causes tube V11 to cut off: The positive voltage to the grid of tube V5 is thereby removed.

When no keying signal is applied to Keyer KY79/UR, a positive voltage is applied to the grid of tube V5. When a negative signal is applied to Keyer KY79/UR, no voltage is applied to the grid of tube V5.
(c) KEYED TONE. (See figure 2-27.)-When a keyed tone signal is applied to Keyer KY-79/UR, the KEYING LEVEL switch S2 is turned to the TONE position.

When a tone signal is fed into the primary of transformer T3, the secondary output is rectified in tube

NOTE: ALL RESISTANCES IN OHMS UNLESS OTHERWISE INDICATED

Figure 2-25. Keyer KY-79/UR, Simplified Schematic, Positive Polar Keying

Figure 2-26. Keyer KY-79/UR, Simplified Schematic, Negative Polar Keying

V7. Resistor R32 is the plate load of tube V7. The rectified tone is filtered by capacitor C13 and applied to the grid of tube V6A through current limiting resistor $R 48$. The grid input is sufficient to overcome the cut-off bias from grid leak resistor R26, and cathode resistor R 47 , to cause tube V6A to conduct. The voltage drop in resistors $R 44$ and $R 40$, due to the plate current of tube V6A, extinguishes tube V10. When tube V10 does not conduct, the voltage drop across $R 41$ and the grid potential of tube V5 becomes zero.

When the keyed tone input signal is off, no voltage is applied to the grid of tube V6A and it will not conduct. Current flows through resistors R40, R44 and R41, and neon tube V10, causing the grid of tube V5 to become positive.

When a keyed tone signal is applied to Keyer KY79/UR, no grid voltage is applied to tube V5, and when no signal is applied, a positive voltage is applied to the grid of V5.
(d) POLAR RELAY KEYING. (See figure 2-28.)-When polar relay keying mark and space signals are applied to Keyer KY-79/UR, the KEYING LEVEL switch S2 is turned to the RELAY position.

When a mark signal is applied to Keyer KY-79/UR, the grid of tube $V 5$ is grounded through the external relay and terminals DC and G of terminal board E1. Tubes V6A, V6B, V10, and V11 are normally used to control the grid potential of tube V5. These tubes have no effect on the operation of tube V5 when a polar
relay mark signal is received since the grid of tube V5 is alrèady grounded.

When a space signal is applied to Keyer KY-79/UR, the grid of tube V6B is connected to ground through resistor $R 54$, the external relay, and terminals 1 and 2 of terminal board E1. When the grid of tube V6B is grounded, it will not conduct since it is biased beyond cut-off. The current flowing through resistors R40, R42 and R45, and neon tube V11, produces a positive voltage on the grid of tube V5. Tubes V6A and V10, which normally establish the grid potential of tube V6B, have no effect on the circuit operation because the grid of tube V6B is already grounded.

When a mark signal is applied to Keyer KY-79/UR, the grid of tube V5 is at zero potential, and when a space signal is applied, the grid of tube V5 is positive.
(2) KEYING AMPLIFIER V5. (See figure 2-29.) -The keying amplifier tube V5 applies the keying signal to the output amplifier tube V4, by driving the output amplifier beyond cut-off when a space signal is applied to Keyer KY-79/UR.

When a mark signal is applied to Keyer KY-79/UR, the grid of tube V5 is at zero potential. Since tube V5 is biased beyond cut-off, no plate voltage will flow through cathode resistor R 37 . Tube V4, which is normally conducting, will provide an audio tone to the Keyer KY-79/UR output.

When a space signal is applied to Keyer KY-79/UR, the grid of tube $V 5$ is driven sufficiently positive to

Figure 2-27. Keyer KY-79/UR, Simplified Schematic, Keyed Tone Input.
cause it to conduct. The plate current of tube V5 produces a voltage drop in common cathode resistor R37, causing the cathode of tube V4 to become positive. Tube V4 stops conducting, and no audio tone is provided to the Keyer KY-79/UR output.
(3) OSCILLATOR V1 AND V2. (See figure 2-30.) -The Keyer KY-79/UR audio oscillator is of the Wien-bridge type. This oscillator has excellent frequency stability, and produces almost a pure sine wave output whose amplitude is nearly constant over
a wide frequency range.
A simplified schematic of the Wien-bridge oscillator used at a frequency of 2125 cps is shown in figure 2-30. The oscillator contains tubes V1 and V2. Tube V1 is the oscillator stage, and tube V2 provides the amplified and inverted voltage used in the bridge feedback network. If the bridge network was not in the circuit, the feedback voltage from tube V1 to tube V2 would reinforce the initial signal appearing at the grid of tube V1, and cause oscillations to be set up and main-

Figure 2-28. Keyer KY-79/UR, Simplified Schematic, Polar Relay Keying

Figure 2-29. Keyer KY-79/UR, Simplified Schematic, Keying Amplifier and Keyed Audio Output Amplifier
tained. The bridge network provides de-generation and phase-shift, which allows the voltage of only one frequency to be effective in the oscillator. Oscillations only occur at the frequency fc, which permits the voltage across resistor $R 12$, which is the input signal to tube V1, to be in phase with the output of tube V2, and for which the positive feedback voltage exceeds the negative feedback voltage.

A degenerative feedback voltage is provided in the bridge network by the voltage divider, consisting of resistors R50, R28, R14 and R15. Since the resistance is practically constant for all frequencies, the negative feedback voltage is constant for all frequencies, and there is no phase-shift caused by the resistors. The curve of the negative feedback is plotted in figure 2-30.

A positive feedback voltage is provided in the bridge network by the voltage divider, consisting of resistors R6 and R12, and capacitors C1, C2, and C23. At very high frequencies, capacitors C2 and C23 have almost no reactance, and the voltage between the grid of tube V1 and ground is almost zero. When the frequency is reduced toward zero, the reactance of capacitor Cl becomes very high thus reducing the feedback voltage available at the grid of tube V1, causing the grid to operate at close to zero potential.

At intermediate frequencies, positive feedback voltage is present. As shown in figure $2-30$, the curve of the positive feedback is rather flat in the vicinity of frequency fc and slopes down at low and high frequencies.

The phase-shift effects of the positive feedback network, as shown in figure $2-30$, can be seen by considering the capacitive reactance as the frequency varies. At very low frequencies the capacitive reactance is very high and the feedback circuit can be
assumed to be composed of capacitor C 1 in series with the feedback voltage and resistor R12 in parallel. This results in a 90 degree leading voltage at the grid of tube V1. At very high frequencies the capacitive reactance is very low and the feedback circuit can be assumed to consist of resistor R6 in series with the feedback voltage and capacitors $\mathbf{C} 2$ and $\mathbf{C} 23$ in parallel. This results in a 90 degree lagging voltage at the grid of tube V1. At intermediate frequencies all of the positive feedback components have an effect on the circuit and the phase-shift angle varies from the extremes until, at frequency fc, the leading and lagging effects balance each other, and the voltage at the grid of tube V1 is in phase with the output voltage of tube V2.

Resistors R14 and R15 are lamps which are used as cathode resistors of tube V1 to stabilize the oscillation amplitude. When the amplitude of oscillation increases, the current through the lamps increase. This causes the lamp filaments to get hotter, which increases the resistance of the lamps and the amplitude of the negative feedback voltage. The additional degeneration reduces the gain of tube V1, causing the amplitude of oscillation to remain almost constant. Since the waveform of the oscillator output is sinusoidal only at a small amplitude, the lamps prevent distortion of the waveform of the output audio tone.

Referring to the overall schematic, figure 7-34, the OUTPUT FREQUENCY selector switch S5 varies the oscillator frequency by varying the positive feedback voltage. The positive feedback voltage is fed through the voltage divider, consisting of capacitors C 1 and C 2 , one resistor of resistors R1 through R6, one capacitor of capacitors C18 through C23, and one resistor of resistors R7 through R12. The plate voltage of tube V2

Figure 2-30. Keyer KY-79/UR, Simplified Schematic, Wien-Bridge Oscillator Circuit and Curves
is applied to both feedback networks through capacitor C6. The plate of tube V1 is coupled to the grid of tube V2 through capacitor C3. Plate voltage from the power supply is filtered by capacitor C4 and resistor R19 for tube V1, and by capacitor C5 and resistor R25 for tube V2. It is fed through load resistor R18 to the plate of tube V1, and through load resistor R24 to the plate of tube V2. Screen voltage for tube V1 is applied through voltage divider resistors R16 and R17, and screen voltage for tube V2 is applied through voltage divider resistors R22 and R23. Bias for tube V2 is provided by grid leak resistor R20 and cathode resistors R55 and R21.

When an external source of tone is provided, the link on terminal board E 2 is removed, and the external signal is applied between ground and the center terminal of the terminal board. Tube V2 amplifies the
external signal, and tube V1 output is removed from the circuit.
The tone signal is applied to both grids of tube V4 from tube V2. The amplitude of the signal applied to tube V4A, from the arm of plate load potentiometer R24, is adjustable to provide means of balancing the two input signals to tube V4.
(4) KEYED AUDIO OUTPUT AMPLIFIER V4. (See figure 2-29.)-The output amplifier is a push-pull class A amplifier. Audio signals from tube V2 are fed through potentiometer R24 and coupling capacitor C9 to the grid of tube V4A, and through the connection of resistors R21 and R55 to the grid of tube V4B. Grid and cathode biasing are used in both sections of the tube. Voltage divider resistors R31 and R36 apply grid bias to tube V4A through resistor R34, and to tube V4B through resistor R35. Cathode bias for both sec-
tions of tube V4, and for tube V5, is supplied by resistor R37. The variations in the bias of tube V4 due to the keying signal's effect on the operation of tube V5 are described in paragraph $6 c(2)$. The amount of cathode bias provided to each section of tube V4 is adjusted by means of balance control potentiometer R27. The plate voltages are filtered by capacitor C42 and resistor R38, and fed to the plates of tube V4 through the primary winding of transformer T 2 .

The keyed audio tone output of tube V4 is fed through transformer $T 2$ to a parallel connection of an attenuator, which controls the output at terminal board E3, monitoring jack J2, and meter M1.
(5) POWER SUPPLY V8.-External a-c power is applied to the Keyer KY-79/UR transformer T1 primary. The transformer connections are shown for both 110 and 220 volts. The pilot light I1, and the heaters of tubes V1, V2, V4, V5, V6 and V7, are supplied with 6.3 volts from terminals 5 and 7 of the secondary of transformer T1. The plates of rectifier tube V8 are connected to terminals 9 and 11, and the cathodes are connected to terminals 8 and 12. The filter network for the rectified voltage consists of capacitors C7, C16 and C17, and chokes L1 and L2.

7. LOUDSPEAKER LS-187/UR.
 (See figure 7-35.)

The Loudspeaker LS-187/UR input is designed to receive audio signals from a 600 -ohm source. The signal is connected across the terminals of terminal board E1, and then fed to a combination of resistors R1, R2 and R3, which form a balanced H-pad attenuator. The signal output of the attenuator is fed to primary terminals 6 and 7 of audio transformer T1. The signal is inductively coupled to the secondary of transformer T1, and from terminals 1 and 4 of this transformer the signal is applied across the speaker.

8. COMMUNICATION PATCHING PANEL SB-224/UR.
 (See figure 7-36.)

The Communication Patching Panel SB-224/UR is provided in Radio Receiving Set AN/FRR-28 for simplifying inter-unit connections. The important inputs and outputs of all units that require connection changes when switching from one mode of operation to another, are permanently connected to the rear of the patching panel. Patch cords are provided to interconnect these units in the front of the patching panel.

SECTION 3
 INSTALLATION

1. UNPACKING.

CAUTION

The equipment is supplied with the electron tubes in place. It is therefore very important that all mechanical shocks be avoided when unpacking and installing equipment to prevent damage to any parts.
The following special precautions should be observed:

Keep boxes and crates containing equipment in an upright position at all times.

Remove at least three sides of the boxes or crates with a nail puller. Do not use a hammer or pinch bar for this purpose.

Radio Receiving Set AN/FRR-28 is shipped in five cases, excluding the spare parts, as follows:
a. 1 Relay Rack Cabinet CY-597A/G including:
1 Loudspeaker LS-187/UR
1 Communication Patching Panel SB-224/UR
6 Audio patch cords, W5-1 through W5-6
9 Coaxial cables, W12-2 through W12-10
1 Power cable for converter-comparator group,
W12-1
1 Utility servicing cable, W12-14
1 Service lamp
2 Front panel chrome trim strips
1 Set blank panels
1 Can touch-up paint
Miscellaneous hardware
b. 1 Radio Receiver R-450/FRR-28. (Number 1.)
c. 1 Radio Receiver R-450/FRR-28. (Number 2.)
d. 1 Radio Frequency Oscillator O-165/UR, with
power cable W3-11.
e. 1 Amplifier-Detector AM-615/UR and 1 Keyer
KY-79/UR, with power cables W9-12 and W10-13.
2. INSTALLATION.
a. GENERAL.-In selecting a location for the equipment, consideration should be given to the availability and accessibility of two good antennas, a suitable base and ground circuit for the system, and minimum working space of four feet in front and two feet in the rear of the rack. Additional working space is desirable.
b. INSTALLATION OF RELAY RACK CABINET CY-597A/G. (See figure 3-8.)-Remove the relay rack from its crate and set up in the operating location. Bolt the rack to the base with the lag screws and expansion shields provided in the rack crate. The power cable is usually brought in from the bottom of the rack, but it may also come in from the top through the channel provided, or through one of the sides. The installation drawing in figure 3-8 indicates the work necessary on the mounting base; this illustration also shows the wiring to Switch Panel SA238/G.
c. INSTALLATION OF EQUIPMENT IN RACK. -Remove all units from packing cases and carefully inspect for broken, loose, or damaged tubes, sockets, switches, fuses, and wiring. Check to see that all controls move freely. Repair or replace all damaged parts.

CAUTION

The following procedure involves lifting of the units to place into the rack. Some of the units are heavy and require two men to lift in order to avoid possible injury to personnel and/or damage to the equipment.

Figures 3-8 through 3-14, which are outline drawings of the various units, are provided as aids in installing the equipment in the relay rack cabinet.

Mount each unit into its position, according to figure $1-1$, by bolting the front panel of each unit to the rack with the one-inch 10×32 screws provided. Special type washers are used on every fourth mounting screw. These washers are rectangular and have raised lips on two sides which serve as clips for the chrome plated trim strips that are used to cover the rows of mounting screws.

> Note
> The two Radio Receiver $\mathrm{R}-450 / \mathrm{FRR}-28$ units are identical and therefore their positions in the relay rack cabinet are interchangeable.

If Converter-Comparator Group AN/URA-6 or any other converter-comparator group is employed, install in the available space in the relay rack in accordance with instructions in the pertinent manual.

Install front panel trim strips.

Figure 3-1. Radio Receiving Set AN/FRR-28, Rear View with Door Open
d. ADDITION OF FILTER Z1 TO RADIO RECEIVER R-450/FRR-28.-When Converter-Comparator Group AN/URA-6 is used with Radio Receiving Set AN/FRR-28, it may be desirable to add the IF filter Z1 to the receiver under adverse signal-to-noise conditions. A bracket for the filter is mounted on the receiver, as shown in figures $7-2$ and $7-3$. Jack J 10 , coupling capacitor C176, and the coaxial lead from tube V16 are provided in the receiver. Filter Z 1 is part of Receiver Coupling kit, Type 10563, supplied with Converter-Comparator Group AN/URA-6.

To install filter Z 1 , unsolder coaxial lead from jack J 10 , and solder filter connections to the coaxial lead and jack J10.

e. CONVERSION TO 220-VOLT OPERATION.-

 The various units of Radio Set AN/FRR-28 are normally connected for nominal 110 -volt operation except for Radio Receiver R-450/FRR-28, which is normally connected for nominal 117 -volt operation. In order to operate the units from a 220 -volt source of power, it is necessary to rearrange the power transformer connections in Radio Receiver R-450/FRR-28, RF Oscillator O-165/UR, Keyer KY-79/UR, and AmplifierDetector AM-615/UR.(1) The change necessary for Radio Receiver $\mathbf{R}-450 / \mathrm{FRR}-28$ is indicated on the schematic diagram, figure $7-30$, the wiring diagram, figure $7-37$, and the location of the power transformer T8 is shown in figure 7-3.
(2) The RF Oscillator $\mathrm{O}-165 / \mathrm{UR}$ power transformer T1 must be re-connected as shown in the schematic diagram, figure 7-32, and the short across resistors R58 and R64 must be removed. The location of transformer T1 is shown in figure 7-9, and resistors R58 and R64 are on terminal board E3, shown in figure 7-10.
(3) The circuit changes necessary for Keyer KY79/UR are indicated on the schematic diagram, figure 7-34. The location of power transformer T1 is shown in figure 7-20.
(4) The connections of power transformer T1 for Amplifier-Detector AM-615/UR are rearranged for 220 -volt operation as indicated on the schematic diagram, figure 7-33. The location of transformer T1 is shown in figure 7-18.
f. CONNECTING CABLES.-All power and coaxial cables are labeled so as to indicate the unit connections. Figures 3-1 and 3-15 show the cable connections.

For proper primary power distribution in Radio Receiving Set AN/FRR-28 refer to figure 3-2. The power cable for Oscillator $\mathrm{O}-165 / \mathrm{UR}$, W3-11, must be plugged into the outlet on Switch Panel SA-238/G. The power at this outlet cannot be turned off by the power switch on the switch panel. The reason for this arrangement is that, due to the time necessary to prepare Oscillator O-165/UR for operation, it should
never be turned off except for repair or for an extended period of idleness.

The cabling furnished with the receiving set are complete in fabrication, including those cables which connect to Converter-Comparator Group AN/URA-6. If any other converter-comparator group is employed, it may be necessary to fabricate a new cable. Refer to figure 3-3 for cable fabrication information. Power cable W12-15, with no connector at one end, is supplied for use with the converter-comparator group.

All external signal lines are connected to terminal block E12-1. See figure 3-1. Terminals 1 and 2 on E12-1 correspond to LINE 1 on Communication Patching Panel SB-224/UR, terminals 3 and 4 to LINE 2, terminals 5 and 6 to LINE 3, and terminals 7 and 8 to LINE 4. When unbalanced grounded signal lines are employed, the grounded side of the line must be connected to terminals $1,3,5$, and 7 .

3. ANTENNA REQUIREMENTS.

The input impedance at the antenna terminals is designed to match a 72 -ohm transmission line. This transmission line may enter the relay rack from either the top, bottom, or sides. The angle plug adapter and connector, supplied with the receiver, is designed for use with a small diameter "TWINAX" transmission line. If it is desired to operate with an unbalanced coaxial transmission line, such as RG12/U, the center conductor should be connected to one terminal of the connector plug, and the shield and armor should be connected to the other terminal of the connector plug. See figure 3-4.

The choice of an antenna is usually governed by the space available for installing it. The following comments are offered as a guide to some basic antenna design considerations. Detailed information on antennas for naval installations may be requested from the Bureau of Ships.

For space diversity operation, each receiver $R-450 /$ FRR-28 must have its own antenna system. The location of the two antennas can only be determined from the local conditions of reception and the available space. However, it is recommended that there be a nominal separation of 1000 to 2000 feet between antennas to insure optimum results from space diversity operation.

For reception in the range from 2 to 30 megacycles, diversity becomes of great importance. Directive antennas, such as the rhombic, V, and fishbone, are useful in that they discriminate against signals off the bearing line of the antennas, reduce noise, and increase signal pick-up in the favored direction of reception. The rhombic and the fishbone are essentially non-resonant or wide band antenna and are useful over a wide frequency range without any readjustment whatever.

For VHF reception above 30 megacycles, the principal problem is the abstraction of a sufficient energy from the passing radio waves. Highly directive, reso-

(A) Square off the end of the RG-11/U cable. Slide the coupling uut over the cable.
(B) Cut the outer jacket of the cable $11 / 4^{\prime \prime}$ from the end. Be careful not to nick the copper braid underneath. Cut the copper braid and inner insulation $\mathbf{3} / \mathbf{4}^{\prime \prime}$ from the end.
(C) Fan out, trim, and tin the copper braid.
(D) Screw the plug body over the outer jacket until $1 / 16^{\prime \prime}$ of the inner conductor is exposed. Be careful not to push back the copper braid. Solder the plug body to the copper braid through the 4 holes provided. Solder the inner conductor to the contact sleeve. Remove any excess solder and cut off the inner conductor where it projects past the contact sleeve.

Figure 3-3. Cable Fabrication Instructions
nant V's, rhombic antennas, and arrays of half wave radiators must always be used.

4. INITIAL ADJUSTMENTS AND OPERATIONAL CHECKS.

a. GENERAL.-After the rack, units, and all cabling have been checked for obvious defects, and have been assembled, the initial adjustments and operational checks may be made. Turn Switch Panel SA238/G on. (See figure 3-1.)
b. INITIAL ADJUSTMENT OF RADIO RECEIVER R-450/FRR-28. (See figures 3-5, 4-1.)
(1) ADJUSTMENT OF METER ADJ RF CON-TROL.-Apply a 10 -microvolt RF signal, within the frequency range of the receiver, to the antenna terminals. Set receiver controls as follows:
3.5 MC OSC switch S13 to position 3.

AVC DIV-LOC switch S15 to LOC position.
RF GAIN control R93 to maximum clockwise.
IF GAIN control R128 to maximum counterclockwise.

Figure 3-4. Cable Fabrication Instructions

BAND CHANGE switch S1 to band containing RF signal input.
TUNING control C 1 to RF signal input frequency.
METER switch Sìl to RF.
SEND-REC switch S9 to REC.
HFO switch S12 to INT.
AVC-MAN switch S8 to AVC.
AVC switch S14 to INT BFO, FAST position.
MOD-CW switch S7 to MOD.
SELECTIVITY switch S5 to "1.3".
The position of the XTAL PHASING and BEAT OSC controls is unimportant.
Readjust TUNING control Cl for maximum meter deflection.

Check that receiver is tuned to signal generator output by turning off signal generator momentarily.
Set METER ADJ RF R64 control, located at the rear of the receiver, as shown in figure 3-5, to position where meter reads " 20 db ". Failure to obtain 20 db indicates possible misalignment of the receiver. The alignment procedure is given in Section 7.
(2) ADJUSTMENT OF METER ADJ AF CONTROL. (See figure 3-5.)

CAUTION

Do not depress METER switch for AF scale unless audio output has been adjusted for low power output by means of headphones or speaker. Failure to observe this precaution may result in damage to the meter.
To set the METER ADJ AF control, use the same settings of controls as noted in paragraph $4 b(1)$ of this section. Apply modulated RF signal within frequency range of the receiver. Tune the receiver to this frequency. Connect electronic voltmeter across $600-$ ohm audio output terminals. Adjust AUDIO GAIN control for 1.9 volt reading on voltmeter. Depress METER ADJ AF control R101 for reading of " 0 db " on receiver front panel meter.
(3) BFO INJECTION CONTROL ADJUSTMENT. (See figure 3-5.)-Set controls and connections according to procedure in paragraph $4 b(1)$ of this section. Turn BFO INJECTION control R74 on rear of receiver to the maximum clockwise position for maximum injection.
(4) IF GAIN CONTROL ADJUSTMENT. (See figure 3-5.)-The setting of this control, R128, depends on the terminal equipment used. Connect ter-

Figure 3-5. Receiver R-450/FRR-28, Rear View, Pre-Operation Adjustments
minal equipment and short-circuit the antenna. Turn RF GAIN control R93 to maximum clockwise position, and turn IF GAIN control R128 counterclockwise until terminal equipment does not operate improperly.
c. INITIAL ADJUSTMENT OF RADIO FREQUENCY OSCILLATOR O-165/UR. (See figures 4-3, 4-4.) - Since the power for the RF Oscillator O-165/ UR does not go through the switch on the rack Switch Panel SA-238/G, it is not necessary to turn this switch on for the initial adjustment of the unit. Due to the length of time necessary to prepare RF Oscillator O-165/UR for operation, it is never turned off except for repair or if the equipment is not to be used for a long period of time.

Turn the POWER switch on the front panel of Oscillator O-165/UR to the ON position. After about ten minutes check to see that the thermometer reads 58° to 62°.
(1) RF OSCILLATOR O-165/UR AGING PROCESS.-Proper aging is necessary for stable opera-
tion. RF Oscillator O-165/UR, though aged by the manufacturer, may be subject to vibration, shock, and large variations of temperature and humidity. If the unit is not aged prior to actual use, it may be found that dial settings and unit calibrations have changed considerably in relatively short periods of time. The aging process is as follows:
(a) Turn the POWER switch S1 on and allow to operate for about four hours.
(b) Turn POWER switch S1 off for about four hours.
(c) Repeat cycle as in (a) and (b) above.
(d) After running the Oscillator O-165/UR through the two heat cycles, turn on the power and allow the unit to operate for at least 12 to 18 hours.
(2) FREQUENCY STABILITY CHECK OF VARIABLE OSCILLATOR.-When the aging process has been completed, the frequency stability of the variable oscillator is checked. This is done by first rotating the oscillator dial to approximately 0000.0 and turning on the calibrator by rotating CAL OUT-

PUT control clockwise. Readjust the oscillator dial for a convenient output zero-beat frequency at the CAL OUTPUT jack. If drift greater than five cycles-per-second per hour is observed, then a longer aging period is necessary for proper oscillator stability.
(3) CALIBRATION OF VARIABLE OSCIL-LATOR.-To calibrate the variable oscillator against the crystal oscillator for the entire range of the oscillator, adjust CAL OUTPUT control to full clockwise position and follow the procedure outlined below:

Nofe

To reduce the effect of dial backlash, make all approaches to dial settings in a clockwise direction.
(a) Turn oscillator tuning dial to exactly 0000.0 . Adjust the oscillator trimmer inductance $\mathbf{L} 2$, accessible at the rear of the oven, until zero beat is noted at the calibrator output.
(b) Turn the oscillator tuning control to exactly 4700.0 and adjust the oscillator trimmer capacitor C 2 , accessible at the rear of the oven for zero beat note at the calibrator output.
(c) Repeat adjustments of the trimmer inductance and capacitance until, at 0000.0 and at 4700.0 , zero beat note is obtained without further adjustments.
(d) Determine the oscillator dial reading for 2.1 megacycles from the typical oscillator calibration table, and set the oscillator dial to approximately that position. Readjust the oscillator dial in a clockwise direction only, until zero beat is obtained from the calibrator output, always approaching zero-beat in the clockwise direction.
(e) Following the same procedure as in (d) above, obtain oscillator dial readings for all 100 kilocycle points between two and four megacycles and record on table 3-1.
d. INITIAL ADJUSTMENT OF AMPLIFIERDETECTOR AM-615/UR. (See figure 4-6.)-Turn on power switches on relay rack Switch Panel SA238/G, Amplifier-Detector AM-615/UR, and one of the receivers. Set the receiver front panel controls as follows: HFO to INT; SELECTIVITY to ". 2 "; MODCW to MOD; AVC-MAN to MAN; SEND-RECEIVE to RECEIVE; LIMITER to OFF; PHASING to ARROW; RF GAIN to maximum. Set the rear controls as follows: AVC to LOC, and 3.5 MC OSC to " 3 ". Plug headphones not supplied with this equipment into OUTPUT MONITOR jack J 1 on Amplifier-Detector AM-615/UR. Set Amplifier-Detector AM-615/ UR controls as follows: INPUT SELECTOR to "CH.1" if the first receiver is used, or to "CH.2" if the second receiver is used; TUNING to " 50 ", and OUTPUT LEVEL to maximum.

TABLE 3-1. VARIABLE OSCILLATOR CALIBRATION TABLE

Ser. No. \qquad * Calibrated By \qquad * Date \qquad *

Oscillator Frequency	Typical Oscillator Dial Reading		Actual Oscillator Dial Reading	
KCs	Hundreds	Units	Hundreds	Units
2000	00	00.0	00	00.0
2100	02	58.4		
2200	04	94.4		
2300	07	28.0		
2400	09	61.2		
2500	11	93.4		
2600	14	26.2		
2700	16	56.3		
2800	18	87.1		
2900	21	16.7		
3000	23	46.1		
3100	25	75.1		
3200	28	07.5		
3300	30	38.2		
3400	32	69.4		
3500	35	02.3		
3600	37	36.2		
3700	39	70.5		
3800	42	04.4		
3900	44	35.0		
4000	47	00.0	47	

* To be filled in by person. performing actual calibration.
\dagger To be obtained after installation and procedure.
Tune the receiver accurately to any good CW signal, and reset the RF GAIN control on the receiver so that the beat note heard in the headphones is just audible. Adjust the Amplifier-Detector AM-615/UR BFO trimmer capacitor C22, which is located on top of the Z 1 assembly as shown in figure 3-6, for zero beat. The trimmer is accessible through an opening in the end of the AM-615/UR chassis and can be reached from the rear when the AM-615/UR is installed in rack CY-597A/G.
e. INITIAL ADJUSTMENT OF KEYER KY-79/ UR. (See figures 3-7, 4-5.)
(1) AUDIO OSCILLATOR FREQUENCY AD-JUSTMENTS.-Turn on power switches on relay rack Switch Panel SA-238/G and on Keyer KY-79/

Figure 3-6. Amplifier-Detector AM-615/UR,Top View, Pre-Operation Adjusfments

UR. To check the frequencies of the internal audio oscillator, a suitable standard of audio frequencies, such as a signal generator, is necessary. Compare audio output of Keyer KY-79/UR to standard frequencies and adjust the proper trimmer capacitor, located at the rear of Keyer KY-79/UR as shown in figure 3-7, until the desired accuracy is obtained.
(2) BALANCE ADJUSTMENT.-In Keyer KY79/UR it is necessary to balance the keyed amplifier to eliminate the DC transients of the keyed tone signal being fed to an external circuit. For balancing proceed as follows:
(a) Connect an oscilloscope across terminals marked MONITOR on rear of unit or at front panel jack marked OUTPUT MONITOR. See figures $1-5$ and 3-7.
(b) Connect a low frequency audio tone of approximately 60 cps to terminals $D C$ and G of ter-
minal board E1. The tone level should be high, preferably up to 50 to 125 volts.
(c) Set the KEYING LEVEL switch S2 on the front panel to either $\mathrm{DC}+$ or DC -.

Note

A low frequency audio tone of sufficient level is equivalent to a square wave of corresponding frequency in this application. This allows the Keyer to be keyed in the "DC" switch position.
(d) Disable the local audio oscillator of Keyer KY-79/UR. This may be accomplished by opening the link on terminal board E2 at the rear of the unit or by setting the OUTPUT FREQUENCY switch S5 between detents.
(e) Adjust BAL potentiometer R27 at the rear of the Keyer KY-79/UR, as shown in figure 3-7, for

UNIT 10

Figure 3-7. Keyer KY-79/UR, Rear View, Pre-Operation Adjustments
minimum transient output indicated by the oscilloscope. If a reasonably good balance is unobtainable, then change tube V4, and readjust the BAL control.
f. OVERALL EQUIPMENT CHECK.-There is no
one mode of operation that uses all sections of all the units in the receiving set. To check the functioning of the equipment it is necessary to operate the receiving set according to the various methods described in Section 4.

NOTE "A" - PROVIDED FOR GROUNOING CABINET INSTALATATIO
ITM MOMAE SUITABLE - FILLERPANELS
ED FRALTES
ENTRANEE.

Figure 3-8. Relay Rack Cabinef CY-597A/G, Outline Dimensions

DIMENSIONS IN INCHES
 WEIGHT 65 POUNDS

Figure 3-9. Radio Receiver R-450/FRR-28, Outline Dimensions

DIMENSIONS IN INCHES
WEIGHT 54 POUNDS

3-15-3-16

Figure 3-13. Loudspeaker LS-187/UR, Outline Dimensions

DIMENSIONS IN INCHES WEIGHT 7 POUNDS

Figure 3-14. Communication Patehing Panel SB-224/UR,
$97-\varepsilon-G \boldsymbol{-}$

SECTION 4 OPERATION

1. INTRODUCTION.

Radio Receiving Set AN/FRR-28 is used for individual, "space diversity", or "frequency diversity" reception of radiophone, CW, or frequency-shift signals. The control settings and interunit connections depend on the type of signal being received and where the signal is to be used. Communication Patching Panel SB-224/UR, provided with patch cords, is supplied to simplify the interconnecting of units. All units, except the receiver and RF Oscillator O-165/UR have front panel controls only. The receiver and RF Oscil-
lator $\mathrm{O}-165 / \mathrm{UR}$ contain a number of rear panel controls, in addition to those on the front panel.

2. LOCATION AND FUNCTION OF OPERATING CONTROLS.

The location and function of each operating control in Radio Receiving Set AN/FRR-28 are given in Table 4-1.

CAUTION
Do not tamper with non-operating controls since this may upset proper functioning of the equipment.
table 4-1. LOCATIONS AND FUNCTIONS OF OPERATING CONTROLS

CONTROL	LOCATION	FUNCTION	figure REFERENCE
Radio Receiver R-450/FRR-28			
RF GAIN	Front panel	Switch for receiver a-c power and manual RF gain control.	4-1
BAND CHANGE	Front panel	Changes tuned circuits for HFO and RF amplifiers.	4-1
TUNING	Front panel	Varies frequency of HFO and RF amplifier tuned circuits.	4-1
TUNING LOCK	Front panel	Locks tuning capacitor into position when tuned to signal.	4-1
BEAT OSC	Front panel	Varies BFO frequency.	4-1
XTAL PHASING	Front panel	Controls attenuation of close signal interference.	4-1
METER SWITCH	Front panel	Switches signal strength meter between RF and AF signal.	4-1
SEND-RED	Front panel	Desensitizes receiver in SEND position, when transmitting.	4-1
SELECTIVITY	Front panel	Varies receiver selectivity from 13 kc to 200 cycles in six steps.	4-1
AUDIO GAIN	Front panel	Varies audio signal input to audio amplifier.	4-1
AVC	Front panel	Controls AVC time constant, and switches between internal and external BFO.	4-1
HFO	Front panel	Switches between internal and external HFO.	4-1
LIMITER	Front panel	Switches pulse type noise limiter into circuit.	4-1
AVC-MAN	Front panel	Switches between AVC and manual volume control.	4-1
MOD-CW	Front panel	Turns BFO on in CW position.	4-1

TABLE 4-1. LOCATIONS AND FUNCTIONS OF OPERATING CONTROLS (Continued)

CONTROL	LOCATION	FUNCTION	figure REFERENCE
Radio Receiver R-450/FRR-28			
AVC DIV-LOC 3.5 MC OSC	Rear panel Rear panel	Switch for local or diversity AVC voltage. Switch for local or diversity 3.5 megacycle oscillator.	$\begin{aligned} & 4-2 \\ & 4-2 \end{aligned}$
RF Oscillator O-165/UR			
TUNING DIAL POWER HFO BFO ON-OFF HF XTAL FREQ HFO OUTPUT CAL OUTPUT OUTPUT FREQUENCY FREQUENCY RANGE HFO METER SELECTOR BFO-XTAL SELECTOR BFO OUT CONT	Front panel Rear panel Rear panel	Varies frequency of variable HFO. Switches power on and off. Turns ON-OFF HFO section. Turns BFO section on and off. Varies crystal HFO frequency slightly. Varies HFO signal output level. Varies calibration signal output level. Tunes HFO output circuit. Switches in frequency doubling circuits. Switches between variable HFO circuit and circuit of crystals. Switches various circuits across meter. Switches one of two BFO crystals into circuit. Controls amplitude of BFO output signal.	$\begin{aligned} & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-3 \\ & 4-4 \\ & 4-4 \end{aligned}$
Keyer KY-79/UR			
POWER KEYING LEVEL OUTPU'T FREQUENCY OUTPUT LEVEL	Front panel Front panel Front panel Front panel	Switches Keyer KY-79/UR power on. Switches in circuits used for various types of input signal. Changes audio oscillator frequency by switching tuned circuits. Varies audio output signal level.	$\begin{aligned} & 4-5 \\ & 4-5 \\ & 4-5 \\ & 4-5 \end{aligned}$
Amplifier-Detector AM-615/UR			
POWER ON-OFF INPUT SELECTOR TUNING OUTPUT LEVEL	Front panel Front panel Front panel Front panel	Switches amplifier-detector power on. Selects receiver to be monitored. Varies local BFO frequency. Varies output signal level.	$\begin{aligned} & 4-6 \\ & 4-6 \\ & 4-6 \\ & 4-6 \end{aligned}$
Loudspeaker LS-187/UR			
SPEAKER LEVEL	Front panel	Varies audio signal amplitude to speaker.	$4-7$

Table 4-2 lists the expected non-operating controls that are not to be handled by the operator.

table 4-2. NON-OPERATING CONTROLS

CONTROL	LOCATION
IF GAIN	Rear of receiver BFO INJ Rear of receiver METER ADJ AF
Rear of receiver	
RESISR ADJ RF	Rear of receiver
INDUCTOR L58	Rear of receiver Rear of receiver RALANCE

3. TUNING OF RADIO FREQUENCY OSCILLATOR O-165/UR.

> (See figures 4-3 and 4-4.)
a. TUNING OF VARIABLE HFO. The following procedure is used for tuning the variable HFO:
(1) Turn POWER switch to ON.

Note

This switch should not be turned off except when Oscillator $\mathrm{O}-165 / \mathrm{UR}$ is removed for maintenance, or when there is to be an extended period of idleness, since several hours may be required for this unit to stabilize after it has been turned off.
(2) Turn HFO switch to ON.
(3) Turn HFO XTAL switch to MO.
(4) Turn FREQUENCY RANGE switch to band containing desired frequency.
(5) Turn OUTPUT FREQUENCY dial to its approximate setting according to Table 4-3.
(6) Turn METER switch to RF OUTPUT position.
(7) The required frequency of RF Oscillator O-165/UR may be obtained by adding 455 kc to the assigned operating frequency for frequencies below 7.4 Mc , and by adding 3.955 Mc to the assigned operating frequency for frequencies above 7.4 Mc .
(8) The dial setting of RF Oscillator O-165/UR may be obtained from the calibration curves shown in figures 4-8 through 4-28 by dividing the Oscillator $\mathrm{O}-165$ /UR frequency by 8 if it is between 16 and 32 Mc , dividing by 4 if it is between 8 and 16 Mc , dividing by 2 if it is between 4 and 8 Mc , and using directly if it is between 2 and 4 Mc .
(9) Turn to the calibration curve corresponding to the desired frequency of operation, as determined from steps (7) and (8) above.
(10) Read the number of "Divisions Added to

Lower Calibration Point" corresponding to the desired operating frequency.
(11) Note the approximate check point corresponding to Curve A or Curve B which is printed at the upper left hand corner of the curve sheet.
(12) Turn on CAL OUTPUT switch and insert a pair of head-phones into the CAL OUTPUT jack. Adjust the oscillator dial to the approximate check point.

The oscillator dial is set to the check point number by rotating the dial until the first two digits of the check point number are indicated by the "dial hundreds", and the remaining digits of the check point number are recorded by the dial itself in "dial units". Always approach the dial setting by rotating the knob in a clockwise direction.
(13) Find the actual check point by zero beating the oscillator with the calibrator, approaching the dial setting in a clockwise direction. Record this actual check point on the curve sheet.
(14) The desired setting of the dial will then be the actual check point dial reading plus the "Divisions Added to the Lower Calibration Point" as found in step (10).
(15) Readjust OUTPUT FREQUENCY dial for maximum meter deflection.
(16) Set HFO OUTPUT control to maximum clockwise position. Disconnect phones and turn off the CAL OUTPUT switch.
(17) An example following the above procedure is now given:

Step (7) Assigned operating frequency $=2307.5$ kc
RF Oscillator O-165/UR frequency $=2307.5 \mathrm{kc} \pm 455 \mathrm{kc}=2762.5 \mathrm{kc}$
(8) Oscillator O-165/UR Fundamental Frequency $=2762.5 \mathrm{kc}$
(9) Turn to Calibration Curve, figure 4-16, and find 2762.5 kc on scale at top of page.
(10) Read "Divisions Added to Lower Calibration Point" on scale at left side of page. $($ Curve B) $=29.4$
(11) 2750 kc check point approximately 1772 divisions
(12) Set dial for "dial hundreds" $=17$
"dial units" $=72$
(13) Actual check point found at 1775.3 divisions
(14) Desired setting of the dial will then be $1775.3+29.4$ or 1804.7 divisions
Set "dial hundreds" $=18$ Set "dial units" $=04.7$

TABLE 4-3. APPROXIMATE "OUTPUT FREQUENCY'" DIAL SETTINGS

OUTPUT FREQUENCY (in megacycles)				
DIAL SETTING				
2.0	4.0	8.0	16.0	90
2.5	5.0	10.0	20.0	65
3.0	6.0	12.0	24.0	46
3.5	7.0	14.0	28.0	29
4.0	8.0	16.0	32.0	10

b. TUNING OF CRYSTAL HFO. The following procedure is used for tuning the crystal HFO:
(1) The frequency of the crystal required is found by following the procedure outlined in paragraph $3 a$, steps (7) and (8) of this section.
(2) Insert the proper crystal into any one of the three HFO crystal sockets, X15, X16, or X17, which are located at the top of the chassis.
(3) Turn POWER switch to ON.
(4) Turn HFO switch to ON.
(5) Set HF XTAL FREQ switch to " 50 ".
(6) Turn the HFO XTAL switch to the position which will place the crystal into the oscillator circuit. When the switch is in position " 1 " the crystal in crystal socket X15 is in the circuit. When the switch is in position " 2 " the crystal in crystal socket X16 is in the circuit. When the switch is in position " 3 " the crystal in crystal socket X17 is in the circuit.
(7) Set the FREQUENCY RANGE switch to the band containing the desired output frequency. In position " $2-4$ " the output frequency is equal to the crystal frequency. In position " $4-8$ " the output frequency is twice the crystal frequency. In position " $8-16$ " the output frequency is four times the crystal frequency. In position "16-32" the output frequency is eight times the crystal frequency.
(8) Set the OUTPUT FREQUENCY dial to its approximate setting according to table 4-3.
(9) Turn METER switch to HF OUTPUT position.
(10) Readjust OUTPUT FREQUENCY dial for maximum deflection of meter.
(11) Set HFO OUTPUT to maximum clockwise position.
(12) After connecting the HFO signal to receiver, adjust HF XTAL FREQ for maximum deflection of meter on receiver.
c. TUNING OF THE BFO.-The procedure for tuning the BFO is as follows:
(1) The BFO crystal frequency as required for audio frequency shift signal is determined by adding to or subtracting from the 455 kc IF frequency, the frequency corresponding to the center of the frequency shift audio band. As an example, for desired
audio frequency shift limits of 2125 to 2975 cps (850 cps shift), the center of the audio band is 2550 cps . Therefore, the BFO crystal frequency required is $455,000 \mathrm{cps} \pm 2550 \mathrm{cps}$, or $457,550 \mathrm{cps}$ or $452,450 \mathrm{cps}$.
(2) Place the proper crystal into one of the two BFO crystal sockets, X18 or X19. Set the BFO-XTAL SELECTOR switch S8, located on the rear of the unit, to the proper position. In the up position, socket X18 is in the circuit; in the down position, socket X19 is in the circuit. Set the BFO OUT CONT control, located on the rear of the unit, to maximum clockwise position.

4. RADIO RECEIVING SET AN/FRR-28 OPERATING PROCEDURE.

(See figures 4-1 through 4-7.)

a. GENERAL.-The control settings on the various units in the Radio Receiving Set AN/FRR-28, and the interunit connections, are dependent upon the type of signal being received, the source of HFO signal, and the final use of the signal.
For all types of reception, the main power switch on SA-238/G is turned on.
b. OPERATING PROCEDURE FOR INDIVID. UAL RECEPTION OF RADIO PHONE SIGNALS. (See figures 2-1, 4-1.)
(1) Set RF GAIN control on receiver front panel to approximately " 5 ".
(2) Set SELECTIVITY switch on receiver front panel to position "13".
(3) Set receiver front panel XTAL PHASING control to arrow indicator.
(4) Set receiver front panel SEND-REC switch to REC.
(5) Turn LIMITER switch on receiver front panel to OFF.
(6) Set receiver front panel AUDIO GAIN control to about center position.
(7) Set receiver front panel MOD-CW switch to MOD.
(8) Set receiver front panel AVC-MAN switch to AVC.
(9) Turn receiver front panel BEAT OSC switch to zero.
(10) Set receiver front panel AVC switch to INT BFO FAST.
(11) Set METER switch on receiver front panel to RF .
(12) Set receiver front panel BAND CHANGE switch to band containing signal frequency to be received.
(13) Set receiver front panel TUNING control to desired signal frequency.
(14) For easier and faster tuning use internal BFO. Turn HFO and BFO switches of RF Oscillator O-165/UR to OFF position. Set HFO switch on receiver to INT position.

ORIGINAL

Figure 4-1. Radio Receiver R-450/FRR-28, Front View, Operating Controls and Adjustments

For more accurate tuning and greater stability, or for operation when internal oscillator is non-operative, use the HFO of Oscillator O-165/UR. Set HFO switch on receiver front panel to EXT position. Tune RF Oscillator $O-165 /$ UR according to procedure in paragraph 3 of this section. (See figures 4-3, 4-4.) •
(15) Patch the speaker to the receiver audio output at the patch panel, and set speaker level to maximum. See figure 2-1.
(16) Link terminals 4 and 5 on terminal board E19 on receiver rear panel. See figure 4-2.
(17) Set AVC DIV-LOC switch on receiver rear panel to LOC.
(18) Set "3.5 MC OSC" on receiver rear panel to position " 3 ".
(19) Slightly readjust TUNING control on receiver front panel for maximum meter deflection.
(20) Readjust RF GAIN for a reading at approximately the center of the meter, and set AUDIO GAIN for desired speaker output level.
(21) If noise is excessive, turn LIMITER switch to ON.
(22) If interference between the two receivers is
experienced, disconnect the external HFO coaxial connector from jack J 2 on rear of receiver not being controlled by Oscillator O-165/UR.
c. OPERATING PROCEDURE FOR INDIVIDUAL RECEPTION OF TONE MODULATED CW SIGNALS. (See figure 2-1.)

For individual receiver reception of tone modulated signals, follow the procedure used for individual reception of radiophone signals. Reset SELECTIVITY control to the narrowest position that will provide undistorted tone output at speaker. Adjust XTAL PHASING to reduce or eliminate any whistle that may be present in the output signal.
d. OPERATING PROCEDURE FOR INDIVIDUAL RECEPTION OF UNMODULATED CW SIGNALS. (Śee figures 2-2, 4-1.)
(1) Set RF GAIN control on receiver front panel to approximately "5".
(2) Set SELECTIVITY switch on receiver front panel to " 13 ".
(3) Set XTAL PHASING control on receiver front panel to arrow indicator.

NAVSHIPS 91582

UNITS 2 AND 4

Figure 4-2. Radio Receiver R-450/FRR-28, Rear View, Operating Controls and Adjustments
(4) Set SEND-REC switch on receiver front panel to REC.
(5) Turn LIMI'TER switch on receiver front panel to OFF.
(6) Set AUDIO GAIN control on receiver front panel to about center position.
(7) Set MOD-CW switch on receiver front panel to CW .
(8) Set AVC-MAN switch on receiver front panel to MAN.
(9) Set BEAT OSC control on receiver front panel to approximately " 1.0 ".
(10) Set AVC switch on receiver front panel to IN'T BFO SLOW. If greater stability is desired, set switch to EXT BFO SLOW and adjust RF Oscillator O-165/UR BFO section according to procedure in Section 4, paragraph 3.
(11) Observe that METER switch on receiver front panel is set to RF.
(12) Set BAND CHANGE switch to band containing desired signal frequency.
(13) Adjust TUNING control on receiver front panel to desired signal frequency.
(14) For simpler and faster tuning use internal HFO. Set receiver front panel HFO switch to INT.

For more accurate tuning and more stable operation, or for replacement of a non-operating internal oscillator, use the HFO of RF Oscillator O-165/UR. Set receiver front panel HFO switch to EXT. Tune Oscillator O-165/UR according to instructions in Section 4, paragraph 3. (See figures 4-3, 4-4.)
(15) Patch the speaker to the receiver audio output at the patching panel and set speaker level to maximum.
(16) Link terminals 4 and 5 on terminal board E19 on rear of receiver. (See figure 4-2.)
(17) Set AVC DIV-LOC switch on rear of receiver to LOC position.
(18) Set 3.5 MC OSC on rear of receiver to position " 3 ".
(19) Slightly readjust TUNING control on receiver front panel for maximum meter deflection.

Figure 4-3. Radio Frequency Oscillator O-165/UR, Front View, Operating Controls and Adjustments
(20) Reset RF GAIN control on receiver front panel to an intermediate point between high noise to signal level and distortion of output signal.
(21) Reset SELECTIVITY switch on receiver front panel to narrowest position that will allow satisfactory reception.
(22) Adjust XTAL PHASING control on receiver front panel to reduce or eliminate any whistle that may be present in the output signal.
(23) To reduce excess signal fading, AVC-MAN switch may be turned to AVC.
(24) If noise is excessive, set LIMITER OFF switch on receiver front panel to LIMITER position.
(25) If interference between the two receivers is experienced, disconnect external HFO coaxial connector from J 2 on rear of the receiver not being controlled by Oscillator O-165/UR.

e. OPERATING PROCEDURE FOR INDIVIDUAL RECEPTION OF UNMODULATED CW SIG-

NALS USING KEYER UNIT KY-79/UR. (See figures 2-2, 4-5.)-Keyer KY-79/UR is used in the reception of CW signals where external circuits operate on a keyed tone signal, or on a detected unmodulated signal. For this operation set up equipment according to directions in paragraph d, and then readjust the following:
(1) Disconnect terminals 4 and 5 on terminal board E19 on rear of receiver. See figure 4-2.
(2) Connect plug P9 to DET jack on receiver rear panel.
(3) On the patching panel, connect the following:
(a) TONE KEYER MONITOR to SPEAKER MONITOR.
(b) TONE KEYER LINE to TELEPHONE LINES $1,2,3$, or 4 .
(c) RECEIVER 1 or RECEIVER 2 (depending on which is used) DETECTOR OUTPUT to TONE KEYER INPUT.

Figure 4-4. Radio Frequency Oscillator O-165/UR, Rear View, Operating Controls and Adiustments
(4) Connect external equipment to proper terminals of terminal board E12-1. (See figure 3-1.)
(5) Set MOD-CW switch on receiver front panel to MOD.
(6) Set AVC switch on receiver front panel to INT BFO FAST.
(7) Set BEAT OSC control on receiver front panel to zero.
f. INDIVIDUAL RECEPTION OF FREQUENCYSHIFT SIGNALS. (See figures 2-3, 4-1.)
(1) Set RF GAIN control on front panel of receiver to approximate center position.
(2) Set SELECTIVITY switch on receiver front panel to " 13 ".
(3) Set XTAL PHASING control on receiver front panel to arrow indicator.
(4) Set SEND-REC switch on receiver front panel to REC.
(5) Turn LIMITER switch on receiver front panel to OFF.
(6) Set AUDIO GAIN switch to any position except zero.
(7) Turn MOD-CW switch on receiver front panel to MOD.
(8) Turn AVC-MAN switch on receiver front panel to AVC.
(9) Turn BEAT OSC switch on receiver front panel to zero.
(10) Set AVC switch on receiver front panel to INT BFO SLOW.
(11) Set METER switch on receiver front panel to RF.
(12) Set BAND CHANGE switch on receiver front panel to band containing desired signal frequency.
(13) Set TUNING control on receiver front panel to desired frequency.

UNIT 10

Figure 4-5. Keyer KY-79/UR, Operating Controls and Adjusfments
(14) For simple and fast tuning use internal oscillator. Set HFO switch on front of receiver to INT position. Turn HFO and BFO switches on RF Oscillator O-165/UR to OFF.

For the more accurate tuning and greater stability, which is necessary for the reception of fre-quency-shift signals, use the HFO of Oscillator O-165/ UR. Set receiver front panel HFO switch to EXT. Tune Oscillator O-165/UR according to instructions in Section 4, paragraph 3. (See figures 4-3, 4-4.)
(15) At the patching panel, patch CONVERTER OUTPUT of the converter being used to TELEPHONE LINES 1, 2, 3, or 4 for use of the signal in the external circuit, and patch CONVERTER TONE output to SPEAKER MONITOR.
(16) Set AVC DIV-LOC switch on rear of receiver to LOC.
(17) Set "3.5 MC OSC" switch on rear of receiver to " 3 ".
(18) Slightly readjust TUNING control on receiver front panel for maximum meter deflection.
(19) Set speaker volume control to maximum.
(20) Disconnect plug P9 from DET jack at rear of receiver, and remove the link between terminals 4 and 5, on terminal board E19 on the rear of the receiver. The link must be connected if an audio type converter is used. (See figure 4-1.)

g. DUAL SPACE DIVERSITY RECEPTION.

(1) GENERAL.-In dual space diversity reception, it is recommended that RF Oscillator O-165/UR be used to supply the HFO signal for both receivers. If the internal oscillators are used, then AmplifierDetector AM-615/UR should be connected and used for aligning the two IF signals.
(2) IF ALIGNMENT WITH AMPLIFIER-DETECTOR AM-615/UR. (See figure 4-6.)
(a) Turn on power switch for AmplifierDetector AM-615/UR.
(b) Turn INPUT SELECTOR switch on Am-plifier-Detector AM-615/UR front panel to either channel. If switch is in the "CH.l" position, the IF from receiver " 1 " is fed in. If switch is in the "CH.2"

Figure 4-6. Amplifier-Defector AM-6I5/UR, Operating Controls and Adjustments

NAVSHIPS 91582
OPERATION

UNIT I

Figure 4-7. Loudspeaker LS-187/UR, Operafing Control
position, the IF from receiver "2" is fed in.
(c) Plug a set of headphones into OUTPUT jack J1 on Amplifier-Detector AM-615/UR front panel.
(d) Adjust OUTPUT LEVEL control on Am-plifier-Detector AM-615/UR front panel for comfortable hearing level.
(e) Adjust TUNING control on AmplifierDetector AM-615/UR front panel until the local oscillator zero-beats with the receiver IF signal.
(f) Switch INPUT SELECTOR on AmplifierDetector AM-615/UR front panel to channel containing the IF signal from the other receiver. Adjust the TUNING control on this receiver until the IF signal zero-beats with the Amplifier-Detector AM-615/UR oscillator signal. Do not move Amplifier-Detector AM-615/UR TUNING control from previous setting.
(3) DUAL SPACE DIVERSITY RECEPTION OF RADIOPHONE SIGNALS. (See figures 2-4, 4-1.) -In dual space diversity reception of radiophone signals, the equipment is arranged as described in Section 4 , paragraph 46 . Each receiver is tuned separately. Make the following control and connection changes:
(a) Set each receiver rear panel AVC DIVLOC switch to DIV.
(b) Connect plug P9 to DET jack J 9 on rear of each receiver.
(c) Disconnect terminals 4 and 5 on terminal
board E19 on the rear of one receiver. Link terminals 4 and 5 on terminal board E19 on the other receiver.
(d) Set receiver rear panel "3.5 MC OSC" switch on one receiver to position " 1 ", and on the other to position " 2 ".
(e) If the internal HFO signals are used, then set up the Amplifier-Detector AM-615/UR unit. If the RF Oscillator O-165/UR HFO signal is used, connect the HFO coaxial cables to jack J2 on each receiver.
(f) Patch the DETECTOR OUTPUT jacks of both receivers together at Communication Patching Panel SB-224/UR. Patch the SPEAKER MONITOR to the AUDIO OUTPUT of the receiver that has terminals 4 and 5 linked on terminal board E19.
(g) Readjust AUDIO GAIN control of the receiver patched to the speaker for comfortable hearing level.
(4) DUAL SPACE DIVERSITY RECEPTION OF CW SIGNALS. (See figure 2-5.)-In dual space diversity reception of $C W$ signals, the equipment is arranged according to the procedure in Section 4, paragraphs $4 c, 4 d$, or $4 e$. Each receiver is tuned to the incoming signal separately. The following changes are made in the control and connection arrangements:
(a) Set each receiver rear panel AVC DIVLOC switch to DIV.
(b) Connect plug P9 to DET jack 19 on the rear of each receiver.
(c) If Keyer KY-79/UR is used, remove links from terminals 4 and 5 on terminal boards E19 of both receivers. If Keyer KY-79/UR is not used, connect terminals 4 and 5 on terminal board E19 for one receiver only. These terminals are not connected on the other receiver. (See figure 4-2.)
(d) Set receiver rear panel " 3.5 MC OSC" switch on one receiver to position " 1 ", and on the other to position "2".
(e) If the individual receiver internal HFO signals are used, use Amplifier-Detector AM-615/UR unit for tuning both signals to the same frequency. If RF Oscillator O-165/UR HFO signal is used for both receivers, connect the HFO coaxial cable to jack $J 2$ on each receiver.
(f) Patch the receiver DETECTOR OU'TPUT jacks together at the patch panel. If Keyer KY-79/UR is not used, patch the audio output of the receiver that has terminals 4 and 5 linked on terminal board E19.
(g) Readjust the receiver AUDIO GAIN control, when Keyer KY-79/UR is not used, for comfortable listening level. Readjust the Keyer KY-79/ UR OUTPUT LEVEL, when Keyer KY-79/UR is used, for comfortable listening level.
(5) DUAL SPACE DIVERSITY RECEPTION OF FREQUENCY-SHIFT SIGNALS. (See figure 2-6.)-In dual space diversity reception of frequencyshift signals, the equipment is arranged as given in the procedure in Section 4, paragraph $4 f$. Each receiver
is separately tuned to the incoming signal. The following changes are made in control settings and connections:
(a) Set each receiver rear panel AVC DIVLOC switch to DIV.
(b) Set the "3.5 MC OSC" switch on the rear of one receiver to position " 1 ", and on the other receiver to position " 2 ".
(c) If the individual receiver HFO signals are used, use Amplifier-Detector AM-615/UR for accurately tuning both receivers to the same frequency. For normal operation of the equipment, it is more advisable to use the RF Oscillator O-165/UR HFO signal due to its greater stability. For the external HFO signal to be used, connect the HFO coaxial cable to jack J2 on each receiver.
(d) Patch the applicable COMPARATOR TONE output on the patch panel to the speaker, and the COMPARATOR OUTPUT to TELEPHONE LINES $1,2,3$, or 4 , which is tied to the external equipment used in conjunction with the receiving set.
(6) DUAL FREQUENCY DIVERSITY RECEP-TION.-In dual frequency diversity reception, the two receivers are tuned to the different frequencies of the transmitted signals. The equipment connections and control settings are the same as those for dual space diversity reception except that the RF Oscillator O-165/UR, if used, can supply only one receiver with an HFO signal. For the procedure of setting up equipment, refer to Section 4, paragraphs $4 g(3), 4 g(4)$ and 4g(5).

Figure 4-13. Radio Frequency Oscillator O-165/UR, Calibration Curve, 2400-2500 kc

Figure 4-15. Radio Frequency Oscillator O-165/UR, Calibration Curve, 2600-2700 kc

60
70
80
90
3000

Figure 4-26. Radio Frequency Oscillator O-165/UR, Calibration Curve, 3700-3800 kc

3950
60
70
80
90
4000

SECTION 5 OPERATOR'S MAINTENANCE

1. INTRODUCTION.

The Radio Receiving Set AN/FRR-28, having a number of different uses, does not have all of its equipment in use in any one operation. Because of this, it is impossible to check the entire receiving set in operation at any one time. However, the equipment that is being used should be given routine checks as described in paragraph 2 of this section.

2. ROUTINE CHECKS.

Table 5-1 lists the routine checks necessary every watch to determine if the AN/FRR-28 is operating normally.

3. EMERGENCY MAINTENANCE.

Notice to Operators

Operators shall not perform any of the following emergency maintenance procedures without proper authorization.

a. REPLACING FUSES.

WARNING

Never replace a fuse with one of higher rating unless continued operation of the equipment is more important than probable damage. If a fuse burns out immediately after replacement, do not replace it a second time until the cause has been corrected.
(1) SYMPTOMS OF FUSE FAILURE.-Table $5-2$ contains a list of fuses in the receiving set, their locations, the circuits protected by the fuses, the symptoms of fuse failure, their ampere and voltage ratings, and figure references.
(2) REPLACEMENT OF FUSES.

To replace fuses F12-1 or F12-2, remove primary power cable from power source, unscrew blown fuse by rotating counterclockwise, and screw new fuse in place.

TABLE 5-1. OPERATOR'S ROUTINE CHECK CHART

WHAT TO CHECK	HOW TO CHECK	PRECAUTIONS
1. Radio Receiver R-450/ FRR-28 a. RF section. b. AF section. c. Limiter.	With METER switch at RF, and AVCMAN switch at AVC, read meter with signal tuned in. When AF section is used, read meter with meter switch at AF. When AF section is used, switch LIMITER to OFF.	Meter should read in approximate center of scale. If meter reads low, check tuning and RF GAIN setting. If meter reads high, lower RF GAIN control. Meter should read in approximate center. If meter reads too high or low, adjust AUDIO GAIN control. Background noise should be higher than when limiter is on.
2. RF Oscillator $\mathrm{O}-165 / \mathrm{UR}$ a. Oven heater. b. HFO section. c. BFO section.	Read OVEN HEAT METER. Read meter with METER SELECTOR switch at HF OUTPUT. Read meter with METER SELECTOR switch at BFO OUTPUT.	Mercury level should be visible. Meter should read approximately 0.5 ma. If incorrect, adjust HFO OUTPUT. Meter should read approximately 0.5 ma. If incorrect, adjust BFO OUTPUT.
3. Amplifier-Detector AM-615/UR.	Plug-in headphones and listen for beat note.	
4. Keyer KY-79/UR.	Listen to monitor signal at all audio frequencies.	

TABLE 5-2. FUSE LOCATIONS AND SYMPTOMS OF FAILURE

FUSE	LOCATION	PROTECTS	SYMPIOM	AMPS	volts	FIGURE REFERENCE
F12-1	Rack Switch Panel. SA-238/G.	Power supply to all units except the RF Oscillator O-165/UR.	Pilot lights not lighted on all units except the RF Oscillator O-165/UR.	15	110	3-1
F12-2	Rack Switch Panel. SA-238/G.	Same as above.	Same as above.	15	110	3-2
F2-1	Left rear of receiver.	Filament and plate voltage of receiver.	Dial lights not lighted.	3	110	7-2
F2-2	Bottom of receiver.	Plate voltage of receiver.	No audio output. No meter reading. Tube V18 not lighted.	$1 / 4$	110	7-5
F3-1	Left rear of RF Oscillator O-165/UR.	Heater and primary power of RF Oscillator O-165/UR.	Primary power and oven heater pilot lights not lighted.	4	110	$7-8$
F3-2	Left rear of RF Oscillator O-165/UR.	Primary power of RF Oscillator O-165/UR.	Primary power pilot light not lighted.	11/2	110	7-8
F9-1	Left rear of AmplifierDetector AM-615/UR.	Primary power of Amplifier-Detector AM-615/UR.	Primary power pilot light not lighted.	2	110	7-17
F10-1	Left rear of Keyer KY-79/UR.	Primary power of Keyer KY-79/UR.	Primary power pilot light not lighted.	2	110	7-19

To replace all fuses except F2-2, F12-1, and F12-2, locate fuse from table 5-2, unscrew fuse holder cap by turning cap counterclockwise, pull blown fuse from cap, push new fuse into cap, insert cap into holder, and turn cap clockwise to secure.

CAUTION

Replacement of fuse F2 in Radio Receiver R-450/FRR-28 requires removal of the unit from the rack. Two men are necessary for this procedure. Extreme care should be used in the handling of the unit and in replacing the fuse. Avoid contacting any parts in the receiver, except the fuse, with the soldering iron.

To replace fuse $\mathrm{F} 2-2$ in the receiver, remove receiver from rack. Unsolder blown fuse and replace and solder in new fuse. When soldering in new fuse, do not keep soldering iron on fuse for a long period since the fuse is of a thermal type and heat will cause it to blow.
b. REPLACEMENT OF ELECTRON TUBES.

WARNING

This equipment employs voltages which are dangerous and may prove fatal if contacted. Always observe all safety regulations and precautions. Refer to safety notices and high voltage warning in the front of this instruction book.

CAUTION

In the replacement of tubes, use extreme care in handling tube pins. To avoid breaking the pins, do not force tubes into sockets.
Most tube defects will be found to be due to burned out filaments. Since some of the tubes cannot be seen or removed without removal of the chassis from the rack, the following methods of tube checking are recommended:
(1) Inspect all available tubes by sight and touch without removing the unit from the rack. Tubes that fail to glow, and also feel cold, should be replaced.
(2) Radio Receiver R-450/FRR-28, AmplifierDetector AM-615/UR, and Keyer KY-79/UR contain tubes which require removal of the units to inspect and replace. The receiver unit is heavy and, therefore, requires two men to remove from the rack. All tubes in the receiver are located on top of the chassis. Keyer KY-79/UR and Amplifier-Detector AM-615/UR contain tubes which can be inspected only by removing the top or bottom cover plates.

Before replacing tubes in any unit, except RF Oscillator O-165/UR, turn the power for the individual unit off.

Nore

Due to the long warm-up time necessary for Oscillator O-165/UR, do not shut off unit power. Tube V1 in Oscillator $0-165 / \mathrm{UR}$,
and tubes V1, V2, V4, V8, V9 and V10 in the radio receiver, must not be changed unless they appear defective or erratic.
If tube V1 in Oscillator $\mathrm{O}-165 / \mathrm{UR}$ is changed, a new calibration of the unit must be made by a maintenance technician.

All tube shields, except those on tubes V4, V17 and V19 of the receiver, are of the push and turn type. To remove shield, push down, turn counterclockwise as far as possible, and lift off. Replace tube, slide shield down over locking pins, turn clockwise, and
release.
To remove shield on receiver tube V4, remove thumbscrew located on adjacent capacitor cover, and lift shield off. Replace tube, push shield down into place with flange in proper position, and secure with thumbscrew.

Tubes V17 and V19 in the receiver are secured to the chassis with spring clamps. To remove one of these tubes, pull exposed end of clamp away from tube until it snaps open. Replace tube and secure by pressing the loose end of the clamp towards tube.

SECTION 6 PREVENTIVE MAINTENANCE

1. 1000 HOUR ROUTINE MAINTENANCE CHECKS.

a. Table 6-1 lists the routine maintenance checks to be made by a technician every 1000 hours of operation.
b. The variable HFO of Oscillator $O-165 / \mathrm{UR}$ is checked for proper calibration at two and four megacycles, which should correspond to dial settings at 0000.0 and 4700.0 , respectively. Any appreciable error should be corrected according to procedure in Section 3 , paragraph $4 b(2)$.

CAUTION

Tube V1 in RF Oscillator O-165/UR must not be removed from its socket unless it appears defective or erratic.
c. A check of proper receiver IF and AF operation is made by feeding various signals into different circuits, and measuring the receiver output. An electronic voltmeter is placed across the speaker terminals, which are the outer terminals on terminal board E2. The signal is supplied to the AF stages by an audio signal generator, and to the IF stages by a high frequency signal.

The signals are applied to the IF tube grids through a 0.1 microfarad capacitor from the signal generator, and are modulated 30 percent at 400 cycles. The switches on the receiver are set as follows:

SELECTIVITY switch at three kilocycles; AVCMAN switch to MAN; MOD-CW switch to MOD; RF GAIN and AUDIO GAIN controls to maximum.

Table 6-2 gives the BAND CHANGE switch setting, the signal frequency applied to the receiver, the point of signal application, and the approximate input voltage necessary for a 20 -volt output at the speaker terminals.

2. ANNUAL CHECK.

a. ANNUAL CHECK OF RADIO FREQUENCY OSCILLATOR O-165/UR.-Once a year the primary power for RF Oscillator O-165/UR shall be shut off and the unit removed to a bench. The bottom cover of the chassis shall be removed and the inner oven opened and removed.

Note

Before removing the inner oven, read and follow the instructions in Section 7, paragraph 6.
Clean, wherever necessary, with carbon tetrachloride.

Insert all connectors into their mates and measure tube socket and connector voltages shown on figure 7-27.

After thorough inspection, reassemble the equipment and return to the rack. Turn on primary power and allow to heat for 24 hours.

Check for oscillator drift and recalibrate as described in Section 3, paragraph $4 b$.
b. ANNUAL CHECK OF RADIO RECEIVER R-450/FRR-28, AMPLIFIER-DETECTOR AM-615/UR AND KEYER KY-79/UR. An annual check of the tube pin voltages in these units against the values given in figures 7-26, 7-28, and 7-29 should be made.

3. LUBRICATION.

The equipment provided in Radio Receiving Set AN/FRR-28 requires no lubrication.

4. RE-TROPICALIZATION.

The Radio Receiving Set AN/FRR-28 requires no re-tropicalization treatment.
tAble 6-1. ROUTINE MAINTENANCE CHECK CHART

What to check	How ro check	Precautions
1. All tubes in Radio Receiving Set AN/FRR-28.	Remove all tubes, except tube V1 in Oscillator O-165/UR, and check in a tube tester. (See paragraph 1b.)	All tubes not up to specifications should be replaced.
2. Power and coaxial cabling.	Visually inspect all cabling for wear.	Replace and reroute worn cabling to prevent continued wear on one spot.
3. Oscillator O-165/UR.	Check variable HFO calibration at 2 and 4 megacycles. (See paragraph 1b.)	If error is excessive, recalibrate according to procedure in Section 3.
4. Receiver R-450/FRR-28 a. IF and AF operation. b. IF cathode bias. c. AF and RF meter adjustment. d. BFO signal level.	Check receiver operation. (See paragraph 1c.) Check IF bias following procedure in Section 3, paragraph $4 e(5)$. Check and correct errors in meter adjustments following procedure in Section 3, paragraphs $4 e(2)$ and $4 e$ (3). Check and adjust injected BFO signal level following procedure in Section 3, paragraph $4 e(4)$.	
5. Keyer KY-79/UR a. Balance b. Audio frequencies	Check and adjust balance of output stage following procedure in Section 3, paragraph 4d (2). Check and adjust audio oscillator frequencies following procedure in Section 3, paragraph $4 d$ (1).	
6. Amplifier-detector AM-615/UR.	Check and adjust oscillator frequency following procedure in Section 3, paragraph $4 c$.	

TABLE 6-2. APPROXIMATE SIGNAL INPUT AT IF AND AF STAGES FOR 20-VOLT OUTPUT

BAND CHANGE SWITCH POSITION	frequency	INPUT APPLIED TO	APPROXIMATE INPUT VOLTAGE
Any	Audio 400 cycles	Pin 5, tube V17	3.5 volts
Any	Audio 400 cycles	Pin 2, tube V16B	0.3 volts
$1.35-3.45 \mathrm{Mc}$	Modulated 455 kc	Pin 1, tube V11	0.35 volts
$1.35-3.45 \mathrm{Mc}$	Modulated 455 kc	Pin 1, tube V10	6000 microvolts
$1.35-3.45 \mathrm{Mc}$	Modulated 455 kc	Pin 1, tube V9	110 volts
$1.35-3.45 \mathrm{Mc}$	Modulated 455 kc	Pin 1, tube V7	40 microvolts
$1.35-3.45 \mathrm{Mc}$	Modulated 455 kc	Pin 7, tube V5	65 microvolts
$7.40-14.8 \mathrm{Mc}$	Modulated 3.955 Mc	Pin 7, tube V5	40 microvolts
$7.40-14.8 \mathrm{Mc}$	Modulated 3.955 Mc	Pin 7, tube V6	250 microvolts

SECTION 7 CORRECTIVE MAINTENANCE

1. INTRODUCTION.

WARNING

This equipment employs voltages which are dangerous and may prove fatal if contacted. Always observe all safety regulations and precautions. Refer to the safety notices and high voltage warning printed in the front of this instruction book.
The trouble shooting charts, tables $7-5$ through 7-9; figures 4-1 through 4-7 and 7-2 through 7-23, showing the parts positions; the voltage and resistance charts, figures 7-26 through 7-30; winding data table 7-4; unit schematics, figures 7-30 through 7-36; and the wiring diagrams, figures $7-37$ and $7-38$, are provided as aids in locating faults and facilitating their repair.

The following equipment, in addition to the normal maintenance tools, is necessary for trouble shooting, repair, and alignment of Radio Receiving Set AN/FRR-28.
a. A 20,000 ohms/volt multimeter, such as Navy Model OE series or equivalent.
b. An electronic multimeter, such as Navy Model OBQ series or equivalent.
c. An oscilloscope, such as Navy Models OBL or OBT series or equivalent.
d. One set of headphones.
e. An AF frequency meter.
f. An AF signal generator.
g. An RF signal generator range $400 \mathrm{kc}-55 \mathrm{Mc}$.
b. A seven-pin miniature tube socket adapter.

2. THEORY OF LOCALIZATION.

Since the Radio Receiving Set AN/FRR-28 is used in different arrangements, and not all the units or parts of units are used for every operation, there is no one method of localizing the trouble to one unit. However, the meter readings and monitoring output signals, which are available at various points within the equipment, will provide a means for locating de-
fective units. The various trouble shooting charts, tables $7-5$ through $7-9$, should provide adequate information for localizing the trouble to a point where, by use of the voltage and resistance charts, the faulty parts can be located.

3. SYSTEM TROUBLE SHOOTING.

For locating a faulty or weak unit, a visual check of the meters and an audio check of the monitoring signals that are provided will normally be sufficient. A trouble shooting chart, table $7-5$, is provided for aiding in systematically checking the equipment. Since not all of the units are in use in any one operation, it is only necessary to check those units that are in use at the time the trouble develops.

4. UNIT TROUBLE SHOOTING.

The many meter and audio signal checkpoints that are provided in the equipment should be used fully in locating faulty components. Adequate use should also be made of the various substitution sections, such as the external BFO, as replacements. By making complete use of the available means within the equipment itself, it is possible to trace a source of trouble to a particular section. The unit trouble shooting charts, tables $7-6$ through $7-9$, are provided as an aid in localizing the trouble. By means of the voltage and resistance charts figures $7-26$ through 7-29, the inoperative components may be located.

5. ELECTRICAL ADJUSTMENTS.

a. GENERAL.-The electrical adjustments of all the units included in the radio receiving set, except for the alignment of the receiver, are described in detail in Section 3. For the electrical adjustments of the converter-comparator group that may be supplied, refer to the appropriate NAVSHIPS instruction book.

b. RECEIVER R-450/FRR-28 ALIGNMENT.

(1) GENERAL.-The alignment of a modern communications receiver requires precision instruments and a thorough knowledge of the circuits involved. Since this receiver is a double superheterodyne, the alignment procedure is even more involved than usual.

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Fail ure Report, form NBS-383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate informa tion. For example, under "Reference Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or $\mathrm{R}-207$, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause of
failure and attach an extra piece of paper if necessary.

The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The information is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.

This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.
Make certain you have a supply of Fail ure Report cards, and envelopes on board. They may be obtained from any Electronics Officer.

Figure 7-1. Failure Report

Figure 7-2. Receiver R-450/FRR-28, Rear View

Under normal service the receiver will stay in alignment for extremely long periods of time; consequently, realignment should not be attempted unless all other possible causes of a particular trouble have been eliminated. When it has been determined that any realignment should be attempted, a great deal of caution should be exercised in making the adjustments, as any required readjustment should not entail more than a slight angular motion of the adjusting screw.
(2) ALIGNMENT OF THE IF STAGES.-The low frequency IF should be aligned first. The recommended method for aligning the low frequency IF involves the use of a sweep frequency signal generator and an oscilloscope. Since these instruments may not be available, the alternate method using an amplitude modulated signal generator and an output meter will be described first.

The signal generator should be coupled to the grid of mixer tube V5 through a capacitance of approximately .01 microfarad. A miniature tube adapter will be required to make the mixer grid connection available. An output meter should be connected across the
output terminals of the receiver or the speaker voice coil. The receiver controls should be set according to table 7-1.

TABLE 7-1. RECEIVER CONTROL SETTINGS FOR IF ALIGNMENT

CONTROL	POSITION
SEND-REC	REC
CW-MOD	MOD
XTAL PHASING	Arrow
AVC-MAN	MAN
AUDIO GAIN	Set for approximately
	20 volts
RF GAIN	See text
BAND SWITCH	$1.35-3.45 \mathrm{Mc}$
DIAL	2.5 Mc
HFO	INT.
AVC	INT. BFO FAST
3.5 MC OSC.	3
IF GAIN	Max

Figure 7-3. Receiver $\mathbf{R - 4 5 0 / F R R - 2 8 , ~ T o p ~ V i e w ~}$

The signal generator should be modulated 30 percent at 400 cycles. Turn the SELECTIVITY switch to the " 3 kc " position and advance the RF GAIN control to maximum. Set the signal generator frequency to 455 kc and adjust its output until some deflection is noted on the output meter. Refer to figure $7-3$ for the location of the various alignment adjustments. Adjust inductors L42, L41, L39, L38, L36 and L32 for maximum output, reducing the signal generator output and the RF GAIN control as required to prevent overload or excessive output. Now turn the SELECTIVITY switch to the narrowest position, " 2 kc ", and adjust the
signal generator frequency for the maximum output. This establishes the correct signal frequency by the 455 kc crystal for the IF amplifier; the frequency of the signal generator should not be disturbed for the remainder of the low frequency IF alignment, unless it should be to recheck this establishment of crystal frequency to make sure that the signal generator frequency has not drifted during the alignment. The SELECTIVITY switch is now turned to the " 3 kc " position and inductors L42, L41, L39, L38, L36, and L32 are again adjusted for maximum output. Now turn the SELECTIVITY switch to the " $1.3 \mathrm{kc}^{\text {" posi- }}$

UNIT 2

Figure 7-4. Receiver R-450/FRR-28, Botfom View, Location of Resistors
tion and adjust inductor L 37 for maximum output. Before changing this set-up, the BFO should be turned on by throwing the CW-Mod switch to CW and checked for zero beat with the BFO knob dial at its zero reading. If necessary inductor $L 44$ should be adjusted for zero output. This check and adjustment of the BFO should be done with the signal generator carrier unmodulated.

The procedure for the visual methud of aligning the low frequency IF should be the same as the above except that the adjustments are made for both maximum amplitude and coincidence of the oscilloscope images. The oscilloscope vertical input should be connected across the diode detector lead resistance, from the junction of resistors R64 and R65 to chassis.

The 3.5 Mc crystal oscillator used in the second conversion oscillator circuit may be accurately adjusted to frequency by use of oscillator trimmer ca-
pacitor C101. To adjust the oscillator frequency, zero beat a harmonic of a 500 kc or 100 kc crystal with WWV at 2.5 or 5 megacycles. A crystal harmonic may then be used as a secondary standard against which the 3.5 megacycle crystal may be zero beat.

The high frequency IF should be aligned next. Set the band switch to the $7.4-14.8 \mathrm{Mc}$ band. The SELECTIVITY switch should be in the " 3 kc " position. Adjust the signal generator frequency to 3.955 megacycles and adjust inductors L31, L33, and L34 for maximum output.

The 3.5 megacycle crystal used in the second conversion oscillator circuit may be used as a frequency standard at multiples of 3.5 Mc from 10.5 Mc upwards. In order to do this, in view of the complete shielding against radiation from this oscillator, it will be necessary to temporarily connect a two foot length of insulated wire to the antenna terminal and dress the

Figure 7-5. Receiver R-450/FRR-28, Boffom View, Location of Components
free end of this lead around the tube shield on the 3.5 Mc oscillator tube V8. This test lead should, of course, be removed except while in use as a frequency standard.

Upon completion of IF alignment procedure, adjust IF gain control potentiometer R128 on rear of chassis. The setting will depend on the terminal equipment used. Connect the terminal equipment and shortcircuit the antenna. Turn the RF GAIN control to maximum and the IF GAIN down until the terminal equipment does not operate improperly.
(3) ALIGNMENT OF THE RF AMPLIFIER AND HFO ALIGNMENT.-To adequately align the RF Amplifier and HF Oscillator an accurately calibrated signal generator and output meter are required.

The frequencies required are shown in table 7-3. The location of the adjustments is shown in figure 7-3. The adjusting screws are located under the holes, which are covered with snap type buttons. The use of figure 7-3 should be made in following this part of the alignment which will now be described for one frequency band. The same procedure should then be followed for the other frequency bands.

To align the .54-1.35 Mc band the signal generator is coupled to the antenna input terminal through a 100 ohm carbon resistor. The generator should be modulated 30 percent at 400 cycles and the output meter connected across the receiver output terminals. The receiver controls should be set according to table 7-2.

Figure 7-6. Receiver R-450/FRR-28, RF Strip, Right Side

Figure 7-7. Receiver R-450/FRR-28, RF Strip, Left Side

Figure 7-8. Radio Frequency Oscillator O-165/UR, Rear View

TABLE 7-2. RECEIVER CONTROL SETTINGS FOR RF AMPLIFIER AND HFO ALIGNMENT

CONTROL	POSITION
SELECTIVITY	3 kc
SEND-REC	REC
CW-MOD	MOD
AF GAIN	Set for approx. 20 volts
BAND SWITCH	Set for band to be
	aligned
LIMITER-OFF	OFF
HFO	INT.
AVC	INT. BFO FAST
$3.5 \mathrm{MC} \mathrm{OSC}$.	3

Set the receiver and signal generator dials to .56 Mc . The RF GAIN control should be set at maximum and the AVC-MAN switch set on AVC. The HF Osc. L adjustment should now be set for maximum output. Then the Ant., 1st RF and 2nd RF L adjustments should be set for maximum output. The receiver and signal generator dials are now set to 1.3 Mc , and the C adjustments should be adjusted for maximum output in the same order, beginning with the Osc. C adjustment and then making the C adjustments for the Ant., 1st RF and 2nd RF. This procedure should be carefully repeated until no increase in output can be realized.

For the frequencies shown in table 7-3, align the remaining bands using the same procedure as above.

Figure 7-9. Radio Frequency Oscillator O-165/UR, Top View
tABLE 7-3. RF AND HFO ALIGNMENT FREQUEN. CIES AND ADJUSTMENT DESIGNATIONS

FREQ. BAND IN MEGACYCLES	RF \& HF OSC. ADJUST L AT	RF \& HF OSC. ADJUST C AT
$.54-1.35$.56	1.3
$1.35-3.45$	1.4	3.4
$3.45-7.4$	3.75	7.15
$7.4-14.8$	7.5	14.5
$14.8-29.7$	15.0	29.0
$29.7-54.0$	30.0	52.0

(4) EXTERNAL HFO SIGNAL 455 KC ATTENUATOR ADJUSTMENT.-When an external HFO signal is applied to the receiver through EXT HFO jack J6 it may contain some 455 kc signal voltage. To avoid possible troublesome beat notes at the receiver output from this 455 kc signal, it is removed from the input HFO signal by an attenuator network. To adjust this attenuator for maximum impedance at 455 kc the following procedure is used: Feed a 455 kc signal from a signal generator into EXT HFO jack J6 and connect an oscilloscope across resistor R113. (See figure 7-4.) Vary inductor L58 and resistor R112, shown in figure 7-2, until a null point is reached and none of the 455 kc signal appears across resistor R113.

Figure 7-10. Radio Frequency Oscillator O-165/UR, Botfom View

6. ASSEMBLY AND DISASSEMBLY OF RF OSCILLATOR O-165/UR OVEN.

a. GENERAL.-The oscillator and dial assembly of RF Oscillator O-165/UR are comparatively delicate and must be handled carefully. During assembly and disassembly no excess force need be used, since each unit is made to fit together and operate smoothly. While the inductor capacity assembly can be removed from its position in Oscillator O-165/UR, the assembly itself must never be taken apart. If the assembly becomes defective it should be replaced with a new one.
b. DISASSEMBLY.-When it becomes necessary to dismantle the oven, care should be taken to follow the instructions below:
(1) Rotate the oscillator dial to a position be-
tween 0000.0 and 10000.0 so that one of the shaft screws on the flexible coupling located between the outside wall of the oven and the counter bevel-gear is accessible. Loosen the coupler set-screw on the side closest to the oven. Rotate the oscillator dial to make the other set-screw, 90° from the first one, accessible.

Lock the oscillator with the dial lock, then loosen the coupling set-screw. This operation can easily be performed from the bottom of Oscillator O-165/UR.

CAUTION

After the second coupling set screw is loosened, neither the oscillator dial nor the variable condenser shaft must be turned.
(2) Disconnect the oven connector P3 and P4 at the rear of oven. Remove the rear cover and celotex

Figure 7-11. Radio Frequency Oscillator O-165/UR, Power Supply, Botfom View
insulation from the oven.
Remove oven mounting screws near the edges of the nickel plated middle oven rear cover, then gently draw out entire oven assembly.

CAUTION

Do not rotate the tuning condenser shaft.
(3) Remove the four screws at the top of the inner oven shield, then remove the four screws at the bottom of the shield. Gently remove the oven shield.
(4) To inspect the inductors L 2 and L 3 , remove the three screws on the top and three on the front of the small shield box attached to the condenser.
The inductor-capacity assembly may be easily removed by first unsoldering the tube cathode and grid connections from the ends of the bakelite feed-through connectors, unsoldering the trimmer condenser C22 lead and removing the three counter-sunk screws from
the bottom of the oscillator assembly. The assembly may be pulled out and moved to one side to the extent allowed by the inductor heater leads, terminated at the resistor terminal board.
c. ASSEMBLY.-The Oscillator $\mathrm{O}-165 / \mathrm{UR}$ oven may be reassembled by following the directions below:
(1) Install inductor capacity assembly by first inserting the three mounting screws at the bottom of the assembly. Resolder the cathode, grid, and trimmer condenser leads.
(2) Install the inductor shield cover by inserting the six cover screws.
(3) Place oven shield in position and insert the four top and four bottom mounting screws.
(4) Carefully insert oven assembly into the middle oven, so that the tuning condenser shaft slips into the shaft coupling.

Figure 7-12. Radio Frequency Oscillator O-165/UR, Middle Oven
(5) Insert all rear middle oven mounting screws.
(6) Tighten the shaft coupling set-screw that is accessible, while keeping oscillator dial locked.
(7) Loosen the oscillator dial lock, rotate the other set-screw into accessible position, and tighten set-screw.
(8) Replace rear celotex and cover plate.
(9) Insert oven connectors in place.
d. REPOSITIONING OF VARIABLE CAPACI-TOR.-In case the relative position of the tuning capacitor and the dial is changed, either by accident or by necessity, it is important that prior to assembly, the position of the variable capacitor and dial be fixed properly.

Accordingly, close the variable capacitor so that the tip of the rotor plates are $1 / 16^{\prime \prime}$ above the tip of the stator plates. Rotate the oscillator dial to 0000.0 and lock it into position with the dial lock. Insert the oscillator assembly into the oven and install middle oven rear mounting screws.

Tighten the shaft coupling screw, which is in accessible position. The shaft coupling screw is accessible at the bottom of the equipment, between the oven front and the front panel bottom brace. Loosen the dial lock, rotate the other coupling set-screw into accessible position, then tighten it. The rear insulation cover plate and connectors may then be attached and the equipment is ready to be put into service.

Figure 7-13. Radio Frequency Oscillator O-165/UR, Inner Oven, Covers Removed

Figure 7-14. Radio Frequency Oscillator O-165/UR,Inner Oven, Tuning Unit Removed

Figure 7-15. Radio Frequency Oscillator O-165/UR, Multiplier Tuning Assembly, Right Side

Figure 7-16. Radio Frequency Oscillator O-165/UR, Mulfiplier Tuning Assembly, Leff Side

UNIT 9

Figure 7-17. Amplifier-Detector AM-615/UR, Rear View

Figure 7-18. Amplifier-Defector AM-615/UR, Top View

Figure 7-19. Keyer KY-79/UR, Rear View

Figure 7-20. Keyer KY-79/UR, Top View

Figure 7-21. Keyer KY-79/UR, Boffom View

Figure 7-22. Loudspeaker LS-187/UR, Rear View

Figure 7-23. Communication Patching Panel SB-224/UR, Front, Top, and Rear Views

CURVE－AUDIO FREQUENCY AMPLIFIER．INPUT TO PHONO TERMINALS．
－ーーーーーーー CURVE－OVERALL FIDELITY AT 2．5MC．MODULATION 30 PERCENT． SELECTIVITY SWITCH IN 13 KC POSITION． RF GAIN SET FOR 20 VOLTS OUTPUT AT 400 CYCLES． OUTPUT MEASURED ACROSS A 600 OHM RESISTANCE LOAD． AUDIO GAIN CONTROL AT MAXIMUM FOR BOTH CURVES．

Figure 7－24．Receiver $R-450 / F R R-28$, Frequency Response Curves

Figure 7-25. Receiver R-450/FRR-28, Overall Selectivity at 2 Megacycles

DATA

DESIGNATION SYMBOL	PART NO.	dIAGRAM	WINDING	WIRE SIZE	TURNS			REMARKS
L2-1	HMM 31245		Primary : single pie Secondary: 3 pies	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SSE } \\ & \text { No. } 36 \text { AWG } \\ & \text { SSE } \end{aligned}$	$\begin{aligned} & 23 \\ & 50 / \text { pie } \end{aligned}$			Primary inductance: $11 \mu \mathrm{~h}$. Primary $Q=30$ at 2.26 Mc . Secondary inductance: $237 \mu \mathrm{~h}$. $\underset{\mathrm{K}_{\mathrm{c}}}{\text { Secondary }} \mathbf{Q}=45 \mathrm{at}$ 505 Kc
L2-2	HMM 31249		Primary : single layer Secondary : 3 pies	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & 15 / 44 \text { SSE } \\ & \text { Litz } \end{aligned}$	$\begin{aligned} & 10-1 / 4 \\ & 23 / \text { pie } \end{aligned}$			Primary close wound. Secondary inductance: $36 \mu \mathrm{~h}$. Secondary $Q=90$ at 1280 kc .
L2-3	HMM 31252		Primary : single layer Secondary : single layer	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & \text { No. } 28 \text { AWG } \\ & \text { E } \end{aligned}$	$\begin{aligned} & 5-1 / 4 \\ & 56 \end{aligned}$			Primary : close wound. Primary and secondary wound in clockwise direction.
L2-4	HMM 31255		Primary : single layer Secondary : single layer	No. 34 AWG DSC No. 22 AWG Bare tinned copper	$\begin{gathered} 4-1 / 4 \\ 115 / 6 \end{gathered}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2-5	HMM 31258		Primary : single layer Secondary: single layer	No. 34 AWG DSC No. 20 AWG Bare tinned copper	$\begin{aligned} & 3-1 / 4 \\ & 7-5 / 6 \end{aligned}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2-6	HMM 31261		Primary : single layer Secondary: single layer	No. 34 AWG DSC No. 20 AWG Bare tinned copper	$\begin{aligned} & 2-1 / 4 \\ & 2-5 / 6 \end{aligned}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2-7	ARTD 15612		4 pie universal	$\begin{aligned} & \text { No. } 36 \mathrm{AWG} \\ & \text { SSE } \end{aligned}$	60/pie			Inductance: total coil $192 \mu \mathrm{~h}$.
L2-8	HMM 31246		Primary : single layer Secondary : 3 pies	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & \text { No. } 36 \text { AWG } \\ & \text { SSE } \end{aligned}$	$\begin{array}{r} 4-1 / 4 \\ 50 / \text { pie } \end{array}$.		Primary close wound. Secondary inductance: $237 \mu \mathrm{~h}$. Secondary Q $=45$ at 505 kc .

Note: For Manufacturers Designation Symbols see Table 8-7.

TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS			REMARKS
L2-9	HMM 31250		Primary : single layer Secondary : 3 pies	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & 15 / 44 \mathrm{SSE} \\ & \text { Litz } \end{aligned}$	$\begin{gathered} 3-1 / 4 \\ 23 / \text { pie } \end{gathered}$			Primary close wound. Secondary inductance: $36 \mu \mathrm{~h}$. Secondary $Q=90$ at 1280 kc .
L2-10	HMM 31253		Primary : single layer Secondary : single layer	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & \text { No. } 28 \text { AWG } \\ & \text { E } \end{aligned}$	$\begin{gathered} 3-1 / 4 \\ 25-5 / 24 \end{gathered}$			Primary ciose wound. Primary and secondary wound in clockwise direction.
L2-11	HMM 31256		Primary : single layer Secondary: single layer	No. 34 AWG DSC No. 22 AWG Bare tinned copper	$\begin{gathered} 2-1 / 4 \\ 12-5 / 24 \end{gathered}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2-12	HMM 31259		Primary: single layer Secondary : single layer	No. 34 AWG DSC No. 22 AWG Bare tinned copper	$\begin{aligned} & 6-1 / 4 \\ & 9-5 / 6 \end{aligned}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2 213	HMM 31262		Primary: single layer Secondary: single layer	No. 34 AWG DSC No. 20 AWG Bare tinned copper	$\begin{aligned} & 2-1 / 12 \\ & 4-2 / 3 \end{aligned}$			Primary turns interwound between secondary turne.
$\begin{aligned} & \text { L2-14 } \\ & \text { (Same as } \\ & \text { L2-7) } \end{aligned}$								
L2-15 (Same as L2-8)								
$\begin{aligned} & \mathrm{L} 2-16 \\ & \text { (Same as } \\ & \mathrm{L} 2-9 \text {) } \end{aligned}$								
$\begin{aligned} & \text { L2-17 } \\ & \text { (Same as } \\ & \text { L2-10) } \end{aligned}$								
$\begin{aligned} & \mathrm{L} 2-18 \\ & \text { (Same as } \\ & \mathrm{L} 2-11 \text {) } \end{aligned}$								
L2-19 (Same as L2-12)								
L2-20 (Same as L2-13)		,						

Note: For Manufacturers Designation Symbols see Table 8.7.

TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS			REMARKS
L2-25	HMM 31244		Primary: single pie Secondary: 3 pies	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SSE } \\ & \text { No. } 36 \text { AWG } \\ & \text { SSE } \end{aligned}$	18 36/pie			Primary inductance: $8 \mu \mathrm{~h}$. Primary $Q=35$ at 2760 kc Secondary inductance: $128 \mu \mathrm{~h}$. Secondary $Q=45$ at 710 ke .
L2-26	HMM 31248		```Primary : single layer Secondary : 3 pies```	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { E } \\ & 15 / 44 \text { SSE } \\ & \text { Litz } \end{aligned}$	$\begin{aligned} & 16-1 / 4 \\ & 18 / \mathrm{pie} \end{aligned}$			Primary close wound. Secondary inductance: $26 \mu \mathrm{~h}$. Secondary $Q=82$ at 1480 kc .
L2-27	HMM 31251		Primary : single layer Secondary : single layer	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { DSC } \\ & \text { No. } 28 \text { AWG } \\ & \text { E. } \end{aligned}$	$\begin{gathered} 5-1 / 4 \\ 23-5 / 24 \end{gathered}$			Primary close wound. Primary and secondary wound in clockwise direction.
L2-28	HMM 31254		Single layer	No. 24 AWG Bare tinned copper	17-5/6			Wound in elockwise direction.
L2-29	HMM 31257		Single layer	No. 20 AWG Bare tinned copper	8-5/6			Wound in clockwise direction.
L2-30	HMM 31260		Single layer	No. 20 AWG Bare tinned copper	4-2/3			Wound in clockwise direction.
$\begin{aligned} & \mathrm{L} 2-35 \\ & \text { (Same as } \\ & \mathrm{L} 2-7 \text {) } \end{aligned}$								
L2-47	ARTD 15616		$2 \underset{\text { universal }}{\text { pie }}$	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SSE } \end{aligned}$	493/pie			$Q=45$ at 200 kc.
L2-48	JFE 15611		Single layer	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & { }_{\mathrm{E}} \end{aligned}$	110	2		Inductance $=22 \mu$ h. close wound.

Note: For Manufacturers Designation Symbols see Table 8-7.

TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS			REMARKS
L2-49	ARTD 15613		Single layer	$\underset{E}{\text { No. } 35 \mathrm{AWG}}$	117	2.7		$\begin{aligned} & \text { Inductance }=26 \mu \mathrm{~h} . \\ & \text { close wound. } \end{aligned}$
$\begin{aligned} & \mathrm{L} 2-50 \\ & \text { (Same as } \\ & \mathrm{L} 2-49) \end{aligned}$								
L2-51	UNT 31030					150		```Inductance: 8.5 h at 60 cps. Current rating: 150 ma.```
L2-52	UNT 31031					354		```Inductance: 20 h at 60 cps. Current rating: 115 ma.```
L2-54	MLR 958		Pie duolateral	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SCCE } \end{aligned}$	1,560	130		Inductance: 50 mh at 1,000 cycles. Current rating : 100 ma .
L2-55	MLR 694		Pie duolateral	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SNCE } \end{aligned}$	2,430	230		Inductance: 80 mh at 1,000 cycles. Current rating : 100 ma .
L2 58	$\begin{aligned} & \mathrm{NRCO} \\ & \mathrm{~A} 159118 \end{aligned}$		Pie universal	$\begin{aligned} & \text { No. } 40 \text { AWG } \\ & \text { SCC } \end{aligned}$	37	2.3		Inductance: 21 to 51 mh at 2.5 mc . Adjustable iron core.
L3-1	FTC 14800° per NRCO spec. 108		Single layer	$\begin{aligned} & \text { No. } 31 \text { AWG } \\ & \text { PE } \end{aligned}$	2,820	160		Inductance: 7 henries. Current rating : 110 ma . RMS test voltage: 1,500. Varnish impregnated, pitch filled.

Note: For Manufacturers Designation Symbols see Table 8-7.

TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \frac{\square}{n} z \\ & \frac{n}{4} \\ & \frac{n}{4} \\ & \dot{u} \frac{n}{x} \\ & i \\ & 0 \end{aligned}$		REMARKS
L3-2	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A41 } \end{aligned}$		Single layer	$\underset{E}{\text { No. } 24} \mathrm{AWG}$	14	0.045		Inductance: $1.72 \mu \mathrm{~h}$ to $3.2 \mu \mathrm{~h}$ at 7.9 Mc. Adjustable iron core.
L3-3	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A43 } \end{aligned}$		Single layer	No. 22 AWG	38	0.22		```Inductance: 27.5 \mu h at 2.5 Mc.```
L3-4	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A36 } \end{aligned}$		Primary : universal Secondary: single layer	7/41 Litz No. 28 AWG	$\begin{array}{r} 30 \\ 4 \end{array}$	$\begin{aligned} & 0.88 \\ & 0.18 \end{aligned}$		Primary inductance: $26 \mu \mathrm{~h}$ at 2.5 Mc . Secondary inductance: not critical. Frequency range: 2 to 4 Mc . Adjustable iron core.
L3-5	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A37 } \end{aligned}$		Primary : single layer Secondary: single layer	No. 36 AWG No. 36 AWG	20 $3-1 / 4$	$\begin{aligned} & 0.2 \\ & 0.05 \end{aligned}$		Primary inductance: $6.5 \mu \mathrm{~h}$ at 7.9 Mc . Secondary inductance: not critical. Frequency range: 4 to 8 Mc . Adjustable iron core.
L3-6	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A38 } \end{aligned}$		Primary : single layer Secondary : single layer	No. 28 AWG No. 28 AWG	$\begin{aligned} & 8-1 / 4 \\ & 2-1 / 4 \end{aligned}$	$\begin{aligned} & 0.10 \\ & 0.04 \end{aligned}$		Primary inductance: $1.6 \mu \mathrm{~h}$ at 7.9 Mc . Secondary inductance: not critical. Frequency range 8 to 16 Mc . Adjustable iron core.
L3-7	$\begin{aligned} & \text { NRCO } \\ & \text { AD5A39 } \end{aligned}$		Primary : single layer Secondary : single layer	No. 20 AWG No. 20 AWG	$\begin{aligned} & 5-1 / 4 \\ & 1-1 / 4 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.015 \end{aligned}$		Primary inductance: $0.4 \mu \mathrm{~h}$ at 2.5 Mc . Secondary inductance: not critical. Frequency range: 16 to 32 Mc . Adjustable iron core.
L3-8	NRCO A110482 per Spec. 183		Single	$\begin{aligned} & \text { No. } 30 \mathrm{AWG} \\ & \mathrm{E} \end{aligned}$	138			Resistor and coil type parasitic suppressor. AC volts: 6.3 Amp. 0.15 Inductance: 30 mh . Resistor: $100,000 \mathrm{ohm}$, 2W.
L3-9 (Same as L3-8)								
L3-10 (Same as L3-8)								

Note: For Manufacturers Designation Symbols see Table 8-7.

NAVSHIPS 91582
CORRECTIVE
AN/FRR-28
MAINTENANCE
TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	$\begin{aligned} & \text { WIRE } \\ & \text { SIZE } \end{aligned}$	TURNS			REMARKS
L9-1	FTC 14801 per NRCO spec. 11 ?		Layer	$\begin{aligned} & \text { No. } 33 \text { AWG } \\ & \text { PE } \end{aligned}$	3,210	250		Inductance: 10 henries. Current rating: 75 ma . RMS test voltage: $1,500 \mathrm{~V}$. Varnish impregnated, pitch filled.
L9 2	$\begin{aligned} & \text { NAC } \\ & \text { R100 U } \end{aligned}$		4 pie universal	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { SNCE } \end{aligned}$	878	$\begin{aligned} & 44 \pm \\ & 15 \% \end{aligned}$		Inductance: 2.5 mh at 1,000 cycles. Current rating: 100 ma.
L9-3 (Same as L9-1)								
L10-1 (Same as L9-1)								
L10-2 (Same as L9-1)								
T1 1	FTC 14803 per NRCO spec. 191		Primary Secondary	$\begin{aligned} & \text { No. } 34 \text { AWG } \\ & \text { PE } \\ & \text { No. } 26 \text { AWG } \\ & \text { PE } \end{aligned}$	$\begin{aligned} & 924 \\ & 320 \end{aligned}$	68 3		Primary impedance: 500/333/250/200/ 125/50 ohms. Secondary impedance: $60 / 38 / 30 / 22 / 15 / 10 /$ 5.5/2.5 ohms. RMS test voltage: 500 V . Wax impregnated, pitch filled.
T2. 7	$\begin{aligned} & \text { UNT } \\ & 31086-2 \end{aligned}$	$\frac{Q_{9}^{1} e^{3} Q^{2} Q^{4} e_{8}^{5} e^{6}}{T}$						Primary impedance: 10,000 ohms. Primary current rating: 40 ma . Secondary impedance: 8,000 ohms tapped at 600 ohms. Secondary current rating: 60 ma . Turns ratio: 3:1. Electrostatic shield. Oil filled.
T2-8	$\begin{aligned} & \text { UNT } \\ & 31029-2 \end{aligned}$							Input: 95/105/117/ 130/190/210/234/ 260 v AC. Output: Secondary No. 1; 5.0 v . Secondary No. $2 ; 6.0 \mathrm{v}$ CT. Secondary No. 3 ; 6.3v Secondary 4 \& 5; 7.5 v. Oil impregnated

Note: For Manufacturers Designation Symbols see Table 8-7.

TABLE 7-4. WINDING DATA (Continued)

DESIGNATION SYMBOL	PART NO.	DIAGRAM	WINDING	WIRE SIZE	TURNS	$\begin{aligned} & \frac{1}{5} z \\ & \frac{n}{2} \\ & \frac{n}{y} \\ & \dot{y} \frac{n}{x} \\ & i \\ & 0 \end{aligned}$		REMARKS
T3-1	FTC 18287 per NRCO spec. 181		Primary : No. 1 Primary : No. 2 Secondary : No. 1 Secondary: No. 2 Secondary: No. 3	$\begin{aligned} & \text { No. } 23 \text { AWG } \\ & \text { PE } \\ & \text { No. } 23 \text { AWG } \\ & \text { PE } \\ & \text { No. } 30 \text { AWG } \\ & \text { PE } \\ & 2 \text { No. } 20 \\ & \text { AWG PE } \\ & 2 \text { No. } 18 \\ & \text { AWG PE } \end{aligned}$	$\begin{aligned} & 230 \\ & 230 \\ & 1550 \operatorname{tap} \\ & \begin{array}{c} \text { at } 775 \\ 11 \end{array} \\ & 14 \end{aligned}$			Input: $110 / 220$ y AC, $50 / 60$ cycles, single phase. Output: Secondary No. 1; 700 v CT, 120 ma . Secondary No. 2 ; 5 V , 3 amp. Secondary No. 3 ; $6.3 \mathrm{~V}, 3 \mathrm{mmp}$. Insulation: Varnish impregnated, pitch filled.
T9-1	FTC 14798 per NRCO spec. 109		Primary : No. 1 Secondary : No. 1 Secondary : No. 2 Secondary : No. 3	$\begin{aligned} & \text { No. } 29 \text { AWG } \\ & \text { PE } \\ & \text { No. } 36 \text { AWG } \\ & \text { PE } \\ & \text { No. } 20 \text { AWG } \\ & \text { PE } \\ & \text { No. } 20 \text { AWG } \\ & \text { PE } \end{aligned}$	$\begin{aligned} & 453 \\ & 2770 \text { tap } \\ & \text { at } 1385 \\ & 22 \\ & 28 \text { tap } \\ & \text { at } 14 \end{aligned}$			Input: $110 / 220 \mathrm{v} \mathrm{AC}$, 50/60 cycles, single phase. Output: Secondary No. 1; 590 v CT, Ј0 ma. Secondary No. 2; 5V, 2 amp. Secondary No. 3; $6.3 \mathrm{~V}, 2$ amp. Insulation: Varnish impregnated, pitch filled.
T9-2	$\begin{aligned} & \text { NRCO } \\ & \text { A111114 } \end{aligned}$		Primary : Pie universal Secondary: Pie universal	7/41 Litz 7/41 Litz	86 57	2.4 1.5		Primary inductance: 0.122 mh at 7.9 kc . Secondary inductance: 0.056 mh at 2.5 Mc .
$\begin{aligned} & \text { T10-1 } \\ & \text { (Same as } \\ & \text { T9-1) } \end{aligned}$								
T10-2	FTC 14797 per NRCO spec. 111		Primary Secondary	$\begin{aligned} & \text { No. } 40 \text { AWG } \\ & \text { PE } \\ & \text { No. } 34 \text { AWG } \\ & \text { PE } \end{aligned}$	$\begin{gathered} 5860 \text { tap } \\ \text { at } 2930 \\ 922 \text { tap } \\ \text { at } 461 \end{gathered}$	$\begin{array}{r} 1300 \\ 60 \end{array}$		Primary impedance: 20,000 ohms. Secondary impedance: 600 ohms CT. RMS test voltage: 500 V. Wax impregnated, pitch filled.
T10-3	FTC 14795 per NRCO spee. 110		Primary Secondary	$\begin{aligned} & \text { No. } 36 \text { AWG } \\ & \text { PE } \\ & \text { No. } 42 \text { AWG } \\ & \text { PE } \end{aligned}$	$\begin{gathered} 1060 \\ 16,400 \\ \operatorname{tap} \text { at } \\ 8200 \end{gathered}$	$\begin{aligned} & 1.25 \\ & 7000 \end{aligned}$		Primary impedance: 500/333/250/200/ 125/50 ohms. Secondary impedance: 120,000 ohms CT. RMS test voltage: 500 V. Wax impregnated, pitch filled.

Note: For Manufacturers Designation Symbols see Table 8-7.

PILOT \& DIAL LAMPS

Table 7-5. Overall Trouble-Shooting Chart

Table 7-7. RF Oscillafor O-165/UR Trouble-Shooting Chart

PILOT
LAMP

LIGHTS OK

TUBE V5 GLOWS

TUBES V3 \& V5
P.S. CIRCUIT
P.S. TRANSFORMER

MONITORING SIGNAL IN BOTH POSITIONS OF INPUT SELECTOR SWITCH

NO AUDIO OUTPUT SIGNAL
OK

CABLING, JACKS, \& PLUGS
TUBES V1, V2, \& V4 HEADPHONES RECEIVERS

MONITORING SIGNAL IN ONE POSITION OF INPUT SELECTOR SWITCH

NO AUDIO OUTPUT SIGNAL

ZERO-BEAT INPUT IF SIGNAL BY VARYING TUNING CONTROL

OSCILLATOR CIRCUIT CAPACITOR C22 NOT ADJUSTED

PILOT LAMP

Table 7-9. Keyer KY-79/UR Trouble-Shooting Chart

	¢
	号

* BANDCHANGE SWITCH SET ASOVE 7.4 MEGACYCLES ** BANDCHANGE SWITCH SET BELOW 7.4 MEGACYCLES * WHEN HFO SWITCH IS SET TOINT, THE READINGS
\& \ddagger WHEN AVC SWITCH IS SET TO EXT BFO, THE READINGS FOR TUBE VIZ ARE AS' \# WHEN HFO SWITCH IS SET TOINT,
FOR TUBE V4 ARE AS FOLLOWS: FOLLOWS:

PIN	V	R
1	152	$30 K$
2	152	$30 K$
3	$6.3 A C$	∞
4	0	0
5	-4.2	$80 K$
6	-5	$47 K$
7	0	0

PIN	V	R
1	54	180 K
2	54	180 K
3	$6.3 A C$	∞
4	0	0
5	-2	120 K
6	-42	140 K
7	0	0

＊WITH HFO XTAL SWITCH AT MO，VOLTAGE IS ZERO，RESISTANCE IS INFINITE
＊＊WITH HFO XTAL SWITCH AT MO，VOLTAGE AND RESISTANCE ARE ZERO
＊WITH FREQUENCY RANGE SWITCH AT＂2－4＂OR ＂4－8＂，AND HF OUTPUT AT MAXIMUM，RESISTANCE IS 3OK．WITH FREQUENCY SELECTOR SWITCH AT＂8－16＂OR＂I6－32＂，AND HF OUTPUT AT MINIMUM RESISTANCE IS 105 K ．WITH FREQUENCY RANGE SWITCH AT＂2－4＂OR＂4－8＂，AND HF OUTPUT SWITCH AT MINIMUM，RESISTANCE IS 4.7 K ．
\＃\ddagger WITH HF OUTPUT AT MINIMUM AND FREQUENCY SELECTOR SWITCH AT＂16－32＂RESISTANCE IS 4.7 K ．WITH FREQUENCY SELECTOR SWITCH AT ＂2－4＂，＂4－8＂，OR＂8－I6＂，RESISTANCE IS INFINITE．
NOTE：ALL VOLTAGE AND RESISTANCE READINGS TAKEN WITH A 20，000 OHM／VOLT METER

OUTPUT LEVEL SWITCH AT MAXIMUM POSITION * When output level switch is at minimum POSITION READING IS O VOLTS

* * VOLTAGE MEASURED BETWEEN PINS 2 AND 8

NOTE: ALL VOLTAGE AND RESISTANCE REAOINGS TAKEN WITH A 20,000 OHM/VOLT METER.

Figure 7-28. Amplifier-Detector AM-615/UR, Voltage and Resisfance Charf

$$
7-45-7-46
$$

NOTE: ALL VOLTAGE AND RESISTANCE READINGS TAKEN WITH A 20,000 OHM/VOLT METER.

OUTPUT FREQUENCY SWITCH AT " 2125 " CPS
OUTPUT LEVEL CONTROL AT MAXIMUM
KEYING WAVE SWITCH AT RELAY

* ON 50 VOLT SCALE娄消READING WITH OUTPUT
FREQUENCY SWITCH AT $2125^{\prime \prime}$ CPS. WITH SWITCH AT OTHER POSITIONS THE FOLLOWING ARE THE RESISTANCE READHGS:
OUTPUT FREQ. RESISTANCE SWITCH POS.

***RESISTANCE IS 400K WHEN KEYING WAVE SWITCH IS AT TONE OR DC +
****RESISTANCE IS 940K IN ALL OTHER POSITIONS OF KEYING WAVE SWITCH
\# RESISTANCE IS O WHEN KEYING WAVE SWITCH IS AT DC*\# VOLTAGE MEASURED BETWEEN PINS 2 AND 8

Figure 7-29. Keyer KY-79/UR, Volfage and Resistance Charf

$$
7-47-7-48
$$

Figure 7-31. Radio Receiver R-450/FRR-28, Turret Schematic Diagram

Figure 7-33. Amplifier-Detector AM-615/UR, Schematic Diagram

Figure 7-34. Keyer KY-79/UR, Schematic Diagram

NOTE:
ALL RESISTANCES IN OHMS UNLESS OTHERWISE INDICATED.
WHEN REFERRING TO PARTS LIST, THE
NUMERICAL PORTION OF THE REFER-
ENCE SYMBOL IS PRECEDED BY THE
UNIT NUMBER, IE- SCHEMATIC SYM-
BOL RIOO, PARTS LIST SYMBOL RI-IOO

Figure 7-35. Loudspeaker LS-187/UR, Schematic Diagram

Figure 7-36. Communication Patching Panel SB-224/UR, Schematic Diagram
7-61-7-62

SECTION 8

 PARTS LIST
NOTE

All reference symbols used in this section are to be interpreted in the following manner. The unit number, as listed in column one, Table 8-3, has been placed after the alphabetical portion, and before the numerical part of the reference symbol. For instance, R1 in the oscillator (Unit 3) is designated R3-1 to distinguish it from R1 in the Keyer (Unit 10) which is listed as R10-1.

TABLE 8-1. WEIGHT AND DIMENSIONS OF SPARE PARTS BOX

EQUIPMENT SPARES					
$\begin{aligned} & \text { SPARE } \\ & \text { PARTS } \\ & \text { PBX } \end{aligned}$	OVERall dimensions, in.			VOLUME	weight
	height	WIDTH	DEPTH		
1	15	30	21	5.47	75

TABLE 8-2. SHIPPING WEIGHT AND DIMENSIONS OF SPARE PARTS BOX

Equipment spares						
SHIPPINGBOXNO.	SPARE PARTS BOX	overall dimensions, in.			volume CU. \boldsymbol{F}.	WEIGHt
		height	WIDTH	DEPTH		
1 of 1	1	17	33	23	7.46	160

table 8-3. list of major units of radio receiving SEt An/FRr-28

UNII NO.	QUANTITY	STANDARD NAVY STOCK NO.	NAVY TYPE DESIGNATION	
1	1	Loudspeaker MAJOR UNIT	F17-C-48237-5551	LS-187/UR
2	2	Radio Receiver	F16-C-16585-6061	R-450/FRR-28
3	1	Radio Frequency Oscillator	F16-C-15957-1248	O-165/UR
5	1	Communication Patching Panel	F16-C-15986-3009	SB-224/UR
9	1	Amplifier-Detector	F16-C-15761-5301	AM-615/UR
10	1	Keyer	F16-C-15753-7083	KY-79/UR
11	$1(G F E)$	Relay Rack Cabinet		CY-579A/G
12	-	Miscellaneous		

NAVSHIPS 91582
AN/FRR-28
table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND	function	$\begin{aligned} & \text { Jan and } \\ & \text { (Navy TYPE) No. } \end{aligned}$	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIINAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRAGTOR DRAWING ANDPART NO. ART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EOUIP. } \end{aligned}$	-	Eoulp.		TEN-	stock	
										㕄			-	交
A2-1	MOUNTING, INDICATOR LIGHT: steel; cadmium plate; holds two dial lights by spring clips, two 0.144 dia holes; holds dial pointers; 2 in . $1 \mathrm{~g}, 1-3 / 8 \mathrm{in}$. wide, $3 / 8 \mathrm{in}$. deep; p\% AN Redio Receiver, Type No. R-450/FRR-28.	Dial light mounting clip		$\begin{gathered} * \mathrm{~N} 17-\mathrm{M}-83010- \\ 1001 \end{gathered}$	HMM Pert No. 31276		A2-1	1						
A3-1	MOUNTING, SWITCH: p/o AN Radio Frequency Osc11lator, Type No. $0-165$ TOR u u/w Priadelph1a Ther mometer Co No. VC325 Mercury gular shape W / rd ends; over-all dim., $4-3 / 4 \mathrm{in}$. $1 \mathrm{~g}, 1 / \mathrm{in}$. wide, l/2 in. high; four $1 / 8 \mathrm{in}$. dis holes on $3 / 4 \mathrm{in}$. by $2-3 / 4 \mathrm{in}$. mounting centers.	Mounting for M3-2		$\begin{gathered} \mathrm{N} 17-\mathrm{M}-87012-5951 \end{gathered}$		NRCO Part No. BK7AC A1104172	A3-1	1						
c2-1	CAPACITOR, variable air dielectric: plate meshing type; 8 sections (C2-1A thru $\mathrm{C} 2-1 \mathrm{H}) ; 152 \mathrm{mmf}$ max 10 mmf min ; each section stralght line frequency tuning; 1000v AC cluding shart and bushings, $9-5 / 8$ rotation; base not insulated; 20 terminals, solder lug tyee steel dowel pins on $2-5 / 8$ in. centers; both ends of rotor shaft ters; 9 rotors and 8 stators each section, brass, bright dip finish, p/o AN Redio receiver, Type No. R-450/FRR-28.			$\begin{array}{\|c} \text { N16-C-6368- } \\ 2204 \end{array}$	HMM Part No. 3400191		C2-1	1						
c2-1A	P/o c2-1.	Tuned circuit adjustment for input to v2-1												
C2-18	P/o c2-1.	Tuned circuit adjustment for 1nput to V2-1												
c2-1c	P/o c2-1.	Tuned circuit adjustment for input to V2-2												
C2-1D	P/o c2-1.	Tuned circuit adjustment for input to V2-2												
	*NOTE: Not furnished as a maintenance part. If fallure occurs, do not request replacement unless the part cannot be repaired or fabricated.													

[^0]TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	WAME OF PART AND DESCRIPTION	. FUnction	JAN AND (NAVY TYPEINO.	federal and (SIGNAL CORPS) stock No.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.NVYO-VED	$\left.\begin{array}{\|c\|c\|} \hline \text { TOTAL } \\ \text { PER } \\ \text { EOUIP. } \end{array} \right\rvert\,$	- Equip.			TENDER		stock	
$\left\lvert\, \begin{array}{\|c\|c\|c\|} \text { SYMBol } \\ \text { OESIG. } \end{array}\right.$									$\begin{aligned} & \underset{x}{x} \\ & \underset{w}{w} \\ & \underline{w} \end{aligned}$	比	$\left\lvert\, \begin{aligned} & \dot{z} \\ & \dot{u} \\ & \dot{0} \end{aligned}\right.$	$\begin{aligned} & x \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\text { z }} \\ & \text { む̀ } \end{aligned}$	$\stackrel{\times}{\infty}$	¢
$\begin{array}{\|c} \text { c2-6 } \\ (\text { cont }) \end{array}$	deep; 2 terminals, wire lead type, located one ea end; terminal mounted; for general purpose use.														
c2-8	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $2400 \mathrm{mmf}+5 \%$ tolerance; 500 v DC workIng; molded lowloss bakelite case; case dim., $51 / 64 \mathrm{in} .1 \mathrm{~g}, 25 / 32 \mathrm{in}$. wide, 9/32 1 n . deep; 2 terminals, axial lead type, located one ea end; term1nal mounted; moisture and fungus proof; for general purpose use.	Capacitor in 3.45 to 7.4 mc tuned circuit input to V2-1	Spec No. JAN-C-5, JAN Type No. CM30C242J	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-31982-289 \\ 2289 \end{gathered}$	AEV Type No. 1467		$\begin{aligned} & \text { c2-8 } \\ & \text { c2-32 } \\ & \text { c- }-52 \end{aligned}$	3							
C2-9	CAPACITOR, PIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $33 \mathrm{mmf} \pm 5 \%$ tolerance; 500 v DC working; - molded low-loss bakelite case; $51 / 64 \mathrm{in} .1 \mathrm{~g}, 15 / 32$ in. wide, $7 / 32 \mathrm{in}$. deep; 2 terminals, wire lead type, located one ea end; terminal mounted; for general purpose use.	Capacitor in 7.4 to 14.8 mc tuned circuit input to V2-1	Spec No. JAN-C-5, JAN Type No. CM2OC330J	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-27181- \\ 4401 \end{gathered}$	EMM Type No. CM-20-330		$\begin{aligned} & \mathrm{c} 2-9 \\ & \mathrm{c} 2-33 \\ & \mathrm{c}-53 \end{aligned}$	3							
c2-11	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg aroup 1; $1500 \mathrm{mmf}+2 \%$ tolerance; $500 v$ DC working; mōlded low-loss bakelite case; $53 / 64 \mathrm{In} .1 \mathrm{lg}, 53 / 64$ in. wide, $9 / 32 \mathrm{in}$. thick; 2 terminals, wire lead type, located one ea end; terminal mounted; molsture and fungus proof; for general purpose use.	Capacitor in 7.4 to 14.8 mc tuned circuit input to V2-1	Spec No. JAN-C-5, JAN Type No. CM30C1520	$\begin{gathered} \text { N16-C-31502- } \\ 2609 \end{gathered}$	EMM Type No. CM-30-152		$\begin{aligned} & \mathrm{C} 2-11 \\ & \mathrm{C} 2-17 \\ & \mathrm{C} 2-35 \\ & \mathrm{c} 2-55 \end{aligned}$	4							
c2-12	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 1, MBCA Ref Dwg Group 1; $7 \mathrm{mmf} \pm 1 \mathrm{mmf}$ tolerance; 500v DC working ${ }^{-}$zero temp coefficlent, 0 to +120 parts $/ \mathrm{m} / \mathrm{O}_{\mathrm{C}}$ tolerance; non-insulated, phenol1c; case dim., $0.400 \mathrm{in}$.1 g max, 0.200 in . dia max; 2 terminals, radial wire leads; terminal mounted; for general purpose use.	Capacitor in 14.8 to 29.7 mc tuned circuit input to V2-1	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { C-20A, JAN } \\ & \text { Type No. } \\ & \text { Cc20cJOToF } \end{aligned}$	$\underset{5301}{\text { N16-C-15761- }}$	ERC Type No. NPO		$\left\lvert\, \begin{aligned} & c 2-12 \\ & c 2-138 \\ & c 2-145 \end{aligned}\right.$	3							
c2-14	CAPACITOR, PIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $1000 \mathrm{mmf} \pm 2 \%$ tolerance; 500v DC working; mōlded low-loss bakelite case; case dim., 53/64 in. $1 \mathrm{~g}, 53 / 64 \mathrm{in}$. wide, $9 / 32 \mathrm{in}$. deep; 2 terminals, wire lead type, located one ea end; terminal mounted; for general purpose use.	Capacitor in 14.8 to 29.7 mc tuned circuit input to V2-	Spec No. JAN-C-5, JAN Type No. CM30C1020	${\underset{2209}{N 16-C-31080-}}_{2209}$	EMM Type No. CM-30-102		C2-14	1							
C2-15	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 1, MBCA Ref Dwg aroup $1 ; 15 \mathrm{mmf} \pm 5 \%$ tolerance; 500 v DC working; $-30 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$,	Capacitor in 29.7 to 54.0 mc tuned elrcuit input to V2-1	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { C-2OA, JAN } \\ & \text { Type No. } \\ & \text { CC2OHJ150J } \end{aligned}$	$\begin{gathered} \text { N16-C-15986- } \\ 3009 \end{gathered}$	ERC		$\begin{aligned} & \mathrm{c} 2-15 \\ & \mathrm{c} 2-139 \end{aligned}$	2							

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$		Equip.		$\begin{array}{\|l\|} \hline \text { TEN- } \\ \text { DER } \\ \hline \end{array}$		stock	
$\left\|\begin{array}{c} \operatorname{symbol} \\ \text { DESIG. } \end{array}\right\|$										¢	$\begin{aligned} & \text { zi } \\ & \text { こ̀ } \end{aligned}$	-	$\begin{aligned} & \dot{x} \\ & \stackrel{1}{3} \end{aligned}$	-	若
$\begin{aligned} & \hline \text { c2-15 } \\ & (\text { cont }) \end{aligned}$	```+120 tolerance, +120-188 toler- ance; un1nsulateđ; case dim., 0.400 1n. 1g max, 0.200 1n. d1a max; 2 terminals, radial wire leads; terminal mounted; for gen- eral purpose use.```														
C2-17	Same as c2-11.	Capacitor in 29.7 to 54.0 mc tuned circuit input to V2-1						-							
c2-18	CAPACITOR, FIXED, MICA DIELEC'RRIC: case style No. 22, MBCA Ref Dwg Group 1; $100 \mathrm{mmf}+2 \%$ tolerance; $500 v$ DC working; molded low-loss bakelite case; case dim., 51/64 1 n . $\mathrm{lg}, 15 / 32 \mathrm{in}$. wide, 7/32 in . deep; 2 terminals, wire lead type, located one ea end; terminal mounted; resistant to hum1d1ty; for general purpose use.	Input coupling to V2-1	Spec No. JAN-C-5, JAN Type No. CM2OC1O1G	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-28547- \\ 8721 \end{gathered}$	$\begin{aligned} & \text { EMM Type } \\ & \text { No. CM-20-101 } \end{aligned}$		c2-18	1							
C2-19	Same as c2-3.	V2-1 grid b1as filter													
c2-20	Same as c2-3.	V2-1 screen bypass													
c2-21	Same as c2-3.	v2-1 screen filter													
c2-22	Same as c2-3.	$\begin{aligned} & \text { V2-1 plate } \\ & \text { f1lter } \end{aligned}$													
c2-23	Same as cz-3.	V2-1 plate and screen filter													
C2-24	Same as c2-3.	v2-1 output coupler													
C2-27	Same as c2-3.	Capacitor in 0.54 to 1.35 mc tuned circuit input to V2-2													
C2-29	Same as c2-3.	Capac1tor in 1.35 to 3.45 mc tuned circuit input to V2-2													
c2-30	same as c2-6.	Capac1tor in 3.45 to 7.4 me tuned circuit input to V2-2													
c2-32	Same as C2-8.	Capac1tor in 3.45 to 7.4 mc tuned c1rcu1t input to V2-2													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									Spare parts					
	NAME OF PART ANDDESCRIPTION	function		$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGAL CORP) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRA } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR ORAWING AND PART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EOUPP. } \end{aligned}$	- Equip.			TEN-	stock	
SESİ.			(nava TYPE)No.						2	$\left\lvert\, \begin{array}{\|l\|} \hline 0 \\ \hline \end{array}\right.$	$\stackrel{i}{2}$		$\begin{aligned} & \stackrel{x}{0} \\ & \mathbf{\infty} \end{aligned}$	交
c2-33	Same as c2-9.	Capacitor ${ }^{1 n}$ 7.4 to 14.8 mc tnput to v2-2												
c2-35	Same as c2-11.	Capacitor 1 n 7.4 to 14.8 mc tuned circu1t input to $\mathrm{v} 2-2$												
c2-37	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Rer Dwg 500 v DC working; ${ }^{\text {molded low-10ss }}$ bake 11 te case; case dim., $45 / 64$ $\mathrm{nn} .1 \mathrm{~g},{ }^{2} 29 / 641 \mathrm{n}$, wide, $3 / 16 \mathrm{in}$. thick; 2 terminais, wire lead type, located one ea end; terminal mounted; resistant to humldity; for general purpose use.	Capacitor in 14.8 to 29.7 mc tuned circuit input to v2-2 Input to V2-2		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-28284- \\ 1722 \end{gathered}$	$\begin{array}{\|l\|l\|} \text { AEV Type } \\ \text { No. } 14469 \end{array}$		$\left\lvert\, \begin{gathered} c 2-37 \\ c 2-57 \end{gathered}\right.$	2						
c2-39	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group $1 ; 51 \mathrm{mmf}$ 500 VC ${ }^{2 \%}$ tolerance; bake 11 te case; case dim., $51 / 64$ in $\mathrm{lg}, 15 / 321 \mathrm{n}$. W1de, $7 / 321 \mathrm{n}$. thick cated one ea end; terminal mounted purpose use.	Capacitor in 29.7 to 54.0 mc cuned circuit 1nput to	Spec No. JAN-C-5, JAN Type No. cm20c510a	$\underset{\substack{\text { N16-C-27651- } \\ 1121}}{ }$	EMM Type No. CM-20-510		$\begin{array}{\|c} \mathrm{c} 2-39 \\ \mathrm{c} 2-59 \end{array}$	2						
c2-40	Same as c2-3.	V2-2 grid bias filter												
c2-41	Same as c2-3.	V2-1 and v2-2 grid bias filter												
c2-42	Same as c2-3.	$\left\lvert\, \begin{aligned} & \text { V2-2 screen } \\ & \text { bypass } \end{aligned}\right.$												
c2-43	same as c2-3.	$\begin{aligned} & \text { va-2 plate } \\ & \text { filter } \end{aligned}$												
c2-44	Same as c2-3.	v2-2 output coupler												
c2-47	same as cìz-3.	Capacitor in 0.54 to 1.35 mc tuned circuit input to $\mathrm{V} 2-5$ Input to VR-5												
c2-49	Same as c2-3.	Capacitor in 1.35 to 3.45 mc tuned circuit input to $22-5$ por res												
c2-50	same as ca-6.	Capacitor 1 n 3.45 to 7.4 mc tuned circu1t input to $\mathrm{V} 2-5$												

table 8-4. COMbined Parts and maintenance parts list

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND(SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFR.S } \\ & \text { DESIGNATION } \end{aligned}$	contractor drawing and PART No.	$\begin{gathered} \text { ALL } \\ \text { SYMBOL } \\ \text { OESIG. } \\ \text { OVVOL } \\ \text { VED } \end{gathered}$	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERR } \\ \text { EQUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
desic.									边	$\left.\begin{array}{\|l} \mathbf{x} \\ \mathbf{\infty} \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \dot{z} \\ \dot{u} \\ 0 \end{array}$	$\begin{array}{l\|l\|l\|l\|l\|} \stackrel{x}{\infty} \\ \hline \end{array}$	$\begin{aligned} & \text { z } \\ & \text { ù } \\ & 0 \end{aligned}$	$\stackrel{\times}{\text { ¢ }}$	2i
C $2-52$	Same as c2-8.	Capacitor in 3.45 to 7.4 mc tuned circuit input to $\mathrm{V} 2-5$													
c2-53	Same as c2-9.	Capacitor 1 n 7.4 to 14.8 mc tuned c1rcuit input to V2-5													
c2-55	Same as c2-11.	Capacitor in 7.4 to 14.8 mc tuned circuit input to V2-5													
cz-57	Same as c2-37.	Capacitor in 14.8 to 29.7 mc tuned circuit input to V2-5	-												
C2-59	Same as c2-39.	Capacitor in 29.7 to 54.0 mc tuned c1rcuit input to V2-5													
ca-66	Same as c2-3.	V2-5 cathode bypass													
c2-68	Same as c2-3.	V2-5 screen bypass													
c2-71	Same as c2-3.	V2-4 plate filter													
C2-72	Same as C2-3.	$\begin{aligned} & \text { V2-4 plate } \\ & \text { f1lter } \end{aligned}$													
c2-73	Same as c2-3.	V2-5 screen bypass													
C2-74	Same as c2-3.	V2-4 plate coupler													
C2-77	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $3300 \mathrm{mmf} \pm 2 \%$ tolerance; 500 v DC working; mōlded low-loss bakelite case; case d1m., exclud1ng terminals, $53 / 641 \mathrm{n} .1 \mathrm{~g}, 53 / 64$ 1n. wide, 9/32 1n. deep; 2 term1nals, wire lead type, located one ea end; terminal mounted; for general purpose use.	P/o HF oscillator 0.54 to 1.35 me tuned circuit	Spec No. JAN-C-5, JAN Type No. cm30c3326	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-32240- \\ 7809 \end{gathered}$	EMM Type No. CM-30-332		c2-77	1							
C2-78	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $404 \mathrm{mmf} \pm 1 \%$ tolerance; 500 v DC working; molded low-loss bakelite case; case dim., exclud1ng terminals, $45 / 641 \mathrm{n} .1 \mathrm{~g}, 29 / 64$ 1n. wide, $3 / 16 \mathrm{in}$. thick; 2 term1-	P/O HF oscillator 0.54 to 1.35 mc tuned circuit		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-29941- \\ 1543 \end{gathered}$	$\begin{array}{ll} \text { AEV Type } \\ \text { No. } & 1469 \end{array}$		c2-78	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART andDESCRIPTION	function	JAN AND (navy typeino	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. ANO } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND part no.	$\begin{gathered} \text { ALL } \\ \text { SYMBOL } \\ \text { OESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	- Equip			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SYMBOL DESIG.										$\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{\infty} \end{array}\right\|$	$\begin{aligned} & \dot{x} \\ & \text { ua } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \dot{x} \\ & 0 \\ & \infty \end{aligned}$	$\begin{aligned} & \dot{x} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\left.\begin{array}{\|l\|} x \\ 0 \\ \infty \end{array} \right\rvert\,$	-
$\begin{gathered} \text { c2-78 } \\ (\text { cont }) \end{gathered}$	nals, wire lead type, located one ea end; terminal mounted; for general purpose use.														
c2-79	CAPACITOR, FIXED, CERAMIC DIELECTRIC case style No. 1, MBCA Ref Dwg temp coefficient, letter J tolerance; insulated, phenol1c; case d1a max; 2 terminals, axial lead type; terminal mounted; for general purpose use.	P/o HF oscilla tor 0.54 to 1.35 mc tuned circuit	$\begin{array}{\|l} \text { Spec No. JAN- } \\ \text { C-20A, JAN } \\ \text { CYye No } \\ \text { CCD21UJOTOC } \end{array}$	$\underset{7083}{\mathrm{~N} 16-\mathrm{C}-15753-}$	ERC Type No. 750		$\begin{aligned} & \text { C2-79 } \\ & \text { c2-80 } \end{aligned}$	2							
c2-80	Same as c2-79.	P/o HF oscilla- tor 0.54 to 1.35 me tuned circu1t													
C2-82	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group $1 ; 810 \mathrm{mmf}+1 \%$ tolerance; 500 V DC working; molded low-loss bakelite case; case d1m., exclud- ing terminals $53 / 64 \mathrm{in}$. ig, $53 / 64$ in. wide, $9 / 32 \mathrm{in}$. thick; 2 term1nals, wire lead type, located one general purpose use.	P/o HF oscillator 1.35 to 3.45 mc tuned circuit		$\begin{gathered} \text { N16-C-30728- } \\ 1925 \end{gathered}$	$\begin{array}{\|l\|l\|} \text { AEV TyPe } \\ \text { No. } & 1464 \end{array}$		c2-82	1							
C2-83	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref DWg 500 v DC working; temp character 1stlc B per JAN-C-5; molded lowloss bakelite case; case dim., excluding terminals, $51 / 64 \mathrm{in}$. 1 g max, $15 / 32$ in. Wide max, $1 / 32$ lead type, located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	P/o HF oscilla tor 3.45 to 7.4 mc tuned circuit	Spec No. JAN-C-5, JAN Type No. CM2OB100K	$\underset{8276}{\mathrm{~N} 16-\mathrm{C}-26025-}$	SMO Type No. K1410		$\begin{aligned} & \mathrm{C2}-83 \\ & \mathrm{C3}-12 \end{aligned}$	2							
c.2-85	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $1200 \mathrm{mmf} \pm 2 \%$ tolerance; bakelite case; case dim., excluding terminals, $53 / 64 \mathrm{in}$. $1 \mathrm{~g}, 53 / 64$ in. wide, $9 / 32$ in. thick; 2 term1 nals, wire lead type, located one ant to humldity; for general purpose use.	$\begin{aligned} & \text { P/o HF oscilla- } \\ & \text { tor } 3.45 \text { to } 7.4 \\ & \text { mc tuned circuit } \end{aligned}$	Spec No. JAN-C-5, JAN Type No. CM30C122a	$\begin{array}{\|c} \mathrm{N} 16-\mathrm{C}-31264- \\ 8009 \end{array}$	$\begin{aligned} & \text { EMM } \\ & \text { No. Type } \\ & \text { NM-30-122 } \end{aligned}$		c2-85	1							
c2-87	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $120 \mathrm{mmf} \pm 2 \%$ tolerance; 500v DC working; $=200$ to +200 parts/m1111on/ ${ }^{\text {C }}$; molded low-10ss bakelite case; case dim., exclud-	P/o HF oscillator 7.4 to 14.8 mc tuned circuit	Spec No. JAN-C-5, JAN Type No. См20c12la	${\underset{551}{ } \mathbf{N 1 6 - C - 2 8 7 3 2 -} .}^{5521}$	SMO Type No. KR1312		$\left\lvert\, \begin{gathered} \mathrm{c} 2-87 \\ \mathrm{c} 10-1 \end{gathered}\right.$	2							

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	name of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO	federal ano (SIGNAL GORPS) STOCK NO	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\left\|\begin{array}{l} \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}\right\|$	122	EquIP.		$\begin{aligned} & \text { YEN- } \\ & \text { DER } \end{aligned}$		stock	
SYMBOL DESIG.										这	$\begin{array}{\|l\|} \hline 2 \\ \text { e } \\ \text { a } \end{array}$	$\left\|\begin{array}{l\|} \mathbf{x} \\ \mathbf{o} \\ \mathbf{\infty} \end{array}\right\|$	$\begin{aligned} & \text { z} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\times}{\circ} \\ & \stackrel{\circ}{\infty} \end{aligned}$	¢
$\begin{gathered} \text { c2-87 } \\ (\text { cont }) \end{gathered}$	ing terminals, $51 / 64 \mathrm{in} .1 \mathrm{~g}$ max, 15/32 in. wide max, 7/32 1n. thick max; 2 term1nals, w1re lead type, located one ea end; terminal mounted; wax 1 mpregnated externally; for general purpose use.														
C2-88	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 2, MBCA Ref Dwg Group 2; $12 \mathrm{mmf} \pm 5 \%$ tolerance; 500 v DC working; $750 \mathrm{mmf} / \mathrm{mf} /{ }^{\circ} \mathrm{C}$, $\pm 120 \mathrm{mmf}$ tolerance; insulated, phenolic case; case dim., 9/16 1 n . $\mathrm{lg}, 1 / 41 \mathrm{n}$. dia; 2 terminals, wire lead type; terminal mounted; resistant to humidity; for general purpose use.	P/o HF oscillator 7.4 to 14.8 mc tuned circuit	Spec No. JAN-C-20A, JAN Type No. CC21UJ120J	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-15957- \\ 1248 \end{gathered}$	ERC Type No. N-750		c2-88	1							
C2-89	CAPACITOR, FIXED, MICA DIELECTRIC: case style No.22, MBCA Ref Dwg Group 1; $190 \mathrm{mmf} \pm 1 \%$ tolerance; $500 v$ DC working; $=200$ to +200 parts/million/ ${ }^{\circ} \mathrm{C}$; molded low-loss bakelite case; $51 / 641 \mathrm{n} .1 \mathrm{~g}, 15 / 32$ 1n. wide, 7/32 1n. thick; 2 term1nals, wire lead type, located one ea end; terminal mounted; resistant to humidity; for general purpose use.	P/o HF oscillator 7.4 to 14.8 mc tuned circuit		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-29206- \\ 5993 \end{gathered}$	AEV Type No. 1469		c2-89	1							
C2-91	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $92 \mathrm{mmf} \pm 1 \%$ tolerance; 500v DC work1ng; molded low-loss bakelite case; case dim., excluding terminals, $51 / 64 \mathrm{in} .1 \mathrm{~g}, 15 / 32 \mathrm{in}$. wide, $7 / 321 \mathrm{n}$. thick; 2 terminals, wire lead type, located one ea end; terminal mounted; resistant to hum1dity; for general purpose use.	P/o HF oscillator 14.8 to 29.7 mc tuned circuit		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-28415- \\ 2810 \end{gathered}$	AEV Type No. 1469		c2-91	1							
c2-92	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 1, MBCA Ref Dwg Group 1; $51 \mathrm{mmf} \pm 1 \%$ tolerance; 500 v DC working; negative (-750) temp coefficient, Letter J tolerance; 1nsulated, phenolic; case dim., excluding terminals, 0.562 in. ig max, 0.250 in . dia max; 2 terminals, axial wire lead type; terminal mounted; for general purpose use.	P/o HF oscillator 14.8 to 29.7 mc tuned circult	spec No. Jan-C-20A, Jan Type No. cc21uJ5iof	$\begin{gathered} \text { N1 6-C }-16585- \\ 6061 \end{gathered}$	ERC Type No. N-750		c2-92	1							
c2-93	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $379 \mathrm{mmf} \pm 1 \%$ tolerance; $500 v$ DC working; c̄ase dim., excluding terminals, $45 / 64 \mathrm{in} .1 \mathrm{~g}$, 29/64 in. wide, $3 / 16$ in. thick;	P/o HF oscillator 14.8 to 29.7 mc tuned circult		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-29864- \\ 2470 \end{gathered}$	AEV Type No. 1469		c2-93	1							

∞
$\underset{\sim}{1}$

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND description	function		FEDERAL AND (SIGNAL CORPS) STOCK NO.	MFGR. AND MFGR's oEsignation	CONTRACTORORAWING ANDPART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { TPRER } \\ & \text { EOUIP. } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & z \\ & z \\ & w \\ & w \end{aligned}$	EOuIP.	¢		stock	
SYM 802 DESIG.			JAN AND							呬		$\left[\begin{array}{l} \dot{z} \\ \text { an } \end{array}\right.$	\underline{x}	-
$\begin{gathered} \text { c2-93 } \\ (\text { cont }) \end{gathered}$	2 terminals, wire lead type, 10cated one ea end; terminal mounted; resistant to humidity; for general purpose use.													
c2-95	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Rer Dwg Group $1 ; 42 \mathrm{mmf}+1 \%$ tolerance; Soov DC working; molded low-1oss bake 1 ite case; case dim., exclud, bake 11 te case; case dim., exclud- ing terminals, $51 / 64 \mathrm{in} .1{ }_{\xi} \quad 15 / 3$ ing wide, $7 / 321 \mathrm{n}$. thick; E t. rmi nals, wire lead type, located one ea end; terminal mounted; res1st- ant to humldity; for general purpose use.	$\begin{aligned} & \text { P/o HF osc } 111 \text { a- } \\ & \text { tor } 29.7 \text { to } 54 \\ & \text { mc tuned circuit } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-27439- \\ 3017 \end{gathered}$	AEV Type $\text { No. } 1469$		c2-95	1						
c2-96	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg bakelite case; case dim., excluding terminals, $53 / 641 \mathrm{n}$. $1 \mathrm{~g}, 53 / 64$ in . w1de. $9 / 32 \mathrm{n}$. thick; term1nn. wide. $9 / 32$ 1n. thick; 2 termi- nais, wire lead type, located one ea end; terminal mounted; resistpose use.	$\begin{aligned} & \mathrm{F} / \mathrm{o} \mathrm{HF} \text { oscil1a- } \\ & \text { tor } 29.7 \text { to } 54.0 \end{aligned}$ $\begin{aligned} & \text { tor } 29.7 \text { to } 54.0 \\ & \text { mc tuned circuit } \end{aligned}$		$\underset{8470}{\mathrm{~N} 16-\mathrm{C}-30333-}$	AEV Type No. 1464		c2-96	1						
c2-100	Same as c2-3.	v2-7 grid blas f11ter												
C2-101		Fine frequency adjustment for 3.5 mc oscilla tor		$\begin{gathered} \text { N16-C-58836- } \\ 5306 \end{gathered}$	HMM Part No. APC25	NRCO Dwg No. A1104126	$\begin{aligned} & \mathrm{c} 2-101 \\ & \mathrm{c} 3-2 \\ & \mathrm{c} 3-30 \end{aligned}$	3						
c2-102	CAPACITOR, FIXED, PAPER DIELECTRIC 1 section; case style No, 18, MBCA Ref Dwg Group 1; 22,000 mmf $\pm 20 \%$ tolerance; 400 v DC working; molded phenolic case; case d1m., excluding pherminals, $1-3 / 8 \mathrm{in} .1 \mathrm{~g}, 11 / 321 \mathrm{n}$. dia; 2 terminals, axial lead type, located one ea end; aerolene 1 m pregnated; aerolene f1lled; no internal ground connections; terminal mounted; resistant to humidity; for general purpose use.	v2-8B plate f1lter		$\int_{7442}^{\mathrm{N} 16-\mathrm{C}-40105-}$	$\left\lvert\, \begin{array}{ll} \text { AEV Part No. } \\ \text { P488-. } 022 \pm 20 \end{array}\right.$			11						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

original
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
SYMBOL DESIG.	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	federal and (SIGNAL CORPS)STOGK NO. STOCK NO.	MFGR. AND MFGR'S designation	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|c\|c\|} \hline \text { TOTAL } \\ \text { PER } \\ \text { EOUP. } \end{array}$	$\begin{aligned} & \text { i } \\ & 2 \\ & \text { z } \\ & \underline{E} \end{aligned}$	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
										$\begin{array}{\|l} \mathrm{x} \\ \mathbf{o} \end{array}$	$\left\|\begin{array}{l} z_{2} \\ \mathbf{u} \\ 0 \end{array}\right\|$	$\stackrel{+}{\times}$	$\begin{aligned} & \dot{z} \\ & \dot{z} \\ & \dot{\partial} \\ & \hline \end{aligned}$	$\left.\begin{array}{\|l\|l} \times \\ 0 \\ \mathbf{\infty} \end{array} \right\rvert\,$	京
C2-129A	P/o c2-129.	v2-11 screen bypass													
C2-129B	P/o C2-129.	$\begin{aligned} & \text { v2-11 plate } \\ & \text { f11ter } \end{aligned}$													
C2-135	Same as Ca-3.	$\begin{aligned} & \text { v2-12 screen } \\ & \text { bypass } \end{aligned}$													
c2-136	Same as c2-102.	$\begin{aligned} & \text { V2-13B plate } \\ & \text { f1lter } \end{aligned}$													
C2-137	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 18, MBCA Ref Dwg Group 1; 250,000 mmf $\pm 20 \%$ tolerance; 200 v DC working; hērmetically sealed metal case; case dim., $2-5 / 16 \mathrm{in} .1 \mathrm{~g}, 13 / 16 \mathrm{in}. \mathrm{dia;}$ 2 terminals, axial wire lead type, located on ends; mineral oll $1 \mathrm{~m}-$ pregnated; mineral ofl filled; no internal ground connection; single hole mtg clamp; moisture and fungus proof; for general purpose use.	AVC time constant increase	$\begin{aligned} & \text { Spec No. JAN - } \\ & \text { C-25, JAN } \\ & \text { Type No. } \\ & \text { CP28A1EF254M } \end{aligned}$	$\begin{gathered} \text { N16-C-46373- } \\ 5764 \end{gathered}$	SMO Type No. 21		c2-137	1							
c2-138	Same as Č-12.	$\begin{aligned} & \text { V2-14A input } \\ & \text { coupler } \end{aligned}$													
c2-139	Same as C2-15.	$\begin{aligned} & \text { v2-14B input } \\ & \text { coupler } \end{aligned}$													
c2-140	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg aroup 1; $1000 \mathrm{mmf} \pm 10$ 有 tolerance; 500v DC working; mōlded low-loss bakelite case; case d1m., 51/64 in. $1 \mathrm{~g}, 25 / 32 \mathrm{in}$. wide, 9/32 1 n . deep; 2 terminals, wire lead type, located one on ea end; terminal mounted; molsture and fungus proof; for general purpose use.	P/o AVC time constant circuit	Spec No. JAN-C-5, JAN Type No. CM35A102K	$\underset{\substack{\text { N16-C-31090- } \\ 4203}}{ }$	AEV Type No. 1467		c2-140	1							
C2-141	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 2, MBCA Ref Dwg Group 1; $100 \mathrm{mmf} \pm 10 \%$ tolerance; $500 v$ DC working; - 330 parts $/ \mathrm{milli}$ on ${ }^{\circ} \mathrm{C},+120 \mathrm{mmf}$ tolerance; 1 nsulated, phenolic jacket; case dim., 13/16 in. $1 \mathrm{~g}, 1 / 4 \mathrm{in}$. dia; 2 terminals, axial lead type; terminal mounted; resistant to humidity; for general purpose use.	V2-14B output RF bypass	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { C-20A, JAN } \\ & \text { Type No. } \\ & \text { CC26SL101K } \end{aligned}$	$\begin{gathered} \text { N16-C-17085- } \\ 7060 \end{gathered}$	ERC Type No. N-330		$\begin{gathered} \mathrm{C} 2-141^{\circ} \\ \mathrm{C} 2-142 \end{gathered}$	2							
C2-142	Same as C2-141.	V2-14B output RF bypass													
C2-143	CAPACITOR, PIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $5100 \mathrm{mmf}+5 \%$ tolerance; 500v DC working; mōlded low-loss	V2-14B output coupler	Spec No. JAN-C-5, JAN Type No. CM35A512J	${ }^{\text {N } 16-C-32720-} 7523-$	AEv Type No. 1467		$\left\lvert\, \begin{aligned} & \mathrm{C} 2-143 \\ & \mathrm{C} 2-149 \end{aligned}\right.$	2							

$\stackrel{\oplus}{\hbar}$

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART ANO	function	$\begin{gathered} \text { JAN AND } \\ \text { (NAVY TYPE)NO. } \end{gathered}$	$\begin{aligned} & \text { FEEERAL AND } \\ & \text { (SIONALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING ANDPART NO. ART NO.		$\left\lvert\, \begin{aligned} & \text { ROTAL } \\ & \text { PERR } \\ & \text { EOUTP. } \end{aligned}\right.$	$\underset{\text { z }}{\text { z }}$	Eoul		TEN-	stock	
$\left\|\begin{array}{c} \text { SYMBol } \\ \text { DESIG. } \end{array}\right\|$										$\begin{aligned} & \mathrm{x} \\ & \mathrm{O} \end{aligned}$		×		-
$\left.\begin{array}{c} (2-143 \\ (\text { cont }) \end{array}\right]$	bakellte case; case dim., $51 / 64$ in. $1 \mathrm{~g}, 25 / 32 \mathrm{in}$. w1de, $9 / 32 \mathrm{in}$ deep; 2 terminals, axial lead type located on each end; terminal mounted; mo1sture and fungus proof; for general purpose use.	V:-15 voltage 11 m 1 ter	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { C-25 Jo, JiN } \\ & \text { Type No } \\ & \text { CP28A1EF503M } \end{aligned}$	N16-C-44287-7160	$\begin{aligned} & \text { Smo Type } \\ & \text { No. } 21 \end{aligned}$		C2-144	1						
C $2-144$	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 18, MBCA Ref Dwg Group 1; $50,000 \mathrm{mmf}+20 \%$ tolerance; 600 v dC work1ng; hermetically sealed metal case; case d1m., $1-9 / 16 \mathrm{in}$. 1 g , $11 / 16 \mathrm{in}$. d1a 2 terminals, axial wire leads, 10cated on ends; mineral oil 1 mpreg nated; mineral onl ground connection; single hole mounting clamp; molsture and fungus proof; for general purpose use.													
C2-145	Same as c2-12.	v2-16A input coupler												
C2-146	Sane as $\mathrm{Cl}^{\text {- }}$-102.	$\begin{aligned} & \text { V2-16A plate } \\ & \text { f11ter } \end{aligned}$												
C2-147	Same as C2-102.	v2-16A output coupler												
C2-148	Same as c2-102.	v2-168 plate f1lter												
c2-149	Same as c2-143.	v2-16B output coupler												
c2-150	Capacitor, fixed, mica dielectric: case style No. 22. MBCA Ref DWE Group 1; 2500 maf $+10 \%$ tolerance; 800 DC working; tèmp character $1 \mathrm{st1c}$ letter Bi ; molded low-loss bakel1te case; case d11., $1-1 / 32$ 1 n . 1 g max, $41 / 64 \mathrm{in}$. Wlde max, $11 / 321 \mathrm{n}$. deep. max; ${ }^{2}$ terminal located on each end; terminal mounted; resistant to humldity; for general purpose use	Bypass for high audio frequencies		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-32013- \\ 9810 \end{gathered}$	AEV Type No. 1441Lw		c2-150	1						
c2-151	Same as c2-128.	v2-17 cathode bypass												
C2-152	Same as c2-129.													
c2-152A	P/o c2-152.	AC input power f11ter												
c2-152b	P/o c2-152.	AC input power f1lter												
c2-153	Same as c2-3.	V2-1 and $V 2-2$ fliament filter												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS								
	name of part and DESCRIPTION	FUNGTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOCK NO.	MFGR. AND MFGR'S designation	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.CNVOLVED	$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$		- Equip		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock			
$\underset{\text { SESBIG. }}{\substack{\text { SYM BOL } \\ \text { DES }}}$										希	\|l	l		$\left\|\begin{array}{l\|} \mathbf{x} \\ 0 \\ \infty \end{array}\right\|$	$\left.\begin{aligned} & \dot{z} \\ & \mathbf{u} \\ & \mathbf{0} \end{aligned} \right\rvert\,$	¢	z
c2-154	Same as c2-3.	V2-1, V2-2, V2-4 and V2-5 fliament filter															
c2-155	Same as $\mathrm{C} 2-3$.	V2-4 and VC-5 f1lament filter															
c2-156	Same as c2-102.	v2-6 and v2-8 filament filter															
C2-157	Same as c2-102.	v2-6 and v2-8 f1lament filter															
C2-158	Same as C2-128.	$\begin{aligned} & \text { V2-20 output } \\ & \text { filter } \end{aligned}$															
C2-159	Same as Cく-128.	$\begin{aligned} & \text { v2-20 output } \\ & \text { f1lter } \end{aligned}$															
C2-160	Same as C2-128.	V2-20 output filter															
c2-161	CAPACITOR, FIXED, ELECTROLYTIC: case style No. 20, MBCA Ref Dwg Group 1; 3 sections (C2-161A,B,C); $20 \mathrm{mf} /$ section; 450 v DC working; $+85^{\circ} \mathrm{C}$ working temp range; sealed metal can; case dim., $3-7 / 81 \mathrm{n}$. $\lg , 1-3 / 8 \mathrm{in}$. dia; 4 terminals, solder lug type, located on bottom, phenolic insulation, terminals insulated from can; 1 clamp, Un1versal clamp type; for general purpose use.		$\begin{aligned} & \text { Spec No, JAN- } \\ & \text { C-26, JAN } \\ & \text { Type No. } \\ & \text { CE33D200R } \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{N} 16-\mathrm{C}-22643- \\ \mathrm{C}_{2} 95 \end{gathered}\right.$	$\begin{array}{\|l\|l} \text { CLD } & \text { Part } \\ \text { No. } & 1815768 \end{array}$		c2-161	1									
C2-161A	P/o C'2-161	V2-19 output filter															
C2-161B	P/o/C-2-1.61.	$\begin{aligned} & \text { v2-19 output } \\ & \text { f11ter } \end{aligned}$															
c2-161C	P/o c2-161.	$\begin{aligned} & \text { v2-19 output } \\ & \text { f11ter } \end{aligned}$															
c2-162	CAPACITOR ASSEMBLY: individual capacitor data, 2 capacitors, 7,000 $\mathrm{mmf} \pm 5 \%$ tolerance, 600 v DC working; matched pair, $3,500 \mathrm{mmf}$, $+5 \%$ tolerance, 600 v DC working voltage; series connected; over-all dim. excluding leads, $53 / 64 \mathrm{in} .1 \mathrm{~g}$, 53/64 in . wide, $11 / 16 \mathrm{in}$. deep; 2 capacitors (C2-162A, C2-162B) matched to ea other within $\pm 1 \%$; p / O, AN Radio Receiver, Typē No. R-450/FRR-28.	External HF oscillator input signal filter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-66203- \\ 4770 \end{gathered}$		NRCO Dwg No. A1104195	c2-162	1									

8-16

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND	function	$\begin{aligned} & \text { JAN AND } \\ & \text { (NAVY TYPE)NO. } \end{aligned}$	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFRR } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTORDRAWING ANDPART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQUIP. } \end{aligned}$	Equip.		TEN-		stock	
$\left\lvert\, \begin{gathered} \text { SYMBOLL } \\ \text { OESIG. } \end{gathered}\right.$									2	\|		$\begin{aligned} & i \\ & \substack{2 \\ \hline} \end{aligned}$	¢	¢
c2-162A	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Rer Dwg Group 1; $7,000 \mathrm{mmf}$. 5% tolerance, 300 V DC; temp characteristic letter B per JAN-C-5; molded low-1oss pheno11c case; case d1m. $53 / 64$ $1 \mathrm{n} .1 \mathrm{~g}, 53 / 641 \mathrm{n}$. w1de, $11 / 32 \mathrm{in}$. 1n. 1 g, deep, terminals, $53 / \mathrm{m}$ ree lead type, located one ea end; terminal mounted; special features, wax $1 \mathrm{~m}-$ pregnated externally, matched Recelver, Type No. R-450, ANR Rad1o Ren p/o c2-162; 11sted for reference oniy.	$\begin{aligned} & \text { P/o external HF } \\ & \text { osch11ator } 1 \text { n- } \\ & \text { out s1gnal f11- } \\ & \text { ter } \end{aligned}$		$\begin{aligned} & \mathrm{N} 16-\mathrm{C}-33116- \\ & 3142 \end{aligned}$	SMO Type No. $\operatorname{co6} 270$	NRCO Dwg No. Al10497-1	$\left\|\begin{array}{c} c 2-162 A \\ c 2-162 B \end{array}\right\|$	${ }^{2}$						
C2-162b	Same as and matched within 1% of C2-162A; 11 sted for rererence only.	$\begin{aligned} & \text { P/o external HF } \\ & \text { oscol11.ator } 1 \text { 1n- } \\ & \text { put signal f11- } \\ & \text { ter } \end{aligned}$												
C2-164	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $100 \mathrm{mmf}+10 \%$ tolerance; ter B per JAN-C-5; molded low-loss bakelite case; case dim., $51 / 64$ 1 n . 1 g max, $15 / 32$ 1n. W1de max, wire lead type, located one ea end; terminal mounted; wax 1 inpregnated use.	v2-4A 1 nput coupler	Spec No. Jan-C-5, JAN Type No. CM2OB101K o. Cmacobloik	$\underset{1676}{\mathrm{~N} 16-\mathrm{C}-28558-}$	$\begin{aligned} & \text { SMO Type } \\ & \text { No. K1310 } \end{aligned}$			${ }^{6}$						
c2-165	CAPACITOR, FIXED, MICA DIEIECTRIC: case style No. 22, MBCA Ref Dwg Group 1; 500 V DC; -200 to $\frac{+}{+200}$ parts per million per deg C temp coefficient; molded low-loss bakelite case; case dim., $51 / 641 \mathrm{n}$. $1 \mathrm{~g} \max , 15 / 32$ in. wide max, $7 / 32$ in. deep max; 2 n. W1de max, $7 / 32$ in. deep max; terminals, wire lead type, located one ea end; terminal mounted; wax 1mpregnated externally; for general purpose use.	v2-4B output coupler	$\begin{array}{ll}\text { Spec } & \text { No. JAN- } \\ \text { C-5, } \\ \text { JAN Type }\end{array}$ C-5, JAN Type No. CM20C 101 K	$\underset{\substack{\mathrm{N} 16-\mathrm{C}-28558-\\ 1681}}{ }$	SMO Part No. KR1310		c2-165	1						
c2-166	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref DWg aroup $1 ; 10,000 \mathrm{mmf}$ ance; 300 v DC; temp characteristic letter B per JAN-C-5; molded lowloss bakelite case; case dim. $53 / 64 \mathrm{in} .1 \mathrm{~g} \max , 53 / 64 \mathrm{in}$. wide max, $11 / 32$ in. deep max; 2 term1ea end, terminal mounted; wax one pregnated externally; for general purpose use.	V2-4 grid blas f11ter	Spec No. Jan-C-5, JAN Type No. CM35B103K	$\begin{gathered} \text { N16-C-33622 } \\ 5222 \end{gathered}$	SMO Type No. C06110			16						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

81-8
table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	name of part and oescription	FUNCTION	(NAVY JAN AND	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFRR } \\ \text { DESIGNATION } \end{gathered}$	contractor DRAWING AND part no.	$\begin{array}{\|c\|c\|} \text { SYMBL } \\ \text { SYMSOL } \\ \text { OESVIG. } \\ \text { ONVEL- } \\ \text { VED } \end{array}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	EQuip.			TEN-		stock	
$\mid \underset{\text { DESIG. }}{\text { SYMBOL }}$									$\begin{aligned} & \mathbf{z} \\ & z \\ & \underset{~}{z} \end{aligned}$	¢	$\begin{aligned} & 2 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \\ \hline \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & \stackrel{\Delta}{3} \\ & \mathbf{0} \end{aligned}$	-	㐫
$\begin{aligned} & c(-17) \\ & (\text { cont }) \end{aligned}$	w1re lead type, located one ea end; wax 1 mpregnated; no internal ground connections; terminal mounted; for general purpose use.														
C2-174	Same as c2-166.	P/o aVC time constant circult													
C2-175		AVC f1lter		$\begin{gathered} \text { N16-C-29665- } \\ 9476 \end{gathered}$	SMO Type No. K1 330	NRCO Dwg No. A110495-6	c2-175	1							
c2-176	Same as C2-166،	V2-16A output coupler													
C2-180	CAPACITOR, FIXED, MICA DIELECTHIC: case style No. 22, MBCA Ref DWg Group 1; $10,000 \mathrm{mmf}+20 \%$ tolerletter B per JAN-C-5; molded lowloss bakelite case; case dim. $53 / 64 \mathrm{in}$. $1 \mathrm{gg} \max , 53 / 64 \mathrm{in}$. Wíde max, $11 / 321 \mathrm{n}$. deep max; 2 term1ea end; terminal mounted; wax $1 \mathrm{~m}-$ pregnated externally; for general purpose use.	$\begin{aligned} & \text { v2-8B plate } \\ & \text { f1lter } \end{aligned}$	Spec No. JAN-C-5, JAN Type No. CM35B103M	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-33627-7 \\ 7705 \end{gathered}$	SMO Part No. C06110		$\left\|\begin{array}{l} c 2-180 \\ c 9-11 \end{array}\right\|$	2							
c2-181	Sane as c2-170.	$\begin{aligned} & \text { V2-4A grid blas } \\ & \text { f1lter } \end{aligned}$													
c2-182	Same as C2-170.	$\begin{aligned} & \text { v2-4B grid b1as } \\ & \text { f1lter } \end{aligned}$													
C2-183	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 2, MBCA Ref Dwg Group 1; $100,000 \mathrm{mmf} \pm 20 \%$ case dim., excluding terminals, $3 / 8 \mathrm{in}$. dia, $5 / 8 \mathrm{in}$. $1 \mathrm{~g} ; 2$ termi nals, wire lead type, located one ea end; Hyvol $\mathrm{K} 1 \mathrm{mpregnated;} \mathrm{no}$ internal ground connections; teroperating temp, wax 1 mpregnated case, metalized paper dielectric; for general purpose use.	v2-9 cathode bias filter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-45803- \\ 1084 \end{gathered}$	AEV Part No. P82-10, 000 ± 20	NRCO DWB No. Al104182-1	$\left\|\begin{array}{c} \mathrm{C} 2-183 \\ \mathrm{C} 2-184 \end{array}\right\|$	${ }^{2}$							
c2-184	Same as cz-183.	V2-10 cathode bias filter													

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST
8-20

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	FEDERAL AND(SIGNAL GORPS) STOCK NO.	MFGR. AND MFGR'S designation	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PER } \\ \text { EQUP } \end{array}$	$\begin{aligned} & i \\ & z \\ & z \\ & z \\ & \underline{w} \end{aligned}$	EOUIP.		$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
DESIG.										若	$\begin{array}{l\|} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}$	$\left\|\begin{array}{l} x \\ 0 \\ \hline \end{array}\right\|$	$\begin{aligned} & \dot{z} \\ & \dot{0} \end{aligned}$	-	í
C3-13	Same as C'2-170.	v3-3 plate bypass													
C3-14	Same as c2-170.	v3-3 screen f1lter													
C3-15	Same as c2-170.	v3-5 cathode bypass													
c3-16	CAPACITOR, FIXED, CERAMIC DIELECTRIC: case style No. 1, MBCA Ref Dwg Group 1; $10 \mathrm{mmf} \pm 0.5 \mathrm{mmf}$ tolerance; $600 \mathrm{v} \mathrm{DC} ; 0^{-} \mathrm{mmf}$ per mf per deg C, tol $\pm 30 \mathrm{mmf}$ per mf per deg C; body, non-insulated, lacquer coating; case dim., 0.400 in . $\lg , 0.2001 \mathrm{n} . \mathrm{dia} ; 2$ terminals, radial w1re lead type; terminal mounted; color coded; for general purpose use.	v3-3 grid to cathode feedback		$\underset{.}{\mathrm{N} 16-\mathrm{C}-15917-}$	$\begin{aligned} & \text { CN Part } \\ & \text { No. TCZ10 } \end{aligned}$	NRCO Dwg No. A110455-1	c3-16	1							
C3-17	Same as C3-4.	v3-3 screen load													
c3-18	Same as c2-166.	v3-3 cathode bypass													
C3-19	Same as c2-166.	v3-3 output coupler													
C3-20	Same as c2-170.	v3-4 cathode bypass													
C3-21	Same as c2-170.	v3-4 screen bypass													
C3-22	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; 5,000 mmf $\pm 10 \%$ tolerance; 500v DC; temp characteristic letter B per JAN-C-5; molded low-loss bakelite case; case dim., $13 / 161 \mathrm{n}$. $1 \mathrm{~g}, 25 / 321 \mathrm{n}$. wide, 11/32 1n. deep; 2 terminals, wire lead type, located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	$\begin{aligned} & \text { v3-4 plate } \\ & \text { filter } \end{aligned}$		$\mathbf{N} 16-\mathrm{C}-32699-_{4608}$	SMO Type No. C1250	NRCO Dwg No. Al10496-1	$\begin{aligned} & \text { C3-22 } \\ & \text { C3-27 } \\ & \text { C3-31 } \\ & \text { C3-38 } \\ & \text { C3-64 } \\ & \text { C3-65 } \\ & \text { C3-66 } \end{aligned}$	7							
c3-23.	Same as C2-164.	V3-12 output coupler													
C3-24	CAPACITOR, VARIABLE, AIR DIELECTRIC: plate meshing type; 3 sections (C3$24 \mathrm{~A}, \mathrm{~B}, \mathrm{C}) ; 266.5 \mathrm{mmf}$ max, 8 mmf m 1 n , $266.5 \mathrm{mmf} \max , 8 \mathrm{mmf} \mathrm{min}, 266 \mathrm{mmf}$ max, 8 mmf min; MLF tuning characteristic; 0.0125 in . nominal airgap over-all dim. excluding shaft, 3$3 / 16 \mathrm{in}$. $1 \mathrm{~g}, 2-5 / 32 \mathrm{in}$. wide max w/ plates unmeshed, $1-13 / 16 \mathrm{in}$. wide min w/ plates meshed; 2-3/16 1n. high max w/ plates unmeshed,	"OUTPUT FREQ" adjustment	.	$\begin{gathered} \text { N16-C-63286- } \\ 9101 \end{gathered}$	RAD Serles No. 25	NRCO Dwg No. A110485	C3-24	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (navy typeino.	federal and (SIGNAL CORPS) stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOL DESIG. INVOLVED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUP. } \end{array}$	- EQuIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBoL } \\ \text { DESIG. } \end{gathered}$									$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \\ & \underset{y}{2} \end{aligned}$	$\begin{aligned} & \text { x } \\ & \text { x } \end{aligned}$	2	$\stackrel{\times}{\circ}$	2	$\stackrel{\times}{\circ}$	若
$\begin{gathered} c 3-24 \\ (\text { cont }) \end{gathered}$	1-5/8 1n. h1gh min w/ plates meshed; shaft, 27/32 1 n .1 g max from front end plate, $1 / 4 \mathrm{in}$. d1a; extension shaft adjustment, 180° extension shaft adjustment, 6 terminals, solder lug type; 3 No. 6-32 thread tapped mounting legs in triangle layout on 1 in . by 1 in . by $7 / 81 \mathrm{n}$. mounting centers; no trimmers, steel frame, standard calibration; 9 rotor and 8 stator plates per section, alum1num; p/o, AN Radio Frequency Oscillator, Type No. 0-165/UR.														
C3-24A	P/o c3-24.	2 to 4 and 4. to 8 mc output frequency tuner													
C3-24B	P/o c3-24.	8 to 16 mc output frequency tuner													
C3-24c	P/o c3-24.	16 to 32 mc output frequency tuner													
c3-25	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, mBCA Ref Dwg Group 1; $50 \mathrm{mmf} \pm 5 \%$ tolerance; 500 v DC; -200 to ${ }^{-}+200$ parts per m11110n per deg C temp coefficient; molded low-loss bakelite case; case dim., $1 / 2 \mathrm{in}$. $\mathrm{lg}, 9 / 32 \mathrm{in}$. wide, $3 / 16 \mathrm{in}$. deep; 2 terminals, w1re lead type, located one ea end; terminal mounted; wax 1 mpregnated externally; for general purpose use.	V3-10A plate load		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-27629- \\ 7215 \end{gathered}$	SMO Part No. RR1450	NRCO Dwg No. A1104105-4	c3-25	1							
c3-26	Same as c2-164.	V3-4 output coupler													
c3-27	Sane as c3-22.	$\begin{aligned} & \text { V3-5 plate } \\ & \text { f1lter } \end{aligned}$													
c3-28	Same as c2-164.	V3-5 output coupler													
C.3-29	Same as c2-170.	V3-5 screen bypass													
c 3-30	Same as C2-101.	P/o voltage d1vider input network to V3-2													
c3-31	Same as c3-22.	$\begin{aligned} & \text { V3-11 plate } \\ & \text { filter } \end{aligned}$													
c3-32	Same as c2-170.	V3-11 screen bypass													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
$\begin{array}{\|c} \text { SYMBol } \\ \text { OESIG. } \end{array}$	name of part and DESCRIPTION	function					${ }^{\text {ALL }}$		-	Equ			N-	sto	ock
			JAN AND (NAVY TYPE)NO.	(SIGNAL CORPS) STOCK NO.	MFGR's DESIGNATION	DRAW PART NO.	$\begin{gathered} \text { DESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { TOTAL } \\ \text { PER } \\ \text { EOUIP. } \end{gathered}\right.$	$\left.\begin{array}{\|c} 2 \\ \mathbf{z} \\ \mathbf{w} \\ \underline{1} \end{array} \right\rvert\,$	$\begin{array}{\|l\|l} \text { x } \\ \text { in } \end{array}$	$\left\|\begin{array}{l} z_{1} \\ \mathbf{u} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \times \\ 0 \\ \hline \end{array}\right\|$	$\begin{aligned} & \dot{z} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	2i
C3-33.	Same as c2-170.	V3-1) cathode bypass													
C3-34	CAPACITOR, VARIABLE, CERAMIC DIELECTRIC: rotary type, single section, 500 mmf per mf per degree C neg temp coefficient; 7 to 45 mmf capacity; DC, $500 v$; over-all dim. excluding terminals, $27 / 32 \mathrm{in}$. 1 g , 21/32 1 n . Wide, $3 / 8 \mathrm{in}$. high; 2 terminals, solder lug type, lo0.120 in . dia mounting holes in base spaced $0.445 \mathrm{1n}$. C to C ; screwdriver slot adjustment; steat1te base; $Q=500$ at approx 1 mc , marked "N500 7-45"; for general purpose use.	16 to 32 mc output frequency trimmer		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-64133- \\ 6625 \end{gathered}$	ERC Type No. TS2A	NRCO Dwg No. All0456	$\left\lvert\, \begin{aligned} & C 3-34 \\ & C 3-35 \\ & C 3-36 \\ & C 10-18 \\ & \text { C10-19 } \\ & \text { C10-20 } \\ & \text { C10-21 } \\ & \text { C10-22 } \\ & C 10-23 \end{aligned}\right.$	9							
C3-35	Same as C3-34.	8 to 16 mc output frequency trimmer													
c3-36	Same as c3-34.	2 to 4 and 4 to 8 mc output frequency trimmer													
C3-37	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $50 \mathrm{mmf} \pm 10 \%$ tolerance ; 500 v DC; -200 to ${ }^{-}+200$ parts per million per deg C temp coefficient; molded low-loss bakelite case; case dim. $23 / 32 \mathrm{in} .1 \mathrm{~g}, 15 / 32 \mathrm{in}$. wide, $13 / 64 \mathrm{in}$. deep; 2 terminals, wire lead type, located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	BF oscillator grid to cathode feedback coupler		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-27634- \\ 8769 \end{gathered}$	SMO Type No. KR1450	NRCO Dwg No. A110495-2	C3-37	1							
c3-38	Same as c3-22.	V3-4 plate filter													
C3-39	Same as c2-170.	$\begin{aligned} & \text { V3-10B plate } \\ & \text { filter } \end{aligned}$													
c3-40	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 42, MBCA Ref Dwg Group 1; 500,000 mmf $+20 \%$ tolerance; 600v DC; hermetically sealed metal case; case dim. excluding terminals, 1 in . wide, $1-13 / 16 \mathrm{in} .1 \mathrm{~g}, 1 \mathrm{in}$. high; 2 term1nals, riveted solder lug type $7 / 16$ in. ig, located on side, 1 in . C to C; mineral oll impregnated; mineral oil filled; no internal ground connections; 2 mounting feet $w / 3 / 16$ in. dia mounting hole in ea, holes spaced $2-1 / 8 \mathrm{in}$. C to C ; noninduct1vely wound; for general purpose use.	$\begin{aligned} & \text { V3-3 plate } \\ & \text { filter } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-47327- \\ 7486 \end{gathered}$	SMO Type No. 5006R5-0.5	NRCO Dwg No. Allo491-1	$\begin{aligned} & \text { C3-40 } \\ & \text { C3-41 } \\ & \text { C9-16 } \end{aligned}$	3							

TABLE 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
$\begin{gathered} \operatorname{srmbol} \\ \text { DESIG. } \end{gathered}$	NAME OF PART AND DESCRIPTION	FUnction					ALL		－	EOU			N－	Sto	ck
			JAN AND （NAVY TYPE）NO．	（SIGNAL CORPS） stock no	FGR．AND MFGR＇S designation	RACTOR DRAWING AND PART NO．	$\left\lvert\, \begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{gathered}\right.$	$\underset{\sim}{2}$	－	$\left\|\begin{array}{l} \dot{2} \\ \mathbf{a} \\ 0 \end{array}\right\|$	$\begin{aligned} & \times \\ & \mathbf{\infty} \\ & \mathbf{\infty} \end{aligned}$	$\left.\begin{aligned} & \dot{z} \\ & \mathbf{u} \\ & \mathbf{a} \end{aligned} \right\rvert\,$	－	安
C 3－41	Same as c3－40．	v3－6 output coupler													
C3－43	Same as ca－170．	M3－1 filter for HF output signal													
C3－44．	CAPACITOR，FIXED，PAPER DIELECTRIC： 1 section；case style No．12，MBCA Ref Dwg aroup 1； $4 \mathrm{mf} \pm 20 \%$ toler－ ance； 600 v DC；hermetically sealed metal can；case dim．excluding ter minals， $1-1 / 21 n$ ．dia，4－1／2 1 n ． high； 1 terminal，solder lug type， located on bottom；Dykanol ${ }_{\mathrm{a}} \mathrm{lm}$ ， pregnated；Dykanol＂G＂filled；in－ ternally grounded； 1 mounting stud $\mathrm{w} / 3 / 4$ in．-16 thread；supplied $\mathrm{w} /$ washer for mounting；for general purpose use．	Power supply f1lter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-49988- \\ 5295 \end{gathered}$	CLD Part No．TLA6040	NRCO Dwg No．AllO448	$\begin{aligned} & c 3-44 \\ & \text { c3-45 } \\ & \text { c3-47 } \\ & \text { c9-18 } \\ & \text { C9-19 } \\ & \text { c9-20 } \\ & \text { C10-7 } \\ & \text { C10-16 } \\ & \text { c10-17 } \end{aligned}$	9							
c3－45	Same as C3－44．	Power supply filter													
c3－46	Same as C3－4．	V3－2 plate bypass													
c3－47	Same as C3－44．	Power supply fllter													
c3－48	Same as ce－170．	M3－1 filter for BF output signal													
C3－49	CAPACITOR，VARIABLE，AIR DIEIECTRIC： plate meshing type； 1 section； 50 mmf max， 5 mmf min；straight line capacity tuning characteristic； 0.0151 n ．between plates；over－all dim．excluding shaft， $1-1 / 16 \mathrm{in}$ ． $1 \mathrm{~g}, 15 / 161 \mathrm{n}$ ．wide， $1-7 / 321 \mathrm{n}$ ． h1gh；shaft， $5 / 16 \mathrm{in}$ ． 1 g to base， $7 / 321 \mathrm{n}$ ． 1 g to mounting face， $9 / 32$ in．dia；screwdriver ad justment， $360^{\circ} \mathrm{cw}$ or ccw rotation；base 18o－ lantite； 3 terminals， $\begin{aligned} & \text { minalor ter－} \\ & \text { molder lug type，stator two }\end{aligned}$ terminals，grooved post type； 2 No． 4－36 tapped mounting holes $21 / 32$ in．C to C； 7 rotor and 7 stator plates，brass，cadmlum plated；for general purpose use．	E1ne adjustment for calibrator output frequency		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-59823- \\ 8206 \end{gathered}$	hmm Part No．APC50	NRCO Dwg No．Allo4125	$\begin{aligned} & \text { C3-49 } \\ & \text { C9-22 } \end{aligned}$	2							
C3－50	Same as c2－166．	V3－10B cathode bypass													
C3－51	Same as $\mathrm{CL}^{2}-170$.	$\left\lvert\, \begin{aligned} & \text { V3-9B plate } \\ & \text { bypass } \end{aligned}\right.$													
C3－52	Same as Cz－ 164.	$\begin{aligned} & \text { V3-9A to V3-9B } \\ & \text { coupler } \end{aligned}$	－												

7VNIפİO
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	federal ano (SIGNAL CORPS) STOGK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EOUIP. } \end{array}$	- EOUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOL } \\ \text { OESIG. } \end{gathered}$									$\left.\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & w \\ & \underline{w} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} \text { x } \\ \mathbf{\infty} \end{array}\right\|$	$\begin{aligned} & i \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{l\|l\|} \hline \\ \stackrel{\infty}{\infty} \end{array}$	安	-	ciel
C3-53	Same as c2-170.	$\begin{aligned} & \text { V3-9A plate } \\ & \text { bypass } \end{aligned}$													
c3-54	Same as c2-170.	v3-9B output coupler													
c3-55	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group $1 ; 150 \mathrm{mmf} \pm 5 \%$ tolerance; 500 v DC; -200 to ∓ 200 parts per million per deg C temp coefficient molded low-loss bakelite case; case dim., 51/64 1 n . 1 g max, $15 / 32$ in. wide max, $7 / 321 n$. deep max; ? terminals, wire lead type, located one ea end; terminal mounted, wax impregnated externally; for general purpose use.	$\begin{aligned} & \text { V3-9A plate } \\ & \text { load } \end{aligned}$	Spec No. JAN-C-5, JAN Type No. CM20C151J	$\begin{gathered} \text { N16-C-28975- } \\ 1601 \end{gathered}$	SMO Part No. KR1315		c3-55	1							
c3-56	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg aroup 1; $20 \mathrm{mmf}, \pm 5 \%$ tolerance; 500 v DC; -200 to ∓ 200 parts per million per deg C temp coefficient; molded low-loss bakelite case; case dim., $1 / 21 \mathrm{n} .1 \mathrm{~g}, 9 / 321 \mathrm{n}$. wide, $3 / 16 \mathrm{in}$. deep; 2 terminals, wire lead type, located one ea end, terminal mounted; wax 1 mpregnated externally; for general purpose use.	P/o varlable HF osc1llator		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-26732- \\ 9439 \end{gathered}$	SMO Part No. RR1420	NRCO Dwg No. Al104105-3	c3-56	1							
C3-57	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group $1,10,000 \mathrm{mmf}+5 \%$ tolerance, 300 v DC; -200 Eo +200 parts per million per deg C temp coefficient; molded low-loss bakelite case; case dim., 53/64 1 n . Ig max, $53 / 64$ in. wide max, $11 / 32$ in. deep max; 2 terminals, wire lead type, max; located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	V3-1 filament f11ter	Spec No. JAN-C-5, JAN Type No. CM35C103J	$\begin{gathered} \mathrm{N} 16-\mathrm{C}-33617- \\ 4746 \end{gathered}$	SMO Part No . CR06110		$\left\lvert\, \begin{aligned} & c 3-57 \\ & c 3-58 \end{aligned}\right.$	2							
C3-58	Same as c3-57.	$\begin{aligned} & \text { V3-1 fllament } \\ & \text { filter } \end{aligned}$													
C3-59	Same as c2-166.	Inner oven heater bypass													
C3-60	Same as c2-166.	Inner oven heater bypass													
C3-61	Same as c2-164.	v2-10B output coupler													
C3-62	Same as c2-166.	$\begin{aligned} & \text { v3-12 cathode } \\ & \text { bypass } \end{aligned}$													
C3-63	Same as c2-166.	V3-12 screen bypass													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO		$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \end{gathered}$									$\left\lvert\, \begin{aligned} & 2 \\ & 2 \\ & \mathbf{z} \\ & \underline{L} \end{aligned}\right.$	¢	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}\right\|$	$\begin{aligned} & \stackrel{x}{x} \\ & \stackrel{\rightharpoonup}{\circ} \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{z} \\ & \text { zu } \\ & \text { a } \end{aligned}$	$\left\|\begin{array}{l} x \\ 0 \\ 0 \end{array}\right\|$	京
C3-64	Same as c3-22.	V3-4 plate to tuned circuit coupler													
c3-65	Same as c3-22.	V3-5 plate to tuned circult coupler													
c3-66	Same as c3-22.	v3-6 plate to tuned circuit coupler													
C9-1	Same as c2-106.	V9-1 cathode bypass													
c9-2	Same as ce-166.	V9-2 screen bypass													
C9-3	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 42, MBCA Ref Dwg Group 1; $2 \mathrm{mf} \pm 20$ tolerance; $600 \mathrm{v} D C$; hermetically sealed metal case; case din. excluding terminals, $21 \mathrm{n} .1 \mathrm{~g}, 2 \mathrm{in}$. wide, $1-1 / 41 \mathrm{n} . \mathrm{h} 1 \mathrm{gh} ; 2$ terminals, lug type $7 / 161 \mathrm{n}$. high, located on top, spaced 1 in . C to C , composition insulation; mineral oil 1 mpregnated; m1neral oll f1lled; no 1 n ternal ground connections; ? mounting feet w/ 3/16 in . dia mounting hole in ea; holes spaced $2-3 / 81 \mathrm{n}$. C to C ; non-1nductively wound; for general purpose use.	V9-1 plate f1lter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-49227-7960 \end{gathered}$	SMO Type No. 5006RT-2	NRCO Dwg No. A110494-1	$\begin{aligned} & \text { c9-3 } \\ & \text { c9-14 } \end{aligned}$	2							
C9-4	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $100 \mathrm{mmf}+20 \%$ tolerance; 500 v DC; temp character1st1c letter B per JAN-C-5; molded low-loss bakel1te case; $51 / 64 \mathrm{in}$. Ig max, $15 / 321 \mathrm{n}$. wide max, $7 / 321 \mathrm{n}$. deep max; 2 terminals, whe lead type, located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	v9-i output coupler	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { C-5, JAN Type } \\ & \text { No. CM2OB101M } \end{aligned}$	$\left\lvert\, \begin{gathered} \mathrm{N} 16-\mathrm{C}-28563- \\ 4156 \end{gathered}\right.$	SMO Type No. K1310		C9-4	1							
c9-6	Same as c2-166.	v9-2 cathode bypass													
c9-7	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Rer Dwg Group 1; $1000 \mathrm{mmf}+20 \%$ tolerance; 500 v DC; temp charācter1st1c letter B per JAN-C-5; molded low-10ss bakel1te case; case d1m., $53 / 641 \mathrm{n}$. $1 \mathrm{~g} \max , 53 / 641 \mathrm{n}$. wide max, $11 / 32$ in. deep nax; 2 terminals, wire lead type, located one ea end; terminal mounted; wax 1 mpregnated exlernally; for general purpose use.	V9-1 input coupler	Spec No. JAN-C-5, JAN Type No. CM35B102M	$\begin{array}{\|c} \mathrm{N} 16-\mathrm{C}-31095- \\ 6688 \end{array}$	SMO Part No. K1210		C9-7	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND description	function	JAN AND (NAVY TYPEINO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRA'S } \\ & \text { DESIGNATION } \end{aligned}$	contractor DRAWING AND part no.	$\begin{gathered} \text { ALL } \\ \text { AMBBOL } \\ \text { OESIG. } \\ \text { DEVOL- } \\ \text { NEDO } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PEER } \\ & \text { EOUIP. } \end{aligned}$	- Equip.			TEN-		stock	
									-	$\left\|\begin{array}{l} x \\ \infty \\ \infty \end{array}\right\|$	$\begin{array}{\|l\|} \hline \left.\begin{array}{l} x \\ 3 \\ \partial \end{array} \right\rvert\, \end{array}$	$\begin{aligned} & x \\ & 0 \\ & \infty \end{aligned}$	$\begin{gathered} \text { 㐫 } \\ \hline \end{gathered}$	$\stackrel{\times}{\infty}$	㐫
C9-10	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $100 \mathrm{mmf}+10 \%$ tolerance ; ter B per JAN-C-5; molded bakelite case; case dim., 51/64 in. 1 g max, $15 / 32 \mathrm{in}$. Wide max, $7 / 32 \mathrm{in}$. deep max; 2 terminals, wire lead type, located one ea end; terminal mounted; meets $1,000 \mathrm{v}$ DC test; for general purpose use.	v9-2 grid to oscillator coupler		$\underset{1676}{\text { N16-C } 28558-}$	CLD Type No. 5W5T1		C9-10	1							
c9-11	Same as c2-180.	V9-2 screen bypass													
C9-12	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. ?2, MBCA Ref Dwg Group $1 ; 5,000 \mathrm{mmf} \pm 20 \%$ tolerance; 500 v DC; temp characteristic letter B per JAN-C-5; molded lowloss bakelite case; case dim., 13/16 in . $1 \mathrm{~g}, 25 / 32 \mathrm{in}$. wide, $11 / 32$ in. deep; 2 terminals, wire lead type, located one ea end; terminal mounted; wax 1 mpregnated externally; for general purpose use.	v9-2 plate bypass		$\left\lvert\, \begin{gathered} \mathrm{N} 16-\mathrm{C}-32704- \\ 7088 \end{gathered}\right.$	SMO Part No. C1250	NRCO Dwg No. A110496-2	$\left\lvert\, \begin{gathered} C 9-12 \\ \mathrm{C9-21} \end{gathered}\right.$	2							
c9-13	CAPACITOR, FIXED, PAPER DIELECTRIC: 1 section; case style No. 2, MBCA Ref Dwg Group 1; 250,000 mmf 20\% tolerance; 400 V DC; lamināted paper case; case dim. excluding terminals, $2 \mathrm{in} .1 \mathrm{~g}, 3 / 4 \mathrm{dia}$; terminals, $2 \mathrm{in}. \mathrm{lg} 3 /$,4 dia; terminals, wire lead type, internal ground connections; terminal mounted; molsture proof; for general purpose use.	v9-2 output coupler		$\underset{7552}{\mathrm{~N} 16-\mathrm{C}-46375-}$	CLD Part No. DT4P25	$\begin{array}{\|l} \text { NRCO Dwg } \\ \text { No. A11.O445-1 } \end{array}$	$\begin{array}{\|c} \mathrm{Cg}-13 \\ \mathrm{C9-17} \end{array}$	2							
C9-14	Same as c9-3.	v9-2 plate filter													
c9-16	Same as C3-40.	v9-4 plate filter													
C9-17	Same as c9-13.	v9-4 output coupler													
c9-18	Same as C3-44.	Power supply filter													
C9-19	Same as C3-44.	Power supply f1lter													
C9-20	Same as C3-44.	Power supply filter													
C9-21	Same as c9-12.	V9-2 plate bypass													
c9-22	Same as C3-49.	(tarimer													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO	FEDERAL AND (SIGNAL CORPS) stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.INVOL-VED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SYM80L DESIG.									$\begin{aligned} & z \\ & \underset{\sim}{2} \\ & \underset{\sim}{w} \end{aligned}$	$\begin{aligned} & \text { x } \\ & \text { en } \end{aligned}$	$\left.\begin{aligned} & 2 \\ & e \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & x \\ & \stackrel{x}{\infty} \end{aligned}$	$\begin{aligned} & \text { zi } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\times}{0}$	2i
$\begin{gathered} \text { c10-9 } \\ (\text { cont }) \end{gathered}$	tolerance; 400 VDC ; molded phenolic case; case dim. excluding terminals, $3 / 8 \mathrm{in}$. dia, $1-1 / 8 \mathrm{in} .1 \mathrm{~g}$; 2 terminals, wire lead type, located one ea end; wax 1 mpregnated; no internal ground connections; terminal mounted; 85° max operating temp; for general purpose use.														
c10-10	Same as clo-9.	V10-4B input coupler													
C10-13	CAPACITOR, FIXED, MICA DIELECTRIC: case style No. 22, MBCA Ref Dwg Group 1; $500 \mathrm{mmf}+20 \%$ tolerance; 500 v DC; temp characteristic letter B per JAN-C-5; molded low-loss bakelite case; case dim., 23/32 in. ig, 15/32 1n. wide, 13/64 in. deep; 2 terminals, w1re lead type, located one ea end; terminal mounted; wax impregnated externally; for general purpose use.	vio-7 fllter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-30172-4556 \end{gathered}$	$\begin{aligned} & \text { SMO Part } \\ & \text { No. K1350 } \end{aligned}$	NRCO DWg No. All0495-5	C10-13	1							
C10-16	Same as C $5-44$.	Power supply f1lter													
C10-17	Same as c3-44.	Power supply filter													
c10-18	Same as c3-34.	P/o positive feedback network for V10-1													
C 10-19	Same as c3-34.	P/o positive feedback network for V10-1													
c10-20	Same as c3-34.	P/o positive feedback network for v10-1													
c10-21	Same as C3-34.	P/o positive feedback network for V10-1													
c10-c2	Same as c3-34.	P/o positive feedback network for Vl0-1													
c10-23	Same as c3-34.	P/o positive feedback network for V10-1													
CR3-1	CRYSTAL UNIT, RECTIFYING: germanium type; 50 ma max continuous forward rect1fled current; 150 ma max peak forward rect1f1ed current; 85 v peak inverse voltage; 0.8 mmf max shunt capacitance; body dim. excluding terminals, $7 / 16$ 1n. lga $13 / 64$ in. dia; terminal mounted;	HF output rect1- fier for M3-1		N17-T-51748	$\begin{aligned} & \text { GE fart } \\ & \mathrm{NO} \mathrm{O} .65 \text { or IN48 } \end{aligned}$	NRCO Dwg No. All04135	$\left\lvert\, \begin{aligned} & \text { CR3-1 } \\ & \text { CR3-2 } \end{aligned}\right.$	2							

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOGK NO. } \end{aligned}$	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EOUIP. } \end{array}$	- EOUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
DESIG.									$\left.\begin{array}{\|l} z \\ z \\ \underset{w}{w} \end{array} \right\rvert\,$	$\left.\begin{array}{\|l\|} \times \\ 0 \\ \hline \end{array} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \dot{i} \\ & \frac{u}{u} \\ & \dot{0} \end{aligned}\right.$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{z} \\ & \text { à } \end{aligned}$	$\begin{aligned} & \times \times \\ & \stackrel{\rightharpoonup}{\infty} \end{aligned}$	ci
$\begin{aligned} & \text { CR3-1 } \\ & (\text { cont }) \end{aligned}$	2 terminations, wire lead type, located axially one ea end; 40 ma max surge current for $1 \mathrm{sec},-50^{\circ}$ to $+80^{\circ} \mathrm{C}$ ambient temp range, h1gh moisture resistance, $10,000 \mathrm{hr}$ min life; for general purpose use.														
CR3-2	Same as CR3-1.	BF output recti- fier for M3-1													
E1-1	TERMINAL BOARD: phenollc board; 2 terminals, screw type; w/o barriers; over-all dim., $2 \mathrm{in} . \mathrm{lg}$, $7 / 8 \mathrm{in}$. wide, $11 / 16 \mathrm{in} . \mathrm{h} 1 \mathrm{gh} ; 2$ $9 / 641 \mathrm{n}$. dia mounting holes spaced $1-1 / 2 \mathrm{in}$. C to C ; terminals nickel plated; for general purpose use.	Input terminal board		$\begin{array}{\|c} \text { N17-B-77536- } \\ 6761 \end{array}$	$\begin{array}{ll} \text { ICA } & \text { Part } \\ \text { No. } 2420 \end{array}$	$\begin{aligned} & \text { NRCO Dwg } \\ & \text { No. A110464 } \end{aligned}$	$\begin{aligned} & \text { E1-1 } \\ & \text { E9-1 } \\ & \text { E90-5 } \end{aligned}$	3							
E2-1	TERMINAL BOARD: melamine; includes 2 terminals, single screw type; w/o barriers; over-all dim., 21 n. $1 \mathrm{~g}, 7 / 81 \mathrm{n}$. w1de, $1 / 81 \mathrm{n}$. thick; two $5 / 32$ in. dia mounting holes spaced 1-1/2 in. C to C; marked "phono"; p/o AN, Radio Receiver, Type No. R-450/FRR-28.	Phono terminal board		$\begin{gathered} \text { N17-B-77639- } \\ 2210 \end{gathered}$	JNS Type No. 2-50		E2-1	1							
E2-2	TERMINAL BOARD: melamine board; includes 4 terminals, single screw type; w/o barriers; over-all dim., $3-1 / 4 \mathrm{in} . \mathrm{lg}, 1-1 / 8 \mathrm{in}$. wide, $1 / 8$ in. thick; two 5/32 in. mounting holes spaced $2-3 / 4 \mathrm{in}$. C to C ; "Audio output"; 2 terminals marked "jumper"; 2 terminals marked "600 ohms"; p/o AN, Radio Recelver Type No. R-450/FRR-28.	Audio output terminal board		$\begin{gathered} \text { N17-B-77536- } \\ 1126 \end{gathered}$	$\begin{aligned} & \text { JNS per } \\ & \text { HMM Part No. } \\ & 31141 \end{aligned}$	hmm Part No. 31141	E2-2	1							
E2-3	KNOB: round; phenollc; black; designed to accommodate shaft, rd $1 / 41 \mathrm{n}$. dia, $3 / 4 \mathrm{in}$. deep shaft hole, set screw; brass insert; w/o markings; over-all dim., 3 in. dia, $1-1 / 8$ in. thick; fluted finger grip; for general purpose use.	"BAND CHANGE" knob		$\begin{gathered} \mathrm{N} 16-\mathrm{K}-700439- \\ 676 \end{gathered}$	$\begin{aligned} & \text { GE Part } \\ & \text { No. } 31215 \end{aligned}$		$\begin{aligned} & \text { E2-3 } \\ & \text { E2-4 } \end{aligned}$	2							
E2-4	Same as E2-3.	"TUNING" knob													
E2-5	TERMINAL BOARD: melamine insulation; 1 terminal, solder lug type; w/o barriers; over-all dim., $3 / 4$ in, $1 \mathrm{~g}, 23 / 32 \mathrm{in}$. w1de, $1 / 16 \mathrm{in}$. thick; one $5 / 32$ in. dia mounting hole; for general purpose use.	Tlepoint for electrical connections		$\begin{gathered} \text { N17-B-774 } \\ 8671 \end{gathered}$	$\begin{aligned} & \text { ICA Part } \\ & \text { No. } 2423 \end{aligned}$		$\left\lvert\, \begin{aligned} & \mathrm{E} 2-5 \\ & \mathrm{E} 2-8 \end{aligned}\right.$	2							
E2-7	TERMINAL BOARD: melamine insulation; 2 terminals, solder lug type; w/o barrlers; over-all dim., $1-1 / 81 \mathrm{n}$. $\mathrm{lg}, 11 / 16 \mathrm{in} . \mathrm{h} 1 \mathrm{gh}, 1 / 16 \mathrm{in}$. thick; single $5 / 32 \mathrm{in}$. d1a mounting hole; for general purpose use.	Tlepoint for electrical connections		$\underset{8524}{\mathrm{~N} 17-\mathrm{B}-77533-}$	CIN Part No. 1520		E2-7	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
$\begin{gathered} \text { Srmbol } \\ \text { DESIG. } \end{gathered}$	NAME of part and DESCRIPTION	function					ALL		-	EOU	VIP.		${ }_{\text {N- }}^{\text {R- }}$	Sto	ck
			JAN AND (navy type)no.	$\begin{aligned} & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	MFGR'S dESIGNATION	CONTRACTOR DRAWING AND PART NO.	$\begin{gathered} \text { DESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	2 z z \underline{y}	$\begin{aligned} & x \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \text { z } \\ \text { a } \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \end{array}\right\|$	$\begin{array}{\|l\|} \dot{z} \\ \grave{z} \\ \mathbf{u} \end{array}$	$\left\|\begin{array}{l\|} \mathbf{x} \\ 0 \\ \hline \end{array}\right\|$	㐫
E<-8	Same as E2-5.	Tlepoint for electrical connections													
E2-9	TERMINAL BOARD: melam1ne insulation; 1 terminal, solder lug type; w/o barriers; over-all dim., $3 / 41 \mathrm{n}$. $\mathrm{lg}, 23 / 32 \mathrm{in} . \mathrm{h} 1 \mathrm{gh}, 1 / 16 \mathrm{in}$. thick mounting data single $5 / 32 \mathrm{in}$. dia mounting hole; for general purpose use.	Tlepoint for electrical connections		$\begin{gathered} \text { N17-B-77482- } \\ 8666 \end{gathered}$	$\begin{aligned} & \text { CIN Part } \\ & \text { No. } 51 \mathrm{~B} \end{aligned}$		$\begin{aligned} & \text { E2-9 } \\ & \text { E-1 }-10 \\ & \text { E2-11 } \\ & \text { E2-12 } \end{aligned}$	4							
E2-10	Same as E2-9.	Tlepoint for electrical connections													
E2-11	Same as E2-9.	Tiepoint for electrical connections													
E2-12	Same as E2-9.	T1epoint for electrical connections	-												
E2-13	TERMINAL BOARD: melamine insulation; 6 terminals, solder lug type; w/o barriers; over-all dim., 31 n .1 g , $11 / 16 \mathrm{in} . \mathrm{h} 1 \mathrm{gh}, 1 / 16 \mathrm{in}$. thick; two $5 / 321 \mathrm{n}$. dia mounting holes spaced $2-5 / 81 n$. C to C; for general purpose use.	Tiepoint for electrical connect1ons		$\underset{4951}{\substack{\text { N17-B-77738- } \\ 4951}}$	CIN Part No. 56A		$\begin{aligned} & \mathrm{E} 2-13 \\ & \mathrm{E} 2-14 \end{aligned}$	2							
E2-14	Same as E2-13.	Tlepoint for electrical connections													
E2-15	TERMINAL BOARD: melamine insulation; 8 terminals, solder lug type; w/o barriers; over-all dim., $3-11 / 16$ $\mathrm{in} .1 \mathrm{~g}, 1-3 / 4 \mathrm{in}$. high, $1 / 16 \mathrm{n}$. thick; two $5 / 32 \mathrm{in}$. dia mounting holes spaced $3-3 / 8 \mathrm{in}$. C to C ; p / o AN Radio Receiver, Type No. R-450/ FRR-28.	Tlepoint for electrical connections		$\begin{gathered} \mathrm{N} 17-\mathrm{B}-77840- \\ 2970 \end{gathered}$	LuTJI Part No. 31163G1		$\begin{aligned} & \mathrm{E} 2-15 \\ & \mathrm{E} 2-16 \end{aligned}$	2							
E2-16	Same as E2-15.	Tlepoint for electrical connections													
E2-17	TERMINAL BOARD: melam1ne insulation; 15 terminals, solder lug type; w/o barriers; over-all dim., 7-1/16 1 n . $1 \mathrm{~g}, 1-1 / 16 \mathrm{in}$. $\mathrm{h} 1 \mathrm{gh}, 1 / 16 \mathrm{in}$. thick; four 5/32 1 n . dia mounting holes spaced $2-1 / 41 \mathrm{n}$. C to $\mathrm{C} ; \mathrm{p} / \mathrm{o}$ AN Radio Receiver, Type No. R-450/ FRR-28.	Tlepoint for electrical connections		$\begin{gathered} \text { N17-B-78064- } \\ 7701 \end{gathered}$	LTJI Part No. 31162G1		E2-17	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts				
$\left\lvert\, \begin{gathered} \text { Symbol } \\ \text { OESIG. } \end{gathered}\right.$	NAME OF PART AND oEsCRIPTION	function	$\begin{gathered} \text { JAN AND } \\ \text { (NAVY TYPE)NO. } \end{gathered}$	$\begin{gathered} \text { FEDERAL AND } \\ \text { (SIGNALCORS) } \\ \text { STOCK NO. } \end{gathered}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { TPRER } \\ & \text { EQUIP. } \end{aligned}$	号	EOUIP.	TEN-		stock
											$\begin{aligned} & x \\ & \stackrel{x}{\infty} \end{aligned}$	$\begin{aligned} & \dot{\mathbf{v}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	
E2-18	TERMINAL BOARD: melamine insulation; 3 terminals, solder lug type; w/o barriers; over-all dim., 3-1/4 in. ig, $13 / 16$ in. wide dia mounting holes spaced 2 in. C to C; mounted directly on meter M2-1; p/o AN FRR-28.	Tiepoint for electrical connections		$\underset{\substack{\text { N17-B-77589- } \\ 2261}}{ }$	LTJI Part $\text { No. } 3145491$		E2-18	1					
E2-19	TERMINAL BOARD: phenollc board; includes terminals, 5 terminals, screw type; w/o barriers; over-all dim. $11 / 6 \mathrm{in}$ in high; two $9 / 64 \mathrm{in}$. in dia mounting holes spaced $3 \mathrm{1n}$. C to C terminals nickel plated; for general purpose use;	$\begin{aligned} & \text { "6.3v, G, AVC, } \\ & \text { LOAD, DET. AV ter- } \\ & \text { minai board } \end{aligned}$		$\underset{1076}{\text { N17-B-77691- }}$	$\begin{aligned} & \text { ICA Part } \\ & \text { No. } 2405 \end{aligned}$	NRCO DWg No. Al10461	$\left\lvert\, \begin{aligned} & \mathrm{E} 2-19 \\ & \mathrm{E} 10-1 \end{aligned}\right.$	2					
E2-20	TERMINAL BOARD: phenolic board; includes terminals, 7 terminals, sol der lug type; w / o barriers; over- all dim. $2-7 / 81 \mathrm{n} .1 \mathrm{~g}, 5 / 16 \mathrm{in}$. wide, $7 / 8 \mathrm{in}$. h1gh; one $1 / 8 \mathrm{in}$. dia hole in ea of 2 mounting lugs spaced $2-9 / 16$ in. C to C; term1pose use.	Tiepoint for electrical con nections		$\left\lvert\, \begin{gathered} \text { N17-B-77788- } \\ 2789 \end{gathered}\right.$	JNS Part No. 2007	NRCO Dwg No. Alló4149	E2-20	1					
E2-21	TERMINAL BOARD: phenollc board; includes terminals, ? terminals, solder lug type; w/o barriers; 1 $1 / 8 \mathrm{in} . \lg , 15 / 32$ in. wide, $3 / 4 \mathrm{in}$. high; 0.140 in. dia mounting hole plated; for general purpose use.	Tlepoint for electrical con- nections		$\begin{gathered} \text { N17-B-77533- } \\ 5680 \end{gathered}$	$\begin{aligned} & \text { ICA Part } \\ & \text { No. } 2435 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { NRCO Dwg } \\ & \text { No. Al104106 } \end{aligned}\right.$	$\begin{aligned} & \mathrm{E} 2-21 \\ & \mathrm{E} 2-22 \end{aligned}$	a					
E2-22	Same as E2-21.	T1epoint for electrical connections											
E2-23	TERMINAL BOARD: phenolic board; includes terminal, 1 terminal, solder lug type; w/o barriers; over- all dim. including terminal and mounting lug, 29/64 in. 1g, $3 / 8 \mathrm{in}$ wide, $1-1 / 161 \mathrm{n}$. high; single $9 / 64$ in. dia mounting hole in mounting lug; terminal and lug fastened to board w/ eyelets; for general purpose use.	Tlepoint for electrical connections		$\left.\right\|_{\text {N17-B-77483- }} ^{7057}$	$\begin{aligned} & \text { CiN Part } \\ & \text { No. } 51 \mathrm{~F} \end{aligned}$	NRCO DWg No. A1104163	$\mathrm{E} 2-23$ $\mathrm{E} 2-24$ $\mathrm{E} 2-25$ $\mathrm{E} 2-26$ $\mathrm{E} 2-27$ $\mathrm{E} 2-25$ $\mathrm{E} 2-35$	6					
E2-24	Same as E2-23.	Tlepoint for electrical connections											
E2-25	Same as Ez-23.	Tlepoint for electrical connections											

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

Parts									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.ONVL-VED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\left\lvert\, \begin{gathered} \text { sYMBoL } \\ \text { OESIG. } \end{gathered}\right.$									$\begin{aligned} & \mathbf{z} \\ & \underset{y}{w} \\ & \underset{\underline{w}}{ } \end{aligned}$	$\underset{\mathbf{\infty}}{\mathbf{x}}$	$\left.\begin{aligned} & z_{i} \\ & \mathbf{u} \\ & 0 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l} x \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & \stackrel{3}{0} \end{aligned}$	$\stackrel{\times}{\infty}$	它
E2-26	Same as E2-23.	T1epoint for electrical connections													
E2-27	Same as E2-23.	Tlepoint for electrical connections													
E2-28	CONNECTOR, ADAPTER: 1 contact, male, rd; angle type; 90° angle; overall dim., $1-7 / 321 \mathrm{n}$. deep, $3 / 4 \mathrm{ln}$. wide, $1-3 / 161 \mathrm{n} . \mathrm{h} 1 \mathrm{gh}, 3 / 4 \mathrm{in}$. \max dia; radio frequency connector; body data, "L" shape, z1nc, silver plate; polysterene insert; $3 / 4 \mathrm{in}$. OD brass coupling nut, 5/8-24 coupling nut thread; integral nonrotating pin contact; for general purpose use.	J2-7 adapter	(-49192)	$\begin{gathered} \mathrm{N} 17-\mathrm{C}-67444- \\ 1285 \end{gathered}$	$\begin{aligned} & \text { AMP Part } \\ & \text { No. } 83-1 \mathrm{AP} \end{aligned}$	NRCO Dwg No. Al104158	$\begin{aligned} & \mathrm{E} 2-28 \\ & \mathrm{E} 2-29 \\ & \mathrm{E}-29 \\ & \mathrm{E} 2-30 \\ & \mathrm{E} 231 \\ & \mathrm{E}-32 \\ & \mathrm{E} 2-33 \end{aligned}$	6							
E2-29	Same as E2-28.	J2-4 adapter													
E2-30	Same as E2-28.	J2-8 adapter													
E2-31	Same as E2-28.	J2-6 adapter													
E $2-32$	Same as E2-28.	J2-10 adapter													
E2-33	Same as E<-28.	$\begin{aligned} & \text { "ANT." Jack } \\ & \text { adaptor } \end{aligned}$													
E2-34	KNOB: rd; phenollc; black; des1gned to accommodate shaft, rd, $1 / 4 \mathrm{in}$. d1a, $5 / 8 \mathrm{in}$. deep, set screw, brass insert; single white dot marking; over-all dim., $13 / 16 \mathrm{in}$. $\mathrm{lg}, 59 / 64 \mathrm{in}. \mathrm{dia;} \mathrm{for} \mathrm{general}$ purpose use.	$\begin{aligned} & \text { "HFO, INT.," } \\ & \text { EXT. } \end{aligned}$		$\begin{gathered} \text { N16-K-700295- } \\ 876 \end{gathered}$	NAC Type HR	NRCO Dwg No. Al104168	$\begin{aligned} & \text { E2-34 } \\ & \text { E2-36 } \end{aligned}$	2							
E2-35	Same as EL-23.	Tlepo1nt for electrical connections													
E2-36	Same as E2-34.	"AVC, INT, BFO, EXT. BFO, FAST, SLOW" knob													
E2-37	CORE, ADJUSTABLE TUNING: 1 ron material, smooth fin1sh, over-all dim., $1-1 / 8 \mathrm{in} .1 \mathrm{~g}, 0.250 \mathrm{in}$. d 1 a ; supplementary part consists of integral brass nicke plated threaded stud w/screwdriver slot; mounted by No. 6-32 spring nut; end of $\underset{2 z-1}{c o r e}$ coated w/red lacquer, p/o 22-1	Used to tune coll L2-1	-	$\begin{gathered} \text { N16-C - } 600701- \\ 165 \end{gathered}$	CHL Part by description		E2-37 $\mathrm{E} 2-38$ $\mathrm{E} 2-39$ $\mathrm{E} 2-40$ $\mathrm{E} 2-41$ $\mathrm{E} 2-42$ $\mathrm{E} 2-43$ E 244 $\mathrm{E} 2-45$ $\mathrm{E}-46$ $\mathrm{E} 2-47$ $\mathrm{E}-48$ $\mathrm{E}-49$ $\mathrm{E}-49$ $\mathrm{E}-50$ $\mathrm{E}-51$ $\mathrm{E} 2-52$	24							

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUnction			MFGR. AND MFGR'S designation	CONTRACTOR DRAWING AND PART NO.	\qquad	$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	i	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\underset{\substack{\text { SYMBIGL } \\ \text { DESIG }}}{ }$			JAN AND (NAVY TYPE)NO.							$\begin{aligned} & \text { xóe } \end{aligned}$	$\left.\begin{array}{\|l\|} \dot{z} \\ \dot{a} \\ \dot{0} \end{array} \right\rvert\,$	$\begin{aligned} & x \\ & \stackrel{\rightharpoonup}{\infty} \\ & \hline \end{aligned}$	㐫	¢	安
$\begin{aligned} & \text { E2- } 37 \\ & (\text { cont }) \end{aligned}$							$\begin{aligned} & \text { E2-53 } \\ & \text { E2-54 } \\ & \text { E2-55 } \\ & \text { E2-56 } \\ & \text { E2-57 } \\ & \text { E2-58 } \\ & \text { E2-59 } \\ & \text { E2-60 } \end{aligned}$								
E2-38	Same as E2-37; p/o z2-2.	Used to tune coll L2-2													
E2-39	Same as E2-37; p/o z2-3.	Used to tune coll L2-3													
E2-40	Same as E2-37; p/o z2-4.	Used to tune co11 L2-4													
E2-41	Same as E2-37; p/o z2-5.	Used to tune co11 L2-5													
E2-42	Same as E2-37; p/o z2-6.	Used to tune co11 L2-6													
E2-43	Same as E2-37; p/o z2-8.	Used to tune coll L2-8													
E2-44	Same as E2-37; p/o Z2-9.	Used to tune coll L2-9													
E2-45	Same as E2-37; p/o z2.-10.	Used to tune co11 L2-10													
E2-46	Same as E2-37; p/o z2-11.	Used to tune co11 L2-1.													
E2-47	Same as E2-37; p/o z2-12.	Used to tune co11 L2-12													
E2-48	Same as E2-37; p/o z2-13.	Used to tune co11 L2-13													
E2-49	Same as E2-37; p/o z2-15.	Used to tune co11 L2-15													
E2-50	Same as E2-37; p/o z2-16.	Used to tune coll L2-16													
E2-51	Same as E2-37; p/o z2-17.	Used to tune co11 L2-17													
E2-52	Same as E2-37; p/o z2-18.	Used to tune co11 L2-18													
E2-53	Same as E2-37; p/o z2-19.	Used to tune co11 L2-19													
E2-54	Same as E2-37; p/o 22-20.	Used to tune co11 L2-20.													
E2-55	Same as E2-37; p/o z2-25.	Used to tune co11 L2-25													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND	function	(NAVYN AND TYPINO.	$\begin{aligned} & \text { FEEERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \end{aligned}$$\begin{aligned} & \text { MFGR's } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PERL } \\ & \text { EQUIP } \end{aligned}$	$\xrightarrow{\text { O}}$	Equip.		TEN-	stock	
$\left\|\begin{array}{c} \text { SMBOL } \\ \text { DESIG. } \end{array}\right\|$										区্ভ			\times	号
E2-56	Same as E2-37; p/o 22-26.	Used to tune co11 L2-26												
E2-57	Same as E2-37; p/o 22-27.	Used to tune co11 L2-27												
E2-58	Same as E2-37; p/o z2-28.	Used to tune co11 L2-28												
E2-59	Same as E2-37; p/o z2-29.	Used to tune co11 L2-29												
E2-60	Same as E2-37; p/o 22-30.	Used to tune co11 L2-30												
E2-61	1n. $1 \mathrm{~g}, 27 / 32$ 1n. d1a; spring mounted; nleke 1 plated; for gen eral purpose use.	Electron tube protective sh1eld	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { S-28A, JAN } \\ & \text { Type No. } \\ & \text { TS102UOi } \end{aligned}$	$\begin{gathered} \text { N16-S-34520- } \\ 3852 \end{gathered}$	EBY		$\begin{aligned} & \mathrm{E} 2-61 \\ & \mathrm{E} 2-62 \\ & \mathrm{E} 2-63 \end{aligned}$	3						
E2-62	Same as E2-61.	Electron tube protective shield												
E2-63	Same as E2-61.	Electron tube protective sh1eld												
E2-64	SHIELD, ELECTRON TUBE: $\begin{gathered}\text { brass; cy } \\ \text { cher-all } \\ \text { d1m., } 2-1 / 4\end{gathered}$ 1n. 1g, $27 / 32$ in. d1a; spring mounted; n1ckel plated; for gen eral purpose use	Electron tube protect1ve shield	$\begin{aligned} & \text { Spec No, JAN- } \\ & \text { S-28, JAN } \\ & \text { Type No NA } \\ & \text { TSio2uo3 } \end{aligned}$	$\begin{aligned} & \mathrm{N} 16-\mathrm{S}-34607-7 \\ & 8400 \end{aligned}$	EBY		E2-64	1						
E2-65	Shield, ELECTRoN TUBE: brass; cy 1ndrical; over-all dim., $1-3$ mounted; nickel plated; for gen eral purpose use.	Electron tube protective shield	$\begin{aligned} & \text { spec No JaN- } \\ & \text { S-28, JAN } \\ & \text { Sype No } \\ & \text { TST102uO2 } \end{aligned}$	$\begin{gathered} \mathrm{N} 16-\mathrm{S}-34557- \\ 8350 \end{gathered}$	EBY			10						
E2-66	Same as E2-65.	Electron tube protective shield												
E2-67	Same as E2-65.	Electron tube protective shield												
E2-68	Same as E2-65.	Electron tube protective shield												
E2-69	Same as E2-65.	Electron tube protective shield												

table 8-4. COMBined Parts and maintenance parts list

parts									spane patts				
	$\underset{\text { MAME of PART }}{\text { DESCRIPTION }}$	function			mfgr. ano MESIGNATION	contractor ORANAGG RART NOD No.			$\begin{array}{\|l\|l} \dot{2} \\ \underline{z} \\ \hline \end{array}$	\% Eoure.			stock
			(nava JYPANo no.								¢	$\stackrel{\substack{\text { of }}}{2}$	-
E2-70	Same as E2-65.	Electron tube protective protect shleld											
E2-71	Same as E2-65.	$\begin{aligned} & \text { Eleot tron tube } \\ & \text { protect ve } \\ & \text { shield } \end{aligned}$											
E2-72	Same as E2-65.	$\begin{aligned} & \text { Electron tube } \\ & \text { proteot ve } \\ & \text { sileeld } \end{aligned}$											
E2-73	Same as E2-65.	$\begin{aligned} & \text { Elect tron } \\ & \text { protert tube } \\ & \text { shield } \end{aligned}$											
E2-74	Same as E2-65.	Electron tube protective protect shield											
E3-1	TERMINAL BOARD: phenolic board; in- solder post; w/o barriers; over- all dim., $2-3 / 16 \mathrm{in} .1 \mathrm{~g}, 1-1 / 2$ in. mounting holes spaced $1-7 / 8$ in. C to C; terminals tin plated; p/o AN Radio Frequency Oscillator, Type No. 0-165/UR.	$\begin{aligned} & \text { Tlepoint for } \\ & \text { electrical com- } \\ & \text { ponents } \end{aligned}$		$\left\lvert\, \begin{array}{\|c\|} { }^{N} 17-8-77983 \\ 7610 \end{array}\right.$			E3-1	1					
E3-2				$\left\lvert\, \begin{aligned} & \text { N17-8-77834- } \\ & 6345 \end{aligned}\right.$		NRCO Part NoCO DWg No. A1 $104175-3$	E3-2	1					
E3-3	TERMINAL BoARD: pheno 110 board; in- dia mounting holes spaced $5-1 / 4$ in AN Radio Frequency Oscillator, Type No. 0-165/UR. *NOTE: Not furnished as a main tenance part. If fallure occurs, fabricated.	$\begin{aligned} & \text { Tlepoint for } \\ & \text { electrical com- } \\ & \text { ponents } \end{aligned}$		$\mid{ }^{n_{17} 17-8-78222-}$		NRCO Part No. TB1A1- NRCO Dwg No. A1104175-1	E3-8	1					

LE-8
$87-y y / N \forall$
28S16 SdIHSAVN
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
$\underset{\substack{\text { SrMbol } \\ \text { OESIG }}}{ }$	NAME of part pesciption	function	JAN AND(NAVY TYPE)No.	$\begin{gathered} \text { FEDERAL AND } \\ \text { (SIGNALCORPS) } \\ \text { STOCK NO. } \end{gathered}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { MESIGNATION } \end{aligned}$	CONTRACTOR DRAWING ANDPART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQUPP. } \end{aligned}$	$\left\lvert\, \begin{aligned} & \mathbf{z} \\ & z \\ & \underset{y}{z} \end{aligned}\right.$	Equip.		$\underbrace{\text { Pa }}_{\substack{\text { OEN- } \\ \text { OER }}}$	stock	
										希	¢	$\begin{aligned} & \text { 立 } \\ & \text { á } \end{aligned}$	$\stackrel{\times}{\circ} \mathrm{C}$	
E3-4	TERMINAL BOARD: phenolic board; includes terminals, 3 terminals, solder post type; w/o barriers; over-all dim., l-25/32 $1 \mathrm{n} . \mathrm{lg}$, i/2 in. wide, $15 / 32$ in. high; two $5 / 32$ in. dia mounting holes spaced plated; p/o, AN Radio Frequency Oscillator, Type No. $0-165 / \mathrm{UR}$.	Tlepoint for electrical components		$\begin{gathered} \text { N17-B-77585- } \\ 5085 \end{gathered}$		NRCO Part No. TBlA2-1 NRCO Dwg No. All04176	$\begin{aligned} & \text { E3-4 } \\ & \text { E3-5 } \end{aligned}$	2						
E3-5	Same as E3-4.	Tlepoint for electrical components												
E3-6	TERMINAL BOARD: phenolic board, a luminum frame; includes terminals, post type; w/o barriers; over-all dim., $4-5 / 8 \mathrm{in}$. $1 \mathrm{~g}, 13 / 16 \mathrm{in}$. wide $9 / 16 \mathrm{in}$. high; two $5 / 32$ in. dia mounting holes spaced $2-3 / 4$ in. C to C; terminals tin plated and p/o, AN Radio Frequency Oscillator Type No. 0-165/UR.	Middle oven tie point for electrical com- ponents		$\begin{aligned} & \text { N17-B-77692- } \\ & \hline 0062 \end{aligned}$		NRCO Part NJ. TB5A3 NRCO Dwg No. All04177	E3-6	1						
E3-7	TERMINAL, STUD: style No. 21, MBCA Ref Dwg Group 21; 5,000 to 6,000v breakdown at 60 cycles; solder onnection; brass; nickel plated $5 / 16 \mathrm{in}$. Wide, $13 / 16 \mathrm{in}$. h1gh; mounted by No. $6-32$ thread stud $1 / 4 \mathrm{in}$. 1 g ; 1 nsulated $\mathrm{w} /$ phenollc for standoff terminal; for general purpose use.	$\begin{aligned} & \text { Standoff insu- } \\ & \text { lator } \end{aligned}$		$\begin{gathered} \mathrm{N} 17-\mathrm{T}-28198- \\ 1065 \end{gathered}$	$\begin{aligned} & \text { PRME Fart } \\ & \text { No. } 5000 \end{aligned}$	NRCO DWg No. Al104169		6						
E3-8	Same as E3-7.	$\begin{aligned} & \text { Standoff 1nsu- } \\ & \text { lator } \end{aligned}$												
E3-9	Same as E3-7.	$\begin{aligned} & \text { Standoff insu- } \\ & \text { lator } \end{aligned}$												
E3-10	Same as E3-7.	$\begin{aligned} & \text { Standoff insu- } \\ & \text { lator } \end{aligned}$												
E3-11	Same as E3-7.	$\begin{aligned} & \text { Standotf insu- } \\ & \text { lator } \end{aligned}$												
E3-12	Same as E3-7.	$\begin{aligned} & \text { Standoff insu- } \\ & \text { latnr. } \end{aligned}$												
	*NoTE: Not furn1shed as a maintenance part. If fallure occurs, do not request replacement unless the part cannot be repalred or fabricated.													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	nAME OF PART AND OESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. ANO } \\ & \text { MFGR'S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.			- Equip.			TEN-		stock	
$\begin{array}{\|c} \text { SYMBOL } \\ \text { DESIG. } \end{array}$									$\left\lvert\, \begin{aligned} & x \\ & z \\ & w \\ & w \\ & \hline \end{aligned}\right.$	希	$\left\|\begin{array}{l} \dot{i} \\ \dot{u} \\ \dot{0} \end{array}\right\|$	$\left.\begin{array}{\|l\|} x \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{aligned} & \dot{2} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	$\left\|\begin{array}{l} x \\ \stackrel{\infty}{\infty} \end{array}\right\|$	交
E3-39	Same as E3-37.	"METER SELECTOR" knob													
E3-40	Same as E3-37.	"hFO Xtal ${ }^{\text {che }}$													
E3-41	Same as E3-37.	"FREQUENCY RANGE MCS" knob													
E3-42	Same as E3-37.	"HF XTAL FREQ" knob													
E3-43	KNOB: rd; bakelite; black; designed to accommodate shaft, rd, $1 / 4 \mathrm{in}$. dia, 5/8 in . deep shaft hole, 2 no. $8-32$ set screws 90 deg apart;brass insert; marked "ICA"; over-all dim., $1-1 / 8 \mathrm{in}$. dia, $5 / 8 \mathrm{in}$. thick; finger indent grip with projecting insert; for general purpose use.	"OUTPUT FREQUENCY" knob		$\begin{gathered} \mathrm{N} 16-\mathrm{K}-700314- \\ 526 \end{gathered}$	ICA Part No. 1165	NRCO Dwg No. All04150	$\left\lvert\, \begin{aligned} & \text { E3-43 } \\ & \text { E9-7 } \end{aligned}\right.$	2							
E3-44	KNOB: rd; brass; black; designed to accommodate shaft, rd, 13/32 in. dia, through hole, set screw, 2 no. 6-32 tapped holes, 90 deg apart; w/o markings; over-all dim.; $1-3 / 4$ $1 \mathrm{n} . \mathrm{dia}, 33 / 64 \mathrm{in}. \mathrm{th1ck;} \mathrm{diamond}$ knurl, n1ckel plate; p/o, AN Radio Frequency Oscillator, Type No. 0-165/UR.	$\begin{aligned} & \text { Large "DIAL } \\ & \text { UNTTS" knob } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{K}-700374- \\ 243 \end{gathered}$		NRCO Part No. KN1A1 NRCO Dwg No. A1104132	E3-44	1							
E3-45	KNOB: rd; brass; black; designed to accommodate shaft, $\mathrm{rd}, 1 / 4 \mathrm{in}$. dia, $3 / 8 \mathrm{in}$. deep shaft hole, set screw; over-all dim., $3 / 4 \mathrm{in}$. dia, $1 / 2$ in. thick; diamond knuri grip, w/o No. 6-32 thread set screw; p/o, AN Radio Frequency Oscillator, Type Radio Frequen No. $0-165 /$ UR.	Small "DIAL UNITS" knob				NRCO Part No. KN1A?	E3-45	1							
E3-46	KNOB: round $w /$ integral pointer; plastic; black; attachment data, designed to accommodate shaft, round shaft, $1 / 4 \mathrm{in}$. dia, 11/32 in. deep shaft hole, set screw; w/o markings; over-all dim., 29/32 in. $\mathrm{lg}, 13 / 16 \mathrm{in}$. wide, $13 / 32 \mathrm{in}$. high; for general purpose use. *NOTE: Not furnished as a maintenance part. If fallure occurs, do not request replacement unless the part cannot be repalred or fabricated.	$\begin{aligned} & " 3.5 \text { MC OSC." } \\ & \text { knob } \end{aligned}$		$\begin{gathered} \text { N17-K-700226- } \\ 101 \end{gathered}$	$\begin{aligned} & \text { ICA Part } \\ & \text { No. } 1081 \end{aligned}$	NRCO Part No. All04192	E3-46	1							

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts				
	NAME of part andDESCRIPTION	function	(NAVAN ANPE)No.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFGN. } \\ \text { OESIGNATION } \end{gathered}$	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { ORAWNG AND } \\ & \text { PART NO. } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EOUTP. } \end{aligned}\right.$	\%	Equip.	${ }_{\text {cten }}^{\substack{\text { TEN- } \\ \text { dea }}}$		stock
symbol oEsic.											$\stackrel{\times}{\text { ® }}$	$\begin{aligned} & \dot{\grave{n}} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	-
E $3-47$	ADAPTER, CRYSTAL SOCKET: f1ts crystal units $w / 0.50 \mathrm{in}$. dia pins, crystal units w/ 0 to 3 erystal 0.486 in c to C to socke ts (XY3-15, XY3-16, XY3-17) w/ accommodations for $1 / 81 \mathrm{n}$. dia p1ns, $3 / 4 \mathrm{in}$. C to C ; material body' w/ bakelite insulation piate, male contacts, brass, n1ckel plated, female contacts, phosphor al1 d1m, $21 \mathrm{n} .1 \mathrm{~g}, 1-1 / 2 \mathrm{in}$. Wide C 1 n . high; plugs into 3 crystal sockets, Amphenol Part No. $33-2 \mathrm{~T}$, spaced $5 / 8$ in. C to C; has 3 adapter, conta1ns 3 crystal sockets, EBY Part No. CR7 (XY3-15A, XY 3-16A, XY3-17A); P/O, AN Rad Frequency Osc11lator, Type No. 0-165/UR.	Adapts XY 3 -15, for use w/ crys tals w/ differ- ent spaced pins		$\underset{9915}{\mathrm{~N} 16-\mathrm{A}-16183-}$		NRCO DWg No. Al1O4190	E3-47	1					
E3-48	ADAPTER, CHYSTAL SOCKET: f1ts ${ }^{2}$ ins crystal units $\mathrm{w} / 0.50$ 1n. d1a 0.486 in. C to C , to a crystal sockets (XY3-18, XY3-19)' w/ accommodations for $1 / 8 \mathrm{in}$. dia pins, $3 / 41 \mathrm{n}$. C to C; material data, bakelite insulation plate, male contacts, brass, nickel plated, female contacts, phosphor bronze; ectangular shape; over-all dim. $\begin{array}{ll}1-1 / 2 & 1 \mathrm{n} .1 \mathrm{~g}, 1-1 / 4 \\ 27 & 1 \mathrm{n} . \mathrm{h} \text {. } \mathrm{gh} ; \mathrm{plugs} \text { into } 2 \text { crys }\end{array}$ tal sockets, Amphenol Part No. 33 clamps for holding crystal unit in adapter, contains 2 crystal sock-XY3-19A); p/O, AN Radio Frequency Oscillator, Type No. $0-165 / \mathrm{UR}$.	Adapts XY3-18, xy3-19 for use pins dirfent spaced pind		$\underset{\substack{\text { N16-A-16178- } \\ 24.5}}{ }$		NRCO Dwg No. AllO4 191	E3-48	1					
E5-1	TERMINAL BOARD: bakelite board; 10 terminals, screw type; w/o barriers; over-all dim., ' in. 1 g , $7 / 8 \mathrm{in}$. Wide, $11 / 16 \mathrm{in}$. hign; $5-1 / \mathrm{c} 1 \mathrm{n}$. C to C , terminals nickel plated; for general purpose use. *NOTE: Not furnlshed as a malntenance part. If fallure occurs, do not request replacement unless fabricated	" 1,10 " term1nal board		$\overbrace{5643}^{* N 17-B-77938-}$	$\begin{array}{ll} \text { ICA Part } \\ \text { No. } 2422 \end{array}$	NRCO DWg No . A110465	$\begin{aligned} & \mathrm{E} 5-1 \\ & \mathrm{EF-2} \\ & \mathrm{EF} 5-3 \\ & \mathrm{EF} 5-4 \end{aligned}$	4					

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
SYMBOL	NAME OF PART AND DESCRIPTION	function					ALL		-	equ			$\mathrm{N}^{\mathrm{N}} \mathrm{R}$	sto	ock
			JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$ stock No.	MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.	SYMBOL DESIG. INVOL- VED	$\begin{gathered} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{gathered}$	$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \end{aligned}$	希	$\begin{array}{\|l\|} \hline \dot{z} \\ \vdots \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{l\|} \mathbf{x} \\ \mathbf{\infty} \end{array}\right\|$	$\left.\begin{aligned} & \mathbf{z}_{0} \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l\|} x \\ 0 \\ \hline \end{array}\right\|$	zi
Eb-2	Same as E5-1.	$\begin{aligned} & \text { "11, 20" term1- } \\ & \text { nal board } \end{aligned}$													
E5-3	Same as E5-1.	$\text { " } 21,30 \text { " term1 - }$ nal board													
E5-4	Same as E5-1.	$\text { " } 31,40 \text { " term1- }$ nal board													
E9-1	Same as El-1.	"AUDIO OUTPUT" terminal board													
E9-2	TERMINAL BOARD: bakelite board; includes terminals, 2 terminals, solder lug type; w/o barilers; overall dim., $1-5 / 16 \mathrm{in}$. $1 \mathrm{~g}, 5 / 16 \mathrm{in}$. wide, $7 / 8 \mathrm{in}$. high; $1 / 8 \mathrm{in}$. dia hole in ea of 2 mounting lugs spaced 1 in . C to C ; terminals tin plated; for general purpose use.	Tlepoint for electrical connections		$\begin{gathered} \text { N17-B-77534- } \\ 3730 \end{gathered}$	$\begin{aligned} & \text { JNS Part } \\ & \text { No. } 2002 \end{aligned}$	NRCO Dwg No. A1104146	E9-2	1							
E9-3	TERMINAL BOARD: bakelite board; includes terminals, 5 terminals, solder lug terminals; w/o barriers; over-all dim., $2-1 / 4 \mathrm{in}$. $1 \mathrm{~g}, 5 / 16$ in. wide, $7 / 8 \mathrm{in}$. high; one $1 / 8 \mathrm{in}$. dia hole in ea of 2 mounting lugs spaced $1-15 / 16$ in. C to C; term1nal tin plated; for general purpose use.	T1epoint for electrical connect1ons		$\begin{gathered} \text { N17-B-77686- } \\ 6753 \end{gathered}$	JNS Part No. 2005	NRCO Dwg No. A1104148	E9-3	1							
E9-4	TERMINAL BOARD: bakelite board; includes terminals, 18 terminals, solder lug type; w/o barriers; over-all dim., $3-7 / 8 \mathrm{in}$. 1 g , $1-$ $11 / 16 \mathrm{in}$. wide, $3 / 32 \mathrm{in}$. thick; two $9 / 64 \mathrm{in}$. dia mounting holes spaced $3-1 / 2$ in. C to $C ; 9$ term1nals ea top and bottom; p/o, AN Amplifier-Detector, Type No. AM615/UR.	Tlepoint for electrical components		$\begin{gathered} \text { *N17-B-78113- } \\ \text { goe25 } \end{gathered}$	$\begin{aligned} & \text { MLR Part } \\ & \text { No. 440 } \\ & \text { modifled (28 } \\ & \text { term1nals, } \\ & 5-3 / 4 \text { in, } 1 \mathrm{~g} \\ & \text { standard) } \end{aligned}$	NRCO Dwg No. Al104165	E9-4	1							
E9-5	Same as E3-37.	"INPUT SELECTOR" knob													
E9-6	Same as E3-37.	"OUTPUT LEVEL: knob													
E9-7	Same as E3-43. *NOTE: Not furnished as a ma1ntenance part. If fallure occurs, do not request replacement unless the part cannot be repaired or fabricated.	"TUNING" knob													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

table 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND （NAVY TYPE）NO．	fEDERAL AND （SIGNAL GORPS） stock no	MFGR．AND MFGR＇S designation	GONTRACTOR DRAWING AND PART NO．		$\left\|\begin{array}{\|c\|} \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}\right\|$	－EQUIP．			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SESIG．									$\stackrel{\text { z }}{\text { z }}$	$\begin{aligned} & \text { 㐅⿸⿻一丿口⿴囗⿱一一心} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline z \\ z_{1} \\ b \end{array} \right\rvert\,$	$\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \dot{z} \\ & \frac{u}{u} \\ & \hline \end{aligned}$	$\begin{aligned} & x \\ & \stackrel{x}{\infty} \\ & \hline \end{aligned}$	立
E10－12	Same as El0－11．	T1epoint for electrical com－ ponents													
E12－1	TERMINAL BOARD：molded phenolic board；1ncludes terminals， 8 ter－ minals，double screw type；barrier type；over－all dim．， $4-1 / 4 \mathrm{in} .1 \mathrm{~g}$ ， $1-1 / 8 \mathrm{in}$ ．wide， $1 / 2 \mathrm{in}$ ．h1gh；four 0.175 in ．dia holes on $27 / 64 \mathrm{in}$ ． by $3-15 / 161 \mathrm{n}$ ．mounting centers； terminals and No．6－32 screws brass，n1ckel plated；for general purpose use．	Telephone lines terminal board		$\underset{6726}{\mathrm{~N} 17-\mathrm{B}-77841-}$	JNS Part No．8－141	NRCO Dwg No．AllO4154	E12－1	1							
F2－1	FUSE，CARTRIDGE： $3 \mathrm{amp}, 250 \mathrm{v}$ ； 1 n － stantaneous；ferrule type，dim．， $1 / 4 \mathrm{in} .1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ．dia；glass covering；indicating clear window opaques；over－all dim．， $1-1 / 4 \mathrm{In}$ ． $1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ．dia；for general pur－ pose use．	Primary power． protection		$\begin{array}{\|c} \text { N17-F-16302- } \\ 120 \end{array}$	BUS Type No．AGC3		$\begin{aligned} & \mathrm{F} 2-1 \\ & \mathrm{~F} 2-3 \end{aligned}$	2							
F2－2	FUSE，CARTRIDGE： $1 / 4 \mathrm{amp}, 250 \mathrm{v}, 1 \mathrm{n}$－ stantaneous；wire lead type termi－ nals，dim．， $1-1 / 2 \mathrm{in}$ ． 1 g ；enclosed type glass covering；one time；in－ dicating clear window opaques； over－all dim．excluding leads， 1 － $1 / 4 \mathrm{in} .1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ．dia；for gen－ eral purpose use．	High voltage protection		$\begin{gathered} \text { N17-F-16302- } \\ 355 \end{gathered}$	$\begin{aligned} & \text { BUS Type } \\ & \text { No. GJV-1/4 } \end{aligned}$		F2－2	1							
F2－3	Same as $\mathrm{F}^{\prime} \mathrm{C}-1$.	Spare for F2－1													
F3－1	FUSE CARTRIDGE： $4 \mathrm{amp}, 250 \mathrm{v}$ ；time delay，110\％for $11 \mathrm{fe}, 135$ \％for $0-1$ hr and 200\％for $0-2 \mathrm{~min}$ ；ferrule type，dim．， $1 / 4 \mathrm{in} .1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ． dia；enclosed type，glass body； one time；non－indicating；over－all dim．， $1-1 / 4 \mathrm{in} . \lg , 1 / 4 \mathrm{in}$ ．dia； diagonal，protective coated ele－ ment；unit pkg， 100 per box；for general purpose use．	Heater and power supply protection		$\begin{gathered} \text { N17-F-16302- } \\ 130 \end{gathered}$	LTF fart No．312004	NRCO Dwg No. A110472-2	F3－1	1							
F3－2	FUSE，CARTRIDGE： $0.2 \mathrm{amp}, 250 \mathrm{v}$ ； time delay， 110% for $11 \mathrm{fe}, 135 \%$ for $0-1 \mathrm{hr}$ and $200 \% 5 \mathrm{sec} \mathrm{min}, 60$ sec max；ferrule type，d1m．， $1 / 4$ $\mathrm{in} . \mathrm{lg}, 1 / 4 \mathrm{in} . \mathrm{dia}$ ；enclosed type， glass body；one time；non－1ndica－ ting；over－all dim．， $1-1 / 4 \mathrm{in} .1 \mathrm{~g}$ ， $1 / 4 \mathrm{in}$ ．dia；compound element $\mathrm{w} /$ spring and resistor，slow biow； unit pkg， 100 per box；for general purpose use．	Primary power protection		$\begin{gathered} \mathrm{N} 17-\mathrm{F}-14310- \\ 330 \end{gathered}$	LTF Part No．313－200	NRCO Dwg No. A110474-1	F3－2	1							
F9－1	FUSE，CARTRIDGE： $2 \mathrm{amp}, 250 \mathrm{v}$ ；time delay， 110% for $11 \mathrm{fe}, 135 \%$ for $0-1$ hr and 200% for $0-2 \mathrm{~min}$ ；ferrule type，dimi．， $1 / 4 \mathrm{in} .1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ． dia；enclosed type，glass body；	Primary power protection		$\begin{array}{\|c} \text { N17-F-16302- } \\ 100 \end{array}$	$\begin{aligned} & \text { LTF Part } \\ & \text { No. } 312002 \end{aligned}$	NRCO Dwg No．A110472－1	$\begin{aligned} & \text { F9-1 } \\ & \text { F10-1 } \end{aligned}$	2							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND description						,		-	Eoul		TEN-		tock
$\underset{\substack{\text { SYM BoL } \\ \text { DESIG. }}}{ }$		function		$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL GORPS) } \\ & \text { STOCK NO. } \end{aligned}$	DESIGNATION	$\begin{aligned} & \text { DRAWING AND } \\ & \text { DART NO. } \end{aligned}$	$\begin{gathered} \text { SESIGL } \\ \text { OKSBOL } \\ \text { ONVOL- } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUP. } \end{aligned}$	$\begin{aligned} & 2 \\ & z \\ & \underset{y}{z} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{O} \end{aligned}$		x		(1)
$\begin{aligned} & \mathrm{F} 9-1 \\ & (\text { cont }) \end{aligned}$	one time; non-1nd1cating; over-all unit pkg, 100 per box; for general purpose use.													
F10-1	Same as F9-1.	Primary power protection												
F12-1	FUSE, PLUG: 15 amp; 125v; NEC type std screw base; 1 nstantaneous; continuous at 110% of rated load; 10 to 60 min blowing time at 125% of rated load; non-1nd1cating; one-t1me; over-all dim., $1-1 / 4 \mathrm{nn}$. $1 \mathrm{~g}, 1-1 / 8 \mathrm{in}$. d1a; clear window top; for general purpose use.	Protection for recelving set equipment pri- mary power mary power		$\underset{550}{\mathrm{~N} 17-\mathrm{F}-16468-}$	$\begin{aligned} & \text { Bus Part far } \\ & \text { No. W15 } \end{aligned}$	NRCO Dwg No. A1104161	$\begin{aligned} & \mathrm{F} 12-1 \\ & \mathrm{~F} 12-2 \end{aligned}$	2						
F12-2	Same as F12-1.	Protection for receiving set equi pment pr1- mary power												
H2-1		Electron tube retaining clamp		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-300798- \\ 631 \end{gathered}$	BHE Part No. 926B16		н2-1	1						
H2-2	Clamp, electrical: stainless steel; 1, snap spring type fastener; by 1 elongated hole (for No. 10 machine screw) 1 n mounting bracket; des1gned to hold $1-3 / 8.1 \mathrm{n}$. d1a designed to hold $1-3 / 8.1 \mathrm{n}$. dia electron tube; for general purpose use.	Electron tube retaining clamp		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-300798-868 \end{gathered}$	BHE Part No. 926 C 13		н2-2	1						
н2-3		Electron tube retaining clamp		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-300563-799 \end{gathered}$	BHE Part No. 926B31		н2-3	${ }^{1}$						
$\begin{aligned} & \mathrm{H}-4-4 \\ & (24) \end{aligned}$	NUT, SHEET SPRING: cup shape; phosphor bronze; cadmium plated; overall d1m., $0.117 \mathrm{1n}$. thick, 0.500 machine screw; for general purpose use.	Retaining nut for E2-37 to E2-60		$\begin{gathered} \mathrm{N} 43-\mathrm{N}-9708- \\ 1025 \end{gathered}$		HMM Part No. 6053-1	$\underset{\substack{\mathrm{Hz}-4 \\(24)^{2}}}{ }$	24						

ORIGINAL
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOGK No.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO		$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}$	- EOUIP			$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
DESIG.									$\begin{aligned} & z \\ & \mathbf{z} \\ & \underset{\rightharpoonup}{w} \end{aligned}$	㸔	$\left\|\begin{array}{l\|} \dot{i} \\ \dot{u} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \text { zi } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \times \\ & \stackrel{x}{\infty} \end{aligned}$	2i
H2-5	WRENCH: Allen set screw; $1 / 16 \mathrm{in}$. across flats; $1-27 / 321 \mathrm{n}$. 1 g by $21 / 32 \mathrm{in}$. w1de by $1 / 16 \mathrm{in}$. h1gh; alloy steel, tool hardened; 90 deg head offset; hexagonal straight handle.	No. 6 Allen screw wrench		G41-W-2445	AHF	HMM Part No. 11806-2	H2-5	1							
H2-6	WRENCH: Allen set screw; 5/64 ir . across flats; $1-31 / 321 \mathrm{n} .1 \mathrm{~g}$ by $45 / 64 \mathrm{in}$. wide by $5 / 64 \mathrm{in}$. h1gh; alloy steel, tool hardened; 90 deg offset; hexagonal straight handle.	No. 8 Allen screw wrench		G 1-W-2446	AHF	HMM Part No. 11806-3	Н2-6	1							
H2-7	WRENCH: Allen set screw; 3/32 in. across flats; $2-3 / 32 \mathrm{ln}$. 1 g by $3 / 4 \mathrm{in}$. wide by $3 / 32 \mathrm{in}$. high; alloy steel, tool hardened; 90 deg head offset; hexagonal straight handle.	No. 10 Allen screw wrench		G41-W-2447	AHF	HMM Part No. 11806-4	н2-7	1							
12-1	LAMP, INCANDESCENT: 6 to $8 \cdot \mathrm{v}, 0.9$ to $1.2 \mathrm{~W}, 0.15 \mathrm{amp} ;$ lamp data, MBCA Ref Dwg Group 7, min bayonet base, T-3-1/4, clear, white, 1 f11, tung sten, C-2R; 1-3/16 in. nax over-all height; over 25 hrs rated life; any burning position; unit pkg, 10 in a case; for general purpose use.	Dial lamp		N17-L-6297	$\begin{aligned} & \text { GE Part } \\ & \text { No. } 47 \end{aligned}$	NRCO Dwg No. A110453	$\left\lvert\, \begin{aligned} & \mathrm{I} 2-1 \\ & \mathrm{I} 2-2 \\ & \mathrm{I} \end{aligned} 2-2\right.$	7							
I2-2	Same as İ-1.	D1al lamp													
12-3	Saine as 12-1.	Dial lamp													
12-4	Same as 12-1	Dial lamp													
IC-5	DIAL CONTROL: knob type; scale data, $\mathrm{kc}-3 \mathrm{kc}$ to 0 to +3 kc , left to right, graduated every half and full kc, marked "kc-minus" and "kc plus " 320° arc; direct drive, $1 / 4 \mathrm{in}$. d1a shaft; dim., $2-3 / \mathrm{E} 1 \mathrm{n}$. dia, 1 in. thick; set screw mounted; dial not illuminated; p/o, AN Radio Recelver, Type No. R-450/FRR-28.	"beat osc" dial control		$\underset{9984}{\text { N16-D- } 46552-}$	$\begin{aligned} & \text { GE Part } \\ & \text { No. } 31227 \mathrm{a} 4 \end{aligned}$		12-5	1							
12-6	DIAL CONTROL: knob type; units, 10 to 0 left to right, graduated in 10 scale div, "off," $270{ }^{\circ}$ arc; di- rect drive, $i / 4$ in, dia shaft; 2$3 / 8$ in. dia, 1 in. thick; set screw mounted; dial not 111 uminated; p / o, AN Radio Recelver, Type No. R-450/FRR-28.	"RF GAIN" dial control		$\begin{gathered} \text { N16-D-46548- } \\ 8725 \end{gathered}$	GE Part No. 31227G1		I2-6	1							
12-7	DIAL CONTROL: knob type; units, 10 to 0 left to right, graduated in 10 scale div, 270° arc; direct drive, $1 / 4 \mathrm{in}$. dia shaft; 2-3/8 in . dia, 1 in. thick; set screw mounted; dial not 111 uminated; p / o, AN Radio Recelver, Type No. R-450/ FRR-28.	"AUDIO GAIN" dial control		$\begin{gathered} \text { N1 6-D-46548- } 8923 \end{gathered}$	GE Part No. 31227G2		12-7	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									spare parts						
	NAME OF PART AND DESCRIPTION	function	JAN AND (NAVY TYPE)NO	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIIG.INVOL-VED	$\begin{array}{\|c\|c\|c\|c\|c\|} \text { TOTAL } \\ \text { PERUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\underset{\text { SESIG }}{\substack{\text { SYMBoL }}}$									$\begin{array}{\|c} \mathbf{z} \\ \underset{\sim}{\mathbf{w}} \\ \underset{\sim}{2} \\ \hline \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{x} \\ & \mathrm{\infty} \end{aligned}\right.$	$\left\|\begin{array}{l\|} \dot{z} \\ \dot{u} \\ \dot{o} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ \dot{\infty} \end{array}\right\|$		$\stackrel{\times}{\infty}$	2
12-8	DIAL CONTROL: knob type; units, 10 to 0 left to right, graduated in 10 scale div, 180° arc; direct drive, $1 / 4$ in. dia shaft; $2-3 / 8$ in. dia, 1 in . high; set screw m mounted; dial not 111 uminated; p/o an Radio Receiver, Type No. R-450/FRR-28.	"XTAL PHASING" dial control		$\begin{gathered} \text { N16-D-46350- } \\ 9238 \end{gathered}$	GE Part No. 31227as		12-8	1							
12-9	DIAL CONTROL: knob type; ke, . 2 to 13 left to right, graduated 2 $\mathrm{kc}, 150^{0} \mathrm{arc} ; \mathrm{kc}$ drect drive, $1 / 4 \mathrm{in}$. dia shart; dim., $2-3 / 8 \mathrm{in}$. dia, 1 1n. h1gh; set screw mounted; dial not illuminated; p/o, AN Radio Recelver, Type No. R-450/FRR-28.	"SElectivity" dial control		$\underset{3251}{\text { N1 } 6-D-46539-}$	GE Part No. 3122765		12-9	1							
I3-1	Same as 12-1.	"PRIMARY POWER" pilot lamp													
13-2	LAMP, GLOW: $1 / 25 \mathrm{~W}, 105 \mathrm{v}$ AC striking voltage, 105 v DC striking voltage; lamp data, MBCA Rer Dwg Group 7, miniature bayonet base, bulb data, $T-3-1 / 4$, clear, orangered, 2 electrodes, $W-11$; 1-3/16 in. max over-all height; over 25 hr rated life; any burning position; neon gas, external resistance required, 2 meg for $105-125 \mathrm{v}$ operation; for general purpose use.	"OVEn heater" p1lot lamp		$\begin{gathered} \text { N17-L-6806- } \\ 130 \end{gathered}$	GE Part No. NE51	NRCO Dwg No. AllO452	$\begin{aligned} & 13-2 \\ & \text { V10-10 } \\ & \text { V10-11 } \end{aligned}$	3							
13-5	DIAL, SCALE: 0 to 100 cw , graduated in increments of 1 (smal1), 5 (medlum) and 10 (long 11 nes) : 180° arc; rd; 21 n . dia, $3 / 81 \mathrm{n}$. dia center hole; center hole mounted aluminum; lacquered; black inscrip. tions; p/o, AN Radio Frequency Osc111ator, Type No. 0-165/UR.	"OUTPUT FREQUENCY" scale dial		$\left.\right\|_{596} ^{\mathrm{N} 16-\mathrm{S}-117101-}$	SDL Part by description	NRCO Part No. A50006 NRCO Dwg No. 1104157	$\begin{aligned} & \text { I3-3 } \\ & \text { I9-2 } \end{aligned}$	2							
13-4	DIAL, CONTROL: movable scaile type; 100 to 0 cw , graduated in increments of $1,360^{\circ}$ arc; manual drive; 2.980 in . dia; 3 No. 31 drill mounting holes spaced 120° apart on $3 / 41 \mathrm{n}$. dia circle; dial not illuminated; 3/32 1 n . aluminum, black finish; p/o, AN Radio Frequency Oscillator, Type No. O165/UR.	"DIAL UNITS" control dial		$\underset{604}{\mathrm{~N} 16-\mathrm{S}-117101-}$		NRCO Part No. NP4A42 NRCO Dwg No. Allo4174	I3-4	1							
I3-5	DIAL, SCALE: 0 to 10 ccw graduated in increments of " 1 " (3015 min), 32 deg 24 m 1 n arc; rd; 3.500 in . dia, 2.984 in . dia center hole; four $1 / 81 \mathrm{n}$. dia mounting holes spaced 90° apart on $3.250 \mathrm{1n}$. dia circle; alum1num; black fin1sh; $1 / 8 \mathrm{in}$. thick; p/o, AN Rad1o Fre-	"dIAL UNITS" vernier scale dial		$\underset{603}{\mathrm{~N} 16-\mathrm{S}-117101-}$		NRCO Part No. NP4A43 NRCO Dwg No. All04173	13-5	1							

TABLE 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	FUNGTION	Jan and （NAVY TYPE）NO	FEDERAL AND （SIGMAL CORPSSTOCK NO．	MFGR．AND MFGR＇S DESIGNATION	CONTRACTOR DRAWING AND PART NO．		$\begin{array}{\|c\|} \hline \text { TOTAL } \\ \text { PERUIP. } \\ \text { EQU } \end{array}$	－EOUIP．			$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
$\begin{array}{\|c} \text { SYMBol } \\ \text { OESIG. } \end{array}$									$\left\|\begin{array}{l} \mathbf{z} \\ z \\ w \\ w \end{array}\right\|$	葆	$\begin{aligned} & \dot{z} \\ & \text { u } \\ & 0 \end{aligned}$	$\left.\begin{array}{\|l} x \\ 0 \\ \boldsymbol{\infty} \end{array} \right\rvert\,$	立	$\begin{aligned} & \mathrm{x} \\ & \mathbf{o} \end{aligned}$	立
$\begin{aligned} & 13-5 \\ & (\operatorname{cont}) \end{aligned}$	quency oscillator，Type No．0－165／ UR．														
13－6	COUNTER，MECHANICAL：direct drive； polished Veeder metal；over－all dim．，excluding countershaft arm， $1-23 / 64 \mathrm{in} . \mathrm{h} 1 \mathrm{gh}, 27 / 32 \mathrm{in}$ ．wide， $13 / 161 \mathrm{n}$ ．deep； 3 digit space，？ digits， 1 blank；non－resetting； $360^{\circ} \mathrm{ccw}$ rotation for 1 digit ad－ dition； $1,000 \mathrm{rpm}$ of countershaft arm max speed；subtracts in cw rotation； $1 / 8 \mathrm{in}$ ．dia mounting hole in ea of two lugs spaced 1 － $1 / 16$ in．C to C ；incl $1-5 / 16$ in． lg by $5 / 16 \mathrm{in}$ ．wide by $7 / 32 \mathrm{in}$ ． high countershaft arm and 3 screws， no lubrication required；for gen－ eral purpose use．	＂DIAL HUNDREDS＂ counter		N18－R－268－160	VEE Model No．AE114223	NRCO Dwg No． 1104159	13－6	1							
19－1	Same as 12－1．	$\begin{aligned} & \text { "PowER" pilot } \\ & \text { lamp } \end{aligned}$													
19－2	Same as 13－3．	$\begin{aligned} & \text { "TUNING" scale } \\ & \text { d1al } \end{aligned}$													
110－1	Same as 12－1．	$\begin{aligned} & \text { "POWER" p110t } \\ & \text { lamp } \end{aligned}$													
J2－1	CONNECTOR，RECEPTACLE： 2 contacts， female，round；stra1ght type；pin type connector；over－all dim．， $27 / 32 \mathrm{in} .1 \mathrm{~g}, 1 \mathrm{in}$ ．wide， 1 in. high；radio frequency connector， 100 ohms nominal impedance，con－ stant frequency impedance charac－ teristic；round body，brass，sil－ ver plated，screw type；mica f11led bakelite insert； 4 holes， $1 / 8 \mathrm{in}. \mathrm{dia}, \mathrm{23/32} \mathrm{in}$ ． C to C ；for general purpose use．	＂ANT．＂input receptacle	SigC So－264	$\begin{gathered} \mathrm{N} 17-\mathrm{C}-73127- \\ 5741 \end{gathered}$	AMP Part No．83－22R		J2－1	1							
J2－2	CONNECTOR，RECEPTACLE： 1 contact， female，rd；straight type；over－ all dim．excluding terminals， $27 / 32 \mathrm{in} .1 \mathrm{~g}, 1 \mathrm{in}$ ．wide， 1 in. h1gh；radio frequency connector； 50 ohms，constant frequency 1 m － pedance data；cylindrical shape $w /$ square mounting flange；die－cast zinc，silver plated；mica filled bakelite insert； 4 holes 0.120 in． dia， $23 / 32 \mathrm{in}$ ．by $23 / 32 \mathrm{in}$ ．mount－ ing centers；copper alloy contacts； for general purpose use．	＂If output＂ monitor re－ ceptacle	$\begin{aligned} & \text { S1gC So-239 } \\ & (-49194) \end{aligned}$	$\begin{gathered} \mathrm{N} 17-\mathrm{C}-73108- \\ 5890 \end{gathered}$	$\begin{array}{ll} \text { AMP } & \text { Part } \\ \text { No. } & 83-1 \mathrm{R} \\ \text { KGE } & \text { Part } \\ \text { No. } & \text { KV71-02 } \end{array}$	NRCO Dwg No．A110499	$\begin{aligned} & \text { J2-2 } \\ & \text { J2-6 } \\ & \text { J2-7 } \\ & \text { J2-8 } \\ & \text { J3-10 } \\ & \text { J3-7 } \\ & \text { J3-8 } \\ & \text { J3-9 } \\ & \text { J3 } 10 \\ & \text { J3-11 } \\ & \text { J9-2 } \end{aligned}$	13							
J2－3	JACK，TELEPHONE：for 2 conductor plug，shank dim．，1／4 in．dia，1－ $7 / 321 \mathrm{n} .1 \mathrm{~g} \mathrm{~min}$ ，contact arrange－ ment J1，MBCA Ref Dwg Group 4， over－all dim．， $1-1 / 4 \mathrm{in} .1 \mathrm{~g}, 13 / 16$ 1n．d1a， $31 / 32 \mathrm{in}$ ．deep； $3 / 8 \mathrm{in}$ ．	＂PHONES＂Jack	SigC JK－34A	$\mathrm{N}_{\mathrm{N}, \mathrm{~T}-\mathrm{J}-39248-}^{4418}$	MAL Part No．SCIA	NRCO Dwg No．Al104104	$\begin{aligned} & \text { J2-3 } \\ & \text { J3-6 } \\ & \text { J9-1 } \\ & \text { J10-2 } \end{aligned}$	4							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND OESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOCK NO	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\left\lvert\, \begin{array}{l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}\right.$	$\begin{aligned} & \text { O } \\ & z \\ & \underset{\underline{u}}{\mathbf{u}} \end{aligned}$	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\left\lvert\, \begin{gathered} \operatorname{s\gamma mbol} \\ \text { DESIG. } \end{gathered}\right.$										$\left\|\begin{array}{l} \text { x } \\ \mathbf{\infty} \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & \text { a } \\ & \text { à } \end{aligned}$	$\left\|\begin{array}{l} x \\ \dot{\infty} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} \text { z } \\ \text { à } \end{array}\right\|$	$\stackrel{\times}{0}$	z
$\begin{aligned} & \mathrm{J2-3} \\ & (\operatorname{cont}) \end{aligned}$	1n. dia mounting hole required; mounting accessories c/o, 1 hex nut; 1 1nsul washer; phosphor bronze nickel plated spring, bakelite and ceramic insulation; for general purpose use.														
J2-4	CONNECTOR, RECEPTACLE: 2 contacts, female, flat; stralght type; overall dim. $13 / 161 \mathrm{n}$. $1 \mathrm{~g}, 1-9 / 16 \mathrm{n}$. wide, $3 / 8 \mathrm{in}$. high; rectangular shape $w /$ oval mounting shaft, bakelite, polished, flange type; molded bakelite insert; 2 holes, $0.140 \mathrm{~d} 1 \mathrm{a}, 1-1 / 8 \mathrm{in}$. C to C ; for general purpose use.	"RELAY" receptacle		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-731 \mathrm{f} 8- \\ 3593 \end{gathered}$	ALP Part No. 402 AC		$\begin{aligned} & \mathrm{J} 2-4 \\ & \mathrm{~J} 2-5 \end{aligned}$	2							
J2-3	Sante as J2-4.	"AC" outlet receptacle													
32-6	Same as JC-2.	$\begin{aligned} & \text { "EXT. HFO" re- } \\ & \text { ceptacle } \end{aligned}$													
J2-7	Same ás J2-iz.	"3.5 MC OSC." receptacle													
J2-8	Same as Jç-2.	$\begin{aligned} & \text { "EXT. BFO" re- } \\ & \text { ceptacle } \end{aligned}$													
J<-9	JACK, TELEPHONE: for 1-conductor plug, shank dim., $1 / 8 \mathrm{ln} . \mathrm{dia}$, $11 / 16 \mathrm{in} .1 \mathrm{~g} ;$ contact arrangenent J1, MBCA Ref Dwg Group 4, over-all dim., $7 / 81 \mathrm{n} .1 \mathrm{~g}, 15 / 161 \mathrm{n}$. dia; $7 / 161 \mathrm{n}$. dia mounting hole required; bakelite mounting disc w/2 $1 / 8 \mathrm{in}$. dia mounting holes, $11 / 1 \mathrm{f}$ 1n. C to C; for general purpose use.	"DET." Jack		$\begin{gathered} \text { N17-C-73108- } \\ 3753 \end{gathered}$	CIN Part No. 81 A	NRCO DWg No. Al104137	J2-9	1							
J<-10	Same as Jこ-2.	"IF OUTPUT CONVERTER" receptacle													
J 3 -1	CONNECTOR, RECEPTACLE: 2 contacts, male, flat; stralght type; overall dim., $1-3 / 32$ in. 1 g , excluding protruding contacts, $<-1 / 321 n$. wide, $1-5 / 81 \mathrm{n}$. h1gh; $10 / 15 \mathrm{amp}$, 250/125v; cy11narical boty w/el11ptical mounting flange, brass, corrosion resistant finish; black conposition insert; 0.406 in . dia max cable opening; 2 holes, 0.146 in. d1a, $1-5 / 8$ by $1-3 / 41 \mathrm{n}$. C to c; for general purpose use.	"A.c. infut" receptacle		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-73446- \\ 3401 \end{gathered}$	HAW Part No. 6808	NRCO DWg No. A110458	$\begin{aligned} & \text { J3-1 } \\ & \text { J9-3 } \\ & \text { J10-1 } \end{aligned}$	3							
J3-6	CONNECTOR, RECEPTACLE: 6 contacts, female, flat; polarlzed; straight type; over-all dim. excluding terminais, $1 \mathrm{n} .1 \mathrm{~g}, 1-5 / 1 \mathrm{C} 1 \mathrm{n}$. wide 0.525 in . deep; 5 amp max, 45 v max;	Oven power receptacle		$\begin{gathered} \text { N17-C-73224- } \\ 1604 \end{gathered}$	JNS Part No. S306AB	NRCO Dwg No. A110470	$\begin{aligned} & \mathrm{J} 3-2 \\ & \mathrm{~J} 3-12 \end{aligned}$	2							

∞
$\mathbf{1}$
\underline{U}

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOGK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.ONVOL-VED	$\begin{array}{\|c\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	- EOUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SYMBOL DESIG.									$\begin{aligned} & 0 \\ & 2 \\ & z \\ & w \\ & \underline{w} \end{aligned}$	茳	$\begin{array}{\|l\|} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline \\ \hline \\ 0 \\ \infty \end{array}$	$\left\lvert\, \begin{aligned} & \dot{c}_{1} \\ & \frac{\Delta}{u} \\ & \hline \end{aligned}\right.$	-	z
$\begin{aligned} & 33-2 \\ & (\text { cont }) \end{aligned}$	rectangular body, molded bakelite; 2 holes, 0.152 in . dia, 1 in . C to C; phosphor bronze contacts $5 / 32 \mathrm{in}$. wide, $3 / 64 \mathrm{in}$. thick; for general purpose use.														
J3-3	CONNECTOR, RECEPTACLE: 8 contacts, female, flat; polarized; straight type; over-all dim. excluding terminals, $1-1 / 4 \mathrm{in} .1 \mathrm{~g}, 1-5 / 16 \mathrm{in}$. wide, 0.525 in . deep; 5 amp max, 45 v max; rectangular body, molded bakelite; 2 holes, 0.152 in . dia, 1 in. C to C; phosphor bronze contacts $5 / 32$ in. wide, $3 / 64 \mathrm{in}$. thick; for general purpose use.	Oven receptacle		$\begin{gathered} \text { N17-C-73255- } \\ 1511 \end{gathered}$	$\begin{aligned} & \text { JNS Part } \\ & \text { No. S } 308 \mathrm{AB} \end{aligned}$	NRCO Dwg No. All0471	J3-3	1							
J3-4	CONNECTOR, RECEPTACLE: 1 contact, female, rd; stralght type; overall dim. excluding terminals and nut, $1 / 2 \mathrm{in} .1 \mathrm{~g}, 5 / 16 \mathrm{in}$. Wide, $3 / 8 \mathrm{in}$. high; 50 W ; radio frequency connector, 50 ohms nominal 1 mpedance, constant frequency 1mpedance characteristic; cylindrical shape $w /$ hex mounting flange, brass, sllver plate, polystrene; mounts by threaded section of body, body thread $w / 1 / 41 n .-3$? thread, 15/32 1n. 1 g , incl 1 hex nut for mounting; for general purpose use.	Oven RF output receptacle		$\begin{gathered} \text { N17-C -73107- } \\ 3652 \end{gathered}$	$\begin{aligned} & \text { IPC Part } \\ & \text { No. MC20 } \end{aligned}$	NRCO Dwg No. All04142	J3-4	1							
J3-5	Same as J2-2.	$\begin{aligned} & \text { "HFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-6	Same as J2-3.	"CAL. OUTPUT"													
J3-7	Same as J2-2.	$\begin{aligned} & \text { "HFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-8	Same as. J̌-2.	$\begin{aligned} & \text { "HFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-9	Same as J2-2.	$\begin{aligned} & \text { "HFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-10	Same as J2-z.	$\begin{aligned} & \text { "BFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-11	Same as J2-2.	$\begin{aligned} & \text { "BFO" recep- } \\ & \text { tacle } \end{aligned}$													
J3-12	Same as J3-2.	DC power supply receptacle													
J5-1	JACK, TELEPHONE: for 3 conductor plug, shank dim., 3/16 1n. dia, $1-1 / 8 \mathrm{in}$. $1 \mathrm{~g} ;$ contact arrangement J2, MBCA Ref Dwg Group 4: over-all dim., excluding terminals, $3 / 4 \mathrm{in}$. dia, $1-3 / 16$ in. $\mathrm{lg} ; 13 / 32$ 1n. dia	Receiver 1 "AUDIO OUTPUT" Jack	S1gC JK-33A	$\underset{\substack{\mathrm{N} 17-\mathrm{J}-39435-\\ 6234}}{ }$	MAL Part No. SCA2B	NRCO Dwg No. All04127	$\begin{aligned} & \text { J5-1 } \\ & 355-2 \\ & \text { J5-3 } \\ & \text { J5-4 } \\ & 35-5 \\ & \text { J5-6 } \\ & \hline \end{aligned}$	24							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
$\underset{\substack{\text { SYMBOL } \\ \text { DESIG }}}{ }$	name of part and DESGRIPTION	* function	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. ANO } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	SYMBOL DESIG. ved	$\begin{array}{\|l\|l} \text { TOTAL } \\ \text { PER } \\ \text { EQUPP. } \end{array}$	cio	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
										$\begin{aligned} & \text { 웅 } \end{aligned}$	$\left\|\begin{array}{l} z_{i} \\ \dot{u} \\ 0 \end{array}\right\|$	$\left.\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & \dot{2} \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	-	2i
J5-14	Same as J5-1.	"CONVERTER 1, TONE" jack													
J5-15	Same as J5-1.	"CONVERTER 2, OUTPUT" Jack													
J5-16	Same as J5-1.	"CONVERTER 2, TONE" jack													
J5-17	Same as J5-1.	$\begin{aligned} & \text { Comparator } \\ & \text { "OUTPUT" Jack } \end{aligned}$													
J5-18	Same as J5-1.	$\begin{aligned} & \text { Comparator } \\ & \text { "TONE" jack } \end{aligned}$													
J5-19	Same as J5-1.	$\begin{aligned} & \text { Comparator } \\ & \text { "OUTPUT" jack } \end{aligned}$													
J5-20	Same as J5-1.	Comparator "TONE" jack													
J5-21	Same as J5-1.	$\begin{aligned} & \text { Telephone line } \\ & \text { "1" jack } \end{aligned}$													
J5-22	Same as J5-1.	$\begin{aligned} & \text { Telephone line } \\ & \text { "3" jack } \end{aligned}$													
J5-23	Same as J5-1.	$\begin{aligned} & \text { Telephone line } \\ & \text { "2" Jack } \end{aligned}$													
J5-24	Same as J5-1.	Telephone line "4" Jack													
J9-1	Same as J2-3.	$\begin{aligned} & \text { "OUTPUT, MONI- } \\ & \text { TOR" jack } \end{aligned}$													
J9-2	Same as J2-2.	$\begin{aligned} & \text { "I.F. INPUT 1" } \\ & \text { receptacle } \end{aligned}$													
J9-3	Same as J3-1.	Primary power receptacle													
J9-4	Same as J̌-2.	"I.F. INPUT 2 " receptacle													
J10-1	Same as J3-1.	Frimary power receptacle													
J10-2	Same as J2-3.	$\begin{aligned} & \text { "OUTPUT, MONI - } \\ & \text { TOR" jack } \end{aligned}$													
к3-1	RELAY, ARMATURE: armature activated type, SPDT, single break, DC, 110 v , 2 amp; 1 inductive winding, $D C$, 4,700 ohm resistance, $\mathcal{E} .5$ operating voltage, 1.8 ma operating current; 1 terminal on ea contact, 2 terminals on coil; time delay; intermittent duty; over-all dim. including mounting board, $2-5 / 8 \mathrm{in}$. $1 \mathrm{~g}, \mathrm{r}-5 / 8 \mathrm{in}$. Wide, $1-1 / 2 \mathrm{in}$. h1gh; mounted by 2 holes 0.1961 n . dia,	Oven operation control relay		N17-R-64855- 2113 (unad justed) Adjust control pressure to 20 gram min., gap contact to $0.008 \mathrm{in} . \mathrm{m} 1 \mathrm{n}$, pull plece gap to 0.005 in . min .	KUE Part No. 210C40 (unad justed) or No. N21005 (adjusted)	NRCO Dwg No. Allo4101	K3-1	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									Spare parts					
	NAME OF PART AND	function		$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALLORPS) } \\ & \text { STOCK NO. } \end{aligned}$	MFGR. ANDMFGR MFGRDESIGNATION	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { ORAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { PEEL } \\ & \text { EOUIP. } \end{aligned}$	Equip.		TEN-		stock	
SYMBOL DESIG.			(Navy JAN AND							$\left\lvert\, \begin{aligned} & \mathrm{x} \\ & \mathrm{\infty} \end{aligned}\right.$			\|x	立
$\begin{aligned} & \mathrm{K} 3-1^{(\text {cont })} \end{aligned}$	$2-1 / 81 \mathrm{n}$. by $2-1 / 81 \mathrm{n}$. mounting centers; sensit1v1ty $0.014 \mathrm{w}, 0.3 \mathrm{v}$ cut phenollc base; for general ${ }^{\text {at }}$ purpose use.													
L2-1	CoIL, RF: antenna; 2 windings for 1 shielded; $1-7 / 161 \mathrm{in}$. $1 \mathrm{~g} \times 19 / 32$ in. d1a over-all; phenolic form, 1ron core; mounts by two spring clips on ceramic base; coll marked 31245; 1 mpregnated for tropical use; P/o, AN Radio Rece1ver, No. R-450/FRR-28; p/o 22-1.	to 1.35 mc tuned v2-1		$\begin{gathered} \text { N17-T- }-81921- \\ 4150 \end{gathered}$	$\begin{array}{ll} \text { HMM Part } \\ \text { NO. } & 31245 \end{array}$		L.2-1	1						
L2-2	COIL, RF: antenna; 2 windings for 1 band, universal pie wound; unshielded; $1-7 / 161 \mathrm{n}$. $1 \mathrm{~g} \times 9 / 16$ in dia over-al1; phenolic rorn, 1ron ceram1c base; coll marked 31249; 1 mpregnated for tropical use; p / o, AN Rad1o Recelver, Type No. R-450, FRR-28;	RF coll in 1.35 to 3.45 mc tuned circuit input to vz-1		$\begin{aligned} & \text { N17-T-82064- } \\ & 2301 \end{aligned}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31249 \end{aligned}$		L2-2	1						
L2-3	CoIL, RF: antenna; 2 windings for 1 band, single layer wound; un sh1e lded; $1-7 / 161 \mathrm{n}$, $1 \mathrm{~g} \times 1 / \mathrm{x} 1 \mathrm{n}$. dia over-all; phenolic form, 1 ron core; mounts by 2 spring cıips on ceram1c base: co11 marked 3125% 1mpregnated for tropical use; p/o, AN Radio kecelver, Type No. R- 450 , FRR-28; p/o 22-3.	RF coll in 3.45 to 7.4 mc tuned circull input to $\mathrm{V} 2-1$			$\begin{aligned} & \text { HMM Part } \\ & \text { No. } \\ & 121252 \end{aligned}$		L2-3	1						
L2 - 4	COIL, RF: antenna; windings for band, single layer wound; unshielded; $1-7 / 16 \mathrm{in}$. $\lg \mathrm{x}$ dia over-all, phenolic form core; mounts by 2 spring cilps on ceramic base; coll marked 31255; 1 mpregnated for tropical use; p/o, AN Radio Receiver, Type No. R- 450 , FRR-28; F/o 2z-4.	$\begin{aligned} & \text { RF coll in } 7.4 \\ & \text { to } 14.8 \text { me } \\ & \text { tuned col cult } \\ & \text { tnput to } \end{aligned}$		$\begin{aligned} & \text { N17-T-8206 - } \\ & 4120 \end{aligned}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31255 \end{aligned}$		L2 - 4	1						
Li< - 5	COIL, RF: anterna; 2 windings for band, single layer wound; unshlelded; $1-7 / 161 \mathrm{n} .1 \mathrm{~g} \times 1 / 2 \mathrm{ln}$. dia over-all; phenolic form, 1ron ceramic base; coll marked $31258{ }^{\circ}$ 1 mpregnated for tropical use; p / o AN Rad1o Rece1ver, Type No. R-450) FRR-28; P/o 22-5.			$\begin{aligned} & \text { N17-T-82062- } \\ & 1411 \end{aligned}$	$\begin{aligned} & \text { HMM Fart } \\ & \text { No. } \\ & \hline 121258 \end{aligned}$		L2-5	1						
L2-6	COIL, RF: antenna; 2 windings for band, single layer wound; unsh1e lded; $1-7 / 161 \mathrm{n}$. $1 \mathrm{~g} \times 1 / 21 \mathrm{n}$. d1a over-all; phenoisc form, core; mounts by two spring clips on ceram1c base; coll marked 31201 1 mpregnated for tropical use; p/o,			N17-T-82061 -	$\left\lvert\, \begin{aligned} & \text { MMM rart } \\ & \text { No. } 31261 \end{aligned}\right.$		L2-	1						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPare parts					
	name of part and oEsCRIPTION	function		$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SINALCORP) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTORDRAWING AND part no.		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQUIP. } \end{aligned}$	- EOUIP.			TEN-	stock	
Stictict			$\begin{gathered} \text { JAN AND } \\ \text { (NAVY TYPE)NO. } \end{gathered}$						$\begin{aligned} & 0 \\ & z \\ & z \\ & z \\ & y \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\infty} \\ \hline \end{array}$	$\begin{aligned} & \dot{z} \\ & \vdots \\ & \overrightarrow{3} \end{aligned}$		$\stackrel{\square}{\circ}$	2
$\underset{(\text { cont })}{\substack{\mathrm{L} 2-6}}$	AN Radio Receiver, Type No. R-450/ FRR-28; p/o ze-6.													
L2-7	COIL, RADIO FREQUENCY: electrical data, 192 microhenries at 1000 cycles; physical data, 60 turns per ple, 4 ples, no. 36 AWG, co per ple, ed, 1 winding, un1versal wound untapped unshielded, bakel1te form, molded bakelite (Stackpole DR-1), coll din. excluding termination leads, $3 / 4 \mathrm{in} .1 \mathrm{~g}, 3 / 8 \mathrm{in}$. dia; termination data, 2 wire pigtail type, located 1 ea end; molsture Receiver, Type No. R-450/FRR-28.	v2-1 plate fllter choke		${ }_{8163} \mathrm{~N} 16-\mathrm{C}-73953-$	ARTD Part No. 15612		$\begin{aligned} & \mathrm{L} 2-7 \\ & \mathrm{~L} 2-14 \\ & \mathrm{~L} 2 .-14 \\ & \mathrm{~L} 24 \\ & \mathrm{~L} 2-35 \end{aligned}$	4						
L2-8	COIL, RF: 1st RF grid; 2 windings for 1 band, universal pie wound; unshielded; $1-7 / 16 \mathrm{in} . \lg \times 19 / 32$ in. dia over-ail; phenolic form, 1 ron core; mounts by 2 spring clips on ceramic base; coll marked 31246; 1mpregnated for tropical use; p/o, AN Radio Receiver, Type No. R-450/FRR-28; p/o Z2-8.	RF coll in 0.54 to 1.35 mc tuned circult input to $\mathrm{V} 2-2$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-72667-6871 \end{gathered}$	HMM Part No. 31246			2						
L2-9	COIL, RF: 1st RF grid; 2 windings for 1 band, universal ple wound; unsh1elded; $1-7 / 16 \mathrm{in} .1 \mathrm{~g} \mathrm{x} 9 / 16$ in . dia over-all; phenolic form, 1ron core; mounts by 2 spring clips on ceram1c base; coll marked 31250; 1 mpregnated for tropical use; p/o, AN Radio Rece1ver, Type No. R-450/FRR-28; p/o z2-9.	RF coll in 1.35 to 3.45 mc tuned ctrcult input to $\mathrm{V} 2-2$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-72666- \\ 4238 \end{gathered}$	HMM. Part No. 31250		$\begin{aligned} & \mathrm{L} 2-9 \\ & \mathrm{~L} 2-16 \end{aligned}$	2						
L2-10	COIL, RF: 1 st RF grid; 2 windings unshielded; $1-7 / 16 \ln$. $1 \mathrm{~g} \times 1 / 2$ 1 n . dia over-all; phenolic form, 1ron core; mounts by 2 spring clips on ceramic base; coll marked 31253; 1mpregnated for trop1cal use; p/o, AN Radio Receiver, Typ No. R-450/FRR-28, p/o z2-10.	RF coll in 3.45 to 7.4 mc tuned 		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-72431-\mathrm{g} 251 \end{gathered}$	HMM Part No. 31253		$\begin{aligned} & \mathrm{L} 2-10 \\ & \mathrm{~L} 2-17 \end{aligned}$	2						
L2-11	COIL, RF: 1st RF grid; 2 windings for 1 band, single layer wound; unshielded; $1-7 / 16 \mathrm{in}$. $1 \mathrm{~g} \times 1 / 2$ in. dia over-all; phenolic form, 1ron core; mounts by 2 spring cl1ps on ceram1c base; co11 marked 31256; impregnated for tropical use; p/o, AN Radio Receiver, Type No. R-450/FRR-28; p/o Z2-11	RF coll in 7.4 to 14.8 mc input to v2-2 nput to v2-2		$\underset{\substack{\mathrm{N} 16-\mathrm{C}-72174-\\ 9245 \\ \hline}}{ }$	HMM. Part No. 31256		$\begin{aligned} & \mathrm{L} 2-11 \\ & \mathrm{~L} 2-18 \end{aligned}$	2						
L2-12	COIL, RF: 1st RF grid; 2 windings for 1 band, single layer wound; unshielded; $1-7 / 16 \mathrm{in}$. $1 \mathrm{~g} \times 1 / 2 \mathrm{in}$ dia over-all; phenolic form, 1 ron	RF coll in 14.8 to 29.7 mc tuned circuit input to $\mathrm{V} 2-2$		$\begin{gathered} \text { N17-T-82062- } \\ 9511 \end{gathered}$			$\begin{array}{\|l\|l\|} \hline \mathrm{L} 2-12 \\ \mathrm{~L} 2-19 \end{array}$	2						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME of part anddescription	function	$\begin{gathered} \text { JAN AND } \\ \text { (NAVY TYPE)NO. } \end{gathered}$	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIINAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFG.S } \\ \text { OESIGNATION } \end{gathered}$	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { ORAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQUIP. } \end{aligned}$	-	Eoule.		TEN-	stock	
DESIG.										잉		$\begin{aligned} & \text { zut } \\ & \text { పे } \end{aligned}$	$\stackrel{\times}{\circ}$	交
$\begin{gathered} 2 c-12 \\ (\text { cont }) \end{gathered}$	core; mounts by 2 spring c11ps on ceramic base; co11 marked 31259; FRK-28													
L2-13	COIL, RF: 1 st RF grid; 2 windings for 1 band, single layer wound; in. dia over-all; phenolic form, 1ron core; mounts by 2 spring cl1ps on ceram1c base; coll marke use; P / o, AN Radio Recelver, Type R-450/FRR-28; p/o \%.2-13.			$\begin{aligned} & \text { N17-T-82061 - } \\ & 8101 \end{aligned}$	HMM Part No. $3126{ }^{2}$		$\begin{aligned} & \mathrm{L},-13 \\ & \mathrm{~L} 2-2 \mathrm{C} \end{aligned}$	2						
LC - 14	Same as L.c-7.	V2-2 plate filter choke												
L2. - 15	Same as L2-8; p/o zi-ib	RF coll in 0.54 to 1.35 mc tuned c1rcult 1nput to vz-5												
L. 2 - 16	Same as Lez-9; p/o z2-10.	RF col: in 1.35 to 3.45 mic tuned circult input to v2-5												
L <-17	Same as Lic-10; p/o ze-17.													
Le <18	Salue as Le-11; p/o z2-18.	KF coll in 7.4 to 14.8 mc tuned c1rcu1t input to y input to V -5												
L2-19	Same as L2-12; p/o z2-19.	RF coll in 14.8 to 29.7 mc tuned circult inpat input to v2-5												
L<-20	Sane as LL-13; p/o ze-20.													
L. 2 - < ${ }^{\text {c }}$	Sanue as Lic-7.	$\mathrm{VC}-4$ plate fllter choke												
Le-25	COIL, RF: oscillator; a winalngs Tor 1 band, universal ple wouna; unshie 1ded; $1-7 / 16.1 \mathrm{n}, 1 \mathrm{~g} \times 19 / \mathrm{s}$, in. dia over-all; phenolic form, tron core; mounts by z spring cl1ps on ceramic base; coll marked 31244; 1uipregnated for tropical use; p / o, AN Rad1o Recelver, Type No. R-450/FRR-28; p/o 2:-25.			$\begin{gathered} \mathrm{N} 17-\mathrm{T}-81915-1451 \\ 1451 \end{gathered}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31244 \end{aligned}$		L2-25	1						

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION		FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRTS } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.WVVO-VED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERUIP. } \\ \text { EOUI } \end{array}$	- EQUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SYMBOL OESIG.			JAN AND (navy type)no.						$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \underset{\underline{w}}{ } \end{aligned}$	䧺	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}\right\|$	$\stackrel{\times}{\infty}$	$\begin{aligned} & \text { z } \\ & 0 \\ & 0 \end{aligned}$	-	z
L2-26	COIL, RF: oscillator; 2 windings for 1 band, universal ple wound; unshielded; $1-7 / 16 \mathrm{in}$. $\lg \times 9 / 16$ in. dia over-ali; phenolic form, 1ron core; mounts by 2 spring clips on ceramic base; coll marked 31248; impregnated for tropical use; p/o AN Radio Receiver, Type No. R-450/FRR-28; p/o Z2-26.	$\begin{aligned} & \text { P/o hF osc } 111 \mathrm{a}- \\ & \text { tor } 1.35 \mathrm{to} \\ & 3.45 \mathrm{mc} \text { tuned } \\ & \text { circult } \end{aligned}$		$\begin{gathered} \text { N17-T-86205- } \\ 9511 \end{gathered}$	HMM Part No. 31248		L2-26	1							
L2-27	COIL, RF: oscillator; 2 windings for 1 band, single layer wound; unshielded; 1-7/16 in . $\mathrm{lg} \times 1 / 2$ in. dia over-all; phenolic form, 1 ron core; mounts by 2 spring clips on ceramic base; coll marked 31251; 1mpregnated for tropical use; p/o, AN Radio Receiver, Type No. R-450/FRR-28; p/o Z2-27.	$\begin{aligned} & \text { P/o HF oscilla- } \\ & \text { tor } 3.45 \text { to } 7.4 \\ & \text { mc tuned cir- } \\ & \text { cult } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-72431- \\ 9256 \end{gathered}$	HMM Part No. 31251		L2-27	1							
L $2-28$	COIL, RF: oscillator; 1 winding for 1 band; single layer wound; unshielded; $1-7 / 161 \mathrm{n} . \lg \times 1 / 2$ in. dia over-all; phenolic form, iron core; mounts by 2 spring c11ps on ceramic base; coll marked 31254; 1mpregnated for tropical use; p/o, AN Radio Receiver, Type No. R-450/FRR-ट8; p/o z2-28.	P/o HF oscillator 7.4 to 14.8 mc tuned circult		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-72236- \\ 8001 \end{gathered}$	HMM Part No. 31254		L2-28	1							
L2-く9	COIL, RF: oscillator; 1 winding for 1 band, single layer wound; unshielded; $1-7 / 16 \mathrm{in} . \lg \times 1 / 2$ 1n. dia over-all; phenolic form, iron core; mounts by 2 spring cl1ps on ceram1c base; co1l marked 31\&'57; 1mpregnated for tropical use; p/o, AN Radio Recelver, Type No. R-450/FRR-28; p/o Z2-29.	$\begin{aligned} & \text { P/o HF oscilla- } \\ & \text { tor } 14.8 \text { to } \\ & 29.7 \mathrm{mc} \text { tuned } \\ & \text { circuit } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-71979- \\ 5199 \end{gathered}$	HMM Part No. 31257		L2-29	1							
L2-30	COIL, RF: oscillator; 1 winding for 1 band; singie layer wound; unshieided; $1-7 / 16 \mathrm{in}$. $1 \mathrm{~g} \times 1 / 2$ in. dia over-ali; phenolic form, 1ron core; mounts by 2 spring clips on ceramic base; coll marked 31:260; impregnated for tropical use; p/o, AN Radio Receiver, Type No. R-450/FRR-28; p/o 22-30.	$\begin{aligned} & \text { P/o HF oscilla- } \\ & \text { tor } 29.7 \text { to } \\ & 54.0 \text { me tuned } \\ & \text { c1rcuit } \end{aligned}$		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-7178.5- \\ 6977 \end{gathered}$	HMM Part No. 31260		L2-30	1							
L2-35	Same as L2-7.	vz-EA plate f1lter choke													
L< - 47	COIL, RADIO FREQUENCY: electrical data, coll on "Q" meter tunes to $200 \mathrm{kc} \mathrm{w} /$ capacity of $43 \mathrm{mmf}+1$ nif; phys1cal data, 493 turns per ple, Cles; no. 36 AWG, copper conductor, singie silk enameled, 1 winding, c pie universal winding, untapped, unshielded, bakelite forn, m.oidea bakelite (Stnckpole	V2-11 plate filter choke		$\begin{gathered} \mathrm{Ni}(1-\mathrm{C}-72680- \\ 2740 \end{gathered}$	f.RTD Part No. 15616		L2-47	1							

TABLE 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND （navy type）no．	FEDERAL AND （SIGNAL CORPS）STOCK NO．	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR's } \\ & \text { OESIGNATION } \end{aligned}$	contractor DRAWING AND PART NO．	ALLSYMBOLDESIG．DNVOL－VED	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	－Equip．			$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
symbol DESIG．									$\begin{aligned} & \mathbf{z} \\ & z \\ & \mathbf{z} \\ & \mathbf{w} \end{aligned}$	$\begin{aligned} & \times \\ & \times \infty \\ & \infty \end{aligned}$	2	$\stackrel{\times}{\infty}$		$\stackrel{\times}{\circ}$	z
$\begin{gathered} \mathrm{L}-\mathrm{c}^{-47} \\ (\text { cont } \end{gathered}$	DR－c）culi dim．，exciuding termi nation leads， $7 / 8 \mathrm{in} .1 \mathrm{~g}, 33 / 64$ in．dia；termination data， 2 ， wire plgtall type，located 1 ea end；pate choke；mo1sture and fungas treated； p / O ，AN Radio Receiver，Type No．R－450／FRR－28．														
L2 20	CHOKE，RADIO FREQUENCY： 1 amp cur－ rent rating；filament lead radio frequency choke；frequencies above 60 wes；cylindrical shape； over－all dim．excluding termi－ nais $1 \mathrm{ln} .1 \mathrm{~g}, 1 / 4 \mathrm{ln}$ ．dia； 2 terminals，axial lead type，loca－ ted on each end；finished in ac－ cordance with JAN－T－152 and JAN－ C－173 specs；p／O，AN Radio Re－ ceiver，type No．R－450／FRR－28．	v2－1 and v2－2 fllament fliter choke		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-73328- \\ 6923 \end{gathered}$	JFE Part No． 15611		L2－48	1							
L2－49	COIL，RADIO FREQUENCY：electrical data， 26 microhenrles at 1000 cycces， 2.7 ohms DC resistance； physical data， $1: 7$ turns，no． 35 AWG，copper conductor，ename led wire， 1 winding，single layer winding chose wound，untapped， unshielded，bakelite form，alr core，coil ditu．，excluding term leads， 1 in ． $1 \mathrm{~g}, 1 / 4 \mathrm{in}$ ．dia；？ terminations，wire pigtall type， located 1 ea end；$+5 \%$ DC resist－ ance tolerance，p / \bar{O} ，AN Radio Receiver，Type No．R－450／FRR－28．	V2－4 and V2－5 fllament f11ter choke		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-73378- \\ 6793 \end{gathered}$	ARTD Part No． 15613		$\begin{aligned} & \text { L2-49 } \\ & \text { L2-50 } \end{aligned}$	2							
L2－50	Same as Lic－49．	v2－6 and v2－8 f1lament filter choke													
L＜－ 51	REAC＇TOR：fliter choke； 1 section； 8.5 henries inductance， 150 ma DC； 150 ohms DC resistance； 2500 v rms test voltage；hermietically sealed，metal；over－all dim．，3－ $y / 4 \mathrm{in} . \mathrm{lg}, \mathrm{y} \mathrm{in}$ ．wide， 3 in ． deep； 40.173 in ．dia holes $2-3 / 8$ in．C to C ； 2 terminals，solder lug type，located on bottoli；fin－ 1shed in accordance with JAN－T－27 spec；for general purpose use．	Power supply filter choke		$\underset{3471}{\mathrm{~N} 16-\mathrm{R}-29205}$	UN＇T Type No． 31030		L $⿻ 上 丨_{*}-51$	1							
Lく－らC	REACTOR：fllter choke；l section； 20 henries inductance， 115 ma DC； 354 ohms DC resistance； 2500 v rms test voltage；hermet1cally sealed， metal；over－all $\mathrm{d}_{\mathrm{m}} \mathrm{m} ., 3-3 / 4 \mathrm{in} . \mathrm{lg}$ ， 3 1n．wide， 3 1n．deep； 40.173 in．dia holes $<-3 / \varepsilon 1 n$ ． C to $\mathrm{C} ;$ ？ terminass，solder lug type，loca－ ted on botton；finished in accord－ ance with JAN－T－27 spec；for gen－ eral purpose use．	Power supply f＇llter choke		$\begin{gathered} \mathrm{N} 16-\mathrm{R}-29385-7601 \end{gathered}$	UNT Type No． 31031		L2－52	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME of part and	function	(NAVY TYPE) NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	MFGR. ANOMFGR'S designation	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { DRAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQUIP. } \end{aligned}$	-	Eoulp.		TEN-	stock	
SYMBOL										$\begin{aligned} & \mathrm{x} \\ & \mathrm{\infty} \end{aligned}$		$\begin{aligned} & \text { omb } \\ & \hline 1 \end{aligned}$		-
Le2-53	TRANSFORMER, INTERMEDIATE FREQUENCY: 455 kc , untuned; unshielded; over all dim., $2-1 / 41 \mathrm{n} . \lg , 27 / 64 \mathrm{nn}$. dia; material data, wound on core, powdered 1 ron core; termination data, 3 terninations, axial wire lead type; impregnated for trop1 cal use; p/o, AN Radio Type No. R-450/FRR-28.			$\underset{5301}{\mathrm{~N} 16-\mathrm{C}-74289-}$	$\begin{aligned} & \text { JFE Part } \\ & \text { No. } 1369 \end{aligned}$		L2-53	1						
L2-54	COIL, RADIO FREQUENCY: 50 mh at 1,000 cycles, 130 ohmis DC resistance, 100 ma, 1,550 turns, No. 36 AWG w1re, copper wire, single silk enane led conduc tor, I winding, ple 1 ron form, 1 ron core, co 11 dim . excluding terminals, $1-1 / 81 \mathrm{n}$. dia, $5 / 8 \mathrm{in}$. high, over-all coll form d1m., $1 / 2 \mathrm{in}$. $1 \mathrm{~g}, 7 / 16 \mathrm{in}$. dia; 2 terminals, solder lug type, located on bakelite terminal plate, mounted by single No. 6-32 thread screw through center of coll form; choke coll: for general purpose use.	Detector RF choke		$\begin{array}{\|c} \text { N. } 16-\mathrm{C}-75460- \\ 6969 \end{array}$	$\begin{aligned} & \text { MLR Part } \\ & \text { No. } 958 \end{aligned}$	NRCO Dwg No. Allo4184	L2-54	1						
L2-55	COIL, RADIO FREQUENCY: 80 mh at 1,000 cycles, 230 ohms DC res1st- ance, 100 ma; 2, 430 turns, No. 36 awa wire, copper wire, single nylon, enameled, conductor, ${ }^{1}$ windshielded, ceramic form, alr core, co11 dim. excluding terminals, 1 $1 / 81 \mathrm{n}$. dia, $5 / 81 \mathrm{n}$. high, over- all coil form dim., $1 / 21 \mathrm{n}$. 1 g , ald 1 n. dia; 2 terminals, solder lug type, located on bottom bakelite terminal plate; mounted by single No. 6-32 screw through center of coll form; choke coll; for general purpose use.	$\begin{aligned} & \text { AVC f11ter } \\ & \text { choke } \end{aligned}$		$\begin{array}{\|c} \text { N16-C-75526- } \\ 3921 \end{array}$	MLR Part No. 694	NRCO Dwg No. Allolin2	L2-55	1						
L2-58	COIL, RADIO FREQUENCY: electrical data; 0.023 to 0.054 mh at 2.5 mc 2.3 o oms DC resistance, 0.006 amp amp rating; physical data, 37 turns rating; physical data, 37 turns, no. 40 AWG, copper conductor, cot ton insulator, 1 winding, ple universal wound, untapped, unshielded, 1 mpregnated paper forn; powdered iron core, coild dim. excluding terminals and tuning device, $3 / 8$ colı form dim., $1-7 / 161 \mathrm{n}$. 1 g , $3 / 8 \mathrm{in}$. dia; adjustable tuning, adjustable 1 ron core, hex nut adjustmana, data solder lus coll ocated 180 apart at end of col lorm, clamp inounted (includes	$\mathrm{P} / \mathrm{o} \mathrm{HF} \text { oscilla- }$ tor signal filter		$\begin{gathered} \mathrm{N} 16-\mathrm{C}-76520- \\ 3850 \end{gathered}$		NRCO Part No. A159118	L2-58	1						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
	NAME OF PART AND	function	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR AND } \\ & \text { MFGR } \\ & \text { MESIGNATION } \end{aligned}$	CONTRACTORDRAWING ANDPART NO.		$\left\lvert\, \begin{aligned} & \left.\begin{array}{l} \text { TOTAL } \\ \text { PER } \\ \text { EOUP } \end{array} \right\rvert\, \end{aligned}\right.$				TEN-	stock	
$\underset{\text { SESIGO. }}{\text { Srmbol }}$									$\stackrel{\rightharpoonup}{5}$	呬	$\stackrel{\times}{\infty}$		¢	
$\begin{gathered} \mathrm{L} 2-58 \\ (\text { cont }) \end{gathered}$														
L3-1	REACTOR: f1lter choke; l section; 7 henrles over-all inductance, 110 ma DC; 160 ohms DC ressistance; 1500 v rms test voltage; enclosed case, steel; over-all dim. cluding terminals, $2-5 / 8 \mathrm{in} .1 \mathrm{~g}$, -1/4 in. wide, 3 in. high; 4 no by 2 in. mounting centers, located der post type, located on bottom; 28.0 turns No. 31 AWG wire layer wound on EIIT-24 gauge-DYN core, p/o, AN Radio Frequency Oscillator, Type No. $0-165 /$ UR.	Power supply 11 ter choke		N16-R-29154- 6381	FTC Part No. 14800	NRCO Spec No. 108 No. A1104147	L3-1	1						
L3-2	COIL, RADIO FREQUENCY: 0.00172 to 0.0032 mh at $7.9 \mathrm{mc}, 0.045$ ohms DC resistance; 14 turns, no. 24 AWG copper conductor, ename 1 insulated conductor, 1 winding, single layer winding, untapped, unshielded, bakelite form, 1ron core, coli dim. excluding terminals and tuning device, $5 / 8 \mathrm{in}$. d1a. 1-13/16 in. 1g, over-all coll form dim., $1-13 / 16 \mathrm{in}$. 1 g max, $5 / 8 \mathrm{in}$. d1a w, $5 / 321 \mathrm{n}$. 1 g radial solder post terminal protrusion; adjustable ron core, screwariver adjustment, wire lead; 1 ea end winding; bush1ng mounted; radio frequency osquency Oscillator, Type No. O-165/ UR.	P/o variable HF oscillator		$\begin{aligned} & \mathrm{N} 16-\mathrm{C}-76548-459 \mathrm{C} \\ & \hline 591 \end{aligned}$		NRCO Part No. AD5A41 NRCO Dwg No. A110480	L3-2	1						
L3-3	COIL, HADIO FREQUENCY: 0.0275 mh total 1 nductance at $2.5 \mathrm{mc}, 0.22$ ohmi $D C$ resistance; 38 turns, no. 22 AWG, copper conductor, bare copper tinned conductor, ${ }^{1}$ wind- ing, single layer winding, tapped at $8-1 / 2$ and $13-1 / 2$ turns from ground end, unshielded, isolantite orm, a1r core, coll dim. exclud- ing terminals and mounting pro visions, $1-1 / 41 \mathrm{n}$. dia, $2-3 / 8$ lg, over-ail coit formimm, ig, over-ail co1t form dim., $2-3 / 8$ n n. $1 \mathrm{~g}, 1-1 / 4 \mathrm{n}$. dia; 4 terminals 2 wire lead and 2 solder lug type, 2 wire leads are coll taps, 2 sol? ier lug located axially one ea of coll foran; 2 no. 6-32 tapped bush1ngs $3 / 4 \mathrm{in}$. Ig on pertpher	P/o variable HF oscillator		$\begin{aligned} & \text { N16-C-73390- } \\ & 5701 \end{aligned}$		NRCO Part No. ADSA43 No. A110481	L3-3	1						

19-8
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts				
							${ }_{\text {ALL }}{ }^{\text {a }}$		-	Eoule.	Cen		ck
Stics.	NAME OF PART AND DESCRIPTION	function	(NavY JAN AND	$\begin{aligned} & \text { (SIGNAL GORPS) } \\ & \text { STOCK NO. } \end{aligned}$	MFGR. AND oesignation			$\begin{array}{\|l\|l} \text { TOTAL } \\ \text { PPER } \\ \text { EQUIP. } \end{array}$	$\underset{\underline{\mid c}}{\text { Z }}$			\%	交
$\begin{aligned} & \text { (cont) } \\ & (3-3 . \end{aligned}$	of coll form spaced 2 in . C to C; radio frequency oscillator coll; P/o, AN Radio Frequency oscillator, Type No. $0-165 /$ UR.												
L3-4	TRANSFORMER, RADIO FREQUENCY: 2 windings, primary, universal wound, secindary, single layer	P/o 2 to 4 mc output tuned		$\underset{\substack{\text { N17-T-82183- } \\ 1761}}{ }$		NRCO Part No. AD5A36	L3-4	1					
	wound, secondary, single layer me per sec, secondary mh not oritl व品												
	L1tz wire, secondary, 4 turns no. 28 AWG copper wire, DC resistance,												
	untapped; unsh1elded; dim., 2 in . lg over-ali max, $1 / 2 \mathrm{in}$. día approx; $x x x$ paper base bakelite coll												
	by shaft on bottom of coll form; 1/4 in.-28 threaded brass bushing												
	for single hole mounting; 4 term1nals, solder lug type, located axtaily on periphery of coll form												
	1ndites 1 ,												
	perature coil compound, 1 ncl 11 hex nut, lockwasher and tuning												
L3-5													
	7.9 me per sec, primary, 20 turns	$\begin{aligned} & \text { P/o } 4 \text { to } 8 \mathrm{mc} \\ & \text { output tuned } \end{aligned}$ carcu1t		$\begin{gathered} \mathrm{N} 17-\mathrm{T}-82189 . \\ 1501 \end{gathered}$		NRCO Part No. AD5A37 NRCO DWg No. Allo47	L3-5	1					
	no. 28 AWG copper wire, secondary, 3-1/4 turns no. 28 AWG copper w1re,												
	frequency range; untapped; unshielded; dim., 21 n . 1 g over-all												
	$\max , 9 / 16 \mathrm{in}$. dia approx; xxx paper base bakelite coll form, powdered 1ron core; over-all dim.												
	powdered 1 ron core; over-all d1m. of coll form, $1 / 2 \mathrm{in}$. OD, 21 n . high; adjustable iron core screw-												
	shaft on bottom of coil form; 1/4 in.-28 threaded brass bushing for in.-28 threaded br												
	data, 4 terminals, solder lug type, located axially on periphery of coll form at end opposite tuning												
	"C, " high temperature coll compound, incl 1 hex nut, lockwasher and												
	high temperature coil compound, incl 1 hex nut, lockwasher and												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
$\underset{\substack{\text { SYMBOL } \\ \text { DESIG. }}}{ }$	NAME OF PART AND DESCRIPTION	FUNCTION					${ }^{\text {ALL }}$			EOU			${ }_{\text {N- }}$	Sto	ock
			JAN AND (navy trpeino.	$\begin{aligned} & \text { (SIGNALCORPS) } \\ & \text { STOCKNO. } \end{aligned}$	MFGR'S designation	DRAWING AND PART No.	$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	$\begin{aligned} & z \\ & \mathbf{z} \\ & \mathbf{w} \\ & \mathbf{I} \end{aligned}$	若	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \mathbf{x} \\ \mathbf{\infty} \end{array}\right\|$	¢
L3-8	SUPPRESSOR, PARASITIC: resistor and coll type; $6.3 \mathrm{v} \mathrm{AC}, 0.15 \mathrm{amp} ; 30$ microhy inductance, 133 turns, No. 30 AWG enamel wire, $100,000 \mathrm{ohm}$, 2 W ; over-all dim. excluding terminals, $1-3 / 4 \mathrm{in} .1 \mathrm{~g}, 0.348 \mathrm{in}$. dia; uncased; terminal mounted; 2 terminals, wire lead type, located axially one ea end; high temp varnish impregnated; p/o, AN Radio Frequency Osc1llator, Type No. 0-165/UR.	V3-1 filament filter choke		$\begin{gathered} \text { N16-S-89776- } \\ 6536 \end{gathered}$		NRCO Spec No. 183 NRCO Dwg No. Allo482	$\begin{aligned} & \text { L3-8 } \\ & \text { L3-9 } \\ & \text { L3-10 } \\ & \text { L3-11 } \end{aligned}$	${ }^{4}$							
L3-9	Same as L3-8.	V3-1 filament filter choke													
L3-10	Same as L3-8.	Inner oven heater filter choke													
L3-11	Same as L3-8.	Inner oven heater filter choke													
L9-1	REACTOR: filter choke; 1 section; 10 henrles over-all inductance, 75 ma DC; 250 ohms DC resistance; 1500 v rms test voltage; enclosed case, steel; over-all dim. excluding terminals, $2-9 / 161 \mathrm{n} .1 \mathrm{~g}, 2-$ $3 / 161 \mathrm{n}$. w1de, $2-3 / 4 \mathrm{in}$. h1gh; 4 No. $6-32$ thread inserts on $1-3 / 4$ 1 n . by 21 n . mounting centers, located top and bottom; 2 terminals, solder post type, located on bottom; 3210 turns No. 33 AWG w1re layer wound on EI75-24 gauge-DYN core, varnish impregnated, pitch fllled; p / o, AN Amplifier-Detector, Type No. AM-615/UR.	Power supply filter choke		$\begin{gathered} \text { N } 16 \text {-R-29235- } \\ 6361 \end{gathered}$	FTC Part No. 14801	NRCO Spec No. 112 NRCO Dwg No. AllO4128	L9-1 L9-3 $\mathrm{L10}-1$ $\mathrm{~L} 10-2$	4							
L9-2	COIL, RADIO FREQUENCY: 2.5 mh at 1,000 cycles, 44 ohms DC resistance, $100 \mathrm{ma} ; 878$ turns, No. 36 AWG, copper conductor, single nyion, enameled, 4 windings, pie universal winding, untapped, unshielded, ceramic form, air core, coil dim., $1 / 2 \mathrm{in}$. dia, 2 in .1 g , over-all coll form dim. Including molded lead ends, $21 \mathrm{n} .1 \mathrm{~g}, 11 / 32$ in. dia; 2 terminations, wire lead type, located radially one ea end; ceranic mounting bushing w/ No. $6-32$ screw hole; choke coll, ${ }^{+}$ 15% DC resistance tolerance of co1l; for general purpose use.	V9-2 plate fllter choke	.	$\begin{gathered} N 16-C-74716- \\ 4521 \end{gathered}$	NAC Part No. R100U	NRCO Dwg No. All04123	L9-2	1							
L9-3	Same as L9-1.	Power supply filter choke													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	name of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL ANO } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	$\begin{gathered} \text { ALL } \\ \text { SYMBOL } \\ \text { OESIG. } \\ \text { INVOL- } \\ \text { VED } \end{gathered}$	$\begin{array}{\|c\|} \text { TOTAL } \\ \text { PERR } \\ \text { EOUIP. } \end{array}$	- EQuIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \end{gathered}$									$\left.\begin{aligned} & \mathbf{z} \\ & \underset{z}{w} \\ & \underline{w} \end{aligned} \right\rvert\,$	$\begin{aligned} & \mathrm{X} \\ & \mathbf{\infty} \end{aligned}$	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \substack{0 \\ 0 \\ \infty} \end{array}$	z	$\stackrel{\times}{\circ}$	2
02-7	SPRING: flat type; grounding for IF transformer shields; 0.010 in . thick,l/2 in. wide beryllium copper, cadnitum plated; $1-15 / 321 \mathrm{n}$. lg, $1 / 21 \mathrm{n}$. wide over-all; p / o, AN Radio Receiver, Type No. R-450/ FRR-28.	Ground spring for T2-2		$\underset{3416}{\mathrm{~N} 17-\mathrm{S}-46774-}$	HMM Part No. 31023-1		$\begin{aligned} & 02-7 \\ & 02-8 \\ & 02-9 \\ & 02-10 \\ & 02-10 \end{aligned}$	5							
0<-8	Same as 02-7.	$\begin{aligned} & \text { around spring } \\ & \text { for } \mathrm{T} 2-3 \end{aligned}$													
02-9	Same as 0:-7.	$\begin{aligned} & \text { Ground spring } \\ & \text { for T2-4 } \end{aligned}$													
02-10	Same as 02-7.	$\begin{aligned} & \text { Ground spring } \\ & \text { for } \mathrm{T}^{2}-5 \end{aligned}$													
02-11	Same as 02-7.	$\begin{aligned} & \text { Ground spring } \\ & \text { for } \mathrm{T} 2-6 \end{aligned}$													
02-12	SPRING: hellcal compression type; conversion sw1tch; $0.024 \mathrm{1n}$. dia music wire, cadmium plated; 1$13 / 32 \mathrm{in}$. $1 \mathrm{~g} .3 / 16 \mathrm{in}$. OD, overall; approx 46-1/4 turns; two hook terminals, one offset; squared ends; mounts by hook ends; p/o, AN Radio Recelver, Type No. R-450/ FRR-28.	Conversion switch spring		$\begin{gathered} \text { N17-S-46757- } \\ 9323 \end{gathered}$	HMM Part No. 31125-1		02-12	1							
02-13	SPRING: helical compression type; indicator silde; 0.016 in . dia music wire, cadmum plated; 2$11 / 16 \mathrm{in}$. $1 \mathrm{~g} .5 / 32 \mathrm{1n}$. OD, overall; approx 145 turns; two hook term1nals; squared ends; mounts by hook ends; p/o, AN Radio Recelver, Type No. R-450/FRR-28.	Indicator compression slide spring		$\begin{gathered} \mathrm{N} 17-\mathrm{S}-46762- \\ 1651 \end{gathered}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31126-1 \end{aligned}$		02-13	1							
02-14	SPRING: hellcal compression type; band change detent; 0.041 in . dia music w1re, cadm1um plated; 1-1/2 $1 \mathrm{n} . \lg 0.307 \mathrm{1n}$. OD, over-all; approx $25-3 / 4$ turns; two hook terminals, one offset; squared ends; p/o, AN Radio Receiver, Type No. R-450/FRR-28.	Band change detent compression spring		$\begin{gathered} \mathrm{N} 17-\mathrm{S}-46742- \\ 6241 \end{gathered}$	HMM Part No. 31205-1		$\begin{aligned} & 02-14 \\ & 02-15 \end{aligned}$	2							
$02-15$	Same as 02-14.	Band change detent compression spring													
02-16	SPRING: spider 100p type; for ant1backlash 1 n gear-train assy. 0.037 1n. dia music wire, cadmiuti plated; $1-1 / 321 \mathrm{n} . \lg 21 / 32 \mathrm{nn}$. w1de, over-all; mounts by ends; p / o, AN Radio Recelver, Type No. R-450/ FFR-28.	Gear-train ant1backlash spring		$\begin{gathered} \mathrm{N} 17-\mathrm{S}-46802- \\ 1933 \end{gathered}$	HMM fart No. 31239-1		$\begin{aligned} & 02-16 \\ & 02-17 \\ & 02-18 \end{aligned}$	3							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL GORPS) stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRTS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.NVVO-VED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$		Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
										$\begin{aligned} & x \\ & 0 \\ & \infty \end{aligned}$	$\left[\begin{array}{l} \dot{i} \\ \dot{a} \\ \dot{0} \end{array}\right.$	$\begin{array}{l\|} \mathbf{x} \\ 0 \\ \infty \end{array}$	¢	\times ¢ ¢ 	玄
02?-17	Same as 02-1t.	Gear-train ant1backlash spring			-										
02-18	Sane as 02-16.	Gear-train antibacklash spring													
02-19	SPRING: flat type; for turret rotor shaft grounding; 0.0101 n . thick beryllium copper, sliver plated; $1-7 / 1 \epsilon \mathrm{in} . \lg 5 / 161 \mathrm{n}$. wide, overall; two slotted ends $5 / 32 \mathrm{in} .1 \mathrm{~g}$ 0.070 in . wide for $\mathrm{mtg} ; \mathrm{p} / \mathrm{o}, \mathrm{AN}$ Radio Recelver, Type No. R-450/ FRR-2E.	Turret rotor shaft grounding spring		$\begin{gathered} \mathrm{N} 17-\mathrm{S}-46700- \\ 1901 \end{gathered}$	HMM Fart No. 31279-1		$\begin{aligned} & 02-19 \\ & 02-20 \\ & 02-21 \end{aligned}$	3							
02-20	Same as 02-19.	Turret rotor shaft grounding spring													
02-21	Same as 02-19.	Turret rotor shaft grounding spring													
02-22	SPRING: flat type; crystal holding spring; 0.010 in. thick beryllum copper, nickel plated; 25/32 in. $\lg 3 / 16 \mathrm{in}$. wide, over-all; one 0.120 in . dia hole for mtg ; p / o, AN Rad1o Recelver, Type No. R-450/ FRR-28.	Crystal holding spring		$\begin{gathered} \mathrm{N} 17-\mathrm{S}-46765- \\ 2696 \end{gathered}$	HMM Part No. 31417-1		$\begin{aligned} & 02-22 \\ & 02-23 \\ & 02-24 \\ & 02-25 \\ & 02-26 \\ & 02-27 \end{aligned}$	6							
02-23	Same as 02-22.	Crystal holding spring													
02-24	Same as 02-22.	Crystal holding spring													
02-25	Same as 02-22.	Crystal holding spring													
02-26	Same as 02-22.	Crystal holding spring													
02-27	Same as 02-22.	Crystal holding spring													
03-1	COUPLING, FLEXIBLE: fianged type; $1 / 4 \mathrm{in}$. dia shaft opening ea end; 2 screw mounting ea end; over-all dim. $1-1 / 16 \mathrm{in}$. OD, $1 / 4 \mathrm{in}$. ID, $9 / 1 \dot{6}^{\prime} \mathrm{in}$.1 g ; brass, nickel plated; incl 4 mounting screws; coupling made up of $1 / 21 \mathrm{n}$. OD by $7 / 32 \mathrm{in}$. high hub riveted to each side of $1-1 / 16 \mathrm{in}$. thin metal disk; for general purpose use.	S3-7 shaft to extension shaft coupling		$\begin{gathered} \text { N17-C-98378- } \\ 3805 \end{gathered}$	NAC Part No. тХट2	NRCO Dwg No. Allo4170	$\begin{aligned} & 03-1 \\ & 03-3 \\ & 03-4 \\ & 03-5 \\ & 03-6 \\ & 09-1 \end{aligned}$								

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

Parts									spare parts					
	NAME OF PART ANDDESCRIPTION	function	$\begin{aligned} & \text { JAN AND } \\ & \text { (NAVY TYPE)NO } \end{aligned}$	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALLCRPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. ANO } \\ & \text { MFGR'S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRAC TORORAWNG ANDPART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PEER } \\ & \text { EQUIP. } \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 2 \\ 2 \\ 2 \\ \underline{U} \end{array}\right\|$	Eoulp.			stock	
STSLic.										希			¢	㐫
03-c	COUPLING, FLEXIBLE: flanged type; $1 / 4 \mathrm{in}$. dia shaft opening one end, $5 / 16 \mathrm{in}$. dia shaft 5/16 1 n . dia shaft opening other; 2 screw fiounting ea end; over-ali dim., $1-1 / 161 \mathrm{n}$. OD, $1 / 4 \mathrm{in}$. m1n ID, $9 / 1610.18 ;$ brass, nickel plated; $1 \mathrm{r} i 1$ $5 / 161 \mathrm{n}$. dia shaft opening is modification of standard part; coupling made up of $1 / 21 \mathrm{n}$. $O D$ by $7 / 32 \mathrm{in}$. h1gh hub riveted to ea side of $1-1 / 16 \mathrm{in}$. thin metal disk; p/o, AN Radio Frequency osclilator, Type No. 0-165/UR.	C3-1 shaft to extension shaft coupling		$\begin{gathered} * N 17-\mathrm{C}-98378- \\ 3803 \end{gathered}$	$\begin{aligned} & \text { NaC Part } \\ & \text { No. Tx2 } \\ & \text { Nod } 1 \text { fled } \end{aligned}$	NRCO Dwg No. A1104171	03-2	1						
03-3	Same as 03-1.	S3-6 shart to extension shaft coupling												
03-4	Same as 03-1.	C3-24 shaft to extens1on shaft coupling												
03-5	Same as 03-1.	"OUTPUT FREQUENCY" knob shaft coupling												
0--6	Same as 03-1.	"FREquency RANGE MCS" knob to extension shaft coupling												
03-7	Coupling, RIGid: multi-jaw type; $1 / 4 \mathrm{in}$. dia shaft hole ea end, $3 / 16$ In. dia shart accommodation, 2 set screw mounting; over-all dim., $1 / 2$ screw mount1ng; over-all dim., $1 / 2$ 1 n. d1a, $1-1 / 81 \mathrm{n}$. $1 \mathrm{~g} ;$ steel $;$ incl E set screws; ea hub $7 / 161 \mathrm{n}$. dia, $7 / 16$ 1n. extension.	"dial hundreds" shaft rigid coup11ng		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-98431-2301 \\ 2301 \end{gathered}$	$\begin{aligned} & \text { Baw Type } \\ & \text { No. FAS } \end{aligned}$	NRCO DWg No. AllO4141	$\begin{aligned} & 03-7 \\ & 03-8 \end{aligned}$	2						
03-8	Same as 03-7.	"dial units" shaft rigid coupling												
03-9	GEAR: beve1; zinc; manual control dial power transmission gear; stralght teeth; 12 teeth; 21 pitch, 0.571 in. p1tch dia; over-all dim 2i/32 in. OD, $1 / 4 \mathrm{in}$. ID, $1 / 2 \mathrm{in}$. h1gh; hub, 15/32 1n. OD, 19/64 1n. h1gh; shaf't mounted, set screw se cured; for general purpose use. *NOTE: Not furnished as a ma1ntenance part. If fallure oscurs, do not request replacement unless fabricated pannot be repaired or fabricated.	"DIAL UNITS" shaft bevel gear.		$\begin{array}{r} \mathrm{N} 16-\mathrm{Q}-402125-86 \end{array}$	$\begin{aligned} & \text { CDCM Fart } \\ & \text { No. } 900 \end{aligned}$	NRCO DWg No. AllO4162	$\begin{aligned} & 03-9 \\ & 03-10 \end{aligned}$	2						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNGTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS)STOCK NO.	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l} \text { TOTAL } \\ \text { PER } \\ \text { EQUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN } \\ & \text { DER } \end{aligned}$		stock	
$\underset{\text { DYMBOL }}{\text { SESIG }}$									$\begin{aligned} & \mathbf{z} \\ & z \\ & \mathbf{w} \\ & \underline{w} \end{aligned}$	若	$\left\|\begin{array}{l} \dot{z} \\ \mathbf{u} \\ \dot{0} \end{array}\right\|$	$\left.\begin{array}{\|l\|} \hline \\ \times \\ 0 \\ \infty \end{array} \right\rvert\,$	$\begin{aligned} & \dot{z} \\ & \mathbf{u} \\ & 0 \end{aligned}$	-	z
03-10	Same as 03-9.	"DIAL hundreds" shaft bevel gear													
09-1	Same as 03-1.	"TUNING" shaft coupling													
P2-1	CABLE ASSEMBLY, POWER, ELECTRICAL: type designation, Underwriters Lab Inc, Type POSJ; 2 conductors, stranded, No. 18 AWG, rubber 1 n sulated, rubber jacket; $7-1 / 21 \mathrm{n}$. 1 g over-all; terminal fittings on first end, 1, Belden Mfg Co , Plug, Part No. H1047; conductors extend $1 / 2 \mathrm{in}$. beyond insulation and tinned on second end; p/o, AN Radio Receiver, Type No. R-450/FRR-28.	Primary power plug		$\begin{gathered} \text { *N17-C-48237- } \\ 5551 \end{gathered}$	ALW Part No. 6143		P2-1	1							
P2-2	CONNECTOR, PLUG: 2 contacts, male, rd; non-polarized; stralght type; over-all dim. excluding terminals, $1-1 / 2 \mathrm{in} .1 \mathrm{~g}, 23 / 32 \mathrm{in}$. dia; radio frequency connector, 100 ohms 1mpedance, constant frequency $1 \mathrm{~m}-$ pedance characteristic; body, cyindrical, brass, silver plated; mica filled bakelite insert; 7/16 in. cable opening; for general purpose use.	Plug for J2-1	S1gC PL-284	$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71435-7292 \end{gathered}$	$\begin{aligned} & \text { AMP Part } \\ & \text { No. } 83-22 s P \end{aligned}$		P2-2	1							
P2-3	CONNECTOR, ADAPTER: contact data, both ends, 4 contacts, male and female, round; non-polarized; angle type; 90° angle; over-all dim., $1-7 / 32 \mathrm{in} . \lg , 3 / 4 \mathrm{in}$. d1a, $1-3 / 161 \mathrm{n}$. deep; radio frequency connector, 100 ohms impedance, non-constant frequency impedance characterist1c; body, cylindrical, brass, silver plated; mica fllled bakelite inserts; for general purpose use.	Adapter for J2-1	S1gC PL-293	$\begin{gathered} \text { N17-C-67460- } \\ 2909 \end{gathered}$	$\begin{aligned} & \text { AMP Fart } \\ & \text { No. } 83-22 \text { AP } \end{aligned}$		F2-3	1							
P2-4	CONNECTOR, PLUG: 1 contact, male, rd, straight type; over-all dim., $1-1 / 2 \mathrm{in} .1 \mathrm{~g}, 11 / 16 \mathrm{in}$. dia; radío frequency connector; body, cylindrical shape, brass, sllver plate; mica filled bakelite insert; 0.410 in. dia max cable opening; $1+16$ in. OD coupling nut, $5 / 8 \mathrm{in} .-24$ coupling nut thread; integral nonrotating pin contact; for general purpose use.	Plug for J2-2	$\begin{aligned} & \text { S1gC PL-259 } \\ & (-49190) \end{aligned}$	$\begin{gathered} \text { N17-C-71412- } \\ 8709 \end{gathered}$	AMP Part No. 83-1SP KGE Part No. KV51-01	NRCO Dwg No. Allo4100	P2-4 P2-6 P2-7 P2-8 P2-8 P2-10 P3-5 P3-7 P3-8 P3-9 P3-10 P3-1 P9-2 P9-5	13							
	*NOTE: Not furnished as a maintenance part. If fallure occurs, do not request repiacement unless the part cannot be repaired or fabricated.														

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
$\left\|\begin{array}{c} \operatorname{srmengl} \\ \text { DESIG. } \end{array}\right\|$	NAME OF PART AND DESCRIPTION	function					${ }^{\text {ALL }}$		-	EOU			N-		Ock
			(navy typeino.	(SIGNAL CORPS) stock no.	MFGR'S DESIGNATION	DRAWING AND PART NO.	DESIG. INVOLVED	$\begin{aligned} & \text { PER } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	$\begin{aligned} & z \\ & z \\ & \mathbf{~} \\ & \underline{E} \end{aligned}$	䧺	$\begin{array}{\|l} \hline \text { z} \\ \text { a } \end{array}$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \sum_{i}^{2} \\ & \mathbf{0} \end{aligned}$	$\stackrel{\times}{\text { ¢ }}$	2
$\mathrm{P}<-6$	Same as P2-4; p/o W12-7.	Plug for J2-6													
P2-7	Same as P2-3; p/o W12-2.	Plug for J2-7													
P2-8	Same as P2-4; p/o W12-5.	Plug for J2-8													
P2-9.	CONNECTOR, PLUG: 1 conductor; single shank, dim., $1 / 8 \mathrm{in}$. dia, $11 / 161 \mathrm{n}$. 1 g ; metal shell w/lam1nated phenolic insert, sllver, tubular, dim., $3 / 81 n$. dia; $31 / 32$ 1 n . over-all length of piug; for stripped wire termination; nickel plated shank; for general purpose use.	Plug for J2-9		$\begin{gathered} \text { N17-C-714-07- } \\ 6585 \end{gathered}$	$\begin{aligned} & \text { CIN Part } \\ & \text { No. } 1336 \end{aligned}$	NRCO Dwg No. Al 104136	P2-9	1							
P2-10	Same as Př-4; p/o Wl2-9.	Plug for J2-10													
P3-1	CONNECTOR, PLUG: 2 contacts, female, fiat; polar1zed; stra1ght type; over-ali dim., $1-21 / 321 n$. $1 \mathrm{~g}, 1-3 / 81 \mathrm{n}$. dia; contact rat1ngs, $10 / 15 \mathrm{amp}, 250-125 \mathrm{v}$; body, cylindrical shape, brass, corrosion resistant finish; black composition insert; $5 / 81 \mathrm{n}$. dia max cable opening; armored cord grip; for general purpose use.	Plug for J3-1		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71126- \\ 5833 \end{gathered}$	HAW Part No. 7257	NRCO Dwg No. A110459	$\begin{aligned} & \text { P3-1 } \\ & \text { P9-3 } \\ & \text { P10-1 } \end{aligned}$	3							
P3-2	CONNECTOR, PLUG: 6 contacts, male, flat; polar1zed; straight type; over-all dim. excluding contacts, $1 \mathrm{in} .1 \mathrm{~g}, 11 / 16 \mathrm{n}$. w1de, $1-1 / 32$ 1n. h1gh; contacts, 5 amp max, 45 v max; body, rectangular shape, steel, black wrinkle; molded bake11te insert; $7 / 161 \mathrm{n}$. dia max cable opening; brass contacts $5 / 32$ 1 n . w1de, $3 / 61 \mathrm{n}$. thick; for general purpose se.	Plug for J3-2		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71515- \\ 8115 \end{gathered}$	JNS Part No. P306CCT	NRCO Dwg No. A110468	P3-2	1							
P3-3	CONNECTOR, PLUG: 8 contacts, male, flat; polarized; straight type; over-all dim. excluding contacts, $1-1 / 4 \mathrm{in} .1 \mathrm{~g}, 11 / 16 \mathrm{in}$. wide, $1-$ $1 / 16 \mathrm{in}$. h1gh; contacts, 5 amp max, 45 v max; body, rectangular shape, steel, black wrinkle; molded bakei1te insert; 1/? 1n. dia max cable opening; brass ontacts $5 / 32 \mathrm{in}$. w1de, $3 / 64 \mathrm{in}. \mathrm{hick;} \mathrm{for} \mathrm{general}$ purpose use.	Plug for J3-3		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71542- \\ 6128 \end{gathered}$	JNS Part No. P308CCT	$\begin{aligned} & \text { NRCO Dwg } \\ & \text { No. A110469 } \end{aligned}$	P3-3	1							
P3-4	CONNECTOR, PLUG: 1 contact, male, rd; stralght type; o/a dim. $7 / 8 \mathrm{in}$. $1 \mathrm{~g} \max , 5 / 16 \mathrm{in}$. 1 Ia ; contact, 50 W; radio frequencs connector, 50 ohms nominal 1 mpedance; body cyIIndrical shape, brass, silver plate; 5/16 1 n . OD noupling nut, 1/4 in.-36 coupling nut thread; coupling nut has $1 / 321 \mathrm{n}$. axial	Plug for J3-4		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71408-2286 \end{gathered}$	IPC Part No. MC1O	NRCO Dwg $\text { No. A110 } 4144$	P3-4	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	FEDERAL AND(SIGNAL CORPS) STOCK NO.	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESII.ONVOL-VED	$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQuIP. } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \\ & \underline{t} \end{aligned}$	EQuIP.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
DESIG.										若	$\left\|\begin{array}{l} i \\ \dot{u} \\ \dot{0} \end{array}\right\|$	$\left.\begin{array}{l\|} x \\ 0 \\ \infty \end{array} \right\rvert\,$	$\begin{aligned} & \text { غ } \\ & \text { ù } \end{aligned}$	$\left\|\begin{array}{l\|} \times \\ \hline \\ \infty \end{array}\right\|$	2i
$\begin{aligned} & \text { P3-4 } \\ & (\text { cont }) \end{aligned}$	play; for general purpose use.														
P3-5	Same as P2-4.	Plug for J3-5													
F3-7	Same as P2-4; p/o wl2-7.	Plug for J3-7													
P3-8	Sane as P2-4; p/o W12-8.	Plug for J3-8													
P3-9	Same as P2-4.	Plug for J3-9													
P3-10	Same as P2-4; p/o W12-5.	Plug for J3-10													
P3-11	Same as P2-4; p/o W12-6.	Plug forrs3-11													
P3-12	CONNECTOR, PLUG: 6 contacts, male, flat; polarized; straight type; over-all dim. excluding contacts and terminals, 1 in . $1 \mathrm{~g}, 1-5 / 16$ 1n. wide, 0.525 in . deep; contacts, 5 amp max, 45 v max; body, rectangular body, molded bakelite; ? holes, 0.152 in. dia, 1 in . C to C; brass contacts $5 / 321 \mathrm{n}$. wide, $3 / 64$ in. thick; for general purpose use.	Plug for J3-12		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-73515- \\ 8322 \end{gathered}$	JNS Part No. P306AB	NRCO DWg No. All0467	P3-12	1							
P5-1	PLUG, TELEPHONE: 3 conductors; single shank, dim., $3 / 16 \mathrm{in}$. dia, $1-1 / 8 \mathrm{in}$. 1g; shell, cellulose acetate, black, tubular, d1m., $1 / 2$ 1n. dia; 3-1/4 in. over-all length of plug; for bare wire cable terminations; "PL-68" stamped on shell; Sig, Spec No. 71-805-F; p/o, Northern Radio Co, Inc, Telephone Cord, Part No. A50015; p/o W5-1.	$\begin{aligned} & \text { W5-1 termina- } \\ & \text { t1on } \end{aligned}$	S1gC PL-68	$\begin{gathered} \mathrm{N} 17-\mathrm{P}-61400- \\ 5186 \end{gathered}$	ICA Part No. AN-PL68	NRCO Diwg No. Allo460	P5-1 P5-2 P5-3 P5-4 P5-4 P5-5 P5-6 P5-7 P5-8 P5-9 P5-10 P5-11 P5-12	12							
P5-2	Same as P5-1; p/o W5-1.	$\begin{aligned} & \text { W5-1 termina- } \\ & \text { tion } \end{aligned}$													
P5-3	Same as P5-1; p/o w5-2.	$\begin{aligned} & \text { W5-2 termina- } \\ & \text { tion } \end{aligned}$													
P5-4	Same as P5-1; p/o W5-2.	W5-2 termination													
P5-5	Same as P5-1; p/o W5-3.	$\begin{aligned} & \text { W5-3 termina- } \\ & \text { tion } \end{aligned}$													
P5-6	Same as P5-1; p/o W5-3.	W5-3 termination													
P5-7	Same as P5-1; p/o W5-4.	W5-4 terminat1on													
P5-8	Same as P5-1; p/o W5-4.	W5-4 termina- tion													

TABLE 8-4. COMBINED PARTS AND IMAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	function	JAN AND (NAVY TYPEINO.	FEDERAL AND (SIGNAL CORPSSTOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	$\begin{aligned} & \text { o } \\ & z \\ & z \\ & \underline{w} \\ & \underline{E} \end{aligned}$	EquIP.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
DESIG.										荡	$\begin{array}{\|l} \hline \dot{a} \\ \vdots \\ 0 \end{array}$	$\left.\begin{aligned} & x \\ & \dot{\infty} \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \dot{z} \\ & \stackrel{u}{u} \end{aligned}$	$\stackrel{\times}{0}$	京
P5-9	Same as P5-1; p/o W5-5.	W5-5 terminat. 1 on													
P5-10	Same as P5-1; p/o W5-5.	W5-5 termina- t1on													
P5-11	Same as P5-1; p/o W5-6.	W5-6 termina- t1on													
P5-12	Same as P5-1; p/o W5-6.	$\begin{aligned} & \text { W5-6 termina- } \\ & \text { tion } \end{aligned}$													
P9-2	Same as P2-4; p/o W12-3.	Plug for J9-2													
P9-3	Same as P3-1; p/o W9-12.	Plug for J9-3													
P9-4	CONNECTOR, PLUG: 2 contacts, male, flat; straight type; over-all dim. $1-1 / 21 \mathrm{n}$. 1 g excluding protruding contacts, $1-7 / 16 \mathrm{in}$. dia; contacts, $10 / 15 \mathrm{amp}, 250 / 125 \mathrm{v}$; body, stepped cylindrical shape, rubber; $7 / 16$ in. dia max cable opening; for general purpose use.	Primary power plug		$\begin{gathered} \mathrm{N} 17-\mathrm{C}-71435-8428 \end{gathered}$	HAW Part No. 9972	NRCO DWg No. A110463	$\begin{aligned} & \text { P9-4 } \\ & \text { P10-2 } \\ & \text { P12-1 } \\ & \text { P12-2 } \end{aligned}$	4							
P9-5	Same as P2-4; p/o W12-4.	Plug for J9-4													
P10-1	Same as P3-1; p/o w10-13.	Plug for J10-1													
P10-2	Same as P9-4; p/o W10-13.	Primary power plug													
P12-1	Same as P9-4; p/o W3-11.	Switch panel SA-238/G termination of W3-11													
P12-2	Same as P9-4; p/o W12-15.	Comparator CM-14/URR primary power plug													
R1-1	RESISTOR, VARIABLE: resistive type, balanced "T," MBCA Ref Dwg Group 16, wire wound resistors; 200 ohms input impedance, 200 ohms output 1 mpedance; 2.5 W rating; 0.5 to 30 db in 90% rotation, 10% rotation infinite, $\pm 5 \%$ max tolerance, cont1nuously variable; over-all d1m. excluding terminals, $1-21 / 321 n$. dia, $2-1 / 41 \mathrm{n}$. deep; 6 terminals, solder lug type, located radially on periphery of body; mounted by $3 / 8 \mathrm{in} .1 \mathrm{~g}, 3 / 8 \mathrm{in} .-32$ thread bushing; includes 1 hex nut, shaft $3 / 8 \mathrm{in}$. ig from bushing; for general purpose use.	"Speaker level" ad justment	-	$\begin{gathered} \text { N16-R-92939- } \\ 7898 \end{gathered}$	CLR Type No. CIT200	NRCO Dwg No. AllO4107	$\begin{aligned} & \text { R1-1 } \\ & \text { R10-53 } \end{aligned}$	2							
R1-2	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg group 2; 510 ohm total resistance, $+5 \%$ tolerance; 2 W power dissipation;	Audio signal attenuator	Spec No. JAN-R-11, JAN Type No. RC40BF511J	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49787- \\ 171 \end{gathered}$	AB Part No. HB511s		$\begin{aligned} & \mathrm{R} 1-2 \\ & \mathrm{R} 1-3 \end{aligned}$	2							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND OESGRIPTION	function	JAN AND (NAVY TYPEINO.	FEDERAL AND (SIGNAL CORPS)STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.INVOL-VED	$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	$\begin{aligned} & 0 \\ & z \\ & z \\ & z \\ & \underset{E}{2} \end{aligned}$	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{array}{\|c} \text { SYMBOL } \\ \text { DESIG. } \end{array}$										区		$\left\|\begin{array}{l} x \\ 0 \\ \dot{\infty} \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & \stackrel{y}{u} \\ & 0 \end{aligned}$	$\begin{array}{l\|} \mathbf{x} \\ \stackrel{\infty}{\infty} \end{array}$	¢
$\begin{aligned} & \mathrm{R} 1-2 \mathrm{c}) \end{aligned}$	F characteristic; body dim. excluding terminals, 0.405 in . dia max, $1.41 \mathrm{in}$.1 g max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.														
R1-3	Same as R1-2.	Audio s1gnal attenuator													
R'2-1	RESISTOR, FIXED, COMPOSITION: body styie No. 14, MBCA Ref Dwg aroup 2; 510,000 ohms resistance, $\pm 5 \%$ tolerance; $1 / 3 \mathrm{~W}$ power dissī̄ation; F characteristic; body dim. excluding terminals, $13 / 32 \mathrm{in}$. 1 g , $3 / 321 n$. dia; insulated, resistant to hum1dity and salt water immer- sion; 2 terminals, axial lead type; for general purpose use.	v2-1 grid leak	Spec No. JAN-R-11, JAN Type No. RC10BF514J	$\underset{111}{\substack{\text { N16-R-50839- } \\ 111}}$	$\begin{array}{\|lll} \text { IRC } & \text { Type } \\ \text { No. } & \text { BTR }-1 / 3 \end{array}$		$\begin{aligned} & \text { R2-1 } \\ & \text { R2-13 } \\ & \text { R2-26 } \end{aligned}$	3							
R2-2	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 10,000 ohms total resistance, 5\% tolerance; $1 / 2 \mathrm{~W}$ power dissipa= tion; F characteristic; body dim. excluding terminals, 0.249 in . dia $\max , 15 / 32 \mathrm{in} .1 \mathrm{~g}$ max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use.	v2-1 grid bias f1lter	Spec No. JAN-R-11, JAN Type No. RC20BF103J	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-50281- \\ 431 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { AB Part } \\ \text { No. EB1035 } \end{array}$		R2-2 R2-12 R2-44 R2-52 R2-57 R2-70 R2-82 R2-90 R2-91 R3-32	11							
R2-4	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg aroup 2; 1,000 ohm total resistance, + 10\% tolerance; $1 / 2 \mathrm{~W}$ power dissIpation; F characteristic; body dim. excluding terminals, 0.249 in . dia $\max , 15 / 32 \mathrm{in}$.Ig max ; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	v2-1 screen f1lter	Spec No. JAN-R-11, JAN Type No. RC20BF102K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49922- \\ 811 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB1021 } \end{aligned}$		R2-4 R2-6 R2-16 R2-29 R2-30 R2-83 Ra-102 R10-29 R10-33 R10-47 R10-52	11							
R2-5	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg aroup 2; 510 ohms total resistance, $+5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in} .1 \mathrm{~g}, 9 / 64 \mathrm{in}$. dia; insulated, resistant to humidity and salt water immersion; 2 terminals, axial lead type; for general purpose use.	$\begin{aligned} & \text { v2-1 plate } \\ & \text { fllter } \end{aligned}$	Spec No. JAN-R-11, JAN Type No. RC20BF511J	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-49786-}$	$\left\lvert\, \begin{aligned} & \text { AB Part No. } \\ & \text { EB5115 } \end{aligned}\right.$		R2-5 R2-15 R2-32 R2-103 R2-104 R2-105 R2-106 R2-107 R2-108 R2-109 R2-110	11							
R2-6	Same as R2-4.	$\begin{aligned} & \text { v2-1 plate } \\ & \text { f11ter } \end{aligned}$													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND dESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR's } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PER } \\ \text { EQUP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \end{gathered}$									$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\begin{array}{\|l\|l\|} \dot{c} \\ \dot{3} \\ 0 \end{array}$	$\begin{aligned} & \stackrel{x}{\circ} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\stackrel{2}{3}$	$\stackrel{\times}{\text { ¢ }}$	2i.
R2-7	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group tolerance; $1 / 2 \mathrm{~W}$ power diss $1 \frac{\mathrm{pa}}{}$ tion; F characteristic; body dim. excluding termina1s, 0.249 in . dia max, $15 / 3<1 \mathrm{n}$. Ig max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire	v2-1 plate chrcuit parasitic suppressor in 0.54 to 1.35 mc range	Spec No. JAN-R-11, JAN Type No. RC20BF510J	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49444- \\ 431 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB5105 } \end{aligned}$		$\begin{aligned} & \text { R2-7 } \\ & \text { R2-8 } \\ & \text { R2-17 } \\ & \text { R2-18 } \\ & \text { R3-49 } \end{aligned}$	5							
R2-8	Sane as R2-7.	V2-1 plate circuit paraș1tic suppressor in 1.35 to 3.45 mc range													
R2-9	RESISTOR, FIXED, COMPOSITION: body style No. 14, mBCA Ref Dwe Group 2; $2+$ ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminais, $3 / غ 1 \mathrm{n}$. 1 g , $9 / 641 \mathrm{n} . \mathrm{dia}$; 1nsulated, resistant to humidit, and salt water immersion; 2 terminals, axial lead type; for general purpose use.	V2-1 plate circuit parasitic suppressor in 3.45 to 7.4 mc range	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-11, JAN Type } \\ & \text { No. RC20BF240J } \end{aligned}$	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-49327-}$	AB Part No. EB2405		$\begin{aligned} & \text { R2-9 } \\ & \text { R2-19 } \end{aligned}$	2							
RC-10	RESISTOR, FIXED, COMPOSITION: body styie No. 14, MBCA Ref Dwg Group 2; 240 ohfi total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipātion; F characteristic; body dim. excluding terminals, 0.249 in . dia $\max , 15 / 3 \lessdot 1 \mathrm{n} .1 \mathrm{~g} \max ; 1$ insulated, resistant to humidity and salt water 1 timersion; 2 terminals, wire lead type; for general purpose use.	V2-1 plate c1rcult parasitic suppressor $1 n$ 7.4 to 14.8 mc range	Spec No. JAN- R-11, JAN Type No. RC20BF241J	$\begin{gathered} N 16-R-49669- \\ 431 \end{gathered}$	AB Yart No. EB2415		$\begin{array}{\|l\|} \mathrm{R} 2-10 \\ \text { R2-11 } \\ \text { R2-20 } \\ \text { R2-21 } \\ \text { R2-45 } \\ \text { R9-6 } \\ \text { R10-55 } \end{array}$	7							
R2-11	Sane as Ré-10.	V2-2 grid circuit parasitic suppressor													
R2-12	Same as R2-2.	va-2 grid bias filter													
RC-13	Same as R2-1.	V2-2 grid leak													
R2-15	Sathe as R2-5	$\begin{aligned} & \text { ve-2 plate } \\ & \text { f1lter } \end{aligned}$													
R<- 10	Satre as Rc-4.	$\begin{aligned} & \text { Ve-2 plate } \\ & \text { f1lter } \end{aligned}$													
R2-17	Same as Re-\%.	V2-2 plate circuit parasitic suppressor in 0.54 to 1.35 mc range													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									spare parts						
$\underset{\text { OESIG. }}{\text { SYMBOL }}$	NAME OF PART AND DESCRIPTION	FUNCTION					${ }^{\text {Al }}$		o	EOU			R-	Stock	ock
			JAN AND (navy type)no.	$\begin{aligned} & \text { (SIGNAL ORPS }) \\ & \text { STOCK NO. } \end{aligned}$	MFGR'S designation	DRAWING AND PART NO.	$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \\ \text { INVOL } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EOUIP. } \end{aligned}$	$\begin{array}{\|c} z \\ \underset{u}{z} \\ \underset{~ z}{2} \end{array}$	밍	$\begin{array}{\|l\|l} \mathbf{z} \\ \text { a } \\ \text { an } \end{array}$	$\left\|\begin{array}{l} x \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \text { zi } \\ & 0 \stackrel{1}{3} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathbf{\infty} \end{aligned}$	㐫
R2-18	Same as R2-7.	v2-2 plate circuit parasit1c suppressor 1 n 1.35 to 3.45 mc range													
R2-19	Same as R2-9.	v2-2 plate c1rcuit parasit1c suppressor 1 n 3.45 to 7.4 mc range													
R2-20	Same as R2-10.	v2-2 plate circult parasitic suppressor 1 n 7.4 to 14.8 mc range													
R2-21	Same as R2-10.	v2-5 grid circuit parasitic suppressor													
R2-22	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg aroup 2; 47,000 ohm total resistance, \pm 10% tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 1 n . dia max, $15 / 32 \mathrm{in}$. Ig max; $1 \mathrm{n}-$ sulated, resistant to humidity and salt water 1 mmersion; for general purpose use.	v2-4b grid leak	Spec No. JAN-R-11, JaN Type No. RC2OBF473K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-50480- \\ 811 \end{gathered}$	AB Part No. EB4731		$\begin{aligned} & \text { R2-22 } 22 \\ & \text { R2-64 } \\ & \text { R2-65 } \\ & \text { R2-77 } \\ & \text { R2-114 } \\ & \text { R3-6-6 } \end{aligned}$	6							
R2-26	Same as R2-1.	v2-5 grid leak													
R2-27	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 150 ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipātion; F_{c} characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in}$. 1 g , 9/64 in. dia; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, axial lead type; for general purpose use.	V2-5 cathode b1as b1as	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-11, JAN Type } \\ & \text { No. RC2OBF151J } \end{aligned}$	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-49624-}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB1515 } \end{aligned}$		R2-27	1							
R2-28	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 6,800 ohm total resistance, + 10\% tolerance; $1 / 2 \mathrm{~W}$ power dissIpation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in}$. $\lg , 9 / 64 \mathrm{in}. \mathrm{dia;} \mathrm{insulated}, \mathrm{re-}$ sistant to humidity and salt water immersion; 2 terminals, axial lead type; for general purpose use.	v2-5 screen voltage dropper	Spec No. JAN-R-11, JAN Type No. RC20BF682k	$\begin{gathered} \text { N16-R-50201- } \\ 811 \end{gathered}$	AB Part No. EB6821		R2-28	1							
R2-29	Same as R2-4.	$\begin{aligned} & \text { va-4 plate } \\ & \text { f11ter } \end{aligned}$													
R2-30	Same as R2-4.	$\begin{aligned} & \text { v2-4 plate } \\ & \text { f11ter } \end{aligned}$													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	- FUNCTION	JAN AND (NAVY TYPE)NO.	federal and (SIGNAL CORPS) stock no.	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}$	$\begin{aligned} & \dot{0} \\ & z \\ & z \\ & w \\ & \underline{z} \end{aligned}$	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
DESIG.										-	$\left\lvert\, \begin{aligned} & i \\ & u \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{aligned} & \times \\ & 0 \\ & \infty \end{aligned}$	2	-	¢
$\begin{gathered} \text { R2-40 } \\ (\operatorname{cont}) \end{gathered}$	$7 / 32 \mathrm{in}$. dia; insulated, resistant to humidity and salt water immersion; 2 terminals, axial lead type; for general purpose use.														
R2-4.2	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 10$ ohm totai resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in}$. 1 g , $9 / 64 \mathrm{in}. \mathrm{dia;} \mathrm{insulated}$, to humidity and salt water immersion; 2 terninais, axial lead type; for general purpose use.	v2-9 g!1d circuit parasitic suppressor	Spec No. JAN-R-11, JAN Type No. RC20BF100K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49238- \\ \mathrm{R}_{11} \end{gathered}$	$\begin{array}{\|l\|l\|l\|l\|} \text { AB Part } \\ \text { No. EB1001 } \end{array}$		$\begin{aligned} & \text { R2-42 } \\ & \text { R2-50 } \\ & \text { R2-55 } \end{aligned}$	3							
R<- 43	Same as R2-34.	v2-9 grid leak													
R2-44	Same as RE-2.	v2-9 grid bias filter													
R2-45	Same as R2-10.	v2-10 grid circult voltage divider at 1.3 kc IF bandpass													
Re-46	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 1,100 ohm total resistance, \pm 5\% tolerance; $1 / 2 \mathrm{~W}$ power dissi= pation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in} .1 \mathrm{~g}$, $9 / 641 \mathrm{n}$. dia; insulated, resistant to hunidity and salt water iminersion; 2 termina1s, axial lead type; for general purpose use.	VZ-10 grid cir cuit voltage divider at 0.5 kc IF bandpass	Spec No. JAN-R-11, JAN Type No. RC20BF112J	$\begin{gathered} \text { N16-R-49930- } \\ 431 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB1125 } \end{aligned}$		$\begin{aligned} & \text { R2-46 } \\ & \text { R2-94 } \end{aligned}$	2							
R2-47	RESISTOR, FIXED, COMPOSITION: body sty le No. 14, MBCA Ref Dwg aroup 2; 18,000 ohm totai resistance, \pm 10\% tolerance; $1 / 2 \mathrm{~W}$ power dissi= patiun; F characteristic; body dim. excluding terminals, $3 / \mathrm{K} 1 \mathrm{n} .1 \mathrm{~g}$, $9 / C 4 \mathrm{in}$. dia; insulated, resistant to humidity and salt water immersion; 2 terminals, axial lead type; for generas purpose use.	V2-10 grid circult voltage divider at 0.2 kc IF bandpass	Spec No. JAN-R-11, JAN "ype No. RC20BF183K	$\underset{311}{\text { N16-R-50354- }}$	A.B Part No. EB1831		$\begin{aligned} & \text { R2-47 } \\ & \text { R2-66 } \end{aligned}$	2							
Rct $=50$	Sa: e as Re-42.	V2-iO. grid circuit parasit1c suppressor													
R2-51	Same as R $2-34$.	V2-10 grid leak													
R2-52	Same as Re-2.	V2-10 grid blas filter													
R2-55	Sane as Rc-42.	Va-11 grid circult parasitic suppressor													

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST
${\underset{\infty}{\infty}}_{\infty}^{\infty}$

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND (navy type)no.	FEDERAL AND (SIGNAL CORPS) stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\left\lvert\, \begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}\right.$	- EQuIp.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\left\lvert\, \begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \end{gathered}\right.$									$\underset{\sim}{2}$	䧺	$\left\lvert\, \begin{aligned} & \frac{2}{4} \\ & \overrightarrow{0} \end{aligned}\right.$	$\begin{aligned} & x \\ & 0 \\ & \end{aligned}$	$\begin{aligned} & \dot{z} \\ & 0 \\ & 0 \end{aligned}$	-	京
R2-56	Same as R2-39.	v2-11 grid leak													
R2-57	Same as R2-2.	V2-11 grid bias filter													
R2-58	Same as R2-37.	v2-11 screen filter													
R2-59	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 10\% tolerance; 1 W power dissipa $\frac{+}{2}$ tion; F characteristic; $9 / 16 \mathrm{in}$. $1 \mathrm{~g}, 7 / 321 \mathrm{n} . \mathrm{dia}$; insulated, resistant to humidity and salt water 1mmersion; 2 terminals, axial lead type; for general purpose use.	V2-11 plate filter	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-11, JAN Type } \\ & \text { No. RC } 30 \mathrm{BF} 222 \mathrm{~K} \end{aligned}$	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-50013- \\ 231 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. GB2221 } \end{aligned}$		R2-59	1							
R2-60	RESISTOR, FIXED, COMPOSITION: body style No. 14, mBCA Ref Dwg aroup 2; 1 meg resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dis $\overline{8} 1$ pation; F characterist1c; body dim. excluding terminals, $s / 8 \mathrm{in} .1 \mathrm{~g}, 9 / 64$ in. dia; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, axial lead type; for general purpose use.	V2-14A voltage divider	Spec No. JAN-R-11, JAN Type No . RC20BF105K	$\begin{gathered} \text { N16-R-50975- } \\ 811 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB1051 } \end{aligned}$		$\begin{aligned} & \text { R2-60 } \\ & \text { R2-61 } \end{aligned}$	2							
R2-61	Salle as Re-60.	$\begin{aligned} & \text { va-14A voltage } \\ & \text { div1der } \end{aligned}$													
R2-62	Same as Re-34.	V2-14B plate load													
R2-63	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 27,000 ohm total resistance, \pm 10\% tolerance; $1 / 2 \mathrm{~W}$ power diss $1=$ pation; F characterist1c; body dim. excluding terminals, $3 / 8 \mathrm{1n} .1 \mathrm{~g}$, $9 / 64 \mathrm{in}. \mathrm{dia;} \mathrm{insulated}$, to humidity and salt water immersion; 2 terminals, axial lead type; for general purpose use.	v2-14B plate load	Spec No. JAN-R-11, JAN Type No. RC20BE273K	$\begin{gathered} N 16-R-50399- \\ 811 \end{gathered}$	AB Part No. EB2731		R2-63	1							
RC-64	Same as R2-22.	V2-14B plate load													
Re-65	Same as R2-22.	V2-14B plate load													
R2-66	Same as R2-47.	V2-14A cathode b1as divider													
R2-67	Same as R2-34.	V2-15B plate load													
R2-68	Same as R2-34.	V2-14A cathode b1as divider													

ORIGINAL

table 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND （NAVY TYPE）NO．	$\begin{aligned} & \text { FEOERAL AND } \\ & \text { (SIGNALCORPS } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR.S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO．		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERUR } \\ \text { EQUIP. } \end{array}$	－Equip．			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
DESIG．									$\begin{aligned} & 2 \\ & \mathbf{z} \\ & \mathbf{w} \\ & \underline{y} \end{aligned}$	$\left\|\begin{array}{l} \times \\ \mathbf{\infty} \end{array}\right\|$	$\left.\begin{aligned} & \dot{z} \\ & \dot{u} \\ & \dot{0} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{l\|} x \\ \underset{\infty}{\infty} \end{array}\right\|$	$\begin{aligned} & \text { z } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \text { xo } \\ & \hline ⿴ 囗 ⿰ 丿 ㇄ \end{aligned}$	2i
R2－79	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg Group 2； 680 ohm total resistance，\pm 10% tolerance； $1 / 2 \mathrm{~W}$ fower diss $1-$ pation；F characteristic；body d1m． excluding terminals， 0.249 in ．dia $\max , 15 / 321 \mathrm{n} .1 \mathrm{~g} \max ; 1$ insulated， resistant to numidity and salt water immersion；for general pur－ pose use．	V2－16A cathode load	SEec No．JAN－ R－11，JAN Type No ．RC20BF681K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49841-11 \\ 811 \end{gathered}$	AB Part No．EB6811		$\begin{aligned} & \text { R2-79 } \\ & \text { R3-59 } \\ & \text { R3-60 } \\ & \text { R9-12 } \end{aligned}$	4							
R2－80	Same as Re－37．	$\begin{aligned} & \text { V2-16A plate } \\ & \text { f1lter } \end{aligned}$													
R2－81	Same as R2－34．	v2－16B plate load													
R2－82	Same as R2－2．	V2－16B plate filter													
R2－83	Same as R2－4．	v2－16B cathode b1as													
R2－84	RESISTOR，VARIABLE：composition element；l section，500，000 ohms resistance，$\pm 20 \%$ tolerance； 2 W power dissipātion；std A taper， MBCA Ref Dwg Group 3； 3 terminals， solder lug type；metal case，en－ closed dim．， $1-1 / 16 \mathrm{in}$ ．dia，9／16 1 n ．deep；metal shaf＇t， $\mathrm{rd}, 1 / 4 \mathrm{in}$ ． dia， 1 in ． lg from mtg surface， normal torque；insulated contact arm，no＂off＂position；mounted by bushing， $3 / \varepsilon$ in．dia， 32 threads per $1 \mathrm{n} ., 1 / 4 \mathrm{in} . \mathrm{lg}_{\mathrm{g}}$ ，non－ turn device located on $17 / 32$ in． radius at 9 o＇clock；p／o，AN Radio Recelver，Type No．R－450／FRR－2E．	＂AUDIO GAIN＂ ad justment		$\begin{gathered} \text { N16-R-88182- } \\ 5251 \end{gathered}$	$\begin{aligned} & \text { AB Fart } \\ & \text { No. JU5042- } \\ & \text { P2i00 } \end{aligned}$		R2－84	1							
R2－85	RESISTOR，FIXED，WIRE－WOUND：body style No． 20 ，MBCA Ref Dwg Group 2：non－1nductive winding； 2,500 ohms resistance，$\pm 5 \%$ tolerance； 12 W power dissipātion；body dim． excluding terminals， $2 \mathrm{in} . \lg$ ， 19／3＜1n．dia max；vitreous enamel coated，resistant to humidity； 2 terminals，solder lug type；termi－ nal mounted；for general purpose use．	v2－18 serles load	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-26A, JAN } \\ & \text { Type No. } \\ & \text { RW32G252 } \end{aligned}$	$\begin{gathered} \text { N16-R-66140- } \\ 8326 \end{gathered}$	$\begin{aligned} & \text { WaL Type } \\ & \text { 10F } \end{aligned}$		R2－85	1							
R2－86	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg Group 2：68，000 ohin total resistance + 10\％tolerance； $1 / 2 \mathrm{~W}$ power dissI－ pation；F characteristic；body dim． excluding terminals， $0.249 \mathrm{1n}$ ．dia max， $15 / 321 \mathrm{n} .1 \mathrm{~g}$ max； 1 nsulated， resistant to humidity and salt water 1 mmersion； 2 terminals，wire lead type；for general purpose use．	V2－20 input voltage divider	Spec No．JAN－ R－11，JAN Type No ．RC20BF683K	$\begin{gathered} \text { N16-R-50552- } \\ 811 \end{gathered}$	AB Part No．EB6831		$\begin{array}{\|l\|l} \text { R2-86 } \\ \text { R2-89 } \end{array}$	2							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									Spare parts					
$\underset{\substack{\text { SYM } \\ \text { OESIG }}}{ }$	NAME OF PART AND	function	(Navan TYPE) Jóno.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SEONALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	mfgr. And MFGR'S designation	CONTRACTOR DRAWING ANDPART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PPER } \\ & \text { EOUIP. } \end{aligned}$	Eoulp.			TEN-	stock	
									$\left[\begin{array}{l} \mathbf{z} \\ z \\ z \\ \underline{w} \end{array}\right.$	담			$\begin{aligned} & \stackrel{x}{\infty} \\ & \hline \end{aligned}$	它
R2-87	RESISTOR, FIXED, COMFOSITION: body style No. 14, MBCA Ref Dwg Group style No. 14, MBCA Ref DWg Group $2 ; 120,000$ ohms resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power diss $1 \overline{\mathrm{p}}$ ation; F characterist1c; body dim. excluding terminals, $9 / 64 \mathrm{in}$. dia, insulated, resistant to humidity and salt water 1 mnersion; 2 termina1s, axial lead type	v2-20 input voltage divider	$\left\|\begin{array}{l} \text { Spec } \\ \text { No. JAN- JAN- } \\ \text { R-11,JAN Type } \\ \text { o. RC20BF124 J J } \end{array}\right\|$	$\begin{aligned} & \text { N16-R-50650- } \\ & 431 \end{aligned}$	$A B$ Part No. EBl245		$\begin{aligned} & \text { R2-87 } \\ & \text { R2-87 } \end{aligned}$	2						
R2-88	Same as R2-87.	v2-20 input voltage divider												
R2-89	Same as r2-86.	v2-20 input voltage divider												
R2-90	Same as R2-c.	v2-20 plate load and f11ter												
R2-91	Same as r2-2.	V2-20 plate load and filter												
R2-92	Same as R2-2.	v2-20 plate load and filter												
R2-93	RESISTOR, VARIABLE: composition element; 1 section, 50,000 ohms resistance, $+10 \%$ tolerance; 2 power dissipation; std F taper, MBCA Ref DWg Group 3; 3 terminals, solder lug type; metal case, en closed, dim., $1-1 / 16$ in. dia, $15 / 16$ in. deep; metal shaft, rd, $1 / 4 \mathrm{in}$. dia, $3 / 4 \mathrm{in}$. lg from mtg contact, arm, no "off" position, switch open at ccw end of rotation; mounted by bushing, $3 / 8 \mathrm{in}$. 1 g , non-turn device located on $17 / 321 n . ~ r a d i u s ~ a t ~$ SPST switch, 2 a clock; a mally open, operates at start of rype; for general purpose use.	$\begin{aligned} & \text { "RF GAIN" ad- } \\ & \text { justment } \end{aligned}$		$\begin{aligned} & \mathrm{N} 16-\mathrm{R}-87849- \\ & 4406 \end{aligned}$	$\begin{aligned} & \text { AB Part } \\ & \text { No PIJU5031- } \\ & \text { P20.48 } \end{aligned}$		R2-93	1						
R2-94	Same as R2-46.													
R2-95	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 82,000 ohm total res1stance, \pm 5% tole rance; $1 / 2 \mathrm{~W}$ power d1s \pm 5 pation; F character1st1c; body dim. excluding terminals, $3 / 8 \mathrm{in} .1 \mathrm{~g}$, $9 / 64 \mathrm{in}$. dia; insulated, resistent to humidity and salt water 1 mmerfor general purpose use.	Negative bias divider	Spec No. JAN-R-11, JAN Type No. RC20BF823J	$\begin{aligned} & \mathrm{N} 16-\mathrm{R}-50587- \\ & 431 \end{aligned}$	AB Part No. EB8235		R2-95	1						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	NAME OF PART AND DESCRIPTION	FUnCtion	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL ARORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { YOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\underset{\text { DESIG. }}{\substack{\text { SYMBoL } \\ \text { DES }}}$									$\begin{aligned} & 2 \\ & \underset{\sim}{2} \\ & \underset{E}{2} \end{aligned}$	$\stackrel{\text { ® }}{\substack{\mathrm{O}}}$	$\left.\begin{array}{\|l\|} \dot{z} \\ \dot{u} \\ \dot{c} \end{array} \right\rvert\,$	$\left.\begin{aligned} & x \\ & 0 \\ & \infty \end{aligned} \right\rvert\,$	$\begin{aligned} & \text { zín } \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	-	¢
R <-96	RESISTOR, FIXED, COMPOSITION: body style No. 14, mBCA Ref Dwg Group 2 ; 2,000 ohm total resistance, \pm 5\% tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{in} .1 \mathrm{~g}$, $9 / 64 \mathrm{in}. \mathrm{dia;} \mathrm{insulated}$, to humidity and salt water 1 mmersion; 2 terminais, axial lead type; for general purpose use.	Negative blas divider	Spec No. JAN-R-11, JAN Type No.RC20BF223J	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-50371-}$	AB Fart No. EB2235		R2-96	1							
R2-97	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 3.3 meg resistance, $\pm 10 \%$ tolerance; $1 / \leftharpoonup W$ power diss̄ipation; F characteristic; body dim. excluding terminals, $3 / 8 \mathrm{ln} .1 \mathrm{~g}$, 9/64 1 n . dia; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, axial lead type; for general purpose use.	P/o AVC the constant circuit	Spec No. Jan-R-11, JAN Type No. RC20BF335K	$\underset{811}{\mathrm{~N} 16-\mathrm{R}-51110-}$	AB Part No. EB3351		R2-97	1							
R2-98	Salle as Re-78.	v2-17 grid leak													
R<-99	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 360 ohm total resistance, $+5 \%$ tolerance; 1 W power dissipation; F characterist1c; body dim. excluding terminals, 9/16 1 n .1 g , 7/32 1n. dia; 1nsulated, resistant to humidity; 2 terminals, axial read type; for general purpose use.	$\begin{aligned} & \text { V2-17 cathode } \\ & \text { b1as } \end{aligned}$	Spec No. JAN-R-11, JAN Type No.RC 30 BF 361 J	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49723- \\ 751 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. GB } 3611 \end{aligned}$		R2-99	1							
R2-100	Same as R2-34.	ve-12 screen voltage dropper													
R2-101	RESISTOR, VARIABLE: composition element; 1 section, 25,000 ohm total resistance, $+20 \%$ tolerance; W power dissipatIon; A taper, Ref Dwg Group 3; 3 terminals, solder lug type; metaı case, enclosed, d1m., 1-1/16 1n. dia, 9/16 1 n . deep; metal shaft, rd, screwdrlver slotted $3 / 64 \mathrm{in}$. wide by $1 / 16 \mathrm{in}$. deep, $1 / 4 \mathrm{in}$. dia, $1 / 21 \mathrm{n}$. lg from mtg surface, normal torque; 1nsulated contact arm, no "off" position; mounted by bushing, $3 / 81 \mathrm{n}$. dia, 32 threads per $1 \mathrm{n} ., 3 / 81 \mathrm{n}$. 1 g, non-turn device $10 c a t e d ~ o n ~$ $17 / 321 \mathrm{n}$. radius; p/o, AN Radio Recelver, Type No. R-450/FRR-2E.	"METER ADJ AF" ad justment		$\underset{5365}{N 16-R-87752-}$	AB Part No. JU2532- SD3032		R2-101	1							
R2-10c	Same as Re-4.	$\begin{aligned} & \mathrm{V}-16 \mathrm{~B} \text { load } \\ & \text { resistance } \end{aligned}$													
Rc-103	Sane as R2-5.	v2-1 plate c1r cuit resistance in 0.54 to 1.35 mc range													

ORIGINAL

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
$\underset{\substack{\text { SYMBOL } \\ \text { DESIG. }}}{ }$	NAME OF PART AND DESCRIPTION	FUNCTION					ALL		-	EQu			${ }_{\text {N- }}$	Sto	ock
			JAN AND (NAVY TYPEINO.	(SIGNAL CORPS) STOCK NO.	GR. AND dESIGNATION	CONTRACTOR DRAWING AND PART NO.	$\begin{gathered} \text { SYMBOL } \\ \text { OESIG. } \\ \text { OVVC- } \\ \text { VED } \end{gathered}$	$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	$\begin{aligned} & z \\ & z \\ & \mathbf{z} \\ & \underline{w} \end{aligned}$	㳓	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ \dot{a} \end{array}\right\|$	$\left\|\begin{array}{l} x \\ 0 \\ \mathbf{\infty} \end{array}\right\|$	$\begin{aligned} & \dot{\mathbf{c}} \\ & \mathbf{~} \end{aligned}$	-	z
R2-113	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 75 ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in . dia max, 15/32 in. 1g max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	P/o external HF oscillator signal filter	Spec No. JAN-R-11,JAN Type No. RC20BF750J	$\begin{gathered} \text { N16-R-49516- } \\ 431 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB7505 } \end{aligned}$		$\begin{aligned} & \mathrm{R} 2-113 \\ & \mathrm{R} 2-123 \end{aligned}$	2							
к2-114	Same as R2-22.	v2-4A grid leak													
R2-115	Same as R2-72.	V2-5 grid leak													
R2-116	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 220,000 ohn total resistance, \pm pation; F characteristic; body dim excluding terminals, 0.249 1n. dia $\max , 15 / 321 \mathrm{n}$. 1 g max; insulated, resistant to humidity and salt water 1 mimersion, 2 terminals, wire lead type; for general purpose use.	v2-4 b1as voltage divider	Spec No. JAN- R-11,JAN Type No. RCC2OBF224K	$\begin{gathered} \text { N16-R-50714- } \\ 811 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB2241 } \end{aligned}$		$\begin{aligned} & \mathrm{R} 2-116 \\ & \mathrm{R} 9-3 \end{aligned}$	2							
R2-117	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 10,000$ ohm total resistance, \pm 10\% tolerance; $1 / 2 \mathrm{~W}$ power dissi pation; F characteristic; body dim. excluding terminals, $0.249 \mathrm{1n}$. dia max, $15 / 32$ in. 1g max; 1nsulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	V2-4 b1as volt- age divider	Spec No. JAN-R-11,JAN Type No . RC20BF103K	$\underset{Q_{11}}{\mathrm{~N} 16-\mathrm{R}-50282-}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB1O31 } \end{aligned}$		R2-117 R2-118 R2-127 R3-9 R3-17 R3-37 R3-44 R3-50 R9-7 R10-19	10							
R2-118	Same as R2-117.	v2-4 b1as voltage divider													
R2-119	Same as R2-78.	V2-8B gr1d leak													
R<-120	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 10,000$ ohm total resistance, \pm 10\% tolerance; 1 W power dissipa= tion; F characteristic; body dim. excluding terminals, $0.2 \varepsilon_{0} \mathrm{in}$. dia $\max , 3 / 4 \mathrm{in}$. Ig max; insuiated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	V2-8B plate voltage dropper	Spec No. JAN-R-11,JAN Type No. RC30BF103K	$\underset{231}{N 16-R-50283-}$	AB fart No. GBiO31		R2-120	1							
R2-121	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 16,000 ohm total resistance, 5% tolerance; $1 / 2 \mathrm{~W}$ power dissipa tion; F characteristic; body dim. excluding terminals, $0.249 \mathrm{1n}$. dia $\max , 15 / 32 \mathrm{in}$. Ig tiax; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire	V2-8B cathode load	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-11, JAN Type } \\ & \text { No.RC2OBF163 } \end{aligned}$	$\begin{gathered} N \perp G-R-50344- \\ 43 i \end{gathered}$	AB Part No. EBl635		R2-121	1							

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	function	JAN AND (NaVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOGK NO.	MFGR.AND MFGR'S DESIGNATION	contractor ORAWING AND PART NO.	ALLSYMBOLDESIG.INVOL-VED	$\begin{array}{\|c\|} \text { YOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\left\|\begin{array}{c} \operatorname{srmbol} \\ \text { DESIG. } \end{array}\right\|$									$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \\ & \hline \end{aligned}$	这	$\left.\begin{aligned} & \text { zi } \\ & \dot{u} \\ & 0 \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned} \right\rvert\,$	$\left.\begin{aligned} & \dot{\dot{c}} \\ & \stackrel{u}{3} \\ & 0 \end{aligned} \right\rvert\,$	$\begin{aligned} & \times \\ & \text { O} \\ & \hline \end{aligned}$	z
$\begin{gathered} R 2-129 \\ (\text { cont }) \end{gathered}$	lead type; for general purpose use.														
R3-1	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 120,000 ohm total resistance, $\pm 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power d 1 s sipation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 321 \mathrm{n}$. 1 g max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	V3-1 grid leak	Spec No. JAN -R-11,JAN Type No. RC20BF124K	$\begin{gathered} \text { N16-R-50651- } \\ 811 \end{gathered}$	AB Part No. EB1241		$\begin{aligned} & \text { R3-1 } \\ & \text { R10-39 } \end{aligned}$	2							
R3-2	RESISTOR, FIXED, COMPOSITION: body style No. 14, mBCA Ref Dwg Group 2; 1,000 ohm total resistance, $\frac{t}{t}$ tion; F characteristic; body dim. excluding terminals, 0.280 in . dia $\max , 3 / 41 \mathrm{n}$. Ig max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	$\begin{aligned} & \text { V3-1 plate } \\ & \text { filter } \end{aligned}$	Spec No. JAN- R-11, JAN Type No.RC30BF102K	$\underset{231}{N 16-R-49923-}$	$\begin{aligned} & \mathrm{AB} \text { Part } \\ & \text { No. GB1021 } \end{aligned}$		$\begin{array}{\|l\|l} \text { R3-2 } \\ \text { R3-10 } \\ \text { R } \end{array}$	4							
R3-3	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 240,000 ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in . d1a $\max , 15 / 32 \mathrm{in}$. Ig max; insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	V3-2 grid leak	Spec No. JAN-R-11, JAN Type No.RC20BF244J	$\underset{N}{\text { N16-R-50722- }} 431022$	AB Part No. EB2445		$\begin{aligned} & \mathrm{R} 3-3 \\ & \text { R3-63 } \\ & \text { RP9-5 } \\ & \text { R10-57 } \end{aligned}$	4							
R3-4	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 10,000$ ohm totai resistance \pm 10\% tolerance; 2 W power dissipation; F characteristic; body dim. excluding terininals, 0.405 in . dia max, 1.41 in . 1 g max; insulated, resistant to humidity and salt water 1 minersion; 2 terminals, wire lead type; for general purpose use.	$\begin{aligned} & \text { V3-2 plate } \\ & \text { f11ter } \end{aligned}$	Spec No. JAN-R-11,JAN T'ype No. RC 40 BF 103 K	$\begin{gathered} N 16-R-50283- \\ 551 \end{gathered}$	AB Part No. HBIOs1		$\begin{aligned} & \mathrm{R} 3-4 \\ & \mathrm{R} 3-39 \end{aligned}$	2							
R3-5	RESISTOR, FIXED, COMFOSITION: body style No. 14, MBCA Ref Dwg Group 2; 750 ohm total resistance, $+5 \%$ tolerance; 2 W power dissipation; F characteristic; body dim. excluding terminals, 0.405 in . dia max, 1.41 in . 1g max; insulated, resistant to humidty and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use	Inner oven heater	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { R-11, JAN Type } \\ & \text { No.RC 4OBF751J } \end{aligned}$	$\begin{gathered} \text { N16-R-49859- } \\ 171 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. HB7515 } \end{aligned}$		$\begin{aligned} & \text { R3-5 } \\ & \text { R3-57 } \\ & \text { R3-65 } \\ & \text { R3-66 } \end{aligned}$	4							
R3-6	Same as Re-cz.	VS-3 grid leak													

O
$\frac{0}{6}$
2
2
2

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts					
$\begin{gathered} \text { SYMBoL } \\ \text { OESIG. } \end{gathered}$	name of part and oEsCRIPTION	function	JAN AND	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFGRS } \\ \text { OESIGNATION } \end{gathered}$	CONTRACTOR ORAWING AND PART NO.		$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PERR } \\ \text { EQUPP. } \end{array}$		Eoulp.		TEN-		stock
										茴	$\begin{aligned} & 2 \\ & \frac{2}{2} \\ & 3 \end{aligned}$	$\left.\begin{aligned} & \mid \\ & \times \\ & \times \\ & 0 \end{aligned} \right\rvert\,$		
R3-7	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg oroup 2; 100 ohm total resistance, low tolerance; $1 / 2 \mathrm{~W}$ power $\mathrm{d} 1 \mathrm{ss} 1-$ pation; F characteristic; body dim. max $15 / 32 \mathrm{in}$. 1 g max; insulated, resistant to humidity and salt water 1 minersion; 2 terminals, wire lead type; for general purpose use	$\begin{aligned} & \text { v3-3 cathode } \\ & \text { b1as } \end{aligned}$	Spec No, JAN-R-11, JAN Type No. RC20BF101K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49580- \\ 811 \end{gathered}$	AB Part No. EB1011		R3-7	1						
R3-9	Same as R2-1/7.	v3-3 screen voltage dropper												
R3-10	Same as R3-2.	V3-3 screen f1lter												
R3-11	heating element, electrical: woven wire and asbestos yarn; 80 ohm total resistance, $\pm 5 \%$ tolerance data, 6 in . $1 \mathrm{~g}, 4-7 / 16 \mathrm{in}$. wide, $5 / 321 \mathrm{n}$. thick; 2 terminals, bus $\begin{array}{llll}\text { type, } 6 \mathrm{in} . & 1 \mathrm{lg}, 3 / 8 & \mathrm{n} \text {. wide, } & 5 / 32 \\ \text { in. thick; } \\ \text { "cupron" } \\ \text { resistive ele- }\end{array}$ ment; 2 terminal bars nickel plated $w / 1 / 81 \mathrm{n}$. dia holes 1 n ends;作 on $2-3 / 4$ by $4-1 / 16 \mathrm{in}$. mounting ficlent; for general purpose use	$\begin{aligned} & \text { M1ddle oven } \\ & \text { heater } \end{aligned}$		$\underset{\substack{\text { N17-H-60034- } \\ 7605}}{ }$	SAS Type No. WRS23	NRCO Part No. RW9al NRCO DWg \qquad	$\begin{aligned} & \mathrm{R} 3-11 \\ & \mathrm{R} 3-12 \\ & \mathrm{R} 312 \\ & \mathrm{R} 3-14 \end{aligned}$	3						
R3-1c	Same as Rj-11.	$\begin{aligned} & \text { M1ddle oven } \\ & \text { heater } \end{aligned}$												
R3-13		$\begin{aligned} & \text { Middle oven } \\ & \text { heater } \end{aligned}$		$\begin{aligned} & \text { N17-H- } 60015- \\ & \text { 4601 } \\ & \text { When equip- } \\ & \text { ment spare as } \\ & \text { been expended, } \\ & \text { make from } \\ & \text { N17-H-60034- } \\ & 7605 \text { (R3-11) } \end{aligned}$		NRCO Modif1- cation Dwg No. RW9AC No. B1104139	R3-13	1						
R3-14	Same as R3-11.	$\left\lvert\, \begin{aligned} & \text { M1ddle oven } \\ & \text { heater } \end{aligned}\right.$												
R3-15	Same as Re-34.	$\begin{aligned} & \text { V3-10A grid } \\ & \text { leak } \end{aligned}$												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIIST

PARTS									Spare parts						
$\begin{gathered} \text { SYM Bol } \\ \text { DESIG. } \end{gathered}$	NAME OF PART AND description	FUNCTION					${ }^{\text {ALL }}$		- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
			INAN JAND	(SIGNAL GORPS) stock no.	MFGR'S DESIGNATION	$\begin{aligned} & \text { DRAWING AND } \\ & \text { PART NO. } \end{aligned}$	SMMEIL DESIG. INVOL- VED	$\begin{aligned} & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	$\left\|\begin{array}{l} 2 \\ z \\ 2 \\ w \\ \underset{u}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \mathrm{O} \\ \mathrm{\infty} \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & x \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { zi } \\ & \dot{\Delta} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline \times \\ \vdots \\ \end{array} \right\rvert\,$	2
R3-16	Same as R2-34.	$\underbrace{\text { leak }}_{\text {v3-10b grid }}$													
R, - 17	Salle as Re-117.	$\begin{aligned} & \text { V3-10A plate } \\ & \text { vol tage dropper } \end{aligned}$													
R's-18		$\begin{aligned} & \text { V3-10B plate } \\ & \text { load } \end{aligned}$	Spec No. Jan-R-11,JAN Type No. RC 40BF153K	$\underset{\substack{\mathrm{N} 16-\mathrm{R}-50237-\\ 551}}{ }$	$\begin{aligned} & \text { AB Part } \\ & \text { No. HB1531 } \end{aligned}$		$\begin{aligned} & \text { R3-18 } \\ & \text { R3-40 } \\ & \text { R3-53 } \end{aligned}$	3							
R3-19		$\begin{aligned} & \text { V } \mathcal{Y}-4 \text { plate } \\ & \text { fllter } \end{aligned}$	Spec No. Jan- R-11, JAN Type No .RC 40BF102K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49923- \\ 551 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. HBIOCI } \end{aligned}$		$\begin{aligned} & \text { R3-19 } \\ & \text { R3-30 } \\ & \text { R3- } 36 \\ & \text { R3-54 } \\ & \text { R10-25 } \end{aligned}$	5							
R3-20		Vj-4 screen voltage dropper	Spec No. JAN- R-11,JAN Type No.RC20BF472K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-50129- \\ 811 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB4721 } \end{aligned}$		$\begin{aligned} & \mathrm{R} 3-20 \\ & \text { R3-24 } \\ & \text { R3-26 } \end{aligned}$	3							
R3-21		V3-4 cathode b1as	Spec No. JAN-R-11,JAN Type No.RC20BF471K	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49769- \\ 811 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB471 } \end{aligned}$		R3-21	1							
RJ-ct	Same as Re-34.	V3-9B grid leak													
R3-23	Sane as R2-126.	V3-4 grid leak													
R3-24	Same as R3-20.	v3-5 screen voltage dropper													
R3-25	RESISTOR, VARIABLE: w1re-wound element; 1 section, 50,000 ohm, \pm 10\% tolerance; 7 W nominal power rating; std A taner, MBCA Ref Dwg Group 3; 3 terminals, solder lug	"HFO OUTPUT" ad jus tment		${\underset{8714}{\mathrm{~N} 16-\mathrm{R}-91569-} .}^{8714}$	MAL Type No. E50MP	NRCO DWg No. AllO4111-1	R3-25	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND （NAVY TYPE）NO．	fEDERAL AND （SIGNAL CORPS） STOCK No．	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	contractor DRAWING AND PART NO．		$\begin{aligned} & \text { TOTAL } \\ & \text { PERR } \\ & \text { EQuIP. } \end{aligned}$	2	Equip．		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\underset{\text { SYESIG．}}{\text { SYMBOL }}$										区	$\begin{array}{l\|} \mathbf{x} \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & x \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { z } \\ & \text { zu } \end{aligned}$	$\stackrel{\times}{\circ}$	㐫
R3－33	RESISTOR，FIXED，COMPOSITION：body style No．15，MBCA Ref Dwg aroup 2 ； 12 ohm total resistance，$\pm 5 \%$ tolerance； $1 / 2 \mathrm{~W}$ power dissī̄a－ tion；F characteristic；body dim． excluding terminals， 0.249 in ．dia max， $15 / 32 \mathrm{in}$.1 g max；insulated， resistant to humidity and salt water immersion； 2 terminals，wire	M3－1 shunt re－ sistance for HF oscillator plate voltage	Spec No．JAN－ R－11，JAN Type No．RC20BF120J	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-49255-}$	AB Part No．EB1205		$\begin{aligned} & \text { R3-33 } \\ & \text { R3-34 } \end{aligned}$	2							
R3－34．	Same as R3－33．	M3－1 shunt re－ sistance for BF oscillator plate voltage													
R3－35	Same as R2－34．	V3－9A grid leak													
R3－36	Same as R3－19．	V3－11 plate filter													
R3－37	Same as R2－117．	v3－9A plate load													
R3－38	RESISTOR，VARIABLE：＇w1re－wound ele－ ment； 1 section， 1,000 ohm，$\pm 10 \%$ tolerance； 2 W normal power $\overline{\text { rat }}$－ 1ng；std A taper，MBCA Ref Dwg Group 3； 3 terminals，solder lug type；combination metal and plas－ t1c case，enclosed，1－1／4 1n．dia， 9／16 in．deep；metal shaft，rd， screwdriver slotted $w / 1 / 321 n$ ． wide， $3 / 32 \mathrm{in}$ ．deep slot in end， $1 / 4 \mathrm{in}$ ．dia， $5 / 8 \mathrm{in}$ ． lg from mounting surface，normal torquer， insulated contact arm，no＂off＂ position；mounted by bushing， $3 / 8$ in．dia， 32 threads per in．， $3 / 8$ in．dia， 32 threads per in．， 1 g ；removable cover；p／o，AN Radio Frequency Oscillator，Type No．0－165／UR．	＂Bfo out．ConT＂ ad Justment	－	$\underset{2723}{\mathrm{~N} 16-\mathrm{R}-90754-}$	IRC Type No．W1000	NRCO Dwg No．Al」04109－1	R3－38	1							
R3－39	Same as R3－4．	V3－9B plate filter dropper													
R3－40	Same as R3－18．	V3－9A plate f1lter													
R3－41	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg Group $2 ; 12$ ohm total resistance，$+10 \%$ tolerance； 2 W power dissipation； F characteristic；body dim．ex－ cluding terminals， 0.405 in ．dia $\max , 1.41 \mathrm{in}$ ． 1 g max； 1 nsulated， resistant to humidity and salt water immersion； 2 terminals，wire lead type；for general purpose use．	13－1 series voltage dropper	Spec No．JAN－ R－11，JAN Type No．RC 40 BF 120 K	$\underset{551}{\mathrm{~N} 16-\mathrm{R}-49257-}$	AB Part No．HBl2O1		R3－41	1							
R3－42	RESISTOR，VARIABLE：composition ele－ ment； 1 section， $500,000 \mathrm{ohm}, \pm$ 10% tolerance； 2 W nominal powēr	＂CAL．OUTPUT＂ ad justment		$\begin{gathered} \mathrm{N} 16-\mathrm{R}-88179-4439 \end{gathered}$	AB Part No． JUS5041－P3056	NRCO Dwg No．A1． 04114 －1	R3－42	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESGRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO	FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	contractor DRAWING AND PART NO.	ALLSYMBOLOESIG.NVVO:VED	$\left.\begin{array}{\|c\|c\|c\|} \text { TOTAL } \\ \text { PER } \\ \text { EOIP. } \end{array} \right\rvert\,$	- Equip			$\begin{aligned} & \text { TEN- } \\ & \text { DEN } \end{aligned}$		stock	
desig.									$\left.\begin{aligned} & z \\ & z \\ & \underline{w} \\ & \underline{w} \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|l\|l} \mathbf{o} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline i \\ \mathbf{u} \\ \mathbf{u} \end{array}$	$\begin{array}{l\|} \mathbf{x} \\ \mathbf{o} \\ \mathbf{@} \end{array}$	立	-	¢
R3-51	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 56,000 ohm total resistance, \pm 10\% tolerance; 2 W power dissipation; F characteristic; body dim. excluding terminals, 0.405 in . dia $\max , 1.41 \mathrm{in} .1 \mathrm{~g} \max ; 1$ insulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purpose use.	K3-1 serles resistance	Spec No. JAN-R-11, JAN Type No: RC40BF563K	$\underset{551}{\mathrm{~N} 16-\mathrm{R}-50517-}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. HB5631 } \end{aligned}$		R3-51	1							
R3-52	Same as R2-34.	$\begin{aligned} & \text { 13-2 series } \\ & \text { resistance } \end{aligned}$													
R3-53	Same as R3-18.	V3-4, V3-5 and V3-11 dropper													
R3-54	Same as R3-19.	$\begin{aligned} & \text { V3-4 plate } \\ & \text { f1lter } \end{aligned}$													
R3-55	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg aroup 2; 220 ohm total resistance, + 10\% tolerance; 1 W power dissipation; F characteristic; body dim. excluding terminals, 0.280 in. dia $\max , 3 / 4 \mathrm{in}$. 1 g max; insulated, resistant to humidity and salt water 1 nmersion; 2 terminals, wire lead type; for general purpose use.	$\begin{aligned} & \text { V3-5 cathode } \\ & \text { b1as } \end{aligned}$	Spec No. JAN-R-11,JAN Type No. RC30BF221K	$\begin{gathered} \text { N16-R-49662- } \\ 231 \end{gathered}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. GB2a11 } \end{aligned}$		$\begin{aligned} & \text { R3-55 } \\ & \text { R3-56 } \end{aligned}$	2							
R3-56	Same as R3-55.	V3-11 cathode b1as													
R3-57	Same as R3-5.	Inner oven heater													
R3-58	RESISTOR, FIXED, WIRE WOUND: body style No. 23, MBCA Ref Dwg Group 2; 1nductively wound; 350 ohm total resistance, $+10 \%$ tolerance; 5 W power disilpation, 340° C max continuous operating temp; body dim. excluding terminals, $5 / 161 \mathrm{n}$. OD, $7 / 32 \mathrm{in}$. ID, 1 in . $\mathrm{lg} ;$ vitreous enamel coated, resistant to humidity; 2 terminals, one axial wire lead attached to radial solder lug ea end, $3 / 16 \mathrm{in}$. Wide, $7 / 161 \mathrm{n}$. h1gh; teruinal mounted; green fin1sh; for general purpose use.	Inner oven heaters series resistance		$\begin{gathered} \text { N16-R-70549- } \\ 2335 \end{gathered}$	WAL Part No. 5F350	NRCO Dwg No. AllO488-1	$\begin{aligned} & \text { R3-58 } \\ & \text { R3-64 } \end{aligned}$	2							
R3-59	Sane as R2-79.	V3-10B cathode b1as													
R3-60	Same as R2-79.	V3-2 cathode load													
R3-61	RESISTOR, FIXED, WIRE WOUND: body style No. 3, MBCA Ref Dwg group 2; 1nductive winding; 10,000 ohm	v3-12 plate load		$\underset{2036}{\text { N16-R-68441- }}$	SPR Type No. 10KT	NRCO Dwg No. All0486-2	R3-61	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) stock no.	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$		EOUIP.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
OESIG.										-	$\begin{aligned} & \dot{2} \\ & \dot{u} \\ & \dot{0} \end{aligned}$	¢ ¢ ¢	家	-	立
$\begin{gathered} \text { R3-61 } \\ (\operatorname{con}) \end{gathered}$	total resistance, $+5 \%$ tolerance; 10 W power dissipation, $240^{\circ} \mathrm{C}$ max continuous operating temp; body dim. excluding terminals, $1-27 / 32$ in. $1 \mathrm{~g}, 15 / 32 \mathrm{in}$. dia; ceramic coating, resistant to humidity; ? terminals, wire lead type, No. 20 AWG, $2-1 / 2 \mathrm{in}$. lg , terminal mounted; resistance wire insulated; for general purpose use.							-							
R3-62	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 91,000$ ohm total resistance, \pm 5% tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in . dia $\max , 15 / 321 \mathrm{n} .1 \mathrm{~g} \max ; 1$ insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use.	V3-12 screen voltage dropper	Spec No. Jan-R-11, JAN Type No. RC20BF913J	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-50614-}$	$\begin{array}{\|l\|l\|} \hline \text { AB Part } \\ \text { No. EB91 } 35 \end{array}$		R3-62	1							
R3-63	Same as R3-3.	V3-12 grid leak													
R3-64	Same as R3-58.	Inner oven heaters serles resistance													
R3-65	Sane as R3-5.	Inner oven heater													
R3-66	Same as R3-5.	Inner oven heater													
R9-1	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 1,000 ohm total resistance, + 20\% tolerance; $1 / 2 \mathrm{~W}$ power dissIpation; F characteristic; body dim. excluding terminals, 0.240 in. dia max, $15 / 32 \mathrm{in}$. Ig max; insulated, resistant to humidity and salt water immersion; 2 terminals wire lead type; for general purpose use.	v9-1 grid leak	Spec No. JAN-R-11,JAN Type No.RC20BF102M	$\begin{gathered} \mathrm{N} 16-\mathrm{R}-49924- \\ 291 \end{gathered}$	AB Part No. EBlO22		$\begin{aligned} & \text { R9-1 } \\ & \text { R9-2 } \\ & \text { R9-16 } \end{aligned}$	3							
R9-2	Same as R9-1.	v9-1 cathode b1as													
R9-3	Same as R2-1,6.	V9-1 screen voltage divider													
R9-4	Same as R2-34.	v9-1 plate load													
R9-5	Same as RJ-3.	v9-2 grid leak													
R9-6	Same as R2-10.	v9-2 cathode b1as													
R9-7	Same as R2-117.	vo-1 plate and screen filter													

0
10

TABLE 8－4．COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND OESCRIPTION	FUNCTION	JAN AND （NAVY TYPEINO．	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFR.S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO．		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	－Equip．			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \\ & \hline \end{aligned}$		stock	
$\begin{gathered} \text { SrMBOL } \\ \text { OESIG. } \end{gathered}$									$\begin{aligned} & \mathbf{z} \\ & \mathbf{z} \\ & \mathbf{w} \\ & \mathbf{E} \end{aligned}$	$\stackrel{\times}{\circ}$	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} x \\ 0 \\ \mathbf{\infty} \end{array}\right\|$	$\begin{aligned} & \text { 㐫 } \\ & \stackrel{3}{3} \end{aligned}$	－	㐫
R9－8	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg aroup 2；10，000 ohm total resistance， 20\％tolerance；1／2 W power dissi－ pation；F characteristic；body dim． excluding terminals， 0.249 in ．dia $\max , 15 / 32 \mathrm{in}. \mathrm{1g} \max ; ~ i n s u l a t e d$, resistant to humidity and salt water immersion； 2 terminals，wire lead type；for general purpose use．	v9－2 plate filter	Spec No．JAN－ R－11，JAN Type No．RC20BF103M	$\begin{gathered} \text { N16-R-50284- } \\ 291 \end{gathered}$	AB Part No．EB1032		$\begin{aligned} & \text { R9-8 } \\ & \text { R9-18 } \end{aligned}$	2							
R9－9	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg Group 2；22，000 ohm total resistance，\pm 10\％tolerance； 1 W power dissipa＝ tion；F characteristic；body dim． excluding terminals， 0.280 in ．dia $\max , 3 / 4 \mathrm{in} .1 \mathrm{~g}$ max；insulated， resistant to humidity and salt water 1 mmersion； 2 terminals，w1re lead type；for general purpose use．	v9－2 plate load	Spec No．JAN－ R－11，JAN Type No．RC30BF223K	$\underset{231}{\mathrm{~N} 16-\mathrm{R}-50373-}$	AB Part No．GB2231		R9－9	1							
R9－10	Same as R3－31．	以．2 screen voltage dropper													
R9－11	RESISTOR，VARIABLE：composition element； 1 section， $250,000 \mathrm{ohm}$ ， \pm 10\％tolerance； 2.25 W nominal power rating；std A taper，MBCA Ref Dwg Group 3； 3 terminals，sol－ der lug type；metal case，enclosed， $1-1 / 161 \mathrm{n}$ ．dia， $9 / 16 \mathrm{in}$ ．deep； metal shaft，rd， $1 / 4 \mathrm{in}$ ．dia， $7 / 8$ in．ig from mounting surface， normal torque；insulated contact arm，no＂off＂position；mounted by bushing， $3 / 81 \mathrm{n}$ ．dia， 32 threads per $1 \mathrm{n} ., 3 / 8 \mathrm{in} .1 \mathrm{~g}$ ，non－ turn device located on $17 / 321 n$ ． radius at 9 o＇clock；incl 1 hex nut and lockwasher，max rotation， 333 degrees，effective electrical rotation， 312 degrees， p / o ，AN Amplif1er－Detector，Type No．AM－ 615／UR；u／w knob E9－6．	＂OUTPUT LEVEL＂ ad justment		$\begin{gathered} \text { N } 16-\mathrm{R}-88079- \\ 4270 \end{gathered}$	$\begin{aligned} & \text { AB Type } \\ & \text { No. Ju } 2541 \text { w/ } \end{aligned}$ shaft P3056	NRCO Dwg No．All04113－1	R9－11	1							
R9－12	Same as R2－79．	V9－4 cathode b1as													
R9－13	RESISTOR，FIXED，COMPOSITION：body style No．14，MBCA Ref Dwg aroup $2 ; 15,000$ ohm total resistance，\pm 10\％tolerance； 1 W power dissipa－ tion；F characteristic；body dim． excluding terminals， 0.280 in ．dia $\max , 3 / 4 \mathrm{in} .1 \mathrm{~g} \max ; 1$ insulated， resistant to humidity and salt water 1 mmersion； 2 terminals，wire lead type；for general purpose use．	v9－4 plate voltage dropper	Spec Nc．JAN－ R－11，JAN Type No．RC30BF153K	$\underset{231}{\mathrm{~N} 16-\mathrm{R}-50337-}$	AB Part No．GB1531		R9－13	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts					
$\underset{\substack{\text { Symbol } \\ \text { OESIG. }}}{ }$	WAME OF PART AND						${ }^{\text {ALL }}$			EOu		ENE.	sto	
		function	(NAVY JAN AND	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \end{aligned}$ STOCK NO.	MFGR's designation	DRAWING AND PART NO.	$\left\lvert\, \begin{gathered} \text { SYMBOL } \\ \text { DESIIG. } \\ \text { NVOL- } \\ \text { VED } \end{gathered}\right.$	$\left\lvert\, \begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERER } \\ \text { EOUIP. } \end{array}\right.$	苞	靣		5	-	2in
$\begin{gathered} \text { R10-5 } \\ (\text { cont }) \end{gathered}$	minals, radial wire lead type; metal film resistance hermetically sealed by vitreous enamel layer, rubberized enamel protec- t1ve coating; for general purpose use.													
R10-6	RESISTOR, FIXED, FILM: body style No. 25, MBCA Re P DEG oroup 2; ree s18tance data, 414,000 ohm total reistance, ± 18 tolerance, 500 V W power dissipation; resistance temp character1st1c, P charac- teristic; body dim. excluadng ter- data, insulated, resistant to minals, redial wire lead type; metal f11m resistance hermet1cally sealed by vitreous ename 1 tiver, roating; for general purpose tive cone иве.	P/o v10-1 pos1tive reedback ne twork		$\begin{aligned} & \text { N16-R-73524- } \\ & 2996 \end{aligned}$	$\begin{aligned} & \text { cLo type } \\ & \text { No. } \mathrm{x}-1 / 2 \end{aligned}$	NRCO Dwg No. A110444-1	$\begin{aligned} & \text { R10-6 } \\ & \text { R10-12 } \end{aligned}$	2						
R10-7	Same as R10-1.	P/o v10-z pos1tive feedback network												
R10-8	Same as R10-2.	P/o V10-1 pos1tive feedback ne twork												
R10-9	Same as R10-3.	P/o V10-1 pos1netwerk reack network network												
R10-10	Same as R10-4.	P/o V10-1 positive reedback network												
R10-11	Same as R10-5.	P/o V10-1 pos1t1ve feedback network												
R10-12	Same as R10-6.	P/o V10-1 positive reedback network												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									spare parts						
	NAME OF PART ANO DESCRIPTION	FUNCTION	JAN AND (navy type)no.	FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MGGRS } \\ & \text { DESIGNATION } \end{aligned}$	contractor dRAWING AND part no.	$\begin{gathered} \text { ALL } \\ \text { SYMBOL } \\ \text { DESIG. } \\ \text { DNVOL- } \\ \text { VED } \end{gathered}$	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EOUIP. } \end{array}$	- EQUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOL } \\ \text { DESIG. } \end{gathered}$									2 2 w \underline{y}	중	$\begin{aligned} & \dot{x} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathbf{x} \\ & \mathbf{o} \\ & \mathbf{\infty} \end{aligned}$	$\begin{aligned} & \dot{z} \\ & \stackrel{\rightharpoonup}{u} \end{aligned}$	${ }_{0}$	¢
R10-14	LAMP, INCANDESCENT: $120 \mathrm{v}, 6 \mathrm{~W}$, 0.052 amp ; MBCA Ref Dug Group 7, candelabra screw base, s-6 bulb, clear, white, 1 tungsten fil, C-7A; 1-7/8 in. max over-all height; over 25 hr rated life; any burning position; unit pkg, 10 or 120 to a case; for general purpose use.	P/o v10-1 degenerative feedback network		$\begin{gathered} \text { N17-L-3916- } \\ 100 \end{gathered}$	GE Type No. $6 s 6$	NRCO DNG No. All0454	$\begin{aligned} & \mathrm{R} 10-14 \\ & \mathrm{R} 10-15 \end{aligned}$	2							
R10-15	Same as Rl0-14.	P/o V10-1 degenerative feedback network													
R10-16	RESISTOR, FIXED, COMPOSITTION: body style No. 14, MBCA Ref Dwg Group 2; 33,000 ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power d1ssipation; F characteristic; body dim. excluding terminals, 0.249 1 n . dia max, $15 / 32$ in. 1 g max; $1 \mathrm{n}-$ sulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general purрозe use.	vio-1 screen voltage divider	Spec No. JAN-R-11, JAN Type No. RC20EF333	$\underset{431}{\text { N16-R-50416- }}$	AB Part No. EB3335		R10-16	1							
R10-17	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 100,000$ ohm total resistance, $+10 \%$ tolerance; 1 W power dissipation; F characteristic; body dim. excluding terminals, 0.280 in. dia max, $3 / 4 \mathrm{in}$.1 g max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use.	V10-1 screen voltage divider	Spec No. JAN-R-11, JAN Type No. RC30BF 104 K	$\underset{231}{\mathrm{~N} 16-\mathrm{R}-50634-}$	AB Part No. GB1041		R10-17	1							
R10-18	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $2 ; 51,000 \mathrm{ohm}$ total resistance, $+5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 321 \mathrm{n}$. $1 \mathrm{~g} \max$; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purрозe use.	v10-1 plate load	Spec No. JAN-R-11, JAN Type No. RC20Be513	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-50497-}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. EB5135 E } \end{aligned}$		R10-18	1							
R10-19	Same as R2-117.	$\begin{aligned} & \text { vio-1 plate } \\ & \text { filter } \end{aligned}$													
R10-20	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 510,000 ohm total resistance, $\pm 5 \%$ tolerance; $1 / 2 \mathrm{~W}$ powar dissipation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 32$ in. Ig max; insulated, resistant to numidity and	v10-2 grid blas	$\begin{array}{\|l} \text { Spec No. JAN- } \\ \text { R-11, JAN Tyee } \\ \text { No. RC20BF514 } \end{array}$	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-50837-}$	AB Part No. EB5145		R10-20	1							

ORIGINAL
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts					
	NAME OF PART AND DESCRIPTION	Function	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL ANO } \\ & \text { (SIGNAL GORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR drawing and PART NO.	$\begin{array}{\|c\|c\|} \text { SYML } \\ \text { SESOL } \\ \text { DESIG } \\ \text { DNYOL- } \\ \text { VEDO } \end{array}$	$\begin{aligned} & \text { TOTAL } \\ & \text { PPR } \\ & \text { EQUIP. } \end{aligned}$	Eoulp.			TEN-	stock	
									$\begin{gathered} 2 \\ z \\ z \\ w \\ E \end{gathered}$	-	$\begin{aligned} & \text { 若 } \\ & 0 \end{aligned}$	$\begin{aligned} & \times \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		-
$\begin{aligned} & \text { R10-20 } \\ & (\mathrm{cont}) \end{aligned}$	salt water immersion; 2 termins ls, wire lead type; for general purpose use.													
R10-21	Same as r3-29.	vio-2 cathode resistance												
R10-22	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group $+5 \%$ tolerance; 2 W power dissip excluding terminals, 0.405 in . dis max, $1.41 \mathrm{in}$.lg max; insulated, resistant to humidity and salt waed type; for general purpose	V10-2 screen voltage divider	$\begin{aligned} & \text { Spee No. JAM- } \\ & \text { R-11, JAN } \\ & \text { Type No } \\ & \text { RC } 40 \text { NFFIBJ } \end{aligned}$	$\underset{171}{\mathrm{~N} 16-\mathrm{R}-50498-}$	AB Part No. HB5135		R10-22	1						
R10-23	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Rer Dwg Group $+5 \%$ tolerances 2 2 W power dissipa excluding terminals, 0.405 in . dis max, 1.41 in .1 g max; insulated, resistant to humidity and salt water 1mmersion; 2 terminals, wire oad	vio-2 screen voltage divider	Spec No. JAN- R-11, JAN Type No. RC40BF203J	$\underset{171}{\text { N16-R-50363- }}$	AB Part No. HBe 035		R10-23	1						
R10-24	RESISTOR, VARIABLE: wire-wound element; 1 section, 5,000 ohm, $\pm 10 \%$ tolerance; 4 W nominal power rattolerance; 4 W nominal per Dvg Group 3 ; 3 terminals, solder lug type; metal case, enclosed, 1 in. dis, 9/16 in. deep; metal shaft, rd, screwdriver slotted w/ in end, $1 / 4 \mathrm{in}$. dia, $3 / 4 \mathrm{in}$. 1 g from mounting surface, normal torque; insulated contact arm, no ing, $3 / 8$ in. dia, 32 threads per in., $13 / 32$ in. lg; total rotation 294 degrees, effective electrical rotation, 274 degrees, incl 1 he and lockwasher; for genersl purpose use.	vio-2 plate load		$\underset{4464}{\mathrm{~N} 16-\mathrm{R}-91031-}$	mal Part No. M5MP	NRCO Dwg No. No. A1104112-2	R10-24	1						
R10-25	Same as R3-19.	$\begin{aligned} & \text { V10-2 plate } \\ & \text { f11ter } \end{aligned}$												
R10-26	Same as R2-78.	$\begin{aligned} & \text { V10-6A grid } \\ & \text { resistance } \end{aligned}$												
R10-27	Same as R2-112.	$\begin{aligned} & \text { V10-4 belancing } \\ & \text { variable re- } \\ & \text { sistance } \end{aligned}$												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST
8-100

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPare parts					
	WAME OF PART AND DESCRIPTION	function	(nAVY TAN AND	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SEONALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$		$\begin{aligned} & \text { CONTRACTOR } \\ & \text { DRAWING AND } \\ & \text { PART NO. } \end{aligned}$	ALLSMBOESIG.DEIGNVOOVVO	$\begin{array}{\|l\|l} \text { TOTAL } \\ \text { PERR } \\ \text { EQUP } \end{array}$	- Equip.				stock	
SESIG.									$\stackrel{2}{2}$	딩			-	㐫
R10-37	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Grou $2 ; 5,100$ ohm total resistance, $+5 \%$ tolerance; 2 W power dissipa Tion; F characteristic; body dim. max, 1.41 in . 1 g max; insulated, water immersion; 2 terminsls, wire lead type; for general purpose use.	v10-4 and vi0-5 csthode blas	$\begin{aligned} & \text { Spec No, JAN- } \\ & \text { R-11, JiN } \\ & \text { Typeo No. } \\ & \text { RG40B5i2J } \end{aligned}$	$\underset{171}{\mathrm{~N} 16-\mathrm{R}-50147-}$	$\begin{aligned} & \text { AB Part } \\ & \text { No. HB5125 } \end{aligned}$		R10-37	1						
R10-38	Same as R3-2.	$\begin{array}{\|l} \text { V10-4 plate } \\ \text { f1lter } \end{array}$												
R10-39	Same as r3-1.	vio-6 plate voltage divider												
R10-40	Same as R2-34.	vio-6 plate voltage dropper												
R10-41	RESISTOR, FIXED, COMPOSITITON: body style No. 14, MBCA Ref Dwg aroup $2 ; 10 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dis. ± 10. $\overline{\text { sipations }}$ F characteristic; body 1 n . dia max, $15 / 32 \mathrm{in}$. 1 B max; $1 \mathrm{n}-$ sulated, resistant to humidity and salt water 1 mmersion; 2 terminals, sare lead type; for general purpose use.	vio-5 grid resistance	Spec No. JAN-R-11, JAN 	$\begin{aligned} & \text { N16-R-5090- } \\ & 811 \end{aligned}$	AB Part No. EB 8241		$\left.\begin{array}{\|l\|l\|} \mathrm{R} 10-41 \\ \mathrm{R} 10-42 \end{array} \right\rvert\,$	2						
R10-42	Same as rio-41.	V10-11 grid re- Bistance												
R10-44	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref DVg Group $2 \xi 150,000$ ohm total resistance, ± 108 tolerance; $1 / 2 \mathrm{~W}$ power dis. Bipation; F characteristic; body dim. excluding terminals, 0.249 1 n . dia max $15 / 32 \mathrm{in}$. 1 g max, in sulated, resistant to humidity and salt water 1 mmersion; 2 terminals, wire lead type; for general pur-pose use.	$\left.\right\|_{\text {V10-6A plate }} ^{\text {load }}$	Speo №. JAN-R-11, JAN \qquad	$\begin{aligned} & \mathrm{N} 16-\mathrm{R}-50678-811 \end{aligned}$	AB Part No. EB1541		$\left\|\begin{array}{c} \mathrm{R} 10-44 \\ \mathrm{R} 10-45 \end{array}\right\|$	2						
R10-45	Same as R10-44.	$\left.\right\|_{\text {V10-6B plate }} ^{\text {load }}$												
R10-47	Same as r2-4.	V10-6A cathode b1as												
R10-48	Same as R2-78.	$\begin{aligned} & \text { vio-6a grid re- } \\ & \text { sistance } \end{aligned}$							-					
R10-49	Same as R2-78.	Vio-6A grid re- sistance												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	wame of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) stock No.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFR.S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.INVOL-VED	$\left\|\begin{array}{c} \text { TOTAL } \\ \text { PPER } \\ \text { EQUIP. } \end{array}\right\|$	- EQuip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
									$\begin{aligned} & \mathbf{z} \\ & z \\ & \mathbf{z} \\ & \underline{w} \end{aligned}$	荡	$\left\|\begin{array}{l} \dot{c} \\ \vdots \\ \vdots \\ 0 \end{array}\right\|$	 0	$\begin{aligned} & \dot{c} \\ & \stackrel{c}{c} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\times}{\circ}$	家
R10-50	RESISTOR, FIXED, COMPOSITION: body style No. 14, MBCA Ref Dwg Group 2; 3,000 ohm total resistance, $+5 \%$ tolerance; $1 / 2 \mathrm{~W}$ power dis-- 1 pation; F characteristic; body dim. excluding terminals, 0.249 in. dia max, $15 / 32$ in. Ig max; insulated, resistant to humidity and salt water immersion; 2 terminals, wire lead type; for general purpose use.	P/o vio-1 degenerative feedback network	Spec No. JAN-R-11, JAN Type No. RC20BF302J	$\underset{431}{\mathrm{~N} 16-\mathrm{R}-50047-}$	AB Part No. EB3025		R10-50	1							
R10-51	RESISTOR, FIXED, COMPOSITION: body style No. 3, MBCA Ref Dwg Group 2; inductive winding; 50,000 ohm total resistance; $+5 \%$ tolerance; 10 W power dissipation, $240^{\circ} \mathrm{C} \max$ continuous operating temp; body dim. excluding terminals, $1-27 / 32$ 1n. 1g, 15/32 1n. dia; ceramic coating, resistant to humidity; 2 terminals, wire lead type, no. 20 AWG, $2-1 / 2 \mathrm{in}$. 1 g ; terminal mounted; resistance wire insulated; for general purpose use.	$\left\lvert\, \begin{aligned} & \text { V10-6B cathode } \\ & \text { blas } \end{aligned}\right.$		$\begin{gathered} \text { N16-R-68462- } \\ 7801 \end{gathered}$	SPR Type No. 10KT	NRCO Dwg No. A. 110486-1	R10-51	2							
R10-52	Same as R2-4.	V10-6B cathode blas													
R10-53	Samo as R1-1; u/w knob Elo-7.	"OUTPUT LEVEL" adjustment													
R10-54	Same as R2-78.	V10-6B grid current limiter													
R10-55	Same as R2-10.	vio-2 cathode resistance													
R10-56	Same as R10-51.	vio-6A cathode blas voltage divider													
R10-57	Same as R3-3.	vio-6B grid res1stance													
S2-1A	RECEIVER CONTACT, ASSEMBLY: princi- pel perts $\mathrm{c} / 0,1$ ceramic base, 6 spring contacts; over-all dim., $2-5 / 16 \mathrm{in}$. $1 \mathrm{~g}, 1-21 / 32 \mathrm{in}$. Wide, $1 / 41 \mathrm{n}$. thick; mounting data, 2 . $3 / 161 \mathrm{n}$. holes on $2-1 / 2 \mathrm{in}$. centers; 1 mpregnated for tropical use; used as stationary contacts for rotary radio frequency coil assemblies; p/o AN, Radio Recelver, Type No. R-450/FRR-28.	Selects band circuit components between antenna and V2-1 grid		${\underset{ }{\text { N17-C-83787- }} 3401}^{\text {N }}$	hMM Part No. 31234		$\begin{aligned} & \text { s2-1A } \\ & \text { S2-1B } \\ & \text { S2-1C } \\ & \text { S2-1D } \end{aligned}$	4							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	mame of part and DESCRIPTION	function	JAN ano (NAVY TYPE)NO.	FEDERAL ANO (SIGNAL CORPS)STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { OESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$		Equip		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
- 0 E816.										$\begin{aligned} & \text { 증 } \end{aligned}$	$\left.\begin{array}{\|l\|} \dot{i} \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\left\|\begin{array}{l} x \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|c\|} \dot{z} \\ \dot{z} \\ \text { on } \end{array}$	$\stackrel{\times}{\circ}$	立
92-4A	P/o 82-4.	B+ switching to V2-7 screen or to V2-6 screen and V2-8B plate													
S2-4B	P/o $32-4$.	V2-8A plate voltage on-off switch													
32-5	SWITCH, ROTARY: 3 sections; non-"pile-up" type, 4 poles, 24 throws, brass contacts; silver plated; bakelite body; physical dim., $8-3 / 64 \mathrm{in}$. $18,1-5 / 8 \mathrm{in}$. wide $1-7 / 81 \mathrm{~h}$. high; mounted by $3 / 8$ $1-7 / 81 \mathrm{n}$. h1ghs mounted by $3 / 8 \mathrm{in}$. $1 \mathrm{~g}, 3 / 8$ in. 32 thread bushing 1 rd type shaft, $5 / 16 \mathrm{in} .1 \mathrm{~g}, 1 / 4 \mathrm{in}$. dia; solder lug type terminalaj p/o, AN, Rad1	"SELECTIVITY" selector switch		$\underset{8763}{\text { N17-S_66042 - }}$	QAK Type h No. 34171-H3		S2-5	1							
s2-5A	P/o \$2-5.	Varies resistances in tuned input circuit for V2-9 and 1nserts crystal into circuit when switch 1s in cryatal positions													
S2-5B	P/o \$2-5.	Varies inductance in tuned input circuit for V2-10 in non-crystal positions.													
32-50	P/o \$2-5.	Varies inductance in tuned input circuit for V2-10 in non-crystal positions													
32-6	SWITCH, TOGALE: SPST; 3 amp, 125v AC; phenolic body; over-all dim., 9/16 in. ig, 17/32 in. wide, 1 in high; bat type handle, $1 / 2$ in. lg 2 terminals, solder lug type, located on back; single hole mounting, $15 / 32$ in. dia bushing, 32 thread per in., 15/32 in. ig from mounting surfaces for general purpose use.	$\left\lvert\, \begin{aligned} & \text { "LIMLITER-OFF" } \\ & \text { sw } 1 \text { tch } \end{aligned}\right.$		$\begin{gathered} \text { N17-s-71351- } \\ 9057 \end{gathered}$	CuT Part No. 8280		$\begin{aligned} & \text { s2-6 } \\ & \text { s2-9 } \end{aligned}$	2				,			

ORIGINAL
table 8-4. COMBIned Parts and maintenance parts list

PARTS									SPARE PARTS						
SYMBOL	NAME OF PART AND DESCRIPTION	FUnction							-	EOU				sto	ck
			JAN AND (NAVY TYPE)NO.	(SIGNAL CORPS) STOGK NO.	MFGR. AND MFGR'S DESIGNATION	CONTRACTOR DRAWING AND PART NO.	$\begin{aligned} & \text { DESIG. } \\ & \text { INVOL } \\ & \text { VED } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PPE } \end{array}$ Exulp.	$\left\|\begin{array}{l} z \\ z \\ w \\ \underline{w} \end{array}\right\|$	-	家	$\stackrel{\times}{\circ}$	$\begin{aligned} & \dot{2} \\ & \vdots \\ & 0 \end{aligned}$	$\stackrel{\times}{\circ}$	¢
32-7	SWTTCH, TOGGLE: DPST; 2 amp, 125v AC; phenolic body; over-all dim. excluding terminals, $21 / 32 \mathrm{in}, \mathrm{lg}$, $11 / 16 \mathrm{in}$. Wide, $1-3 / 32 \mathrm{in}$. high; bat type handle, $1 / 2 \mathrm{in} .1 \mathrm{~g} ; 4$ terminals, solder lug type, located on back; single mounting hole, 15/32 in. dia bushing, 32 threads per in., $15 / 32$ in. ig from mounting surface; for general purpose use.	"MOD-CW" switch		$\underset{3103}{\text { N17-S-7348- }}$	$\begin{aligned} & \text { CUT Part } \\ & \text { No. } 8360 \end{aligned}$		S2-7	1							
S2-7A	P/o 32-7.	Connect B+ to V2-12 screen in "CW" position													
S2-7B	P/o s2-7.	Changes AVC time delay													
s2-8	SWITCH, TOGGLE: DPDT; 3 amp, 125v AC; phenolic body; over-all dim., excluding terminais, $21 / 32 \mathrm{in}$. ig, $11 / 16$ in. Wide, $1-3 / 321 n$. high; bat type handle, $1 / 2 \mathrm{in} .1 \mathrm{~g}, 4$ terminals, solder lug type, located on back; single mounting hole, $15 / 32$ in. dia bushing, 32 threads per in., $15 / 32 \mathrm{in}$. ig from mounting surface; for general purpose use.	"AVC-MAN" switch		$\begin{gathered} \text { N17-S-74040- } \\ 1125 \end{gathered}$	$\begin{array}{\|l\|l\|} \text { CUT Part } \\ \text { No. } 8363 \end{array}$		S2-8	1							
32-8A	p/o s2-8.	Inserts manual or automatic volume control blas voltage into various tubes													
S2-8B	P/o S2-8.	Connects M2-1 to RF circuit in "AVC" position													
32-9	Same as 32-6.	"SEND-REC" switch													
S2-11	SWITCH, TOGGLE: DPDT; $3 \mathrm{amp}, 125 \mathrm{v}$ $A C$, phenollc body; over-8ll dim., $5 / 8$ in. 1g, $5 / 8$ in. wide, $1-1 / 8$ in. high; bat type handle, 7/16 in. lg; momentary action, normally closed, spring locking device; 6 terminals, solder lug type, located on back; single mounting hole, 15/32 in. dia bushing, 32 thread per in., $15 / 32$ in. ig from mounting surface; for general purpose use.	$\begin{aligned} & \text { "METER RF-AF" } \\ & \text { switch } \end{aligned}$		$\underset{\substack{\text { N17-S-74040- } \\ 1051}}{ }$	AHH Part No. 81057 N		S8-11	1							
s2-11A	P/o s2-11.	$\begin{aligned} & \text { Connects RF cir- } \\ & \text { cult to } \mathrm{MR}-1 \end{aligned}$													
S2-118	P/o s2-11.	Connects AF cir- cuit to $\mathrm{RR}-1$													

SOl-8

parts									spare parts					
$\left\|\begin{array}{c} \text { symsol } \\ \text { DESIG } \end{array}\right\|$	NAME OF PART AND	FUNCTION		$\begin{gathered} \text { FEOERAL AND } \\ \text { (SIGNALCORP) } \\ \text { STOCK NO. } \end{gathered}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFRA } \\ \text { DESIGNATION } \end{gathered}$	contractor DRAWING ANDPART NO.		$\begin{aligned} & \text { YOTAL } \\ & \text { PERR } \\ & \text { EQUIP. } \end{aligned}$	Equip.		¢		stock	
			$\begin{gathered} \text { JAN AND } \\ \text { (NAVY TYPE)NO. } \end{gathered}$						2	区	¢	$\left\|\begin{array}{c} i \\ \vdots \\ \vdots \end{array}\right\|$	¢	z
32-12	SWITCH, ROTARY: 1 section; 2 positions max no. of switching pos tions possibie; non-"p1le-up" type, 2 poles, 1 throw; phosphor contact finish; metal case; physical dim. exbluading term1- 32 thread bushing; rd type shaft, $3 / 4 \mathrm{in}$. $1 \mathrm{~g}, 0.249 \mathrm{in}$. dia; solder 1 ug terminalis shartt grooved $1 / 2$ essy cutting, incl No. 232 nut and No. 227 lockwasher; $p / 0$ AN, Radio Recelver, Type No. R-450/ FRR-28; u/w knob, E2-34.	$\begin{aligned} & \text { "HPO" selector } \\ & \text { switch } \end{aligned}$		$\underset{\substack{\text { N17-s-60683- } \\ 2501}}{ }$ When equip- ment spare has been ex- pended, make from standard Navy Stock No. N17-8-60909- 8438 by cutting shaft to proper length	MAL Type knob	NRCO Dwg No. A1104118	$\begin{aligned} & \text { s2-12 } \\ & 39-2 \end{aligned}$	2						
S2-12A	P/o \$2-12.	v2-4a grid blas normal or cutoff switch												
S2-12B	P/o \$2-12.	V2-4B grid blas normal or cutoff switoh												
s2-13	SWTTCH, ROTARY: 1 section; 3 posi- tions, max no. of switching posityons possible; non-"pile-up type, 4 poles, 3 throws; phosphor contact finish metal case physical dim. excluaing terminals, thread bushing; rd type shaft, 232 nut and No. 277 lockwasher; P/o, AN, Redio Recelver, Type	"3.5 MC Osc." selector switch		$\begin{gathered} \text { N17-9-62575- } \\ 2966 \end{gathered}$	MAL Type w/o No. 366 knob	NRCO Dwg No. AllO4121	32-13	1						
s2-13A	P/o 32-13.	V2-8B plate voltage on-offon switch												
S2-138	P/o s2-13.	va-8A plate voltage on-offon su1tch												
s2-13c	P/o 32-13.	Not connected												
s2-13D	P/o $\mathbf{3} 2-13$.	Switches 3.5 mc oscillator signals for diver- sity-diversitylocal use												

ORIGINAL
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TVNIDIXO

PAKts									SPARE PARTS						
	name of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	federal and (SIGNAL GORPS) stock NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLDESIG.INVOLVED	$\begin{array}{\|c} \text { TOTAL } \\ \text { PERR } \\ \text { EQUIP. } \end{array}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{z} \\ & \underset{\sim}{\mathbf{w}} \\ & \underset{\sim}{2} \end{aligned}$	Equip.		$\begin{array}{\|l\|} \hline \text { TEN- } \\ \text { DER } \end{array}$		stock	
DESIG.										㭸	$\begin{aligned} & \dot{2} \\ & \dot{u} \\ & \dot{0} \end{aligned}$	$\left\|\begin{array}{l} x \\ 0 \\ \infty \end{array}\right\|$	$\begin{aligned} & \dot{\mathbf{x}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\times}{\circ}$	¢
S3-1A	P/o s3-1.	On-off switch for one side of AC line													
33-18	P/o S3-1.	On-off switch for one side of AC line													
33-2	Same as S2-15.	$\begin{aligned} & \text { "HPO ON-OFF" } \\ & \text { sw1tch } \end{aligned}$													
33-3	Same as 32-15.	$\begin{aligned} & \text { "BPO ON-OFF" } \\ & \text { switch } \end{aligned}$													
33-4	P/O R3-42.	"OFF" position of "CAL OUTPOT" adjustment (83-42)													
33-5	Same as S2-14.	"METER SELECTOR" sw1tch													
S3-5A	P/o 33-5.	Connects M3-1 to $\mathrm{B}+$ or ground													
S3-5B	P/0 S3-5.	Connects MB-1 to plate of "HFO," plate of "BPO," rectified "HF OUT. ", or rectified "EF OUT."													
33-50	P/o s3-5.	Not used													
33-6	Same as 32-14.	$\begin{aligned} & \text { "Hpo XTAL" } \\ & \text { switch } \end{aligned}$													
S3-6A	P/0 s3-6.	$\begin{aligned} & \text { Y3-10A grid to } \\ & \text { Y } 3-15, \text { Y3-16, } \\ & \text { Y3-17 (orystals } \\ & \text { not supplied) or } \\ & \text { ground } \end{aligned}$													
S3-6B	P/o 33-6.	$\sqrt{3}-1 Q A$, plate to $\mathrm{B}_{11}^{\mathrm{B}+2,3 \text { in positions }}$ " $1,2,3$ "													
83-6C	P/0 S3-6.	$\sqrt{3}-10 \mathrm{grid}$ to V3-10A output in "1,2,3" pos1tions and to V3-2 output in "MO" position													
33-7	SWITCH, ROTARY: 2 sections, 5 positions, max no. of switching positions possible, adjustable stop included; non- "nile-up" types poles, 5 throws; spring brass contacts; silver plated contact finish; steatite sections; physical dim. excluding torminals, $1-1 / 2$	"FREQUENCY RANGE MCS" switch		$\begin{gathered} \text { N17-s-65063- } \\ 8758 \end{gathered}$	$\begin{aligned} & \text { CN Type } \\ & \text { No. } 2515 \end{aligned}$	NRCO Dwg No. All04116	s3-7	1							

601-8
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
$\underset{\text { OESIG. }}{\substack{\text { SYM Bol }}}$	NAME OF PART AND DESCRIPTION	FUNGTION		EO			${ }^{\text {ALL }}$		-	EOU			${ }_{\text {N- }}$	STO	ck
			(NAVY TYPE)NO.	(SIGNAL CORPS) stock no.		DRAWING AND PART NO.	$\begin{gathered} \text { DESIG. } \\ \text { INVOL } \\ \text { VED } \end{gathered}$	$\begin{aligned} & \text { PPER } \\ & \text { PQUIP. } \\ & \text { EQ } \end{aligned}$	$\begin{aligned} & z \\ & \mathbf{z} \\ & \underset{\sim}{\mathbf{E}} \end{aligned}$	$\underset{\mathbf{\infty}}{\mathbf{x}}$	$\begin{array}{l\|} \dot{z} \\ \dot{u} \\ \dot{0} \end{array}$	$\left\|\begin{array}{l} x \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { ż } \\ & \stackrel{y}{u} \end{aligned}$	-	-
T2-1	TRANSFORMER, INTERMEDIATE FREQUENCY: 3955 kilocycles peak frequency; input shielded; over-all dim., 2 in. $1 \mathrm{~g}, 2-1 / 2 \mathrm{in}$. wide, $1-1 / 8 \mathrm{in}$. deeps bakelite coil form, powdered iron core; double tuned; adjustable iron core tuning; 6 No. 6-32 tapped holes, speced $1-3 / 16 \mathrm{in}$. C to C; 8 terminals, solder lug types p / o, AN, Radio Receiver, Type No. R-450/FRR-28.	V2-5 plate load and coupling to T2-2 and V2-7 grid		$\begin{gathered} \text { N17-T-67590- } \\ 1416 \end{gathered}$	HMM Part No. 31183		T2-1	1							
T2-2	TRANSFORMER, INTERMEDIATE FREQUENCY: 3955 kilocycles peak frequency; mixer input; sh1elded; over-all dim. $4 \mathrm{in} .1 \mathrm{~g}, 2-1 / 2$ in. wide, $\mathrm{dim} ., 4 \mathrm{in}$. $1 \mathrm{~g}, 2-1 / 2 \mathrm{in}$. wide, forms, powdered íron cores; double tuned; adjustable 1ron core tunings 6 No. 6-32 tapped holes, spaced 2 1n. C to $C_{3} 8$ terminals, solder lug type; p / o, AN, Radio Recelver, Type No. R-450/FRR-28.	V2-6 input trans- former		$\begin{gathered} \text { N17-T-67633- } \\ 4320 \end{gathered}$	HMM Part No. 31116		T2-2	1							
T2-3	TRANSFORMER, INTERMEDIATE FREQUENCY: 455 kilocycles peak frequency; crystal filter; shielded; over-all dim., $41 \mathrm{n} .1 \mathrm{~g}, 2-1 / 2 \mathrm{in}$. wide, $1-15 / 16$ in. deep; bakelite coll form, poxdered iron cores; double tuned; adjustable 1ron core tuning; 4 No.6-32 tapped holes, spaced 2 in. C to C; 8 terminals, solder lug type; p/o, AN, Radio Rece1ver, Type No. R-450/FRR-28.	V2-6 plate load, IF crystal filter and coupling to V2-9 grid		${\underset{4}{N} 17-T-67633-}^{4295}$	HMM Part No. 31114		T2-3	1							
T2-4	TRANSFORMER, INTERMEDIATE PREQUENCY: 455 Kilocycles peak frequency; interstage; shielded; over-all dim., $4 \mathrm{in} .1 \mathrm{~g}, 2-1 / 2 \mathrm{in}$. wide, $1-15 / 16{ }^{\prime}$ in. deep; bakelite coil form, powdered 1 ron cores; double tuned; adjustable iron core tuning; 4 No. 6-32 tapped holes, spaced 2 1n. C to C; 8 terminals, solder lug type; p/o, AN, Radio Receiver, Type No. R-450/FRR-28.	V2-9 plate load and coupling to V2-10 grid	-	$\begin{gathered} \text { N17-T-67621- } \\ 8996 \end{gathered}$	HMM Part No. 31102		$\begin{aligned} & \mathrm{T} 2-4 \\ & \mathrm{~T} 2-5 \end{aligned}$	2							
T2-5	Same as T2-4.	V2-10 plate load and coupling to V2-11 grid													
T2-6	TRANSFORMER SUBASSEMBLY: principal parts $\mathrm{c} / \mathrm{o}, 5 \mathrm{mica}$ capacitors, 2 inductance units, 1 phenolic base, 1 shield can, 2 powdered iron cores, one (i) variable; over-all dim., 4 in . $1 \mathrm{~g}, 1-7 / 8 \mathrm{in}$. Wide, 1-15/32 in. deep; 4 No. 6-32 tapped holes, mo1sture and fungus proofed; p/o, aN, Radio Receiver, Type No. R-450/FRR-28.	V2-13 plate resistances and oscillator circu1t		$\begin{gathered} \mathrm{N} 16-\mathrm{R}-33591- \\ 1265 \end{gathered}$	HMM Part NO. 31106		T2-6	1							

$\boldsymbol{\infty}$
$\underset{\omega}{1}$
$\boldsymbol{\omega}$

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

8-114
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8－4．COMBINED PARÏS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND （NAVY TYPE）NO．	FEDERAL AND （SIGNAL CORPS） STOCK NO．	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRAGTOR DRAWING AND PART NO．		$\begin{array}{\|l\|l\|} \hline \text { TOTAL } \\ \text { PERUIP. } \\ \text { EQUI } \end{array}$	－Equip．			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
symbol desig．									$\begin{aligned} & \mathbf{z} \\ & \underset{z}{z} \\ & \underline{w} \end{aligned}$	$\begin{aligned} & \text { 㐅⿸厂⿱二⿺卜丿口 } \end{aligned}$	$\left\|\begin{array}{l} \dot{z} \\ \dot{u} \\ \overrightarrow{0} \end{array}\right\|$	$\begin{array}{\|l\|} \hline \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \dot{\dot{c}} \\ & \stackrel{\rightharpoonup}{0} \\ & \end{aligned}$	$\left\|\begin{array}{l\|} \times \\ 0 \\ 0 \end{array}\right\|$	z
$\left\lvert\, \begin{aligned} & 53-1 \\ & (\text { cont }) \end{aligned}\right.$	1 to 1 sleeve has $3 / 8 \mathrm{in}$ ．-32 thread， $7 / 32 \mathrm{in}$ ． lg at end；for general purpose use．														
U3－2	DRIVE，TUNING：mechanically oper－ ated；continuous rotation；selec－ tor knob actuation；over－all dim． excluding mounting bracket， $2-1 / 64$ 1n．lg over－all， $7 / 8$ in．dia ex－ cluding mounting bracket $1-9 / 16$ ${ }_{5} / 32^{\text {wide }}$ in．dia holes in mounting bracket spaced 120° apart on $5 / 8$ in．radius circle；transmits manual power from knob to tuning capacitor at slow speed ratio of 5 to 1 and／or high speed ratio of 1 to 1 ；for general purpose use．	＂OUTPUT FREQUEN－ CY＂knob to ex－ tension shaft speed reducer		$\underset{133}{\text { N16－D－901161－}}$	$\begin{aligned} & \text { CPT Part } \\ & \text { No. } 599 \end{aligned}$	NRCO Dwg No．All04187	U3－2	1							
v2－1	ELLECTRON TUBE：pentode；glass en－ velope，RMA T－5－1／2； 7 termina－ tions，pin type，located on bot－ tom；receiving tube；for general purpose use，	1st RF amplifier	Spec No．JAN－ 1a，JAN Type No．6BA6	N16－T－56211	VD Part No．6BA6		$\begin{aligned} & \mathrm{V} 2-1 \\ & \mathrm{~V} 2-2 \\ & \mathrm{~V}-2 \\ & \mathrm{~V}-7 \\ & \mathrm{~V}-9 \\ & \mathrm{~V}-1 .-10 \\ & \mathrm{~V} 2-11 \\ & \mathrm{~V}-11 \end{aligned}$	7							
v2－2	Same as V2－1．	2nd RF amplifier													
v2－4	ELECTRON TUBE：twin triode；glass envelope，RMA T－5－1／2； 6 termina－ tions，pin type，located on bot－ tom；amplifier－oscillator tube； for general purpose use．		$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { la, JAN Type } \\ & \text { No. GJ6 } \end{aligned}$	N16－T－56360	GE Part No． 6 J 6		$\begin{aligned} & v_{2}-4 \\ & v^{2}-13 \end{aligned}$	2							
V2－4A	P／o V2－4．	HF oscillator													
V2－4B	P／o V2－4．	External HF os－ cillator signal amplifier													
v2－5	ELECTRON TUBE：pentagrid；glass envelope，RMA T－5－1／2； 7 termina－ tions，pin type，located on bot－ tom；converter tube；for general purpose use．	lst mixer	Spec No．Jan－ 1a，JAN Type No．6BE6	$\begin{gathered} \text { N16-T-56211- } \\ 50 \end{gathered}$	GE Part No．6BE6		$\begin{aligned} & \text { V2-5 } \\ & \text { v2-6 } \\ & \text { v3-3 } \end{aligned}$	3							
v2－6	Same as V2－5．	2nd mixer													
v2－7	Same as V2－1．	Gate amplifier													
v2－8	ELECTRON TUBE：twin triode；glass envelope，RMA T－6－1／2； 9 termina－ tions，pin type，located on bot－ tom；amplifier－phase inverter tubes for general purpose use．		$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { la, JAN Type } \\ & \text { No. 12AU7 } \end{aligned}$	$\underset{34}{\text { N16-T-58241- }}$	GE Part No．12AU7		$\begin{aligned} & \text { V2-8 } \\ & \text { V2-16 } \\ & \text { V3-9 } \\ & \text { V3-10 } \end{aligned}$	4							
v2－8A	P／o V2－8．	$\left.\right\|_{3.5 \mathrm{mc} \text { oscilla- }} ^{3.5}$													
v2－8B	P／o vz－8．	$\begin{aligned} & 3.5 \mathrm{mc} \text { oscilla- - } \\ & \text { tor buffer } \end{aligned}$													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRAS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	SYMBOL DESIG. VED	$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERUIP } \\ \text { EOUI } \end{array}$	oㄹㄹw\underline{E}	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { OER } \end{aligned}$		stock	
$\begin{gathered} \text { SYMBOLL } \\ \text { DESIG. } \end{gathered}$										-	$\begin{aligned} & \text { zi } \\ & \text { ub } \end{aligned}$	$\begin{aligned} & \times \\ & \text { on } \end{aligned}$	$\begin{array}{\|c\|} \dot{\mathrm{x}} \\ \mathbf{3} \\ \mathbf{0} \end{array}$	-	¢
v2-9	Same as V2-1.	lst IF amplifier													
v2-10	Same as V2-1.	2nd IF amplifier													
v2-11	Same as V2-1.	Driver													
v2-12	Same as V2-1.	BF oscillator buffer													
v2-13	Same as V2-4.														
v2-13A	P/o v2-13.	EF oscillator													
v2-13B	P/o v2-13.	External HF oscillator signal amplifier													
v2-14	ELECTRON TUEE: dual diode; gless envelope, RMA T-5-1/2; 7 terminations, pin type, located on bottom; recelving tube; for general purpose use.		Spec No. JAN- 1a, JAN Type No. GAL5	N16-T-56195	VD Part No. 6AL5		$\begin{aligned} & \text { v2-14 } \\ & \text { V2 }-15 \\ & \text { v2-20 } \end{aligned}$	3							
V2-14A	P/o V2-14.	Avc													
$\mathrm{V} 2-14 \mathrm{~B}$	P/o v2-14.	2nd detector													
v2-15	Seme es V2-14.														
v2-15A	P/o v2-15.	Audio meter detector													
v2-15B	P/o v2-15.	Limiter													
v2-16	Same as V2-8.														
v2-16A	P/o v2-16.	IF cathode follower buffer													
v2-16B	P/o ve-16.	1st audio amplifier													
v2-17	ELECTRON TUBE: beam pentode; glass envelope, RMA T-9; 8 terminations, pin type, located on bottom; receiving tube; for general purpose use.	Audio output amplifier	Spec No. JAN- 18, JAN Type No. 6V6ar	N16-T-56758	VD Part No. 6v6at		v2-17	1							
v2-18	ELECTRON TUBE: diode; glass envelope, RMA T-5-1/2; 7 terminations, pin type, located on bottom; voltage regulator tube; for general purpose use.	Voltage regulator	Spec No. JAN- 1a, JAN Type No. QA2	N16-T-52001	OE Part No. OAZ		$\begin{aligned} & \text { v2-18 } \\ & v 3-7 \end{aligned}$	2							
v2-19	ELECTRON TUBE: diode, glass envelope, RMA ST-16; 5 terminations, pin type, located on bottom; rectifier; for general purpose use.	AC power rectif1er	Spec No. JAN - le, JAN Type No. 5R4GY	N16-T-55444	VD Part No. 5R4GY		v2-19	1							
v2-20	Same as V2-14.	Negative power rectifier													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	function	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.INVOL-VED	$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
$\begin{array}{\|c\|} \hline \text { SYMBOL } \\ \text { OESIG. } \end{array}$										-	$\begin{array}{\|l\|} \dot{z} \\ u \\ a \\ \hline \end{array}$	$\left.\begin{array}{\|l\|l} x \\ 0 \\ \hline \end{array} \right\rvert\,$	${ }_{0}^{2}$	$\stackrel{\times}{\text { ¢ }}$	京
V3-1	ELECTRON TUBE: triode; glass envelope, RMA $T-5-1 / 2 ; 7$ terminations, pin type, located on bottom; amplifier-oscillator tube; for general purpose use.	Variable HF oscillator	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { 1a, JAN Type } \\ & \text { No. } 6 \text { C4 } \end{aligned}$	N16-T-56214	GE Part No. 604		$\begin{aligned} & \text { V3-1 } \\ & \text { V3-2 } \\ & \text { V3-6 } \end{aligned}$	3							
v3-2	Same as V3-1.	$\begin{aligned} & \text { HF oscillator } \\ & \text { buffer } \end{aligned}$													
v3-3	Same as V2-5.	Calibrator os-cillator-mixer													
V3-4	ELECTRON TUBE: pentode, glass envelope, RMA T-5-1/2; 7 terminations, pin type, located on bottom; amplifler tube; for general purpose use.	$\begin{aligned} & \text { 1st frequency } \\ & \text { multiplier } \end{aligned}$	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { 1a, JAN TYpe } \\ & \text { No. GAQ5 } \end{aligned}$	N16-T-56198	GE Part NO. GAQS		$\begin{aligned} & \text { V3-4 } \\ & \text { V3-5 } \\ & \text { V3-11 } \\ & \text { V3-12 } \end{aligned}$	4							
v3-5	Same as V3-4.	$\begin{aligned} & \text { 2nd frequency } \\ & \text { doubler } \end{aligned}$													
V3-6	Same as V3-1.	Calibrator amplifier													
v3-7	Same as V2-18.	Voltage regulator													
v3-8	ELECTRON TUBE: twin diode; metal envelope, RMA MT-8; 5 terminations, pin type, located on bottom; rectifier tube; for general purpose use.	AC power rectifier	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { 1a, JAN Type } \\ & \text { No. 5W4 } \end{aligned}$	N16-T-55540	GE Part No. 5W4		$\begin{aligned} & \text { V3-8 } \\ & \text { V9-3 } \end{aligned}$	3							
V3-8A	ELECTRON TUBE: twin diode; glass envelope, RMA T-9; 5 terminations, pin type, located on bottom; rectifier tube; for general purpose use.	$\begin{aligned} & \text { Alternate for } \\ & \text { V3-8 } \end{aligned}$	Spec No. JAN- 1a, JAN Type No. 5Y3-GT	N16-T-55735	$\begin{aligned} & \text { GE Part } \\ & \text { No. } 5 \mathrm{Y} 3 \text {-GT } \end{aligned}$										
v3-9	Same as V2-8.														
V3.9A	P/o v3-9.	BF oscillator													
v3-9B	P/o V3-9.	$\begin{aligned} & \mathrm{BF} \text { osclllator } \\ & \text { buffer } \end{aligned}$													
v3-10	Same as V2-8.														
V3-10A	P/o V3-10.	$\begin{aligned} & \text { Crystal HF os- } \\ & \text { c11lator } \end{aligned}$													
V3-108	P/o V3-10.	$\begin{aligned} & \text { lst hF buffer } \\ & \text { amplifier } \end{aligned}$													
v3-11	Same as V3-4.	$\begin{aligned} & \text { 3rd frequency } \\ & \text { multiplier } \end{aligned}$													
v3-12	Same as V3-4.	$\begin{aligned} & \text { 2nd HF buffer } \\ & \text { amplifler } \end{aligned}$													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUnction	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MGRRS } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	ALLSYMBOLOESIG.INVOL-VED	$\left\lvert\, \begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}\right.$	- EOUIP.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
symbol DESIG.									$\stackrel{2}{2}$	$\left.\begin{array}{\|c} \mathrm{X} \\ \mathbf{\infty} \end{array} \right\rvert\,$	z	$\begin{array}{l\|} \mathbf{x} \\ \stackrel{\oplus}{\infty} \end{array}$	安	$\begin{aligned} & x \\ & \stackrel{x}{\infty} \end{aligned}$	安
v9-1	ELECTRON TUBE: pentode; metal envelope, RMA MT-8; 8 terminations, pin type, locsted on bottom; amplifier-detector tubes for genersl purpose use.	Input amplifier	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { 1a, JAN Type } \\ & \text { No. } 63 \mathrm{~S} 7 \end{aligned}$	N16-T-56370	GE Part No. $6 \mathrm{SJ7}$		$\begin{aligned} & \text { V9-1 } \\ & \text { v10-1 } \end{aligned}$	2							
v9-2	ELECTRON TUEE: pentagrid; metal envelope, RMA MT-8; 8 terminations, pin type, located on bottom; converter tube; for general purpose use.	$\begin{aligned} & \text { Oscillator- } \\ & \text { m1xer } \end{aligned}$	Spec No. JAN- la, JAN Type No. 6SA.7	N16-T-56107	aE Part No. 6SA7		v9-2	1							
v9-3	Same as v3-8.	AC power rectifier													
v9-4	ELECTRON TUBE: triode; metal envelope, RMA MT-8; 5 terminations, pin type, located on bottom; amplifier-detector-oscilletor tube; for general purpose use.	Output amplifier	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { la, JAN Type } \\ & \text { No. } 6 \mathrm{JJ} 5 \end{aligned}$	N16-T-56350	$\begin{aligned} & \text { GE Part } \\ & \text { No. 6. } \end{aligned}$		v9-4	1							
v9-5	ELECTRON TUBR: diode; glass envelope, RMA ST-12; 5 terminations, pin type, located on bottom; voltage regulator tube; for general purpose use.	Voltage regulator	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { la, JAN Type } \\ & \text { No. OC } 3 \end{aligned}$	N16-T-53050	$\begin{aligned} & \text { GB Part } \\ & \text { No. OC3/VR105 } \end{aligned}$		v9-5	1							
v10-1	Same as V9-1.	Oscillator													
v10-2	ELECTRON TUBE: pentode; metal envelope, RMA MT-8; 7 terminations, pin type, located on bottom; amplifier tube; for general purpose use.	Obcillator am-plifier-inverter	Spec No. JAN- 1a, JAN Type No. 6V6	N16-T-56756	ge Part No. 6v6		$\begin{aligned} & \text { v10-2 } \\ & \text { 10-5 } \end{aligned}$	2							
v10-4	ELECTRON TUBE: twin triodes glass envelope, RMA T-9; 8 terminations, pin type, located on bottom; amplifier-phese inverter; for general purpose use.	Keyed output amplifier	Spec No. JAN- 1a, JAN Type No. 5SN7at	N16-T-56490	GE Part No. 6SN7GT		v10-4	1							
v10-5	Same as V10-2.	Keying amplifier													
v10-6	ELECTRON TUBE: twin triode; glass envelope, RMA T-9; 8 terminations, pin type, located on bottom; amplifier-phase inverter tube; for general purpose use.	Keyer amplifier	Spec No. JAN- 1a, JAN Type No. 6SL7at	N16-T-56470	GE Part No. 6SL7GT		v10-6	1							
v10-7	ELECTRON TUBE: twin diode; metal envelope, RMA MT-8; 7 terminations, pin type, locsted on bottom; rectifier-detector-ave tube; for general purpose use.	Tone rectifier	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { la, JAN Type } \\ & \text { No. 6H6 } \end{aligned}$	N16-T-56346	GE Part No. 6H6		v10-7	1							
v10-8	Same as V3-8.	Power rectifier													
v10-10	Same as 13-2.	Keyer coupler													
v10-11	Same as 13-2.	Keyer coupler													

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

fabricated.
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

ORIGINAL

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

parts									spare parts				
$\begin{gathered} \text { Symbil } \\ \text { DESIG. } \end{gathered}$	NAME OF PART AND description	function		$\begin{gathered} \text { FEDEEAL ANO } \\ \text { (SIGNALCORPS } \\ \text { STOCK NO. } \end{gathered}$	$\begin{gathered} \text { MFGR. AND } \\ \text { MFGRS } \\ \text { DESIGNATION } \end{gathered}$	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { ORAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { PRER } \\ & \text { EOUUP } \end{aligned}$	$\left\|\begin{array}{l} \mathbf{z} \\ \hline \end{array}\right\|$	Equip.	TEN-		stock
											$\underset{\sim}{x}$	$\underset{\substack{i}}{\substack{\|l\|}}$	¢10.
$\left\lvert\, \begin{gathered} \text { W12-4 } \\ (\text { cont }) \end{gathered}\right.$	2(P2-4 and P9-5), located one es end; marked "W4", "Rec. \#2 IF Out. - Mon." and "Mon, TF Input \#2" on cabie labels; p/o, AN, \#2 on cable labels; p/o, an, Radio Recelving Set, Type No. AN/FRR-28.												
w12-5	CABLE ASSEMBLY, RADIO FREQUENCY: JAN, Radio Frequency Cable, Type No. Ra-11/0, coaxial, ${ }^{\text {chacteristic } 1 \text { mpedance, } 4,000 \mathrm{v}}$ rms max operating voltage, single copper wire, tinned finish, polyethylene dielectric, 0. 285 in. OD, single shield, copper, plain finish, rd shape, 0.405 in. 1 n . 1 g over-all, assy 91 n . 1 g excluding terminations; Connector Plug, Navy, Type No. ${ }^{-49190 \text {, }}$ end; marked WW5", "Rec. \#1 EXT BFO" and "VMO BFO Out. J9" on cable labels; p / o, AN, Radio Recelving Set, Type No AN/FRR-28.	necting cable		${ }^{\text {N16-C-11636- }}$		nRCO Spec No. 231 NRCO Dwg No. B1104178-4	W12-5	1					
W12-6	CABLE ASSEMBLY, RADIO FREQUENCY: JAN, Radio Frequency Cable, Type No. Raracteristic impedénce, 4,000v rms max operating voltage, single conductor, 7 strands, No. 26 AWG, copper wire, tinned finish, polyethylene dielectric, 0.285 in. OD, single shield, copper, plain finish, rd shape, 0.405 in . dia, in. 1 g over-all, assy 1 ft 1 g excluding terminations; Cinnec Navy, Type No. -49190, 2(P3-11 and P2-8), iocated one ea end 3 marked "W6", "Rec. \#2 EXT EPO" and "VMO BRO Out. JII" on cable labels, p/o, AN, Radio Receiving Set, Type No. AN/FRR-28.	Out. J11" connecting cable		$*=16-\mathrm{C}-11633-4021$		nRCO ${ }^{5 p p e c}$ No. 231 NRCO DVg No. B1104178-5	$\left\lvert\, \begin{aligned} & \text { W12-6 } \\ & \text { w12-7 } \end{aligned}\right.$	2					
w12-7	Same as W12-6 oxcept 1 ncl P3-7 and cable labels.	necting cable											
	*NOTE: Not furnished as a maintensnce part. If fallure occurs, the item cannot be repaired or fabricated.												

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

table 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part and DESCRIPTION	FUNCTION	JAN AND (NAVY TYPE)NO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO } \end{aligned}$STOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		TOTALPER EquIP.	o 2 z \mathbf{z} \underline{E}	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { OERR } \end{aligned}$		stock	
SESIG.										$\left\lvert\, \begin{aligned} & \text { x } \\ & \text { ö } \end{aligned}\right.$	$\left\lvert\, \begin{array}{l\|} z_{1} \\ z_{0} \end{array}\right.$	$\begin{aligned} & x \\ & \mathbf{o} \\ & \mathbf{\infty} \end{aligned}$	$\begin{aligned} & \dot{i} \\ & \mathbf{u} \\ & 0 \end{aligned}$	$\stackrel{\times}{\infty}$	¢
$\begin{aligned} & X I 3-1 A \\ & (\text { cont }) \end{aligned}$	hex nub and 3 plain washers; p/o, Dial Light Co of America, Pilot Light, Part No. 67B161; p/o XI3-1.														
XI3-18	LENS, INDICATOR LIGHT: lens data, clear, $3 / 4 \mathrm{in}$. dia, convex type, glass, frosted back; over-all dim., $7 / 8$ in. dia, 19/32 in. deep, glass, frosted back; mounted, bezel, brass, chrome plated fin1sh; mounting data, slotted-push-on type mounting, dim. of bezel, $7 / 8 \mathrm{in}$. dia, $7 / 16$ in. deep; inci red color disk; p/o, Dial Light Co of America, P1lot Light, Part No. 67B161; p/o XI3-1.	Lens for XI3-1		$\underset{481}{\mathrm{~N} 17-\mathrm{L}-250666-}$	DLC Part No. 65-161	NRCO DWg No. A1104193	$\begin{aligned} & \text { XI3-1B } \\ & \text { XI3-2B } \\ & \times 19-1 B \\ & \times I 10-1 B \end{aligned}$	4							
xI3-2	Same as XI3-1.	Pane 111 ght for 13-2													
XI3-2A	Same as XI3-1A; p/o XI3-2.	Body for XI3-2													
XI3-2B	Same as XI3-18; p/o XI3-2.	Lens for XI3-2													
XI9-1	Same as XI3-1.	Panel light for I9-1													
XI9-1A	Same as XI3-1A; p/o XI9-1.	Body for XI9-1													
XI9-1B	Same as XI3-1B; p/o XI9-1.	Lens for XI9-1													
xI10-1	Same as XI3-1.	Panel light for 110-1													
XIIO-1A	Same as XI3-1A; p/o XIIO-1.	Body for XIIO-1													
XIIO-1B	Same as XI3-1B; p/o XIIO-1.	Lens for XIIO-1													
XR10-14	LAMPHOLDER: single holder; accommodates candelabra screw base lamp, MBCA Ref Dwg Group 7; 125v max, 75 W ; brass socket; over-all dim. (incl terminals and mounting bracket), $1-1 / 21 \mathrm{n} .1 \mathrm{~g}, 1-1 / 4 \mathrm{in}$. wide, $1 / 2$ in. h1gh; ${ }^{2}$ terminals, solder lug type; "v" bracket w/ mounting tongues for mounting; socket insulated from mounting bracket; for general purpose use.	$\begin{aligned} & \text { Socket for } \\ & \text { R10-14 } \end{aligned}$		$\begin{gathered} \text { N17-L-50843- } \\ 5351 \end{gathered}$	$\begin{array}{ll} \text { DLC } & \text { Part } \\ \text { No. } 615 \end{array}$	NRCO Dwg No. Al10446	$\left\|\begin{array}{ll} \mathrm{XR} 10 & -14 \\ \mathrm{XR} 10-15 \end{array}\right\|$	2							
XR10-15	Same as XR10-14.	ocket for R10-15													
xv2-1	SOCKET, ELECTRON TUBE: 7 contacts, beryilium, silver plated; miniature size; includes metal shock shield, $51 / 64 \mathrm{in}$. dia, $3 / 4 \mathrm{in}$. high; includes center shield, $1 / 8$ in. dia; oval shape; over-all dim. excluding terminals, $1-1 / 8 \mathrm{in}$. 1 g , $3 / 4 \mathrm{in}$. wide, $1 / 4 \mathrm{in}$. deep; ceramic body; molded in mounting plate, $5 / 8$ in. dia chassis hole, 2 mounting	Socket for v2-1	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { S-28A, JAN } \\ & \text { Type No. } \\ & \text { TS102COi } \end{aligned}$	$\begin{gathered} \text { N16-S-62603- } \\ 6676 \end{gathered}$	EBY Part No. 103 M		$\begin{aligned} & \mathrm{XV} 2-1 \\ & \mathrm{XV} 2-2 \\ & \mathrm{XV} 2-6 \\ & \mathrm{XV} 2-7 \\ & \mathrm{XV} 2-9 \\ & \mathrm{XV} 2-10 \\ & \mathrm{XV} 2-11 \\ & \mathrm{XV} 2-11 \\ & \mathrm{XV} 2-12 \\ & \mathrm{XV} 2-13 \\ & \mathrm{XV} 2-14 \end{aligned}$	13							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND OESCRIPTION	function	JAN AND (NAVY TYPE)NO.	FEDERAL AND (SIGNAL CORPS) stock No.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR.S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\left.\begin{array}{\|c\|c\|} \text { TOTAL } \\ \text { PER } \\ \text { EOUP } \end{array} \right\rvert\,$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
SE916.									$\underset{\sim}{2}$	惹	安	$\left\|\begin{array}{l} x \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \text { z } \\ & \text { za } \end{aligned}$	$\stackrel{\times}{\infty}$	c
$\begin{aligned} & \mathrm{xv2}-1 \\ & (\text { cont }) \end{aligned}$	holes, 0.128 d 1 a ; for general purpose use.						$\begin{aligned} & \text { xv2-15 } \\ & \text { xV2-18 } \\ & \text { xv2-20 } \end{aligned}$								
xv2-2	Same as XV2-1.	Socket for v2-2													
xv2-3	SOCKET, ELECTRON TUBE: 8 contacts, phosphor bronze, silver plated; octal; rd; over-all dim. excluding terminals, $1-13 / 161 \mathrm{n}, \mathrm{lg} ; 1-3 / 16$ in. wide, $1 / 2 \mathrm{in}$. deep; mica fllled bakelite; one plece saddle mounting, $1-1 / 81 \mathrm{n}$. chassis hole, 2 mounting holes, 0.144 in . dia, spaced $1-1 / 2 \mathrm{in}$. C to C ; for general purpose use.	Socket for v2-3	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { S-28A, JAN } \\ & \text { Type No. } \\ & \text { TS101COi } \end{aligned}$	$\begin{gathered} \text { N16-S-63529- } \\ 1961 \end{gathered}$	CIN Part		$\left\|\begin{array}{l} \text { xV2-3 } \\ \text { xV2-17 } \\ \text { xV2-19 } \end{array}\right\|$	3							
xy2-4	SOCKET, ELECTRON TUBE: 7 contacts, beryllium, silver plated; miniature size; includes metal shock sh1eld, excludes center shield; oval shape; over-all dim. excluding terminals, $1-1 / 8 \mathrm{in}$. $1 \mathrm{~g}, 3 / 4$ 1 n . wide, $1 / 41 \mathrm{n}$. deep; ceram1c body; molded in mounting plate, $5 / 8 \mathrm{in}$. dia chassis hole, 2 mounting holes, 0.128 in . dia, spaced $7 / 8 \mathrm{in}$. C to C ; for general purpase use.	Socket for v2-4	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { S-28A, JAN } \\ & \text { Type No. } \\ & \text { TS102POI } \end{aligned}$	$\begin{gathered} \text { N16-S-62603- } \\ 6692 \end{gathered}$	EBY Part No. 102M w/o center-sh1eld		xv2-4	1							
xv2-5	SOCKET, ELECTRON TUBE: 7 contacts, beryillum, silver plated; miniature size; includes metal shock shield, $51 / 64 \mathrm{in}$. dia, $3 / 4 \mathrm{in}$. high; includes center shield; oval shape; over-all dim. excluding terminals, $1-1 / 8 \mathrm{in}$. $1 \mathrm{~g}, 3 / 4 \mathrm{in}$. wide, $1 / 41 \mathrm{n}$. deep; molded in mounting plate, 5/8 1 n . dia chassis hole, 2 mounting holes, 0.128 1 n . dia; for general purpose use.	Socket for v2-5	$\begin{aligned} & \text { Spec No. JAN- } \\ & \text { S-28A, JAN } \\ & \text { Type No. } \\ & \text { TSE7T10i } \end{aligned}$	$\begin{gathered} \text { N16-S-62603- } \\ 6692 \end{gathered}$	EBY Part No. 102M		XV2-5	1							
xv2-6	Same as XV2-1.	Socket for va-6													
xv2-7	Same as XV2-1.	Socket for v2-7													
xv2-8	SOcKET, ELECTRON TUBE: 9 contacts, beryllium copper, silver plated; miniature size base; incl metal shock shield, 0.9401 n . dia, $5 / 8$ in. high; incl center shield, $3 / 16$ 1n. OD; cylindrical shape w/ oval mounting flange; over-all dim. excluding terminals, $1-3 / 8 \mathrm{in}$. 1 g , 0.940 in . Wide, $27 / 32 \mathrm{in}$. high incl base shield excl term; mica fllled phenolic body; one piece saddle top mounting, mounting dim., $3 / 4$ in. dia chassis hole required, in. dia chassis hole required, 2 mounting holes, 0.125 in . dia, spaced $1-1 / 81 \mathrm{n}$. C to C ; center shield, brass, cadmilum plated,	Socket for v2-8		$\begin{gathered} \text { N16-S-64063- } \\ 6709 \end{gathered}$	ELCP Part No. 169BC	NRCO Dwg No. A110450	$\left\lvert\, \begin{aligned} & \text { xv2-8 } \\ & \text { XV3-9 } \\ & \text { XV3-10 } \end{aligned}\right.$	3							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

6Zl-8

8-130
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNGTION		\square	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGRR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTAL } \\ \text { PERE } \\ \text { EQUP. } \end{array}$	$\begin{aligned} & \dot{o} \\ & z \\ & z \\ & \mathbf{z} \\ & \underline{z} \end{aligned}$	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DERR } \end{aligned}$		stock	
OESIG.			JAN AND (navy typeino.							区্め	$\begin{array}{\|l\|} z_{a} \\ z_{0} \end{array}$	$\left\|\begin{array}{l} x \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { z } \\ & \stackrel{y}{0} \end{aligned}$	-	2
xv3-2	Same as XV3-1.	Socket for v3-2													
xv3-3	Same as XV3-1.	Socket for V3-3													
xv3-4	Same as XV3-1.	Socket for V3-4													
xv3-5	Same as XV3-1.	Socket for V3-5													
xv3-6	Same as XV3-1.	Socket for V3-6													
xv3-7	Same as XV3-1.	Socket for V3-7													
xv3-9	Same as XV2-8.	Socket for V3-9													
xv3-10	Same as XV2-8.	Socket for V3-10													
xv3-11	Same as XV3-1.	Socket for V3-11													
xv3-12	Same as XV3-1.	Socket for v3-12													
xv9-1	SOCKET, ELECTRON TUBE: 8 contacts, phosphor bronze, silver plated; octal; oval shape; over-all dim. excluding terminals, $1-25 / 32$ in. $\mathrm{lg}, 1-1 / 4 \mathrm{in}$. Wide, $1 / 2 \mathrm{in}$. h1gh; mica filled phenolic body; l plece saddie mounting, $1-1 / 8 \mathrm{in}$. dia chassis hole required, 2 mounting holes, No. 4-40 tap, spaced 1-1/2 in. C to C; saddle steel, cadmlum plated; for general purpose use.	Socket for v9-1		$\begin{aligned} & \text { N16-S-63519- } 1931 \\ & (228678.16) \end{aligned}$	CIN Part No. 9881	NRCO Dwg No. Al10443	xv9-1 xv9-2 XV9-3 xv9-4 XV9-5 XV10-1 XV10-2 XV10-4 XV10-5 xV10-6 XV10-7 XV10-8	12							
xv9-2	Same as XV9-1.	Socket for v9-2													
xv9-3	Same as XV9-1.	Socket for v9-3													
xv9-4	Same as XV9-1.	Socket for V9-4													
xv9-5	Same as XV9-1.	Socket for V9-5													
xv10-1	Same as XV9-1.	Socket for v10-1													
xv10-2	Same as XV9-1.	Socket for vio-2													
xv10-4	Same as XV9-1.	Socket for VlO_{4}													
xv10-5	Same as XV9-1.	Socket for vio-5													
xv10-6	Same as XV9-1.	Socket for V10-6													
xv10-7	Same as XV9-1.	Socket for V10-7													
xv10-8	Same as XV9-1.	Socket for V10-8													
Xv10-10	LAMPHOLDER: single holder; accommodates miniature bayonet base lamp, MBCA Ref Dwg Group 7; 125v max, 75 W ; brass socket; gver-all dim. Incl terminals at 60° to ea other, 1-13/32 1n. lg, 25/32 1n. wide, $25 / 321 \mathrm{n} . \mathrm{h} 1 \mathrm{gh} ; 2$ terminals,	$\begin{aligned} & \text { Socket for } \\ & \text { v10-10 } \end{aligned}$		$\begin{gathered} \text { N17-L-51625- } \\ 3285 \end{gathered}$	DLC Part No. 705	NRCO Dwg No. All0449	$\left\|\begin{array}{ll} \mathrm{x} v 10-10 \\ \mathrm{x}, 10-11 \end{array}\right\|$	2							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

$\stackrel{\infty}{i}$

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									Spare parts						
	name of part and OESCRIPTION	function.	JAN AND (NAVY TYPE)NO	federal and (SIGNAL CORPSSTOCK NO.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.	SYMBOL DESIG. INVO	$\begin{array}{\|c\|} \text { YOTAL } \\ \text { PER } \\ \text { EOIP. } \end{array}$	알	Equip.		$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		srock	
OESIG.									$\underset{\sim}{2}$	惹	$\begin{aligned} & \dot{2} \\ & \dot{u} \\ & \dot{0} \end{aligned}$	$\left\|\begin{array}{l\|} \underset{\sim}{x} \\ 0 \\ \hline \end{array}\right\|$	$\begin{aligned} & \dot{2} \\ & \stackrel{y}{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \times \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{y}{*} \end{aligned}$	2
XY3-18	Same as XY3-15.	$\begin{aligned} & \text { Socket for } \\ & \text { Y3-18 } \end{aligned}$													
${\underset{A}{x y} 3-18}^{2}$	Same as XY3-15A; p/o E3-48.	Adaptor socket for XY3-18													
xY3-19	Same as XY3-15.	$\begin{aligned} & \text { Socket for } \\ & \text { Y3-19 } \end{aligned}$													
$\underset{A}{x y 3-19}$	Same as XY3-15A; p/o E3-48.	Adaptor socket for XY3-19	,												
Y2-7	CRYSTAL UNIT QUARTZ: 1 erystal plate included; $3,500 \mathrm{kc}$ nominal frequency, 2 contacts, located on bottom, spaced 0.350 in . ${ }^{C}$ to C , solder lug type, 0.1101 n . wide, 0.315 in .1 g, rectangular shaped body, d1m., $0.740 \mathrm{in} .1 \mathrm{~g}, 0.625 \mathrm{in}$ wide, 0.335 in . thick; air gap not ad justable; hermetically sealed; $\pm 0.005 \%$ tolerance, stability 2 parts per million per ${ }^{\circ} \mathrm{C}$, crystal plate etched; p / o, AN, Rad10 Rece1ver, Type No. R-450/FRR-28.	$\begin{aligned} & 3.5 \mathrm{mc} \text { oscilla- } \\ & \text { tor crystal } \end{aligned}$		N16-C-96966-	BLY Type No. VX2		Y2-7	1							
y2-8	CRYSTAL UNIT, QUARTZ: 1 crystal plate included; 455 kc nominal frequency; Bliley Electric Co, Crystal Holder, Type No. VX4, 2 pins, located on bottom, spaced $1 / 2$ in. C to C, solid type, $1 / 16$ in. \max dia, $1 / 4 \mathrm{in}$. 1g, rectangular shape body w / rounded ends, cadinium plated steel container, dim. excluding pins, 3/4 1 n . $1 \mathrm{~g} ; 11 / 16 \mathrm{in}$. wide, $5 / 16 \mathrm{in}$. th1ck; a1r gap not adjustable; self supporting, pigtail ground lead from top of container and one pigtall lead from ea pin; ± 50 cycles tolerance at $20^{\circ} \mathrm{C},-$ crystal plate etched, temp data, $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}, 0.016 \%$ per deg C max frequency deviation; p / o AN Radio Receiver, Type No. R-450/FRR-28.	455 kc IF f1lter crystal		$\begin{gathered} \text { N16-C-96420- } \\ 1376 \end{gathered}$	BLY Type No. VX4	,	Y2-8	1							
Y3-1	CRYSTAL UNIT, QUARTZ: 1 crystal plate included; 100 kc nominal frequency; 2 pins, located on bottom, spaced $31 / 64 \mathrm{in}$. C to C , solid type, $3 / 32 \mathrm{in}$. dia, $1 / 2 \mathrm{in}$. 1 g , cylindrical shape body, metal, bakelite base, dim. excluding pins, 1 in . d1a, $1-1 / 2 \mathrm{in}$. h1gh, marked "TYPE-PL-100"; a1r gaps not adjustable; red body; $\pm 0.0025 \%$ nominal frequency toTerance; p / o, AN Radio Frequency oscillator, Type No. 0-165/UR.	100 kc callbrator oscillator crystal		$\underset{8825}{\text { N16-C-96176- }}$	PCL Type No. PLlOO	NRCO Dwg No. AllO4124	Y3-1	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS

PARTS									SPARE PARTS						
	NAME OF PART AND DESCRIPTION	FUNGTION	JAN AND (NAVY TYPEINO.	$\begin{aligned} & \text { FEDERAL AND } \\ & \text { (SIGNAL CORPS) } \\ & \text { STOCK NO. } \end{aligned}$	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR'S } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR DRAWING AND PART NO.		$\begin{array}{\|l\|l\|} \text { TOTALAL } \\ \text { PER } \\ \text { EQUIP. } \end{array}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
OESIG.									$\begin{aligned} & z \\ & \mathbf{z} \\ & \mathbf{w} \end{aligned}$	$\left.\begin{array}{\|l} \mathrm{x} \\ \mathrm{\infty} \end{array} \right\rvert\,$	$\left.\begin{aligned} & z_{1} \\ & \vdots \\ & \mathbf{0} \end{aligned} \right\rvert\,$	$\left.\begin{array}{\|l\|} x \\ 0 \\ \infty \end{array} \right\rvert\,$	$\left\|\begin{array}{l} \dot{z} \\ \mathbf{u} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \mathbf{x} \\ \mathbf{\infty} \end{array}\right\|$	立
22-1	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, l melamine capacitor, 1 inductance form having two (2) windings, 1 powdered 1 ron tuning slug, 1 variable tuning capacitor, 1 ceramic mounting base, 6 silver plated brass contacts; over-all dim., $2-1 / 16 \mathrm{in} .1 \mathrm{~g}, 1-$ $1 / 4$ in. wide, 21 n . high; spring clip mounting straps; soldered connections moisture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Recelver, Type No. R-450/FRR-28.	0.54 to 1.35 mc tuned circuit input to V2-1		$\begin{gathered} \text { N17-T- } \\ 3884 \end{gathered}$	HMM Part No. 31387		Z2-1	1							
z2-2	TRANSFORMER, RADIO FREQUENCY: principal parts $\mathrm{c} / \mathrm{o}, 1$ melamine capacitor, 1 inductance form having two (2) windings, 1 powdered 1 ron tuning slug, 1 variable tuning capacitor, 1 ceramic mounting base, 6 silver plated brass contacts; over-all dim., $2-1 / 16 \mathrm{in}$. $\lg , 1-1 / 41 n$. wide, 21 n . high; 2 spring clip mounting straps; soldered connections molsture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Receiver, Type No. R-450/FRR-28.	1.35 to 3.45 mc tuned circuit input to V2-1		$\begin{gathered} \text { N17-T-82181- } \\ 1179 \end{gathered}$	HMM Part No. 31390		z2-2	1							
z2-3	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 2 mica capacitors, 1 inductance form with two (2) windings, 1 powdered 1 ron tuning slug, 1 variable tuning capacitor, 1 ceramic mounting base, 6 silver plated brass contacts; over-all dim., $2-1 / 16 \mathrm{in}$. $\mathrm{lg}, 1-$ $1 / 4 \mathrm{in}$. wide, 2 in . high; 2 spring clip mounting straps, soldered connections moisture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Receiver, Type No. R $450 /$ FRR-28.	3.45 to 7.4 me tuned c1rcuit input to V2-1		$\underset{3884}{\mathrm{~N} 17-\mathrm{T}-82187-}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31393 \end{aligned}$		Z2-3	1			\hat{i}				
22-4	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 2 mica capacitors, 1 inductance form with two (2) windings, 1 powdered 1 ron tuning slug, 1 variable tuning capacitor, 1 ceramic mounting base, 6 silver plated brass contacts; over-all dim., 2-1/16 $\mathrm{in} .1 \mathrm{~g}, 1-$	$\begin{aligned} & 7.4 \text { to } 14.8 \\ & \text { tuned c1rcu1t } \\ & \text { input to v2-1 } \end{aligned}$.	$\begin{gathered} \mathrm{N} 17-\mathrm{T}-82199- \\ 3884 \end{gathered}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } \\ & \hline 131396 \end{aligned}$		z2-4	1							

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									SPARE PARTS						
	name of part ano DESCRIPTION	function		FEDERAL AND (SIGNAL CORPS) stock No.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFRR's } \\ & \text { DESIGNATION } \end{aligned}$	CONTRACTOR ORAWING AND PART NO.		$\begin{aligned} & \text { TOTAL } \\ & \text { PER } \\ & \text { EQUIP. } \end{aligned}$	- Equip.			$\begin{aligned} & \text { TEN- } \\ & \text { DER } \end{aligned}$		stock	
			JAN AND (NAVY TYPE)NO.						$\underset{\sim}{2}$	希	$\left\|\begin{array}{l} \dot{z} \\ \mathbf{u} \\ \mathbf{a} \end{array}\right\|$	$\begin{array}{l\|} \times \\ \stackrel{x}{\infty} \\ \hline \end{array}$	2	$\left.\begin{array}{\|l\|} \mathrm{x} \\ \mathbf{\infty} \end{array} \right\rvert\,$	ż
$\left\lvert\, \begin{aligned} & 22-4 \\ & (\operatorname{con} t) \end{aligned}\right.$	1/4 in. wide, 21 in . h1gh; 2 spring clip mounting straps; soldered connections mo1sture and fungus proofed; used as tuning assembly in conjunction w1th a 6BA6 tube; p/o, AN Radio Receiver, Type No. R-450/FRR-28.														
$22-5$	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 1 mica capacitor, 1 ceramic capacitor, 1 inductance form with two (2) windings, 1 powdered 1 ron slug, 1 variable tuning capacitor, 1 ceramic mounting base, 5 silver plated brass contacts; over-all dim., $2-1 / 16 \mathrm{in}$. $1 \mathrm{~g}, 1-1 / 41 \mathrm{n}$. wide, 21 n . high; 2 spring clip mounting straps; soldered connections mo1sture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Recelver, Type No. R-450/FRR-28.	14.8 to 29.7 mc tuned circuit input to V2-1		$\begin{array}{\|c} \text { N17-T-82208- } \\ 5901 \end{array}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31399 \end{aligned}$		22-5	1							
22-6	TRANSFORMER, RADIO FREQUENCY: pr1ncipal parts c/o, 1 mica capacitor, 1 ceramic capacitor, 1 inductance form with two (2) windings, 1 powdered iron slug, 1 variable tuning capacitor, 1 ceramic mounting base, 5 sllver plated brass contacts; over-all dim., $2-1 / 16$ $1 \mathrm{n} . \lg , 1-1 / 4 \mathrm{in}$. wide, 21 n . high; 2 spring clip mounting straps; soldered connections moisture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Receiver, Type No. R-450/ FRR-28.	29.7 to 54.0 mc tuned circuit input to V2-1		$\underset{8384}{\mathrm{~N} 17-\mathrm{T}-82212-}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31405 \end{aligned}$		22-6	1							
z2-8	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 1 melamine capacitor, 2 carbon resistors $1 / 2 \mathrm{~W}$, 1 coll form with two (2) windings, 1 powdered 1 ron slug, 1 variable tuning capacitor, 1 ceramic mounting base, 5 silver plated brass contacts; over-all dim., $2-1 / 16$ $1 \mathrm{n} .1 \mathrm{~g}, 1-1 / 4 \mathrm{in}$. wide, 2 in . high; 2 spring clip mounting straps; soldered connections mo1sture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p / o, AN Rad1o Receiver, Type No. R-450/ FRR-28.	0.54 to 1.35 mc tuned circuit input to V2-2		$\begin{gathered} \text { N17-T-82166- } \\ 3879 \end{gathered}$	HMM Part No. 31386		$\begin{aligned} & \text { z2-8 } \\ & 22-15 \end{aligned}$	2							
22-9	TRANSFORMER, RADIO FREQUENCY: princ1pal parts c/o, 1 melamine capacitor, 2 carbon resistors $1 / 2 \mathrm{~W}$, 1 coll form with two (2) windings,	1.35 to 3.45 mc tuned circuit input to V2-2		$\underset{1174}{\substack{\text { N17-T } \\ \\ \hline \\ \hline}}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } \\ & \hline \end{aligned}$		$\begin{gathered} 22-9 \\ 22-16 \end{gathered}$	2							

parts									spare parts					
	NAME of part anddescription	FUNGTION	JAN AND	$\begin{aligned} & \text { FEOERAL AND } \\ & \text { (SIGNALCORPS) } \\ & \text { STOCK NO. } \end{aligned}$	MFGR AND MFGR'S DESIGNATION	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { DRAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\begin{aligned} & \text { TOTAL } \\ & \text { PPRR } \\ & \text { EQUIP. } \end{aligned}$	EOU				stock	
Stesic.										$\begin{array}{\|l\|l\|} \mathrm{x} \\ \hline \end{array}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\infty}{2} \end{aligned}$	玄
$\left.\begin{array}{\|l\|l} z 2-9 \\ (\operatorname{cont}) \end{array}\right)$	1 powdered 1 ron slug, 1 variable tuning capacitor, 1 ceramic mountng base, 5 silver plated con- tacts; over-all dim., $2-1 / 16$ in $1 \mathrm{~g}, 1-1 / 41 \mathrm{n}$. wide, ${ }^{2} \mathrm{in}$. high; ${ }^{2}$ spring clip mounting straps; so1dungus proofed; used as a tuning fund assembly in confunction with a 6BA6 tube; P / O, AN Rad 11 Receiver, Type No. R- 450 /PRR-28.													
z2-10	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 2 mica capac1tors, 2 carbon resistors $1 / 2 \mathrm{~W}, 1$ powdered iron slug, 1 variable tuning capacitor, 1 ceramic mounting base, 5 sllver plated con$1 \mathrm{~g}, 1-1 / 4 \mathrm{in}$. wide, 2 in . h1gh; 2 spring clip mounting straps; sol- dered connections molsture and fungus proofed; used as a tuning assembly in conjunction with a 6BA6 tube; p/o, AN Radio Receiver Type No. R-450/FRR-28.	3.45 to 7.4 mc tuned circuit input to V2-2		$\underset{\substack{\text { N17-T-82187- } \\ 3879}}{ }$	HMM Part No. 31392		$\begin{aligned} & \text { z2-10 } \\ & 22-17 \end{aligned}$	2						
z2-11	TRANSFORMER, hndio FREQUENCY: prin cipal parts $c / 0,2$ mica capac1- tors, 2 carbon resistors $1 / 2 \mathrm{~W}$, coil form with two (2) windings, 1 powdered iron slug, 1 variable tuning capacitor, 1 ceramic mounting base, 5 silver plated contacts; over-all dim., $2-1 / 16 \mathrm{in}$. $\mathrm{lg}, 1-1 / 4 \mathrm{in}$. w1de, $2 \mathrm{in} . \mathrm{h} 1 \mathrm{gh} ; \mathrm{a}$ spring clip mounting straps; soldered connections mo1sture and rungus proofed; used as a tuning 6BA6 tube; P / O, AN Rad1o Receiver, Type No. R-450/FRR-28.	7.4 to 14.8 mc tuned circuit input to v2-2		$\begin{aligned} & \text { N17-T-82199- } \\ & 3879 \end{aligned}$	HMM Part No. 31395		$\begin{aligned} & z 2-11 \\ & 22-18 \end{aligned}$	2						
z2-12	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 1 mica capaci windings, 1 powdered 1 ron slug, variable tuning capacitor, 1 ceramic mounting base, 5 s11ver plated contacts; over-all dim.,' in. high; 2 spring clip mounting straps; soldered connections molsture and fungus proored; used as a tuning assembly in conjunc- tion with a 6BA6 tube; p / o, AN Radio Recelver, Type No . $\mathrm{R}-450$ / FRR-28.	14.8 to 29.7 mc tuned circuit 1nput to $\mathrm{V} 2-2$		$\begin{gathered} \text { N17-T-82208- } \\ 5895 \end{gathered}$	HMM Part No. 31398		$\begin{aligned} & z 2-12 \\ & 22-19 \\ & 22 \end{aligned}$	2						

TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

PARTS									spane parts				
	NAME OF PART AND oEs CRIPTION	function		FEDERAL AND SIGNAL CORPS stock no.	$\begin{aligned} & \text { MFGR. AND } \\ & \text { MFGR } \\ & \text { DESIGNATION } \end{aligned}$	$\begin{aligned} & \text { CONTRACTOR } \\ & \text { DRAWING AND } \\ & \text { PART NO. } \end{aligned}$		$\left\lvert\, \begin{aligned} & \text { TOTAL } \\ & \text { PERE } \\ & \text { EOUIP. } \end{aligned}\right.$	Eouls		TEN-		stock
SYMBol oEsig.			(NAVYN AND						$\left\|\begin{array}{l} x \\ z \\ w \\ w \end{array}\right\|$	区	$\stackrel{x}{\circ}$	$\dot{\text { x }}$	¢ \times ¢
$\begin{aligned} & 22-26 \\ & (\text { cont) } \end{aligned}$	tacts; over-all dim., $2-1 / 16 \mathrm{in}$. $\mathrm{lg}, 1-1 / 41 \mathrm{n}$. w1de, 21 n . high; soldered connections mo1sture and fangus proofed; used as a tuning assembly in conjunction w1th a 6 C 4 tube; p/o, AN Rad1o Rece1ver, Type No. R-450/FRR-28.												
z2-27	TRANSFORMER, RADIO FRRQUENCY: principal parts $\mathrm{c} / \mathrm{o}, 2$ mica capac1 tors, 1 coll form with two (2) windings, 1 powdered iron slug, 1 variable tuning capacitor, ceramic mounting base, 5 511 ver plated contacts; over-all d1m., $2-1 / 161 \mathrm{n},{ }^{1 \mathrm{~g},} 1-1 / 4 \mathrm{in}$. Wide, ${ }^{2}{ }^{2}$ in. high; ${ }^{2} \mathrm{spring}$ clip mounting straps; soldered connections mo1sture and fungus proofed; used as a tuning assembly in conjunction with a 6C4 tube; p/o, AN Radio Recelver, Type No. R-450/ FRR-28.	HP obcillator 3.45 to 7.4 mc tuned olrcuit		$\underset{3874}{\text { N17-T-82187- }}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31391 \end{aligned}$		z2-27	1					
z2-28	TRANSFORMER, RADIO FRRQUENCY: principal tors, 1 ceramic capacitor, 1 coll form, with two (2) windings, 1 powdered iron slug, 1 variab tounting base, 5 silver plated contacts; $2-1 / 16 \mathrm{in} .1 \mathrm{~g}, 1-1 / 4$ in. wide, connections molsture and fungus proofed; used as a tuning assembly in conjunction wion 6C4 tube; p/o, AN Rad1o Re Type No. R-450/FRR-28.	HF oscillator 7.4 to 14.8 mc tuned circuit		${ }^{\mathrm{N} 17-\mathrm{T}-82199-1}-$	HMM Part No. 31394		z2-28	1					
z2-29	TRANSFORMER, RADIO FREQUENCY: principal parts c/o, 2 mica capaciform with two (2) windings, 1 powdered iron slug, 1 varic mounting base, 5 silver plated contacts; over-all dim.,' $2-1 / 16$ high; 2 spring clip mounting straps; soldere molsture and fungus proored; used as a tuning assembly in conjuncRadio Receiver, Type No. R-450/ FRR-28.	hP oscillator 14.8 to 29.7 mc tuned circuit		$\underset{5891}{\mathrm{~N} 17-\mathrm{T}-82208-}$	$\begin{aligned} & \text { HMM Part } \\ & \text { No. } 31397 \end{aligned}$		22-29	1					
z2-30	TRANSFORMER, RADIO FREQUENCY: principal parts $\mathrm{c} / \mathrm{o}, 2$ mica capac1windings, 1 powdered 1 ron slug, 1 variable tuning capacitor,	HF oscillator 29.7 to 54.0 mc tuned circuit		$\left.\right\|_{817-\mathrm{T}-82212-} ^{\mathrm{N37} 4}$	$\begin{array}{\|l\|} \text { HMM Part } \\ \text { No. } 31403 \end{array}$		z2-30	1					

$8 \varepsilon l-8$
TABLE 8-4. COMBINED PARTS AND MAINTENANCE PARTS LIST

JAN (OR AWS) DESIGNATION	$\begin{aligned} & \text { KEY } \\ & \text { SYMBOL } \end{aligned}$	JAN (OR AWS) DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN (OR AWS) DESIGNATION	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	JAN (OR AWS) DESIGNATION	$\begin{aligned} & \text { KEY } \\ & \text { SYMBOL } \end{aligned}$
CC20CJ070F	C2-12	RC20BF 100 K	R2-42	RC20BF474K	R2-78	TSE7T101	XV2-5
CC20HJ150J	C2-15	RC20BF101K	R3-7	RC20BF510J	R2-7	TS101C02	XV2-3
CC21UJ070C	C2-79	RC20BF 102 K	R2-4	RC20BF511J	R2-5	TS102C02	XV2-1
CC21UJ120J	C2-88	RC20BF102M	R9-1	RC20BF513J	R10-18	TS102P01	XV2-4
CC21UJ510F	C2-92	RC20BF103J	R2-2	RC20BF514J	R10-20	TS103P01	XV2-16
CC26SL101K	C2-141	RC20BF103K	R2-117	RC20BF681K	R2-79	TS102U01	E2-61
CE33D200R	C2-161	RC20BF103M	R9-8	RC20BF681M	R2-111	TS102U02	E2-65
CE63D100H	C2-128	RC20BF 104 K	R2-34	RC20BF682K	R2-28	TS102U03	E2-64
CM20B100K	C2-83	RC20BF104M	R9-17	RC20BF683K	R2-86	OA2	V2-18
CM20B101J	C2-167	RC20BF105K	R2-60	RC20BF750J	R2-113	OC3	V9-5
CM20B101K	C2-164	RC20BF112J	R2-46	RC20BF823J	R2-95	12AU7	V2-8
CM20B101M	C9-4	RC20BF120J	R3-33	RC20BF824K	R10-41	5R4GY	V2-19
CM20C101G	C2-18	RC20BF124J	R2-87	RC20BF913J	R3-62	5W4	V3-8
CM20C101K	C2-165	RC20BF 124 K	R3-1	RC30BF102K	R3-2	5Y3-GT	V3-8A
CM20C111G	C10-2	RC20BF151J	R2-27	RC30BF103K	R2-120	6AL5	V2-14
CM20C121G	C2-87	RC20BF 153 K	R10-36	RC30BF104K	R10-17	6AQ5	V3-4
CM20C151J	C3-55	RC20BF 154 K	R10-44	RC30BF153K	R9-13	6BA6	V2-1
CM20C200J	C2-6	RC20BF163J	R2-121	RC30BF203J	R2-40	6BE6	V2-5
CM20C330J	C2-9	RC20BF183K	R2-47	RC30BF221K	R3-55	6 C 4	V3-1
CM20C510G	C2-39	RC20BF203J	R2-72	RC30BF222K	R2-59	6H6	V10-7
CM30C102G	C2-14	RC20BF222K	R2-37	RC30BF223K	R9-9	6 J 5.	V9-4
CM30C102K	C3-4	RC20BF223J	R2-96	RC30BF361J	R2-99	6 J 6	V2-4
CM30C122G	C2-85	RC20BF223K	R2-126	RC30BF471K	R3-29	6SA7	V9-2
CM30C152G	C2-11	RC20BF224K	R2-116	RC30BF563J	R2-73	6SJ7	V9-1
CM30C242J	C2-8	RC20BF240J	R2-9	RC40BF102K	R3-19	6SL7GT	V10-6
CM30C332G	C2-77	RC20BF241J	R2-10	RC40BF103K	R3-4	6SN7GT	V10-4
CM35A102K	C2-140	RC20BF243J	R3-31	RC40BF120K	R3-41	6V6	V10-2
CM35A512J	C2-143	RC20BF244J	R3-3	RC40BF153K	R3-18	6V6GT	V2-17
CM35B102M	C9-7	RC20BF273K	R2-63	RC40BF203J	R10-23		
CM35B103K	C2-166	RC20BF302J	R10-50	RC40BF511J	R1-2		
CM35B103M	C2-180	RC20BF333J	R10-16	RC40BF512J	R10-37		
CM35C103J	C3-57	RC20BF333K	R3-28	RC40BF513J	R10-22		
CP28A1EF254M	C2-137	RC20BF335K	R2-97	RC40BF563K	R3-51	NAVY TYPE NO.	symbol
CP28A1EF503M	C2-144	RC20BF471K	R3-21	RC40BF751J	R3-5		
CP53B6EF503V	C2-129	RC20BF472K	R3-20	RC40BF913J	R10-31	-49190	P2-4
RA20A1SA102AK	R2-69	RC20BF473J	R2-36	RC42BF683K	R2-129	-49192	E2-28
RC10BF514J	R2-1	RC20BF473K	R2-22	RW32G252	R2-85	-49194	J2-2

TABLE 8-6. CROSS REFERENCE PARTS LIST (Conf'd)

STANDARD NAVY STOCK NO.	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	STANDARD NAVY STOCK No.	$\begin{aligned} & \text { KEY } \\ & \text { SYMBOL } \end{aligned}$	STANDARD NAVY STOCK NO.	$\begin{aligned} & \text { SYMBOL } \\ & \text { KEY } \end{aligned}$	STANDARD NAVY STOCK NO.	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$
G41-W-2445	H2-5	N16-C-28558-1676	C2-164	N16-C-45773-8706	C10-3	N16-C-76520-3850	L2-58
G41-W-2446	H2-6	N16-C-28558-1681	C2-165	N16-C-45803-1084	C2-183	N16-C-76548-4591	L3-2
G41-W-2447	H2-7	N16-C-28563-4156	C9-4	N16-C-46339-4870	C2-173	N16-C-96176-8825	Y3-1
N16-A-16178-2415	E3-48	N16-C-28653-4321	C10-2	N16-C-46373-5764	C2-137	N16-C-96420-1376	Y2-8
N16-A-16183-9915	E3-47	N16-C-28732-5521	C2-87	N16-C-46375-7552	C9-13	N16-C-96966-7076	Y2-7
N16-C-11633-4021	W12-6	N16-C-28975-1601	C3-55	N16-C-47327-7486	C3-40	N16-D-46350-9238	12-8
N16-C-11633-5023	W12-8	N16-C-29206-5993	C2-89	N16-C-48847-7935	C10-5	N16-D-46539-3251	12-9
N16-C-11633-6346	W12-2	N16-C-29665-9476	C2-175	N16-C-49227-7935	C10-6	N16-D-46548-8725	12-6
N16-C-11633-8623	W12-4	N16-C-29864-2470	C2-93	N16-C-49227-7960	C9-3	N16-D-46548-8923	12-7
N16-C-11634-1275	W12-10	N16-C-29941-1543	C2-78	N16-C-49988-5295	C3-44	N16-D-46552-9984	12-5
N16-C-11634-2855	W12-9	N16-C-300563-799	H2-3	N16-C-53010-6070	C2-129	N16-D-901161-133	U3-2
N16-C-11634-3377	W12-3	N16-C-300798-631	H2-1	N16-C-53214-7497	C10-4	N16-D-901161-140	U3-1
N16-C-11636-4889	W12-5	N16-C-300798-868	H2-2	N16-C-59761-6276	C9-23	N16-G-402125-866	O3-9
N16-C-15753-7083	C2-79	N16-C-30172-4556	C10-13	N16-C-59823-8206	C3-49	N16-K-700295-876	E2-34
N16-C-15761-5301	C2-12	N16-C-30333-8470	C2-96	N16-C-60036-1604	C3-6	N16-K-700314-526	E3-43
N16-C-15917-3301	C3-16	N16-C-30728-1925	C2-82	N16-C-600701-165	E2-37	N16-K-700314-573	E3-37
N16-C-15957-1248	C2-88	N16-C-31079-4268	C9-24	N16-C-61523-4801	C3-1	N16-K-700374-243	E3-44
N16-C-15986-3009	C2-15	N16-C-31080-2209	C2-14	N16-C-63286-9101	C3-24	N16-K-700439-676	E2-3
N16-C-16585-6061	C2-92	N16-C-31090-4169	C3-4	N16-C-63688-2204	C2-1	N16-R-29154-6381	L3-1
N16-C-17085-7060	C2-141	N16-C-31090-4203	C2-140	N16-C-64133-6625	C3-34	N16-R-29205-3471	L2-51
N16-C-19561-3951	C2-128	N16-C-31090-4208	C2-170	N16-C-66203-4770	C2-162	N16-R-29235-6361	L9-1
N16-C-22643-8295	C2-161	N16-C-31095-6688	C9-7	N16-C-71785-6977	L2-30	N16-R-29385-7601	L2-52
N16-C-25102-6276	C3-9	N16-C-31264-8009	C2-85	N16-C-71979-5199	L2-29	N16-R-33591-1265	T2-6
N16-C-26020-7691	C3-5	N16-C-31502-2609	C2-11	N16-C-72174-9245	L2-11	N16-R-49238-811	R2-42
N16-C-26020-7796	C2-168	N16-C-31982-2289	C2-8	N16-C-72236-8001	L2-28	N16-R-49255-431	R3-33
N16-C-26025-8276	C2-83	N16-C-32013-9810	C2-150	N16-C-72431-9251	L2-10	N16-R-49257-551	R3-41
N16-C-26732-9439	C3-56	N16-C-32240-7809	C2-77	N16-C-72431-9256	L2-27	N16-R-49327-431	R2-9
N16-C-26732-9601	C2-6	N16-C-32699-4608	C3-22	N16-C-72666-4238	L2-9	N16-R-49444-431	R2-7
N16-C-27181-4401	C2-9	N16-C-32704-7088	C9-12	N16-C-72667-6871	L2-8	N16-R-49516-431	R2-113
N16-C-27439-3010	C2-95	N16-C-32720-7523	C2-143	N16-C-72680-2749	L2-47	N16-R-49580-811	R3-7
N16-C-27629-7215	C3-25	N16-C-33116-3142	C2-162A	N16-C-73328-6923	L2-48	N16-R-49624-431	R2-27
N16-C-27634-8769	C3-37	N16-C-33617-4746	C3-57	N16-C-73378-6793	L2-49	N16-R-49662-231	R3-55
N16-C-27651-1121	C2-39	N16-C-33622-5222	C2-166	N16-C-73390-5701	L3-3	N16-R-49669-431	R2-10
N16-C-28284-1722	C2-37	N16-C-33627-7705	C2-180	N16-C-73953-8363	L2-7	N16-R-49723-751	R2-99
N16-C-28415-2810	C2-91	N16-C-40105-7442	C2-102	N16-C-74289-5301	L2-53	N16-R-49769-811	R3-21
N16-C-28547-8721	C2-18	N16-C-42761-8708	C2-3	N16-C-74716-4521	L9-2	N16-R-49770-231	R3-29
N16-C-28553-1041	C3-3	N16-C-42765-5354	C10-9	N16-C-75460-6969	L2-54	N16-R-49786-431	R2-5
N16-C-28553-1196	C2-167	N16-C-44287-7160.	C2-144	N16-C-75526-3921	L2-55	N16-R-49787-171	R1-2

TABLE 8－6．CROSS REFERENCE PARTS LIST（Cont＇d）

STANDARD NAVY STOCK NO．	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	STANDARD NAVY STOCK NO．	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	STANDARD NAVY STOCK NO．	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	STANDARD NAVY STOCK NO．	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$
N16－R－49841－811	R2－79	N16－R－50515－751	R2－73	N16－R－90493－7823	R2－112	N16－T－56370	V9－1
N16－R－49843－291	R2－111	N16－R－50517－551	R3－51	N16－R－90754－2723	R3－38	N16－T－56470	V10－6
N16－R－49859－171	R3－5	N16－R－50552－811	R2－86	N16－R－90754－3621	R2－69	N16－T－56490	V10－4
N16－R－49922－811	R2－4	N16－R－50587－431	R2－95	N16－R－90901－2375	R10－28	N16－T－56756	V10－2
N16－R－49923－231	R3－2	N16－R－50614－431	R3－62	N16－R－91031－4464	R10－24	N16－T－56758	V2－17
N16－R－49923－551	R3－19	N16－R－50615－171	R10－31	N16－R－91569－8714	R3－25	N16－T－58241－34	V2－8
N16－R－49924－291	R9－1	N16－R－50633－811	R2－34	N16－R－92939－7898	R1－1	N17－B－77482－8666	E2－9
N16－R－49930－431	R2－46	N16－R－50634－231	R10－17	N16－S－117101－596	13－3	N17－B－77482－8671	E2－5
N16－R－50012－811	R2－37	N16－R－50635－291	R9－17	N16－S－117101－603	13－5	N17－B－77483－7057	E2－23
N16－R－50013－231	R2－59	N16－R－50650－431	R2－87	N16－S－117101－604	13－4	N17－B－77533－5680	E2－21
N16－R－50047－431	R10－50	N16－R－50651－811	R3－1	N16－S－34520－3852	E2－61	N17－B－77533－8524	E2－7
N16－R－50129－811	R3－20	N16－R－50678－811	R10－44	N16－S－34557－8350	E2－65	N17－B－77534－3730	E9－2
N16－R－50147－171	R10－37	N16－R－50714－811	R2－116	N16－S－34607－8400	E2－64	N17－B－77536－1126	E2－1
N16－R－50201－811	R2－28	N16－R－50722－431	R3－3	N16－S－54287－5101	XY3－15A XY3－15	N17－B－77536－6761 N17－B－77639－2210	$\begin{aligned} & \mathbf{E} 1-1 \\ & \mathbf{E} 2-2 \end{aligned}$
N16－R－50281－431	R2－2	N16－R－50822－811	R2－78 R10－20	N16－S－54524－6151 N16－S－54548－7001	XY3－15	N17－B－77639－2210 N17－B－77585－5085	E2-2
N16－R－50282－811	R2－117	N16－R－50837－431	R10－20 R2－1	N16－S－54548－6016－6676	XV2－1	N17－B－77587－8996	E10－2
N16－R－50283－231	R2－120 R3－4	N16－R－50930－811	R10－41	N16－S－62603－6692	XV2－4	N17－B－77589－2261	E2－18
N16－R－50284－291	R9－8	N16－R－50975－811	R2－60	N16－S－62603－6701	XV3－1	N17－B－77686－6753	E9－3
N16－R－50336－811	R10－36	N16－R－51110－811	R2－97	N16－S－63510－1931	XV9－1	N17－B－77691－1076	E2－19
N16－R－50337－231	R9－13	N16－R－66140－8326	R2－85	N16－S－63529－1961	XV2－3	N17－B－77692－6062	E3－6
N16－R－50337－551	R3－18	N16－R－68441－2036	R3－61	N16－S－64063－6709	XV2－8	N17－B－77738－4951	E2－13
N16－R－50344－431	R2－121	N16－R－68444－1001	R9－14	N16－S－64063－6718	XV2－16	N17－B－77788－2789	E2－20
N16－R－50354－811	R2－47	N16－R－68462－7801	R10－51	N16－S－89776－6536	L3－8	N17－B－77834－6345	E3－2
N16－R－50362－431	R2－72	N16－R－70549－2355	R3－58	N16－T－52001	V2－18	N17－B－77840－2970	E12－1
N16－R－50362－751	R2－40	N16－R－70721－1375	R3－47 R10－6	N16－T－53050	V9－5	N17－B－77841－6726 N17－B－77938－5643	E12－1
N16－R－50363－171	R10－23 R2－96	N16－R－73524－2996	R10－5	N16－T－55540	V3－8	N17－B－77983－7610	E3－1
N16－R－50372－811	R2－126	N16－R－73526－9435	R10－4	N16－T－55735	V3－8A	N17－B－77984－8028	E10－11
N16－R－50373－231	R9－9	N16－R－73529－7647	R10－3	N16－T－56107	V9－2	N17－B－78064－7701	E2－17
N16－R－50380－431	R3－31	N16－R－73532－3893	R10－2	N16－T－56195	V2－14	N17－B－78113－9025	E9－4
N16－R－50399－811	R2－63	N16－R－73535－7442	R10－1	N16－T－56198	V3－4	N17－B－78178－5025	E10－9
N16－R－50416－431	R10－16	N16－R－87349－4560	R2－128	N16－T－56211	V2－1	N17－B－78222－4517	E3－3
N16－R－50417－811	R3－28	N16－R－87752－5365	R2－101	N16－T－56211－50	V2－5	N17－C－48201－1078	W9
N16－R－50479－431	R2－36	N16－R－87849－4406	R2－93	N16－T－56214	V3－1	N17－C－48209－1014 N17－C－48226－2039	W12－15
N16－R－50480－811	R2－22	N16－R－88079－4270	R9－11	N16－T－56346	V10－7	$\begin{aligned} & \text { N17-C-48226-2039 } \\ & \text { N17-C-48226-2040 } \end{aligned}$	W12-14 W3-11
N16－R－50497－431	R10－18	N16－R－88179－4439 N1G－R－88182－5251	R3－42 R2－84	N16－T－56350 N16－T－56360	V2－4	N17－C－48237－5551	

TABLE 8-6. CROSS REFERENCE PARTS LIST (Cont'd)

STANDARD NAVY STOCK NO.	$\begin{gathered} \text { KEY } \\ \text { SYMBOL } \end{gathered}$	STANDARD NAVY STOCK NO.	$\begin{aligned} & \text { KEY } \\ & \text { SYMBOL } \end{aligned}$	STANDARD NAVY STOCK NO.	KEY SYMBOL	STANDARD navy stock no.	$\begin{aligned} & \text { KEY } \\ & \text { SYMBOL } \end{aligned}$
N17-C-67444-1285	E2-28	N17-I-81154-1121	E3-13	N17-S-65078-2887	S10-2	N17-T-82166-3884	Z2-1
N17-C-67460-2909	P2-3	N17-J-39248-4418	J2-3	N17-S-66042-8763	S2-5	N17-T-82181-1169	Z2-26
N17-C-71126-5833	P3-1	N17-J-39435-6234	J5-1	N17-S-60906-5821	S2-4	N17-T-82181-1174	Z2-9
N17-C-71407-6585	P2-9	N17-K-700226-101	E3-46	N17-S-69831-1217	M3-2	N17-T-82181-1179	Z2-2
N17-C-71408-2286	P3-4	N17-L-250666-481	XI3-1B	N17-S-69948-9101	S3-9	N17-T-82183-1761	L3-4
N17-C-71412-8709	P2-4	N17-L-3916-100	R10-14	N17-S-70949-2052	S2-15	N17-T-82187-3874	Z2-27
N17-C-71435-7292	P2-2	N17-L-50843-5351	XR10-14	N17-S-71351-9057	S2-6	N17-T-82187-3879	Z2-10
N17-C-71435-8428	P9-4	N17-L-51625-3285	XV10-10	N17-S-73203-9821	S3-1	N17-T-82187-3884	Z2-3
N17-C-71515-8115	P3-2	N17-L-6297	12-1	N17-S-73489-3103	S2-7	N17-T-82189-1501	L3-5
N17-C-71542-6128	P3-3	N17-L-6806-130	13-2	N17-S-74040-1051	S2-11	N17-T-82199-3874	Z2-28
N17-C-73107-3652	J3-4	N17-L-76664-6164	XI3-1A	N17-S-74040-1125	S2-8	N17-T-82199-3879	Z2-11
N17-C-73108-3753	J2-9	N17-L-91354-1299	SP1-1	N17-S-74225-3356	S3-8	N17-T-82199-3884	Z2-4
N17-C-73108-5890	J2-2	N17-L-96745-5892	XI3-1	N17-T-28198-1065	E3-7	N17-T-82201-1758	L3-6
N17-C-73127-5741	J2-1	N17-M-19246-8951	M3-1	N17-T-51748	CR3-1	N17-T-82208-5891	Z2-29
N17-C-73138-3593	J2-4	N17-M-21874-1601	M2-1	N17-T-61514-7835	T10-3	N17-T-82208-5895	Z2-12
N17-C-73224-1604	J3-2	N17-M-33967-7401	M10-1	N17-T-62478-5001	T1-1	N17-T-82208-5901	Z2-5
N17-C-73255-1511	J3-3	N17-M-83010-1001	A2-1	N17-T-64538-6791	T2-7	N17-T-82209-1001	L3-7
N17-C-73446-3401	J3-1	N17-M-87012-5951	A3-1	N17-T-65936-7125	T10-1	N17-T-82212-8374	Z2-30
N17-C-73515-8322	P3-12	N17-P-61400-5186	P5-1	N17-T-67590-1416	T2-1	N17-T-82212-8379	Z2-13
N17-C-83787-3401	S2-1A	N17-R-64855-2113	K3-1	N17-T-67621-8996	T2-4	N17-T-82212-8384	Z2-6
N17-C-920441-251	W5-1	N17-S-46700-1901	O2-19	N17-T-67633-4295	T2-3	N17-T-86205-9511	L2-26
N17-C-98378-3803	O3-2	N17-S-46742-6241	O2-14	N17-T-67633-4320	T2-2	N17-W-300921-120	W 12-1
N17-C-98378-3805	O3-1	N17-S-46757-9323	O2-12	N17-T-69588-7001	T2-8	N18-R-268-160	13-6
N17-C-98378-4008	O2-1	N17-S-46762-1651	O2-13	N17-T-73901-9983	T9-1	N43-N-9708-1025	H2-4
N17-C-98378-4011	O2-4	N17-S-46763-9156	O2-6	N17-T-73902-4001	T3-1		
N17-C-98431-2301	O3-7	N17-S-46765-2696	O2-22	N17-T-81559-8326	Z9-1	SIGNAL CORPS TYPE No.	KEY SYMBOL
N17-F-14310-330	F3-2	N17-S-46766-2603	O2-5	N17-T-81915-1451	L2-25		
N17-F-16302-100	F9-1	N17-S-46774-3416	O2-7	N17-T-81921-4150	L2-1		
N17-F-16302-120	F2-1	N17-S-46802-1933	O2-16	N17-T-81934-6001	T9-2	JK-34A	J2-3
N17-F-16302-130	F3-1	N17-S-60519-8608	S2-4	N17-T-82061-7711	L2-6	PL-259	P2-4
N17-F-16302-355	F2-2	N17-S-60683-2501	S2-12	N17-T-82061-8101	L2-13	PL-284	P2-2 P2-3
N17-F-16468-550	F12-1	N17-S-60909-8438	S2-12	N17-T-82062-1411	L2-5	PL-293	P2-3
N17-F-74265-1001	XF2-1	N17-S-61594-7601	S10-5	N17-T-82062-4120	L2-4	$\begin{aligned} & \text { PL-68 } \\ & \text { SO-239 } \end{aligned}$	$\begin{aligned} & \text { P5-1 } \\ & \text { J2-2 } \end{aligned}$
N17-F-74267-5441	XF3-1	N17-S-62184-3987	S2-14	N17-T-82062-6811	L2-3	SO-239	$\begin{aligned} & \mathrm{J} 2-2 \\ & \mathrm{~J} 2-1 \end{aligned}$
N17-H-60015-4601	R3-13	N17-S-62205-6601	S2-14	N17-T-82062-9511	L2-12	SO-264	J2-1
N17-H-60034-7605	R3-11	N17-S-62575-2966	S2-13	N17-T-82064-2301	L2-2		
N17-I-69154-6206	E3-21	N17-S-65063-8758	S3-7	N17-T-82166-3874	Z2-25	SIGNAL CORPS STOCK No.	kEY SYMbol
N17-I-69175-6226	E3-15	N17-S-65076-4701	S10-2	N17-T-82166-3879	Z2-8	2Z8678.16	XV9-1

CAPACITOR COLOR CODES

amA g-DOT COLON CODE FON MICA-DIELECTAIC CAPACITORS

IREISTITR GOLOR CODES

JAN E-DOT COLOR CODE FOR MICA-DIELECTAIC CAPACITORS

JAN COLOR CODE FOR FIXED GERAMC-DIELECTRIC CAPACITORS

RMA: RADIO MANUFACTURERS ASSOCIATION JAN: SOINT ARMY-NAVY

madas trpe

TABLE 8-8. LIST OF MANUFACTURERS

ABBREVIATIONS	PREFIX	NAME	ADDRESS
$A B$	CBZ	Allen Bradley Co.	Milwaukee, Wis.
AEV	CAW	Aerovox Corp.	New Bedford, Mass.
AHF	-	Allen, H. F., Co., Inc.	Bristol, Conn.
AHH	CHH	Arrow-Hart and Hegeman Electric Co.	Hartford, Conn.
ALP	CIA	Alden Products Co.	Boston, Mass.
ALW	-	Alpha Wire Corp.	Greenwich, Conn.
AMP	CPH	American Phenolic Corp.	Chicago, Ill.
ANL	CAS	American Lava Corp.	Chattanooga, Tenn.
ARTD	CBIA	Arted Co.	Springfield, Mass.
BEI	CATX	Beede Electric Instrument Co.	Penacook, N. H.
BGW	CBH	Boston Gear Works Div. Murray Co. of Texas	Quincy, Mass.
BLY	CQB	Bliley Electric Co.	Erie, Pa.
BUS	CFA	Bussman Mfg. Co.	St. Louis, Mo.
BWA	-	Barnes, Wallace, Co., Div. Associated Spring Corp.	Bristol, Conn.
CDCM	-	Chicago Die Casting Mfg. Co.	Chicago, Ill.
CDN	CBK	Cardwell, Allen D, Mfg. Corp.	Wichita, Kans.
CHL	CCJ	Crowley, Henry L., and Co., Inc.	West Orange, N. J.
CIN	CMG	Cinch Mfg. Corp.	Chicago, III.
CLD	CD	Cornell-Dubilier Electric Corp.	South Plainfieid, N. J.
CLO	CCC	Continental Carbon Co.	New York, N. Y.
CLR	CMC	Clarostat Mfg. Co., Inc.	Dover, N. H.
CN	CBN	Centralab Div. Globe-Union, Inc.	Milwaukee, Wis.
CPT	CA HW	Croname, Inc.	Chicago, Ill.
CUT	CAE	Cutler-Hammer, Inc.	Milwaukee, \mathbf{W} is.
DLC	CAYZ	Dial Light Co. of America, Inc.	New York, N. Y.
EBY	CEB	Eby Hugh H, Inc.	Philadelphia, Pa.
ELCP	-	Elco Corp.	Philadelphia, Pa .
EMM	CMF	Electro-Motive Mfg. Co.	Willimantic, Conn.
ERC	CER	Erie Resistor Corp.	Erie, Pa.
FTC	CFX	Freed Transformer Co.	New York, N. Y.
GE	CG	General Electric	Schenectady, N. Y.
HAW	CHU	Hubbell, Harvey, Inc.	Bridgeport, Conn.
HMM	CHC	Hammarlund Mfg. Co.	New York, N. Y.
ICA	CAXD	Insuline Corp. of America	Long Island City, N. Y.
IPC	CARO	Industrial Products Co. Div. of Knudsen, Inc.	Danbury, Conn.

TABLE 8-8. LIST OF MANUFACTURERS (Cont'd)

absreviations	Prefix	name	ADDRESS
IRC	CIR	International Resistance Co.	Philadelphia, Pa.
JFE	CAUZ	Jeffers Electronics	St. Marys, Pa.
JNS	CJC	Jones Howard B. Div. Cinch Mfg. Corp.	Chicago, Ill.
JRM	CJS	Jensen Mfg. Co.	Chicago, Ill.
KGE -	CANS	Kings Electronics Co.	Brooklyn, N. Y.
KUE	CKU	Kurman Electric Co., Inc,	Long Island City, N. Y.
LTF	CLF	Littelfuse, Inc.	Chicago, Ill.
LTJI	-	Long, Thomas J., Inc.	Brooklyn, N. Y.
MAL	CMA	Mallory Electric Corp.	Detroit, Mich.
MCLO	-	Mechanical Industries Productiog Co.	Akron, Ohio
MIC	CMR	Micamold Radio Corp.	Brooklyn, N. Y.
MLL	CJA	Millen, James, Mfg. Co., Inc.	Malden, Mass.
MLR	CMM	Miller, J. W. Co.	Los Angeles, Calif.
NAC	CNA	National Co., Inc.	Malden, Mass.
NRCO	CBIB	Northern Radio Co., Inc.	New York, N. Y.
OAK	COC	Oak Mfg. Co.	Chicago, Ill.
PCL	CL	Premier Crystal Laboratories, Inc.	New York, N. Y.
PRME	-	Precision Metal Products Co.	Malden, Mass.
PTH	CPL	Philadelphia Thermometer Co.	Philadelphia, Pa .
RAD	CRK	Radio Condenser Co.	Camden, N. J.
VD	CRV	RCA Victor Div. Radio Corp. of America	Camden, N. J.
SAS	CSO	States Co., The	Hartford, Conn.
SDL	-	Sun Dial Corp.	Essex Falls, N. J.
SMO	CAN	Sangamo Electric Co.	Springfield, Ill.
SPR	CSF	Sprague Electric Co.	North Adams, Mass.
UNT	CUT	United Transformer Co., Industrial Div.	New York, N. Y.
VEE	CASV	Veeder-Root, Inc.	Hartford, Conn.
WAL	CAO	Ward Leonard Electric Co.	Mount Vernon, N. Y.
WS	CV	Weston Electrical Instr. Corp.	Newark, N. J.
		-	-

INDEX

SUBJECT A	figure or table	Paragraph	PAGE
Adjustments and operational checks, initial	3-1	4	3-5
Amplifier-Detector AM-615/UR:	1-4	3c, 5	1-3, 2-21
block diagram	2-22	$5 b$	2-21
circuit analysis	7-33	$5 c$	2-21
initial adjustment	4-6	$4 d$	3-8
operating controls and adjustments	4-6		4-9
outline dimensions	3-11		3-17
pre-operation adjustment	3-6		3-9
rear view	7-17		7-16
schematic diagrams	2-23, 7-33		2-22, 7-55
top view	7-18		7-16
trouble-shooting chart	7-8		7-37
voltage and resistance measurements	7-28		7-45
Annual check		2	6-1
Antenna requirements	3-4	3	3-3
Approximate OUTPUT FREQUENCY dial settings .	4-3		4-4
Approximate signal input at IF and AF stages for 20 -volt output	6-2		6-2
B			
Block diagrams and diagram descriptions:			
Amplifier-Detector AM-615/UR	2-22	$5 b$	2-21
Keyer KY-79/UR	2-24	$6 b$	2-22, 2-23
Radio Frequency Oscillator O-165/UR	2-13	$4 b$	2-13, 2-14
Radio Receiver R-450/FRR-28	2-31	$3 b$	2-4, 2-29
Radio Receiving Set AN/FRR-28	$\begin{gathered} 2-1,2-2,2-3, \\ 2-4,2-5,2-6 \\ 3-1 \end{gathered}$	2	2-2, 3-2
c			
Cable fabrication instructions.	3-3, 3-4		3-5, 3-6
Cables used in Radio Receiving Set AN/FRR-28	1-8		1-5
Cabling	1-8	4	1-3
Calibration curves, Radio Frequency Oscillator O-165/UR	4-8 to 4-28		4-12
Checks:			
annual		2	6-1
operator's routine	5-1	2	5-1
routine maintenance, 1000 hour	6-1	1	6-1
Color codes and miscellaneous data	8-7		8-144
Combined parts and maintenance parts list.	8-4		8-3
Communication Patching Panel SB-224/UR:	1-7, 7-36	$3 f, 8$	1-3, 2-28
front, top, and rear views	7-23		7-20
outline dimensions	3-14		3-23
schematic diagram	7-36		7-61
Connecting cables	3-1, 3-15	$2 f$	3-3
Controls:			
non-operating	4-2		4-3
operating, location and function of	4-1	2	4-1
Corrective maintenance		Section 7	7-1
Cross reference parts list	. 8-6		8-140

SUBJECT D	FIGURE OR table	PARAGRAPH	PAGE
Data:			
reference		5	1-6
shipping	1-4	8	1-8
winding	7-4		7-23
Dial settings, approximate OUTPUT FREQUENCY	4-3		4-4
E			
Electrical adjustments		5	7-1
Electron tubes:			
complement	1-5	9	1-8
replacement of		$3 b$	5-2
Emergency maintenance		3	5-1
Equipment:			
installation in rack	3-8 to 3-14	$2 c$	3-1
overall check		$4 f$	3-10
purpose of		2	1-1
required but not supplied	1-3	7	1-7
supplied	1-2	6	1-6, 1-7
F			
Failure report	7-1		7-2
Frequency range of frequency multiplier sections	2-3		2-13
Fuse locations and symptoms of failure...	5-2		5-2
1			
Initial adjustments:			
Amplifier-Detector AM-615/UR	4-6	$4 d$	3-8
Keyer KY-79/UR	3-7, 4-5	$4 e$	3-8
Radio Frequency Oscillator O-165/UR	4-3, 4-4	$4 c$	3-7
Radio Receiver R-450/FRR-28	3-5, 4-1	$4 b$	3-5
Installation		Section 3	3-1
K			
Keyer KY-79/UR:	1-5	3d, 6	1-3, 2-22
block diagram	2-24	6b	2-22, 2-23
bottom view	7-21		7-18
circuit analysis	7-34	$6 c$	2-22
- initial adjustment	3-7, 4-5	$4 e$	3-8
operating controls and adjustments	4-5		4-9
outline dimensions	3-12		3-19
pre-operation adjustment	3-7		3-10
rear view	7-19		7-17
schematic diagrams	2-25, 2-26,		2-23, 2-24,
	2-27, 2-28,		2-25, 2-26,
	2-29, 2-30, 7-34		2-27, 7-57
top view	7-20		7-17
trouble-shooting chart	7-9		7-39
voltage and resistance measurements	7-29		7-47
1			
List of major units of Radio Receiving			
Set AN/FRR-28	8-3		8-2
Localization, theory of		2	7-1
Location and function operating controls	4-1	2	4-1

SUBJECT L (Continued)	FIGURE OR TABLE	PARAGRAPH	PAGE
Loudspeaker LS-187/UR:	1-6, 7-35	$3 e, 7$	1-3, 2-28
operating control	4-7		4-10
outline dimensions	3-13		3-21
rear view	7-22		7-19
schematic diagram	7-35		7-59
Lubrication		3	6-1
M			
Maintenance:			
corrective		Section 7	7-1
emergency		3	5-1
operator's		Section 5	5-1
preventive		Section 6	6-1
routine	6-1		6-2
Maintenance parts kit	8-5		8-139
Manufacturer's, list of	8-8		8-145
Meter readings for various positions of switch S5	2-4		2-20
Modes of operation for different positions switch S13	2-2		2-9
\mathbf{N}			
Non-operating controls	4-2		4-3
0			
Operating controls and adjustments:			
Amplifier-Detector AM-615/UR	4-6		4-9
Keyer KY-79/UR	4-5		4-9
Loudspeaker LS-187/UR	4-7		4-10
Radio Frequency Oscillator O-165/UR	4-3, 4-4		4-7, 4-8
Radio Receiver R-450/FRR-28	4-1, 4-2		4-5, 4-6
Operating procedure, Radio Receiving			
Set AN/FRR-28	4-1 to 4-7	4	4-4
Operation		Section 4	4-1
Operation, theory of		Section 2	2-1
Operator's:			
routine check chart	5-1		5-1
Outline dimensions:			
Amplifier-Detector AM-615/UR	3-11		3-17
Communication Patching Panel SB-224/UR	3-14		3-23
Keyer KY-79/UR	3-12		3-19
Loudspeaker LS-187/UR	3-13		3-21
Radio Frequency Oscillator O-165/UR	3-10		3-15
Radio Receiver R-450/FRR-28	3-9		3-13
Relay Rack Cabinet CY-597A/G	3-8		3-11
Oven, RF Oscillator O-165/UR	7-12, 7-13, 7-14	6	$\begin{aligned} & 7-10,7-12 \\ & 7-13,7-14 \end{aligned}$
\mathbf{P}			
Pre-operation adjustments:			
Amplifier-Detector AM-615/UR	3-6		3-9
Keyer KY-79/UR	3-7		3-10
Radio Receiver R-450/FRR-28	3-5		3-7
Power distribution, Radio Receiving			
Set AN/FRR-28 ...	3-2		3-4
Preventive maintenance		Section 6	6-1

Section $6 \quad 6-1$

SUbJECT R	figure or table	PARAGRAPH	PAGE
Radio Frequency Oscillator O-165/UR:	1-3	3b, 4	1-1, 2-13
assembly and disassembly of oven	7-12, 7-13, 7-14	6	7-10
block diagram	2-13	$4 b$	2-13, 2-14
bottom view	7-10		7-10
calibration curves	4-8 to 4-28		4-12
circuit analysis	7-32	4 c	2-14
initial adjustment	4-3, 4-4	$4 c$	3-7
multiplier tuning assembly	7-15, 7-16		7-15
operating controls and adjustments	4-3, 4-4		4-7, 4-8
outline dimensions	3-10		3-15
power supply	7-11		7-11
rear view	7-8		7-8
schematic diagrams	2-14 to 2-21, 7-32		2-15 to 2-20
top view	7-9		7-9
trouble-shooting chart	7-7		7-35
tuning	4-3, 4-4	3	4-3
voltage and resistance measurements	7-27		7-43
Radio Receiver R-450/FRR-28:	1-1, 1-2, 7-2, 7-3	3	1-1, 2-4, 7-3, 7-4
block diagrams	2-7, 2-8, 2-31	$3 b$	2-4, 2-8, 2-29
circuit analysis	7-30, 7-31	3 c	2-6
frequency response curves	7-24		7-21
initial adjustment	3-5, 4-1	$4 b$	3-5
location of components	7-5		7-6
location of resistors	7-4		7-5
operating controls and adjustments	4-1, 4-2		4-5, 4-6
outline dimensions	3-9		3-13
overall selectivity at 2 me - ${ }^{\text {acycles }}$.	7-25		7-22
pre-operation adjustments	3-5		3-7
RF strip, right and left sides	7-6, 7-7		7-7
schematic diagrams	2-7 to 2-12, 7-31		$\begin{aligned} & 2-8,2-10,2-11, \\ & 2-13.7-51 \end{aligned}$
trouble-shooting chart	7-6		7-33
voltage and resistance measurements	7-26		7-41
wiring diagrams	7-37, 7-38		7-63, 7-65
Radio Receiving Set AN/FRR-28:	1-1	1, 2, 3	1-1, 1-5, 2-4
block diagrams	2-1 to 2-6, 3-1	2	2-2, 2-4, 3-2
cables	1-1		1-5
operating procedure	4-1 to 4-7	4	4-4
power distribution diagram	3-2		3-4
wiring diagram	3-15		3-25
Receiver control settings:			
for IF alignment	7-1		7-3
for RF Amplifier and HFO alignment	7-2		7-8
Reference data		5	1-6
Relay Rack Cabinet CY-597A/G:	1-1	3	1-1
installation	3-8	$2 b$	3-1
outline dimensions	3-8		3-11
Re-tropicalization		4	6-1
Routine checks	5-1	2	5-1
Routine maintenance check chart	6-1		6-2

S

Schematic diagrams:
Amplifier-Detector AM-615/UR
Communication Patching Panel SB-224/UR
Keyer KY-79/UR

2-23, 7-33 7-36
2-25 to 2-30, 7-34

2-22, 7-55
7-61
2-23 to 2-27, 7-57

SUBJECT
5 (Continued)
Loudspeaker LS-187/UR
Radio Frequency Oscillator O-165/UR
Radio Receiver R-450/FRR-28
Shipping data
Spare parts box:
shipping weight and dimensions
weight and dimensions
System trouble shooting

T

Tables:
approximate OUT'PUT FREQUENCY dial settings
approximate signal input at IF and AF stages for 20 -volt output
cables used in Radio Receiving Set AN/FRR-28
electron tube complement
equipment required but not supplied
equipment supplied
frequency range of frequency multiplier sections fuse locations and symptoms of failure.
locations and functions of operating controls
meter readings for various positions of switch S13
modes of operation for different positions of switch S13
non-operating controls
operator's routine check chart
receiver control settings for IF alignment.
receiver control settings for RF amplifier and HFO alignment
routine maintenance check chart
shipping data
transformers and capacitors placed into circuit
by band change switch S1
variable oscillator calibration
winding data
Theory of operation
Trouble shooting:
system . 7-5
7-6 to 7-9
Trouble-shooting charts:
Amplifier-Detector AM-615/UR
Keyer KY-79/UR
7-8

overall

Radio Frequency Oscillator O-165/UR
Radio Receiver R-450/FRR-28
7-9
7-5
7-7
7-6
Tube complement, electron
Tuning of Radio Frequency Oscillator O-165/UR
U
Unit trouble shooting
Units, description of
Units, description of
Unpacking
FIGURE OR table

7-35
2-14 to 2-21, 7-32 $2-7$ to $2-12,7-31$
$1-4$
8-2
8-1

$$
7-5
$$

2-2

7-59
2-15 to 2-20, 7-53
2-8, 2-10, 2-11,
2-13, 7-51
$1-8$
8-1
8-1
$3 \quad 7-1$

$$
4-4
$$

5-2 6-2
1-8 $1-5$
1-5 1-8
1-3 1-7
1-2 1-7
2-3 2-13
5-2 5-2
4-1 4-1
2-9
2-2 2-9
$\begin{array}{ll}2-2 & 2-9 \\ 4-2 & 4-3\end{array}$
5-1 5-1
7-1 7-3
7-2 $\quad 7-8$
$\begin{array}{ll}7-2 & 6-8 \\ 6-1 & 6-8\end{array}$
$1-4 \quad 1-8$
2-.1 2-7
3-1 3-8
7-4 $\quad 7-23$
Section 2 2-1
$3 \quad 7-1$
$4 \quad 7-1$
7-37
7-39

ORIGINAL
SUBIECT FIGURE OR

V

Variable oscillator calibration3-13-8
Voltage and resistance charts:
Amplifier-Detector AM-615/UR 7-28 7-45
Keyer KY-79/UR 7-29 7-47
Radio Frequency Oscillator O-165/UR 7-27 7-43
Radio Receiver R-450/FRR-28 7-26 7-41
Weight and dimensions for spare parts box 8-1 8-1
Winding data 7-47-23
Wiring diagrams:
Radio Receiver R-450/FRR-28, main chassis 7-37 7-63
Radio Receiver R-450/FRR-28, turret 7-38 7-65
Radio Receiving Set AN/FRR-28, intercon- necting 3-15 3-25

[^0]:

