NAVSHIPS 900,613

INSTRUCTION BOOK

 forFREQUENCY SHIFT RECEIVER CONVERTER EQUIPMENT NAVY MODEL FRA

RCA VICTOR DIVISION, RADIO CORPORATION OF AMERICA Camden, New Jersey

LIST OF EFFECTIVE PAGES

PAGE NUMBERS	CHANGE IN EFFECT	PAGE NUMBERS	CHANGE IN EFFECT
Title Page A, B, C i to vii 1-0 to 1-2 2-1 to 2-5 3-1 to 3-9 4-0 to 4-1 5-0 to 5-1 6-0	Original Orıginal Original	$\begin{aligned} & 7-1 \text { to } 7-22 \\ & 8-0 \text { to } 8-28 \end{aligned}$	Original Original

ADDRESS WAVY DEPARTMENT.
BUREAU OF SHIPS
Section 993-100
NAVY DEPARTMENT

To:
A1 Activities ooncerned with the
2945
4 December 1945
BUREAU OF SHIPS
WASHINGTON 25. D. C.

Installation, Subject Equipment. Maintenance

Instruction Book for Frequency Navy
subj: Instruct Converter Equipment,
NAVSHIPS 900,613 is the instruction and is in effect upon
abject equipment and
l.
for the subject equip e
receipt. receipt.

When superseded by a lat
on shall be destroyed.
publication shall be publication may be
Extracts from this pubilion of other Navy 3.
made to facilitate the prabooks.
instruction books and hendained 4. Copies of the nearest Electronics Officer. nearest Electronics

$$
\begin{aligned}
& \text { E. L. COCHRAN E } \\
& \text { Chief of Bureau }
\end{aligned}
$$

RECORD OF CORRECTIONS MADE
CHANGENO.

ERRATA

Page 2-3 Fig. 2-5, Discriminator.Add Capacitor Cl2O, 20 mmf . plate to plate of V1O4.
Page 3-1 Add Para. l - h as follows:h - Remove equipment from case as described in Section 3.Para 4-a-b. Remove coupling kit components andconnecting plugs and cables which are packed in cardboardcontainers. Remove 4 bolts holding wooden mounting skidsfrom chassis mounting tray and discard skids and bolts.
Pago 7-11- Fig. 7-5 Schematic Diagram.
12 J203 should be shown as a closed circuit jack.Add Capacitor Cl20, 20 mmf . plate to plate of VlO .
Page 7-13- Fig. 7-6 Voltage and Resistance Chart.
14 Sockot Xl03. Valves shown for Pin $\# 5$ should be for Pin \#8 " " " " \#8 " " " \quad \#5
Socket X210 Pin \#l should read Pin \#6

\#2	"	"	\#
\#3	"	"	\#8
\#4	"	"	\#1
\#5	"	"	\#2
\#6	"	"	\#3
" \#7	"	"	\#4
\#8	"	"	\#

Page 7-15- Fig. 7-7 Wiring Diagram I.F. Chassis.
16 Add Capacitor Cl20 from Pin $\|^{\prime \prime} 5$ to Pin $\#^{\prime} 3$ of X104
Page 8-5 Item 15, Resistor, Rl08, Tolcrance should be $\pm 1 \%$. JAN type no. should be RClOBEI51K. Mfr's. designation should be RClOBE151K. Contractor's part no. should be 722302-52.
Page 8-12 Item 49, Wrench, H202. This wrench is not supplied in spares but is included with equipment.
ADD Itcm 104 CAPACITOR: fixed, ceramic, $20 \mathrm{mmf} \pm 1 \%$ uninsulated, $\mu \mathrm{ucd}$ in I.F. temperature compensating -750 parts $/ \mathbb{M} / \circ^{\circ} \mathrm{C}$ dimonsions chassis. .460" x. $240^{\prime \prime}$ dia. two pigtail terminal leads.
Capacitor, tuning TlO4.
JAN type no. CC30UJ200K.
Manufacturcr's part no. CC30UJ200K.
Contractor's part no. 722423-417
Symbol designation, Cl2O.
Total no. per equipment, 1.
Quantity, Equip. -1, Tender -1, Stock -1.

TABLE OF CONTENTS

SECTION 1 GENERAL DESCRIPTION

Paragraph Subject Matter Page

1. Purpose 1-1
2. General Operation 1-1
3. Coupling Kit 1-2
4. Quick Reference Data 1-2
5. Equipment Supplied and Required 1-2
6. Tube Complement 1-2
SECTION 2 THEORY OF OPERATION
7. I.F. Amplifier 2-1
8. Limiter 2-1
9. Locked Oscillator 2-1
10. Discriminator 2-1
11. Audio Amplifier 2-3
12. First Locking Circuit 2-3
13. Power Locking Stage (a) Polar Connection 2-3
(b) Neutral Connection 2-4
14. Tone Oscillator and Keyer 2-4
15. Mark Return Circuit 2-5
16. Squelch Circuit 2-5
17. Coupling Kit Navy Type CRV-10563 2-5
SECTION 3 INSTALLATION AND INITIAL ADJUSTMENTS
18. Unpacking 3-1
19. Location 3-1
20. Position 3-3
21. Mounting 3-3
22. Installation of Coupling Kit 3-3
23. Connections 3-8
24. I.F. Frequency 3-9
25. Initial Adjustments 3-9
ORIGINAL i

TABLE OF CONTENTS (Continued)

SECTION 4 OPERATION

Raragraph

Subject Matter
Page

1. Operation of Controls

SECTION 5 OPERATOR'S MAINTENANCE

SECTION 6 PREVENTIVE MAINTENANCE

SECTION 7 CORRECTIVE MAINTENANCE

SECTION 8 PARTS AND SPARE PARTS LIST

LIST OF ILLUSTRATIONS

SECTION 2 THEORY OF OPERATION

Figure Title Page
2-1 Block Diagram 2-2
2-2 I.F. Amplifier 2-1
2-3 Limiter 2-1
2-4 Locked Oscillator 2-1
2-5 Discriminator 2-3
2-6 A.F. Amplifier 2-3
2-7 First Locking Circuit 2-3
2-8 Power Locking Stage-Polar Connection 2-4
2-9 Power Locking Stage-Neutral Connection 2-4
2-10 Tone Oscillator and Keyer 2-4
2-11 Mark Return Circuit 2-5
2-12 Squelch Circuit 2-5
2-13 Coupling Kit-Navy type CRV-10563 2-5
SECTION 3 INSTALLATION AND INITIAL ADJUSTMENTS
3-1 Installation with RBB/RBC Receivers 3-2
3-2 Mounting Details 3-3
3-3 Audio Filter Coil Mounting, Side View 3-4
3-4 Coupling Kit. Receiver Chassis Drilling 3-4
3-5 Coupling Kit. Receiver Cabinet Drilling 3-5
3-6 Low Pass Filter Unit Mounting 3-5
3-7 Installation of Coupling Kit Components 3-6
3-8 Model RBB/RBC Receiver (Rear View Showing J3 3-6
3-9 Interconnection of Coupling Kit Components 3-7
3-10 Assembly of AN-UG 85/U Connector 3-8
3-11 Exploded View of Cable Plug Assembly 3-9
SECTION 4 OPERATION
4-1 Frequency Shift Converter. Front Panel 4-0
4-2 Model RBB/RBC Receiver - Coupling Kit Mounti 4-0
ORIGINAL iii

LIST OF ILLUSTRATIONS (Continued)

SECTION 5 OPERATOR'S MAINTENANCE

Figure Title Page
5-1 Tube Layout 5-1
SECTION 7 PREVENTIVE MAINTENANCE
7-1 Block Diagram A.F. System 7-3
7-2 Trouble Shooting Chart - I.F. Chassis 7-4
7-2 Trouble Shooting Chart. Main Chassis 7-5
7-4 Coil Winding Data 7-6-9
7-5 Schematic Diagram 7-11-12
7-6 Voltage and Resistance Chart 7-13-14
2-7 Wiring Diagrams - I.F. Chassis 7-15-16
7-8 Wiring Diagram - Main Chassis 7-17-18
7-9 I.F. Chassis - Top View 7-19
7-10 I.F. Chassis - Bottom View 7-19
7-11 Main Chassis - Top View 7-20
7-12 Main Chassis - Bottom View 7-21
7-13 Main Chassis - Bottom View 7-22

GUARANTEE

The Contractor guarantees that at the time of delivery thereof the articles provided for under this contract will be free from any defects in material or workmanship and will conform to the requirements of this contract. Except as to vacuum tubes, batteries, rubber and material normally consumed in operation, the equipment, including all spare parts, is guaranteed for a period of one (1) year from the date of its delivery to and acceptance by the Government, with the understanding that all items found to be defective as to material, workmanship or manufacture will be repaired or replaced, f.o.b. any point within the continental limits of the United States designated by the Government, without delay and at no expense to the Government; provided, that such guarantee shall not obligate the Contractor to repair or replace any such defective items unless the defect appears within the aforementioned period and the Contractor is notified thereof in writing within a reasonable time and unless the defect is not the result of normal expected shelf life deterioration. This guarantee shall then continue as to corrected or replacing articles or, if only parts of such articles are corrected or replaced, to such corrected or replacing parts, until one year after the date of redelivery.

INSTALLATION RECORD

```
Contract: N5sr 7266
Dated: 12 June 1945
Serial number of equipment
```

\qquad

```
Date of Acceptance by the Navy
```

\qquad

```
Date of delivery to contract destination
Date of completion of installation
```

\qquad

```
Date placed in Service
```

\qquad

Blank spaces in this table shall be filled in at the time of installation. Operating personnel shall also mark the "Date placed in Service" on the date of acceptance plate located below the model nameplate on the equipment, using suitable methods and care to avoid damaging the equipment.

REPORT OF FAILURE

Report of failure of any part of this equipment during its service life shall be made to the Bureau of Ships using form Navships (NBS) 383 (revised) in accordance with current instructions. The report shall cover all details of the failure and give the date of installation of the equipment. For procedure in reporting failures see Chapter 67 of the "Bureau of Ships Manual" or superseding instructions.

ORDERING PARTS

All requests or requisitions for replacement material should include the following data:

1. Navy stock number or, when ordering from a Marine Corps or Army Signal Corps Depot, the Signal Corps stock number.
2. Name and short description of part.

If the appropriate stock number is not available, the following shall be specified:

1. Equipment model or type designations, circuit symbol and item number.
2. Name of part and complete description.
3. Manufacturer's designation.
4. Contractor's drawing and part number.
5. JAN or Navy type number.

SAFETY

Abstract

THE ATTENTION OF OFFICERS AND OPERATING PERSONNEL IS DIRECTED TO CHAPTER 67 OF BUREAU OF SHIPS MANUAL OR SUPERSEDING INSTRUCTIONS ON THE SUBJECT OF "RADIO SAFETY PRECAUTIONS TO BE OBSERVED"

This equipment employs voltages which are dangerous and may be fatal if contacted by operating personnel. Extreme caution should be exercised when working with the equipment.

RESUSCITATION

AN APPROVED POSTER ILLUSTRATING THE RULES FOR RESUSCITATION BY THE PRONE PRESSURE METHOD SHALL BE PROMINENTLY DISPLAYED IN EACH RADIO, RADAR OR SONAR ENCLOSURE. POSTERS MAY BE OBTAINED UPON REQUEST TO THE BUREAU OF MEDICINE AND SURGERY.

Frequency Shift Receiver Converting Equipment, Navy Model FRA

SECTION 1 GENERAL DESCRIPTION

1. PURPOSE

The Navy Model FRA Frequency Shift Receiver Converter Equipment has been designed to permit the reception of frequency shift telegraph signals on receivers such as the Navy Model RBB/RBC or other similar types. It is capable of converting these signals as received by the receivers into polar or neutral d.c. signals suitable for the operation of teleprinters or other suitable recording devices. Keyed tone output is also supplied when required. Frequency shift transmission differs from "onoff" keying insomuch as in the former the transition from "mark" to "space" pulses is achieved by shifting the carrier a small amount in frequency, instead of turning it on and off as in the latter. This shift in frequency may be of any magnitude from $100(\pm 50)$ cycles to 1000 (± 500) cycles although at present $850(\pm 425)$ cycles is the most commonly used. When the higher values of shift are used (above 500 cycles) 200 cycles phase modulation up to 1 radian is sometimes superimposed on the regular frequency shift signal.

2. GENERAL OPERATION

The general operation of the Model FRA Converter is as follows. The I.F. signal from the receiver is fed through a coupling adapter to the converter, where it is amplified, limited by a locked oscillator used as a limiter and detected in a discriminator. The audio pulses thus obtained are passed through locking circuits which amplify them to the point where they are suitable for the operation of teleprinters and similar recording devices. Tone output is also obtained simultaneously with the d.c. output. Features of this Converter are a very high degree of limiting due to the locked oscillator, variable selectivity provided by the type of coupling to the locked oscillator, freedom from drift troubles due to the absence of direct coupled stages following the discriminator, operation at various degrees of shift and keying speeds and removable I.F. chassis to facilitate changing to a new I.F. frequency when using different type receivers.

Coupling Kit Navy Type CRV. 10563

3. COUPLING KIT

The Coupling Kit type CRV-10563 is intended to adapt any RBB/RBC series of Radio Receiving Equipment for use with an FRA Frequency Shift Receiver Converter. When installed in a Model RBB/RBC Radio Receiver as described in this book, the coupling kit provides a means for feeding signals to the Model FRA Frequency Shift Converter. The kit has been designed for field installation. The Coupling Kit consists of two sub-assemblies, a cathode follower assembly, and a low pass filter unit, together with the necessary mounting accessories and cables. When properly installed, the circuits are such as to prevent interaction between the receiver and the converter and to minimize interference from local transmitters. The low pass filter is designed to pass the receiver intermediate frequency (400 k.c., ± 100 k.c.) with minimum attenuation.

4. QUICK REFERENCE DATA

a. Nomenclature -----------------Navy Model FRA
b. Contract No. and Date_---_N5sr 7266, 12 June 1945
c. Contractor._RCA Victor Division Radio Corporation of America Camden, N.J., U.S.A.d. Cognizant NavalInspector-...-Resident Inspector of Naval MaterialFront and Cooper StreetsCamden, N.J., U.S.A.
e. Number of packages in Complete Shipment. ---_two
f. Total Cubical Contents Crated $18.1 \mathrm{cu} . \mathrm{ft}$.
Uncrated. $6.4 \mathrm{cu} . \mathrm{ft}$.
g. Total Weight Crated 335 lbs.
Uncrated 175 lbs.
h. Intermediate Frequency -400 kc .
i. Polar Direct Current Output 25 milliamperes
j. Neutral Direct Current Output - 60 milliamperes
k. Direct Current Load Impedance_-_ 130 to 1800 ohms

1. Tone Output (1000 cycles)

\qquad
24 milliwatts
\qquad 600 ohms
n. Power Supply

\qquad
$110,115,120$ volts 60 cycle A.C single phase
o. Power Input 135 watts
p. Squelch Circuit Characteristics

\qquad
With no carrier applied for a period of 200 milliseconds the output shall revert to "mark" output.

5. EQUIPMENT SUPPLIED

a. OVERALL DIMENSIONS.

QUANTITY PER EQUIP	NAME OF UNIT	NAVY TYPE DESIGNATION	$\begin{gathered} \text { HEIGHT } \\ \text { Inches } \end{gathered}$	LENGTH	$\underset{\text { WIDTH }}{\substack{\text { Inches }}}$	$\begin{aligned} & \text { VOLUME } \\ & \text { (Cu. Ft.) } \end{aligned}$	WEIGHT (pounds)
1	Frequency Shift Converter	CRV-35122	$119 / 4$	$199 / 4$	181/4	2.45	98
1	Coupling Kit consisting of Cathode Follower Assembly	CRV-10563	4	3	2	. 014	0.3
	Low Pass Filter Unit		31/2	13/8	1\%/8	. 004	0.25
	Miscellaneous Accessories		-	-	-	-	0.45
1	A.C. Power Plug	CRV-49125	19/4	$31 / 4$	13/4	. 004	0.35
1	Output Plug	AN 3106-14S-5.P	1	$21 / 4$	1	. 001	0.15

b. EQUIPMENT REQUIRED BUT NOT SUPPLIED.

QUANTITY PER EQUIPMENT	NAME OF UNIT	NAVY DESIGNATION	REQUIRED CHARACTERISTICS
As Required	Radio Receiving Equipment	RBB or RBC	400 kilocycle I.F. Frequency

c. SHIPPING DATA.

SHIPPING BOX NO.	NAME AND DESIGNATION of CONTENTS	OVERALL dimensions			$\begin{aligned} & \text { VOLUME } \\ & \text { (cu. ft.) } \end{aligned}$	$\underset{(\mathrm{lbs.)}}{\text { HEIGHT }}$
		Height	Width	Length		
1	Frequency Shift Receiver Converter Navy Model FRA	181\%	$243 / 4$	261/2	7.02	155
2	Equipment Spare Parts Box	221/2	25	31	10.09	180

6. TUBE COMPLEMENT

NAME OF UNIT	6H6	6J5	6SA7	6SG7	6SJ7	6L6GA	6AB7	5Y3GT/G	VR75/043	VR150/ODE	TOTAL
I.F. Chassis	1		1	1	1						4
Main Chassis		1			5	2		3	1	4	16
Coupling Kit							1				1
Total	1	1	1	1	6	2	1	3	1	4	21

SECTION II
 THEORY OF OPERATION

1. I. F. AMPLIFIER

The intermediate frequency signal from the receiver is obtained from the Coupling Kit Navy type CRV-10563 which is fully described in paragraph 11 of this section. This signal is fed into the converter through J204 to the primary of T 101 which is matched to the output impedance of the coupling adaptor. This signal is stepped up through T101 and applied to the grid of V101 which functions as a straight I.F. amplifier. This tube operates with fixed bias supplied by cathode resistor R101 and screen voltage supplied through R102.

Fig. 2-2 I. F. Amplifier

2. LIMITER

T102 is a single tuned coil which supplies the plate load for the I.F. amplifier. The signal is coupled to the grid of the limiter V102 through C105. This tube limits by virtue of the fact that R104 in series with the grid self-biases the tube beyond cut-off, limiting the negative swing, and the positive swing is limited by saturation occurring due to the low screen voltage applied through R106.

Fig. 2.3 Limiter

3. LOCIKED OSCILLATOR

The plate of the limiter V102 is fed through the filter resistor R107 and the plate load resistors R109 and R110 in series. The No. 1 grid of the locked oscillator V103 is connected through C 110 to the junction of the voltage divider R109 and R110. These two resistors comprise the plate load of the limiter and consequently due to the limiting action have a constant I.F. Voltage developed across them. Only a portion of the output voltage of V102 can be applied to the grid of the succeeding stage, the actual amount being selected by the selectivity switch S101, which shunts R108 across R109 in the narrow position, thus reducing the amount of I.F. voltage applied to the No. 1 grid of V103. This controls the selectivity of the system for the following reason. The range over which a locked oscillator will synchronize with the incoming signal is determined by the characteristics of the oscillator and the magnitude of the applied signal. Consequently, since the characteristics of the oscillator are constant, the lock-in range is controlled only by the magnitude of the signal applied to the No. 1 grid. Furthermore, since the output of the limiter is constant regardless of signal strength, tapping down on the plate load of the limiter to obtain different input signals to V103 through C110 effectively controls the selectivity since any signal outside the lock-in range of the oscillator produces no output. The normal screen grid of the 6SA7 is used as the oscillator plate which is electron coupled to the plate of the tube from whence the output is derived.

Fig. 2.4 Locked Oscillator

4. DISCRIMINATOR

The output of the locked oscillator is fed to T104 which is the discriminator transformer. The two diode sections of the 6H6 Tube V104 operate as shunt rectifiers causing the rectified voltage of each diode to appear across R116 and R117 respectively. The D.C. path between R116 and R117 is completed through L107. Due to the connections and phase relationships existing in T104 D.C. voltages are developed across R116 and R117 which are equal and opposite when the applied signal is at the resonance point of the transformer and consequently the D.C. output voltage across $C 119$ is zero. When the signal shifts from the centre of resonance of the transformer these two voltages

Fig. 2-1 Functional Block Diagram
change in magnitude and the difference voltage appears across C119. Thus the frequency variations of the signal are changed to amplitude variations which exactly correspond to the rate and amount of frequency shift of the original signal. S102 is a reversing switch which reverses the sense or polarity of the output signal with respect to ground as required. A tuning meter M202 connected in series with R 201 serves as a high resistance voltmeter to indicate when the signal is centered about zero on the discriminator curve.

Fig. 2-5 Discriminator

5. AUDIO AMPLIFIER

The signal, pulsating at audio frequency, is fed to the audio amplifier V201. It is coupled through C201 which isolates the D.C. and also has an important bearing on the operation of the system, since it allows the signal to drift up and down the linear part of the discriminator curve without destroying the sense or polarity of the signal. Thus the amount of drift that can be tolerated is limited only by the I.F. selectivity of the system. A low pass filter consisting of L201 and C202-3-4 is connected in the plate circuit of this tube with a switch S 201 to switch it in and out of the circuit as required. The filter removes the high frequency noise components from the signal. The cut-off frequency of this filter is approx. 200 cycles, consequently it is desirable to cut it out of the circuit when it is desired to receive high speed signals greater than about 250 words per minute.

Fig. 2.6 A. F. Amplifier

6. FIRST LOCKING CIRCUIT

In order to make it possible to hold long "mark" or "space" pulses until a pulse of the opposite polarity is received, such as might be the case in facsimile or similar services, a locking circuit is introduced at this point. This consists of two 6SJ7 tubes V202 and V203 which function as follows. Each tube has its screen grid cross connected to the plate of the opposite tube. Therefore if the driven tube V202 is caused to conduct by a positive pulse applied to its grid through C205 the plate current through its plate load resistor R207 will reduce the plate voltage to a low value. This low voltage being also applied to the screen grid of the other tube V203 is sufficient to cut off its plate current, the cut off bias being supplied by the common cathode resistor R208. At the same time lack of. plate current in this tube V203 causes a high screen voltage on the first tube V202 which maintains it in a conducting condition. If now a negative pulse is applied to the grid of the driven tube V202 sufficient to momentarily cut it off, the opposite occurs causing the second tube to conduct and leaving the first tube in a non-conducting state until another positive pulse is received.

Fig. 2-7 First Locking Circuit

7. POWER LOCKING STAGE

The signal from the first locking stage is capacity coupled through C208 to the output power locking stage which can be switched to provide either polar or neutral D.C. signals: This consists of two 6L6GA tubes V206 and V207 each with a separate power supply connected to operate in the following manner.
a. POLAR CONNECTION. When connected for polar operation, the plate current of the driven tube V206 returns through the load and cathode bias resistor R213 of the second tube V207. Similarly the plate current for tube V207 returns through the load and cathode resistor R211 of the first tube V206. Assuming that tube V206 is conducting, causing current to flow through the load-in one direction-and through the cathode resistor R213. The voltage drop across R213 is applied to the grid of V207 through the grid resistor R214 and is sufficient to cut off its plate current. If now a negative pulse is applied to the grid of V206 sufficient to cut this tube off momentarily, the bias disappears on the grid of V207 causing it to become conducting. This results in current flow in the opposite direction in the load, and the voltage drop across R211 is sufficient when applied to the grid of V206 to

PARAGRAPH 8

maintain this tube in a non-conductng condition, where it remains until another positive pulse reverses the process. Current through the load is adjusted by shunting the D.C. Output Control Rheostat R212 across the load. Resistor R232 is connected in series with the load when the load is small and chiefly inductive, as is the case when a teleprinter or similar device is connected to the load terminals through a short line. This is desirable since an inductive load without any series resistance to damp it causes some distortion in the output waveshape.

Fig. 2.8 Power Locking Stage. Polar Connection
b. NEUTRAL CONNECTION. When connected for neutral operation the circuit is switched to give the connections shown in Fig. 2-9. The action is similar except that in this case the load is removed from its previous position between the cathodes of V206 and V207 and substituted for the cathode bias resistor R213 of V207. Both cathodes are now connected together and the control rheostat R212 placed in series with the load instead of shunting it as in polar operation.

Fig. 2.9 Power Locking stage. Neutral Connection

8. TONE OSCILLATOR AND KEYER

The 1000 cycle tone oscillator consists of a 6SJ7 tube V208 connected as a phase shift oscillator. The resistors R225, R226 and R227 together with capacitators C211, C212 and C213 form a three mesh resistance-capacity phase shifting network connected between the plate and grid of V208. This network is proportioned to give 180° total phase shift from plate to grid at the frequency of oscillation 1000 cycles, which causes the tube to oscillate at this frequency. The output of the oscillator is fed to the grid of the tone keyer tube V209 through the Tone Output Control R229. The output of this tube is transformer coupled to the output terminals through T201. This tube is keyed on and off by keying the suppressor grid with a high negative voltage sufficient to cut the tube off. This keying voltage is obtained from the cathode bias resistor R211 of the power locking stage. Since this voltage varies between zero and about -70 volts tube V209 is alternately rendered conducting aad non-conducting in synchronism with the signal.

Fig. 2.10 Tone Oscillator and Keyer

9. MARK RETURN CIRCUIT

A "mark return" circuit employing a VR75 tube V204 is provided for use on teletype operation. The purpose of this circuit is to prevent the output from remaining on "space" for a period longer than 200 milliseconds, which might occur if a noise burst caused the locking circuit to flip to "space" when normally standing-by on "mark". This consists of a resistance capacity filter R208 and C207A having a time constant of 200 milliseconds connected from the plate of one of the first locking circuit tubes V203 to ground. This tube is the one that is non-condacting on "space" and therefore has a high voltage in this condition. The VR75 tube is connected across C207A and this point is also connected to the grid of the other locking tube V202 through capacitor C206. In operation, if the locking circuit remains on "space" for a sufficient time for C207A to charge up through R208 to a value high enough to break down the VR75, which is about 105 volts, the voltage across the VR75 immediately drops to 75 volts. This surge is applied to the control grid of the first locking circuit tube V202 through capacitor C206 which flips the circuit back to "mark". A switch S202 is provided to disable this circuit when it is not required.

Fig. 2.11 Mark Return Circuit

10. SQUELCH CIRCUIT

A form of squelch circuit is provided so that signals below any predetermined level will not operate the Converter. This consists of a 6 SJ 7 tube V 205 with its control grid connected to the grid of the limiter V102 through an R.F. filter R105 and C107, a voltage divider R220 and R221 and a resistance, capacity filter R219 and C210C which has a time constant of 200 milliseconds. The noise level is adjusted by means of the gain control on the receiver so that the negative voltage developed by the limiter and appearing on the squelch tube grid is just sufficient to allow this tube to conduct. Any larger signal will then produce a more negative voltage and drive the squelch tube past cut-off. This tube is operated with a fixed screen voltage and the plate is connected to the plate of the locking tube V203 which is conducting on "mark". Thus if the squelch tube is rendered conducting by reason of the low signal level, the plate current of V205 flowing through the load resistor R233 and V203 will hold the first locking circuit on "mark" and no output will be obtained from the Converter.

F.g. 2-12 Squelch Cireuit

11. COUPLING KIT, NAVY TYPE 10563

The Coupling Kit components provide the means for connecting a high impedance scurce to a low impedance load. The signal voltage is coupled from the plate of the last I.F. tube V303 of the RBB/RBC equipment by means of capacitor C501. The output voltage appears across the cathode resistor R501. The grid circuit of V101 adds a small amount of capacity across the last I.F. tube V303 plate circuit. This capacity must be compensated for by adjusting the primary core of the I.F. transformer T305 in the IF-AF unit of the RBB/RBC receivers. Since the impedance across resistor R 501 is low, a low impedance line is coupled across the cathode resistor R501 by means of capacitor C502. A completely shielded, two-section, low pass filter is inserted in series with the low impedance line and the output plug J501. The coil and capacitor assembly L501, L502, C504, C505, C506 comprises the filter. This filter passes frequencies below 550 kilocycles with very little attenuation, while those frequencies higher than 550 kilocycles are rapidly attenuated. The cathode follower tube V501 prevents loading or inter-action in the plate circuit of the last I.F. tube V303. The ground system is not completed until the shield spring around J501 contacts the shield cabinet. Should the receiver be operated outside the shield cabinet with the Coupling Kit, it will be necessary to complete the ground system by connecting the shield of J501 to the $\mathrm{RBB} / \mathrm{RBC}$ receiver chassis. The filter output is connected to the Frequency Shift Converter by means of a coaxial cable which is furnisher with the equipment.

Fig. 2-13 Coupling Kit, Navy Type CRV 10563

SECTION III
 INSTALLATIONS AND INITIAL ADJUSTMENTS

1. UNPACKING

In order to ensure the safe unpacking of this equipment the following method should be used.
a. Remove screws from lid.
b. Pry lid up to break Permalac Seal.
c. Lift fold of liner bag from center upright, slit with knife, and open bag.
d. Remove top pad and excelsior packing trom top, sides and ends.
e. Lift carton out of case, break seal on top of master carton, turn carton gently upside down to slide inner carton out.
f. Reverse carton enclosed in barrier, slit end of barrier bag, pull carton out of bag.
g. Break seal of carton, remove top pad, Silica Gel, Instruction Books and Cables. Remove back and front pads, lift unit out of carton.

2. LOCATION

The Model FRA Converter is designed to be mounted on the top of an operating table, using the shock mounts supplied on the chassis mounting tray. (See Figs. 3-1 and 3-2). The installation drawings show the units mounted with front panels flush with the edge of the operating table shelf. The location of the Converter may be varied to suit particular installation requirements, but a clearance of at least five inches should be provided from the rear of the Converter to the bulkhead or nearest obstruction in order to permit removal of cables and provide movement clearances in cases of severe shock.

Fig. 3-1 Installation with RBB|RBC Receivers

3. POSITION

The Converter should preferably be mounted adjacent to the receiver with which it is to be used. This will allow short interconnecting cable lengths and simplify operation, since it is necessary to operate controls on both receiver and converter simultaneously. Special care
should be taken in installing the set-up to see that all units are well grounded. The teleprinter and its connecting cables should be isolated as far as practical from the receiver antenna input leads, since the steep wavefronts radiated by the teleprinter cables can readily cause severe interference in the receiver.

Fig. 3.2 Mounting Details

4. MOUNTING

In order to mount the equipment on the table proceed as follows:
a. Remove the chassis from the chassis mounting tray by disengaging the three chassis mounting bolts located at the bottom of the front panel. These bolts are of the captive type and remain in the front panel when the chassis is withdrawn.
b. Withdraw the chassis using the round pull knobs provided on the front panel and note that the chassis strikes a pair of stops when partially withdrawn. Release these stops by turning the knobs marked CATCH in the direction indicated by the arrows. In case the Converter has been previously installed it is necessary to remove the cables from the receptacles at the rear of the unit before completely withdrawing the chassis.
c. Drill the operating table, using the layout dimensions shown in Fig. 3-2.
d. Bolt the mounting tray to the operating table as shown in Fig. 3-2, using hardware supplied with each Model FRA equipment. Four each of the following are provided:
$3 / 16-16 \times 21 / 4$ bolt
$1 / 16 \times 13 / 4$ o.d. washer
$3 / 8$ lockwasher
$3 / 8-16$ nut
e. Determine the approximate resistance of the load to be connected to the D.C. output. This will consist of the resistance of the teleprinter relay coil plus the resistance of the cable connecting the teleprinter to the converter. If this resistance is less than approximately 1000 ohms open the link or terminal board E201 on the rear of the chassis. If this resistance is greater than 1000 ohms this link should remain closed.
f. Measure the power line input voltage and set the Line Voltage Switch S205 A-B on the rear of the chassis to the tap which most nearly corresponds to the measured value.
g. Replace the chassis in the cabinet. It is necessary to turn the CATCH knobs when inserting the chassis into the cabinet in the same manner as when withdrawing it. Care should be taken that three mounting bolts are turned up tight so that the springs in the rear chassis locating pins are compressed as far as possible.

5. INSTALLATION OF COUPLING KIT, NAVY TYPE CRV 10563

Installation of the Coupling Kit shall be made in the following manner:
a. REMOVAL OF RBB/RBC CHASSIS FROM CABINET.
(1) Disconnect the antenna, audio output, and interconnecting cable plugs from their receptacles at the rear of the radio receiver.
(2) Loosen the twelve panel thumbscrews by turning them approximately six turns. These screws are of the captive type and do not release entirely.
(3) Take hold of the two round knobs located on the front of the receiver and pull the chassis out part way until the stops strike. These stops may be released by pressing on the stop arms through the holes on each side of the chassis near the bottom.
(4) Pull the chassis completely out and set it on a level surface.

b. REMOVAL OF AUDIO FILTER COIL AND CON-

 NECTOR ASSEMBLY.Remove from the receiver the audio filter coil L304A-B and connector assembly J302 in the following manner. (See Fig. 3-3).

Fig. 3-3 Audio Filter Coil Mounting, Side View
(1) Remove the retaining nut.
(2) Remove the grounding spring.
(3) Remove the outside insulating washer.
(4) Remove shield can screws and brackets.
(5) Remove the audio filter coil, connector assembly, and inside insulating washer. NOTE: It is not necessary to unsolder any wires.
c. CHASSIS DRILLING. (See Fig. 3-4)

Fig. 3-4 Coupling Kit. Reseiver Chassis Drilling
(1) Cut out template No. 1 with a razor or some sharp instrument. Hold the template in place against the rear of the RBB or RBC radio receiver chassis with scotch tape or friction tape. (See Fig. 3-4A).
(2) Mark off the position of the seven additional holes by means of a centerpunch.
(3) Drill the four $0.1875^{\prime \prime}\left(3 / 16^{\prime \prime}\right)$ holes in the back of the chassis frame as shown in Fig. 3-4A.
NOTE : Drill pilot holes before drilling the finished (correct size) holes.
(4) Cut out template No. 2. Remove the ground terminal and drill the three $0.173^{\prime \prime}$ and one $0.25^{\prime \prime}$ diameter holes. See Fig. 3-4B.
d. CABINET DRILLING.

Fig. 3-5 Coupling Kit. Receiver Cabinet Drilling
(1) Cut out templates No. 3. See Fig. 3-5.
(2) Drill the additional $1^{\prime \prime}$ diameter hole.
(3) Remove the paint from the cabinet within the area shown on Fig. 3-5.
e. AUDIO FILTER MOUNTING.

Remount the audio filter coil L304A-B and connector assembly J302 in their new position as shown in Fig. 3-3. Use the same mounting hardware (Brackets, nuts, etc.) as were used for the original mounting.
f. LOW PASS FILTER UNIT MOUNTING. (See Fig. 3-6).

Fig. 3-6 Low Pass Filter Unit Mounting
(1) Assemble receptacle J501 to the spacer H501 as shown in Fig. 3-6 using four screws H502 and lockwashers H503 supplied with the kit.
(2) Connect lead " D " on the receptacle as shown in Fig. 3-6. Assemble the four insulating washers, H504 grounding spring, H505 receptacle and spacer assembly, insulating board, H506 coil assembly and four screws H507 and lockwashers H508 as shown in Fig. 3-6.
(3) Place the shield can over the above assembly.
(4) Fasten the shield can to the chassis frame using two screws, H510 two lockwashers H509 and two nuts H511 supplied.
(5) Place the shield can cover in position after feeding the cable " C " through the side hole.
(6) Place the decalcomanias in position as shown in Fig. 3-4A.
g. CATHODE FOLLOWER ASSEMBLY MOUNTING. (See Figs. 3-7 and 3-8).

Fig. 3-7 Installation of Coupling Kit Components
(1) Mount the cathode follower assembly in position as shown in Fig. 3-7.
(2) Fasten this assembly to the chassis by means of four screws H512 and lockwashers H509. Be sure to put the ground terminal in place as shown in Fig. 3-7.
h. WIRING. (See Figs. 3-7 and 3-9).
(1) Connect lead "A" to pin No. 8 on socket X303 of receiver. (See RBB/RBC Instruction Book, Connection Diagram).
(2) Connect cable "B" to TB307. The white lead with red tracer is connected to terminal No. 7 and the white lead with brown tracer is connected to terminal No. 5.
(3) Connect cable " C " to TB501, terminal No. 1, located on the cathode follower assembly.

Fig. 3.8 Model RBB/RBC Receiver
(Rear View Showing J301, 1302, J501)

Fig. 3.9 Interconnection of Coupling Kit Components

6. CONNECTIONS

Before connecting up the Converter it is necessary to make up two cables, one for the A.C. power, and the other for the D.C. and tone outputs. The assembly of these is shown in the exploded diagrams, Fig. 3-11.

Fig. 3.10 Assembly of AN UG 85/U Connector

Fig. 3.11 Exploded View of Cable Plug Assembly
a. A.C. POWER INPUT CONNECTOR. Connect a cable consisting of a twisted pair NAVY Type DCOP-2 to the AC Plug Navy type CRV 49125 supplied with the Converter. Connect the wires to terminals No. 1 and No. 2. The cable should run to a grounded junction box near the equipment table.
b. DC AND TONE OUTPUT CONNECTOR. Connect a six conductor armored cable Navy type TTHFWA-3 to the five point connector type AN-3106-14-5P supplied with the Converter. Disassemble the plug as shown in Fig. 3-11 and insert the cable through the clamping rings and solder to the plug according to the following chart.

D.C. AND TONE OUTPUT CONNECTIONS

PIN	A	B	C	D
CONNECTION	Ground	D.C. Output	Tone	Tone
Out Side	Output	Output	High Side	

c. Connect the Coaxial Cable Assembly RCA Type 122215-501 from the connector outlet on the Receiver Coupling Adapter to J204 on the rear apron of the Converter chassis.
d. Connect the A.C. Power input Plug to J201 on the rear of the Converter chassis.
e. Connect the D.C. and Tone Output Plug to J203 on the rear of the Converter chassis.

7. I.F. FREQUENCY

The Model FRA Converter is shipped from the contractor with a 400 kilocycle I.F. chassis installed and is aligned accurately at the factory to this frequency. This is the I.F. frequency of the RBB and RBC receivers and is the frequency at which it is expected the converter will be most commonly used.

8. INITIAL ADJUSTMENTS

Assuming a Teleprinter or similar device has been connected to the D.C. output leads, the initial adjustments should be made as follows.
a. Energize the equipment by turning the switch marked POWER to its ON position.
b. The D.C. OUTPUT control should be near its minimum position when the equipment is turned on for the first time. After the tubes warm up, turn the D.C. OUTPUT control in the direction marked INCREASE until the required current is shown on the OUTPUT meter on the front panel.
Since this meter is in series with the output load no reading will be shown on the meter unless a load is connected to the D.C. output receptacle. The Teleprinter
must be connected to the output terminals in such polarity that "mark" condition is obtained when the OUTPUT meter is deflected to the right of zero.
c. Turn the POLAR-NEUTRAL switch to either its Polar or Neutral position depending on the requirements of the load connected to the D.C. output terminals.
d. Correct operation of the I.F. circuits is checked by tuning in a signal as described in Section 4, Paragraph 4. If the tuning is normal as described in the section referred to it can be assumed that connections to the receiver have been correctly made.
e. Set the THRESHOLD control as described in Section 4, Paragraph 5. The teleprinter should now start to print, if all operations have been carried out correctly.
f. If the teleprinter does not print an intelligent message, turn the OUTPUT REVERSAL switch to its opposite position. However, this switch must not be used to correct the condition which would occur if the teleprinter were not connected in the correct polarity as described in Paragraph $7 b$ of this section. Since this would render the SQUELCH and MARK-RETURN circuits inoperative.
g. If the D.C. output does not key when a signal is being received, make sure the GAIN control on the receiver is set high enough that the SQUELCH circuit is not making the Converter inoperative. The proper adjustment for this is described in Section 4 - Paragraph 9.
h. Turn the MARK-RETURN switch to its ON position and with the receiver tuned a steady carrier turn the OUTPUT REVERSAL switch to its opposite position. The output should flip to space when the switch is reversed, and then flip back to "mark" after about a 200 millisecond delay.

Fig. 4.1 Frequency Shift Converter, Navy Type CRV. 35122 Front Panel

Fig. 4.2 Model RBB/RBC Recriver (Showing Cathode Follower Assembly and Low Pass Filter Unit)

sECTION IV
 operation

1. OPERATION OF CONTROLS

The controls are shown in Fig. 4-1 and 4-2 and are operated in the following manner.
a. COUPLING KIT, NAVY TYPE CRV-10563

In order to couple the signal from the receiver to the converter, throw the switch S501 to the ON position (see Fig. 4-2). Since the switch is inside the receiver unit (i.e. mounted on the chassis), it is necessary that the switch be operated before the receiver is replaced in the cabinet. The switch S501 is in series with the filament circuit of V501 and should be in the "OFF" position only when the extra power to operate the coupler components cannot be spared or when the coupling unit is not in use. Such a condition possibly can arise when operating two receivers from a single power supply and on low line voltage.
b. FREQUENCY SHIFT RECEIVER CONVERTER, NAVY TYPE CRV-35122
STEP 1. . Power is turned on to start the equipment by turning the switch marked POWER to its ON position.
STEP 2. Turn the POLAR-NEUTRAL switch either its POLAR or NEUTRAL position, depending on the requirements of the load connected to the D.C. output terminals.
STEP 3. The D.C. OUTPUT control should be near its minimum position when the equipment is turned on for the first time. After the tubes warm up, turn the control in the direction marked INCREASE until the required current is shown on the OUTPUT meter.
STEP 4. Tune a signal in roughly on the receiver. It is important to establish the fact that the signal is correct, i.e. not diplex, multiplex, or "scrambled". This is best done with the receiver Mode of Operation switch set at its CW position. When a signal has been located the receiver Mode of Operation switch is set to its MOD position, (which removes the BFO), and the signal accurately tuned in by means of the TUNING meter on the panel of the Converter. Set the SELECTIVITY switch at its WIDE position for this operation. Correct tuning as indicated on the meter is obtained as follows. As the signal is approached by slowly turning the receiver dial the TUNING meter should suddenly indicate to one side of zero, then as the dial is further turned in the same direction the TUNING meter should pass through zero and swing over to the other side to approximately the same amount. The
correct setting is at the point where the meter passes through zero between the two swings, and the receiver dial should be set at this point. If the transmitter is keying, the average value of the swings should be zero, however, if the transmitter is standing by on "mark" when the signal is tuned in, the TUNING meter should be set slightly off centre in the "mark" direction which is to the right of zero. STEP 5. Set the THRESHOLD control by starting from the minimum position and slowly turning the control in the direction marked INCREASE until the output circuit just begins to key as shown on the OUTPUT meter. The control should be,advanced approximately 90° past this point, which with a normal 850 cycle shift signal will be about 5 to 6 dots from the minimum position.
STEP 6. The OUTPUT REVERSAL switch is used to reverse the output of the discriminator. This should be switched to the right when receiving normal signals in which the "mark" frequency is the higher. If for some reason the transmitter is sending "mark" and "space" signals reversed from normal, as is indicated by the TUNING meter resting to the left for "mark", this switch should be thrown to the left.
STEP 7. Set the SPEED switch to its LOW position for normal teletype signals. This switch should be set to its HIGH position when receiving high speed signals of greater than about 250 words per minute.
STEP 8. Set the MARK RETURN switch to ON position for normal teleprinter operation. In some cases, such as black and white facsimile, it may be required to hold a long "space" in which case the switch is set to its OFF position, which disables the mark return circuit.
STEP 9. The SQUELCH circuit does not require a panel control but is caused to operate in the following manner. With no signal tuned in on the receiver the gain control of the receiver should be retarded until the noise output of the receiver to the converter is just low enough that the squelch circuit operates to hold the output to "mark". This setting of the GAIN control is used when the signal is tuned in, and any carrier that is appreciably above the noise level will render the squelch inoperative. Under some conditions where a high noise level is present it may be desirable to advance the gain control while searching for a signal, but in such cases the GAIN control should be turned back to its proper squelch setting after the signal is properly tuned in.

SECTION V OPERATOR'S MAINTENANCE

1. PERIODICAL CHECKS

Make the following checks at the periods indicated in the table below.

WHAT TO CHECK	PERIOD	HOW TO CHECK	PRECAUTIONS
Tuning	$1 / 2$ hour	Indication on TUNING meter as in Section 4, para. 4.	
Output	1 hour	Read current on OUTPET meter *or Mark and Space evrrent.	Current to be set for correct value for Recorder in use, e.g. 60 ma . for neutral teletype.
Squelch	1 hour	Check settifg of receiver gain control as described in Section 4, para. 9.	

2. SYMPTOMS OF FUSE FAILURE WARNING

NEVER REPLACE A FUSE WITH ONE OF A HIGHER RATING UNLESS CONTINUED OPERATION OF THE EQUIPMENT IS MORE IMPORTANT THAN PROBABLE DAMAGE. IF A FUSE BURNS OUT IMMEDIATELY AFTER REPLACEMENT, DO NOT REPLACE A SECOND TIME UNTIL THE CAUSE OF THE TROUBLE HAS BEEN LOCATED.

If the pilot light does not light and no output is shown on the OUTPUT meter, check and replace if necessary F201 or F202 located at the right hand top rear of the chassis. These fuses are in the main supply line to the equipment and remove power from all parts of the Converter. Two spare fuses are mounted in clips adjacent to the fuse holders and should be used as replacements.

NOTE: Always keep two good fuses in the spare fuse clips for emergency use.

3. TUBE LOCATION

Location of tubes and fuses are shown in Fig. 5-1. Any inoperative tubes should be immediately replaced by the operator.

4. VISUAL INSPECTION

Periodic visual inspection should be made of all external connections to the Converter to ascertain that they are tightly fitted and in good general condition.

Fig. 5.1 Tube Layout

SECTION VI
 PREVENTIVE MAINTENANCE

NOTE.
The attention of Maintenance Personnel is invited to the requirements of Chapter 67 of the "Bureau of Ships Manual" of the latest issue.

1. MONTHLY CHECKS

Monthly checks should be made as follows.
a. Check all tubes on a reliable tube checker. Replace
any tubes that read low or doubtful. See section 7, paragraph 4.
b. Check all socket voltages as given in Fig. 7-6. If any voltages depart appreciably from the values shown in the diagram, further investigation should be made into the cause of this condition by a technician.

2. LUBRICATION

This equipment requires no lubrication.

SECTION VII conrective maintenance

1. LOCALIZATION OF DEFECTIVE UNIT

In Case of non-operation of the equipment, the source of the trouble should be localized before changing any adjustments other than panel controls, and before distributing the internal wiring or mounting of components.
The first step in servicing any equipment is to locate the defective part by a series of tests or checks. Before checking electrically, visually inspect the RBB/RBC receiver, the frequency shift converter and the converter coupling components for loose connections, broken leads and short circuits. If all connections appear to be normal, proceed with the following checks in the order given.

The trouble can be roughly localized by observing the panel meters and pilot light. If the pilot lamp does not light it is an indication that either it is burned out, the a.c. supply has failed, a blown fuse or a defective line voltage switch S205. However, the pilot is connected to the set power transformer T202 and does not indicate that power is being supplied to the d.c. output power transformer T203, which might not be receiving power due to a defective section S205B of the line voltage switch.

A quick check can be made by noting if the TUNING meter is operating normally. If this is not the case the trouble is either in the I.F. unit, coupling kit, or no signal is being supplied from the receiver. If normal operation of the TUNING meter is obtained but the OUTPUT meter does not show any keying, it is an indication that the trouble is in the A.F. system.

2. I.F. UNIT

If the trouble has been localized to the I.F. unit by the foregoing observations, before removing the I.F. unit, measure the voltage developed on the grid of the limiter tube V102 by inserting the prod of a D.C. vacuum tube voltmeter, such as the RCA Junior Voltohmyst, through the hole in the main chassis under the limiter tube. The grid resistor R104 of the limiter tube is connected to the terminal directly below this hole and the voltage developed can be conveniently measured at this point. If it does not measure greater than about 30 volts negative with respect to ground it indicates that little or no signal is being supplied to the limiter and a careful check should be made of the I.F. input cable, plugs, etc. as well as the coupling kit in the receiver and the receiver itself. See paragraph 3 of this section.

If substantially greater than - 30 volts is measured on the limiter grid but the TUNING meter does not operate or indicates tuning with much less than normal swing, it is a probable indication that the locked-oscillator V103 is not oscillating. Weak indication by the TUNING meter probably means that the oscillator tube V103 is acting as an amplifier only.

Either of the above indications of trouble may occur if the I.F. unit is badly out of alignment. In any case the alignment should be checked as described below before proceeding further. If this procedure does not result in clearing up the trouble, reference should be made to the Trouble Shooting Chart for the I.F. unit Fig. 7-2 and proceed as indicated on this chart.
a. ALIGNMENT-Complete I.F. Alignment is most easily accomplished with the I.F. chassis removed from
the main chassis, although all adjustments are accessible with the I.F. chassis installed. With the I.F. chassis removed it is necessary to connect leads supplying plate and filament power to the I.F. chassis which are connected to the RED and BROWN terminals respectively at one end of the I.F. chassis. Care must be taken that a good ground connection exists between the main chassis, or other source of plate and filament power, and the I.F. chassis.
Equipment required for alignment consists of a signal generator and a high impedance D.C. vacuum tube voltmeter, such as the RCA Junior Voltohmyst.
STEP 1. Set the signal generator to the frequency required, 400 KC .
STEP 2. Connect the output of the signal generator to the input terminal board of the I.F. chassis.
STEP 3. Connect the tube voltmeter lead to the grid of the limiter tube V102.
STEP 4. Peak the secondary of T101 for maximum negative indication on the meter by turning the screw stud projecting from the top of T101. The input level from the signal generator should be high for this operation, otherwise it may not be possible to discern a readable deflection of the voltmeter.
STEP 5. With all connections as before, peak T102 for maximum negativê indication on the voltmeter by turning the screw stud on the top of T102.
STEP 6. Remove the tube voltmeter prod from the limiter grid and connect it to Pin \#3 (or \#5) of the discriminator tube V104.
STEP 7. Stop oscillation of the locked oscillator by grounding Pin \#8 of the locked oscillator tube V103.
STEP 8. Peak the primary of the discriminator transformer T104 for maximum negative indication on the voltmeter by turning the screw stud on the bottom of T104. STEP 9. Connect the tube voltmeter to the GREEN terminal of the output terminal board.
STEP 10. Align the secondary of T104 to the center of the discriminator curve by turning the screw stud at the top of T104. As resonance is approached the voltmeter reading should gradually build up a positive or negative value, depending on from which side resonance is being approached, then as the screw is further turned in the same direction the meter should reverse and quickly go through zero and up to an approximately equal value of the opposite polarity. The adjusting screw should be backed up until the zero indication between the two peaks is reached and then left at this point.
STEP 11. Remove the input signal from the generator. STEP 12. Remove the ground from Pin \#8 of V103, allowing the oscillator to resume oscillations.
STEP 13. Adjust the oscillator frequency by turning the screw stud at the top of the oscillator transformer T103. This will give an indication on the tube voltmeter similar to that obtained when aligning the secondary of the discriminator transformer T104 and the adjustment should be made in the same manner.
STEP 14. Reconnect the signal generator to the input terminals.
STEP 15. Vary the frequency of the input signal and note on the meter whether or not the oscillator swings

FAILURE REPORTS

AFAILURE REPORT must be filled out for the failure of any part of the equipment whether caused by defective or worn parts, improper operation, or external influences. It should be made on Failure Report, form NBS383, which has been designed to simplify this requirement. The card must be filled out and forwarded to BUSHIPS in the franked envelope which is provided. Full instructions are to be found on each card.

Use great care in filling the card out to make certain it carries adequate information. For example, under "Circuit Symbol" use the proper circuit identification taken from the schematic drawings, such as T-803, in the case of a transformer, or R-207, for a resistor. Do not substitute brevity for clarity. Use the back of the card to completely describe the cause
of failure and attach an extra piece of paper if necessary.
The purpose of this report is to inform BUSHIPS of the cause and rate of failures. The intormation is used by the Bureau in the design of future equipment and in the maintenance of adequate supplies to keep the present equipment going. The cards you send in, together with those from hundreds of other ships, furnish a store of information permitting the Bureau to keep in touch with the performance of the equipment of your ship and all other ships of the Navy.
This report is not a requisition. You must request the replacement of parts through your Officer-in-Charge in the usual manner.
Make certain you have a supply of Failure Report cards and envelopes on board. They may be obtained from any Electronics Officer.

Sample Failure Report Cards Properly Filled In
both sides of centre frequency before dropping out of lock. Removing the signal generator input signal should cause the meter to indicate at centre showing that the free oscillation frequency is the centre frequency of the I.F. Signal.

3. COUPLING KIT

With the receiver operating, measure the voltages to ground from the socket contacts of X501 with the cathode follower tube V501 operating. If the defective part has not been located, measure the resistance to ground (with the receiver off). Values to be expected are shown in Fig. 7-6. If the defective part is not located in the coupling components, measure the voltage and resistance in the receiver. See RBB/RBC instruction book for normal values.

Operation of the cathode follower and low pass filter components may be checked by means of a signal generator capable of delivering one volt at $400 \mathrm{k} . \mathrm{c}$. and a vucuum tube voltmeter. To make this check, proceed as follows.
STEP 1. Using the signal generator apply one volt at 400 k.c. to the grid terminal $\# 4$ of the cathode follower tube V501.
STEP 2. Using the vacuum tube voltmeter measure the output voltage from terminal to grounding spring of J 501 . Normal operation is indicated by an output of 0.15 volt.

4. A.F. SYSTEM

If the I.F. unit performs normally but the OUTPUT Meter does not show any keying, refer to the Trouble Shooting Chart for the Main Chassis Fig. 7-3 and proceed as outlined to trace through the circuit stage by stage.

Oscillograph patterns that should be obtained at the output of each stage in the A.F. system are shown on the Block Diagram Fig. 7-1 and should be viewed on an
oscilloscope having a pass band of at least 5 to 10,000 cycles.

Fig. 7.1 Block Diagram of A F. System
A word of caution regarding the squelch circuit. This circuit consisting of tube V205 and its associated components functions to render the first locking circuit inoperative unless sufficient bias is applied to its grid to cut the tube off. This requires a minimum of - 3 volts and at least this much voltage must be present on this grid to allow the locking circuits to operate. If any doubt exists regarding this a quick check can be made by removing the squelch tube V205 and checking the operation of the circuit.

5. VACUUM TUBES

Vacuum tubes should be discarded if they fail to give satisfactory readings on a reliable tube checker. This will prevent future trouble caused by partially worn out tubes remaining in the equipment when their useful life is nearly expended.

TUBE TYPE									
CHARACTERISTIC	6SG7	6SJ7	6SA7	6H6	6J5	6L6GA	${ }^{5 Y} \mathrm{Y}_{3} \mathrm{GT} / \mathrm{G}$	${ }^{\text {OD3 }} / \mathrm{VR150}$	${ }^{0 A} 3 / \mathrm{VR75}$
Heater Volts	6.3	6.3	6.3	6.3	6.3	6.3	5.0		
Heater Amperes	0.3	0.3	0.3	0.3	0.3	0.9	2.0		
Plate Volts	250	250	250		250	250			
Screen Volts	125	100	100			250			
Grid Volts	-2.5	-3.0	0		-8.0	-14			
Plate M.A.	9.2	3.0	3.5		10	72			
Screen M.A.	3.4	0.8	8.5			5			
Plate Resistance	$\begin{gathered} 0.9 \\ \mathrm{Meg} . \end{gathered}$	$\stackrel{1.0}{\text { Meg. }}$	$\stackrel{1.0}{\text { Meg. }}$		7700	23000			
Transconductance Micrombos	4000	1650	450		2600	6000			
A.C. Volts per plate $\mathrm{R}-\mathrm{M}-\mathrm{S}$				117					
							Max.		
D.C. Output MA				$\stackrel{8}{\operatorname{Max}}$			$\begin{aligned} & 125 \\ & \text { Miax. } \end{aligned}$		
D.C. Starting									
Volts (approx.)								160	100
D.C. Operating									
Volts (approx.)								150	75
D.C. Operating Current								5-40	5-40

NOTE
All tubes of a given type supplied with the equipment shall be consumed prior to employment of tubes from general stock.

NOTE

A wrench to remove the set screw from the knobs and catch parts is supplied in a spring clip on the side brace of the chassis.

TROUBLE SHOOTING CHART
I.F. CHASSIS

Fig. 7.2 Trouble Shooting Chart I.F. Chassis

Fig. 7.3 Trouble Shooting Chart Main Chassis

SYMbOL	dwG. No.	diagram	WINDING	WIRE SIZE	TURNS	$\begin{gathered} \text { D.C. } \\ \text { RESISTANCE } \\ \text { IN OHMS } \end{gathered}$	$\underset{\text { RATIO }}{\substack{\text { impedance }}}$	$\begin{gathered} \text { HI-POT } \\ \text { A.CT } \\ \text { VOLTS } \end{gathered}$	REMARKS
T101	122209-501		$\underset{A-D}{\text { Primary }}$ Secondary B-C	3 strand . 0028 Litz. 3 strand . 0028 Litz.		$\begin{aligned} & 0.85 \\ & 17.5 \end{aligned}$			Wind between 1st and second pies of secondary. 4 sections Üniversal wound 4 crosses per turn. crosses per turn.
T102	122209-502	$\begin{aligned} & L 103 \\ & \underbrace{\infty 000000}_{c}= \end{aligned}$	$\begin{aligned} & \text { Single } \\ & { }_{B-C l e} \end{aligned}$	3 strand . 0028 Litz.	90 per Section	17.5			4 sections Unir versal wound 4 crosses per turn.
T103	122210-501		$\underset{B-C}{\text { Primary }}$ Secondary A-D	7 strand . 0028 Litz. No. 38 E	125 85	3.1 6.2			Cumulative wound 250 turns per inch. Single layer close wound 200 turns per inch.
T104	122209-503		$\underset{A-D}{\text { Primary }}$ Secondary	3 strand . 0028 Litz. 3 strand . 0028 Litz.	75 75	14 14			4 sections Universal wound 4 crosses per turn. 4 sections Universal wound 4 crosses per turn.

Fig. 7-9 I.F. Chossis Top View

Fig. 7.10 I.F. Chassis Bottom View

Fig. 7-11 Main Chassis Top View

Fig. 7-12 Main Chassis Bottom View

Fig. 7-13 Main Chassis Bottom View

TABLE 8-1
LIST OF MASOR UNITS
frequency shift receiver Converting equipment navy model fra

SYMBOL GROUP	QUANTITY	NABP OF UNIT	NAVY TYPE DESIGNATION
$\begin{aligned} & 101-199 \\ & 201-299 \\ & 301-499 \\ & 501-599 \end{aligned}$	1 1 1 1	Frequency Shift Receiver Converter Consisting of - I.F. Assembly $400 \mathrm{~K} . \mathrm{C}$. Main Chassis Assembly Unassigned Coupling Kit - Consisting of Cathode Follower Assembly Low Pass Filter Unit Coaxial Cable Miscellaneous Accessories A.C. Power Plug Output PIug	CRV-35122 CRV-10563 CRV-49125 $A N-3106-14-5 P$

COABINED PARTS AND SPARE PARTS LIST BY SYMBOL DESIGNATION FOR NAVY MODEL PRA FREQUENCY SHIFT RECEIVER CONVERTER EQUIPMENT

PARTS: I.F. CHASSIS ASSEMBLY 400 KC

		Function	$\begin{aligned} & \text { Aws.Jan.or } \\ & \text { Navy Type } \\ & \text { Desig. } \end{aligned}$	$\begin{gathered} \text { Mfr. } \\ \text { and } \\ M f_{r} \text { s Desig. } \end{gathered}$	Contractor's Drg. and Part No.	All Symbol Designations Involved			Equip Tender				Stock	
Symbol Design	$\begin{aligned} & \text { Name of Part } \\ & \text { and } \\ & \text { Description } \end{aligned}$								$\left\lvert\, \begin{aligned} & \dot{0} \\ & \dot{z} \\ & \text { x } \\ & \text { óm } \end{aligned}\right.$	E		$\stackrel{\dot{\pi}}{\dot{7}}$	+	
Cl01	Capacitor: fixed, mica, 120 mmf . $\pm 5 \%, 500$ v. d.c. Working characteristic C, part of Z-101, max.dimensions 51/64"xl5/32"x 7/32", two pigtail terminal leads.	$\begin{aligned} & \text { Capacitor, I.F. Tuning } \\ & \text { Tl01 } \end{aligned}$	CM20Cl21J	CM20Cl21J	722004-525	Cl01, $\mathrm{ClO4}$	2	1	1	1	1	2	1	2
C102A	Capacitor: fixed, paper, dual, . $1 \times$. $1 \mathrm{mf} ., 400 \mathrm{~V}$ working, mineral oil impregnated and filled, two mounting holes spaced $2-1 / 8^{\prime \prime}$, dimensions $41 / 64^{\prime \prime}$ x 2-7/16" x 1-1/2", overall height 2-1/4".	Capacitor, Cathode By-pass $V 101$	$\begin{aligned} & \text { CP69B3EE } \\ & \text { 104MK } \end{aligned}$	$\begin{gathered} \text { CP69B 3EE } \\ 104 \mathrm{MK} \end{gathered}$	121706-1	ClO2	1	2	1	1	1	2	1	3
C102B	Part of Cl 102	Capacitor, Plate Filter Vlo2												
C103	Capacitor: moulded,fixed, paper .Olmf., 400 v working, dimensions $53 / 64^{\prime \prime} \times 53 / 64^{\prime \prime} \times 11 / 32^{\prime \prime}$, two pigtail terminal leads.	Capacitor, Screen By-pass Viol	CN35A 103	CN35A 103	121704-2	$\begin{aligned} & \mathrm{Cl03,C106} \\ & \mathrm{Cl09,} \mathrm{Cl14} \\ & \mathrm{Cl16,} \mathrm{Cl19} \end{aligned}$	6	3	1	3	1	9	1	15
ClO4	Same as Clol	Capacitor, Tuning Tl02												
CiOS	Capacitor: fixed, mica, 56 mmf . $\pm 10 \%, 500$ v d.c. working, characteristic A, max. dimensions $51 / 64^{\prime \prime} \times 15 / 32^{\prime \prime} \times 7 / 32^{\prime \prime}$, two pigtail terminal leads.	Capacitor, Grid Coupling V102	CM20A560K	CM20A560K	722000-567	$\begin{aligned} & \text { Cl05, Cllo, } \\ & \text { Clll } \end{aligned}$	3	4	1	1	1	3	1	4
2106	Same as ClO 3	Capacitor, Plate Decoupling V101												
Cl07	Capacitor: fixed, mica, 390 $\mathrm{mmf} . \pm 5 \%, 500 \mathrm{v}$ d.c. working, characteristic C, max. dimensions $51 / 64^{\prime \prime} \times 15 / 32^{\prime \prime} \times 7 / 32^{\prime \prime}$, two pigtail terminal leads.	Capacitor, RF Filter	CM20C 391J	CM 20 C 391 J	722004-537	$\begin{aligned} & \mathrm{Cl107,C117,} \\ & \mathrm{Cl18} \end{aligned}$	3	5	1	1	1	2	1	3
Cl08	Not used													
Cl09	Same as Cl03	Capacitor, Screen By-pass Vio2												
Cllo	Same as CiO5	$\begin{aligned} & \text { Capacitor,Grid } \\ & \text { Coupling VlO3 } \\ & \hline \end{aligned}$	-											

PARTS：I．F．CEASSIS ASSEMBLY 400 KC．									SPARE PARTS						∞
$\begin{aligned} & \text { Symbol } \\ & \text { Design } \end{aligned}$	Hame of Part and Description	Function							Equip		Ten	der		ock	n
			Aws．Jan．or Navy Type Desig．	$\begin{gathered} \text { Mfr. } \\ \text { and } \\ \text { Mfr's Desig. } \end{gathered}$	Contractor＇s Dwg．and Part No．	$\begin{gathered} \text { All } \\ \text { Symbol } \\ \text { Designations } \\ \text { Involved } \end{gathered}$		$\left\|\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \\ \dot{0} \\ \dot{y} \\ \mid \end{array}\right\|$	$\begin{aligned} & \dot{8} \\ & \dot{z} \\ & \text { ro } \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \dot{\circ} \\ & \text { 号 } \\ & \text { 品 } \end{aligned}$	宫		岂	쥰
Ll05	Inductance：R．F．，part of 8103， start located $1 / 32^{\prime \prime}$ from finish of LlO4，treated after assembly with Cumar．	Inductance，Secondary T103		$\begin{aligned} & \text { CRV } \\ & 121393-4 \end{aligned}$	121393－4										
L106	Inductance：R．F．，part of 2104， four sections，spacing 1／32＂ between pies，overall length 11／32＂，located 1－5／32＂from top of coil form，treated after assembly with Cumar．	Inductance，Primary T104	．	$\left\lvert\, \begin{aligned} & \text { CRV } \\ & 121389-7 \end{aligned}\right.$	121389－7										
L107	Inductance：R．F．，part of 2104， same as Ll06，located 9／16＂from top of coil form，treated after assembly with Cumar．	Inductance，Secondary T104		$\begin{aligned} & \text { CRV } \\ & \text { l21389-7 } \end{aligned}$	121389－7										
R101	Resistor：fixed，composition， 330 ohms $\pm 20 \%$ ，l／4 watt in－ sulated，． $406^{\prime \prime}$ max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	Resistor，Cathode Bias Vlol	RCIOBE331M	RCLOBE331M	722302－10	R101	1	9	1	1	1	3	1	5	$\underset{\sim}{\text { ¢ }}$
Rl02	Resistor：fixed，composition， 150,000 ohms $\pm 20 \%$ ，1／4 watt insulated， ．406 max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	Resistor，Screen Dropping VlOl	RClOBE154M	RClOBE154M	722302－26	R102	1	10	1	1	1	3	1	5	
Rl03	Resistor：fixed，composition 1000 ohms $\pm 20 \%$ ， $1 / 4$ watt in－ sulated， $\mathbf{}^{40} 6^{\prime \prime}$ max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	$\begin{aligned} & \text { Resistor, Plate } \\ & \text { Decoupling V101 } \end{aligned}$	RClOBE102M	RCLOBE1024	722302－13	$\left.\right\|_{\text {R103, R107, }} ^{\text {RIls }}$	3	11	1	2	1	9	1	15	
Rl04	Resistor：fixed，composition， 330，000 ohms $\pm 20 \%$ ，1／4 Fatt insulated， ．$^{\prime 0} 6^{\prime \prime}$ max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	Resistor，Grid Leak V102	RC1OBE334M	RClOBE334M	722302－28	R104	1	12	1	1	1	3	1	5	
R105	Resistor：fixed，composition， 2.2 megohms $\pm 10 \%$ ， $1 / 4$ watt insulated， ．$^{406 "}$ max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	Resistor，R．F．Filter	RClOBE225K	RClOBE225K	722302－102	R105，R219	2	13	1	1	1	6	1	10	\bigcirc
R106	Resistor：fixed，composition， 1.0 megohms $\pm 20 \%$ ， $1 / 4$ watt insulated， $\mathbf{4 0 6}^{\circ}$ max．length， ．170＂max．diam．，two axial leads 1－1／2＂long．	Resistor，Screen Dropping Vl02	RCLOBEIO5M	RClOBEIOSM	722302－31	$\begin{aligned} & \text { R106,R201, } \\ & \text { R214,R228, } \\ & \text { R231, R234, } \end{aligned}$	6	14	1	3	1	18	1	30	茳

PARTS: MAIN CHASSIS									SPARE PARTS						00
	Name of Part and Description	Function							Equ		Tend	der		ock	~
Symbol Design			Aws.Jan.or Navy Type Desig.	$\begin{gathered} \text { Mfr. } \\ \text { and } \\ \text { Mfr's Desig. } \end{gathered}$	Contractor's Dwg. and Part No.			$\left\lvert\, \begin{gathered} 0 \\ 2 \\ a \\ a \\ 0 \\ n \\ \hline \end{gathered}\right.$	$\begin{aligned} & \dot{0} \\ & \dot{z} \\ & x_{0} \\ & \\ & \hline \end{aligned}$			$\begin{gathered} \dot{3} \\ \underset{3}{2} \end{gathered}$			$\overline{\mathbf{Z}}$
L203A	Coil: radio, R.F., assembly treated with Cumar, four solder terminal lugs, each start and each finish lead soldered to separate terminal, coil form 2-1/8" long, .562" O.D. .437" I.D.	Coil, Tone Output Filter to J202	$\begin{array}{\|l} \text { CRV- } \\ 471774 \end{array}$	$\begin{aligned} & \text { CRV } \\ & 121744-501 \end{aligned}$	121744-501	L203	1	60	1	1	1	2	1	3	
L203B	Part of L203A	Coil Tone Output Filter to J202													
L204	Not used.														
L205A	Coil: radio, R.F., assembly treated with Cumar, four solder terminal lugs provided, both start and both finish leads soldered to separate terminals, coil form $2-1 / 8^{\prime \prime}$ long, .562" O.D. . $437^{\prime \prime}$ I.D.	$\begin{aligned} & \text { Coil, D.C. Output } \\ & \text { Filter } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { CRV_ } \\ 471775 \end{array}$	$\begin{aligned} & \text { CRV } \\ & 121744-502 \end{aligned}$	121744-502	L205	1	61	1	1	1	2	1	3	
L205B	Part of L205A	Coil, D.C. Output Filter to J203													-
L206	Not used.														$\stackrel{\square}{\square}$
L207A	Coil: radio, R.F., consists of three pie sections in series with no break, pie windings are slug tuned from top of assembly, bakelite plug and brass insert in coil tube 4-1/2" long .625" I.D., 3/4" O.D., treated with Cumar, inductance of three pies 0.6l millihenries.	$\begin{aligned} & \text { Coil, Power Line } \\ & \text { Filter } \end{aligned}$	$\begin{array}{\|l\|l\|} \text { CRV- } \\ 47171 \end{array}$	$\left\lvert\, \begin{aligned} & \text { CRV } \\ & 121369-501 \end{aligned}\right.$	121369-501	$\left\lvert\, \begin{aligned} & \mathrm{L} 207, \mathrm{~L} 208, \\ & \mathrm{~L} 209, \mathrm{~L} 210 \end{aligned}\right.$	4	62	1	4	1	8	1	12	
L207B	Part of L207A	Coil, Power Line Filter													
L208A	Same as L207A	$\begin{aligned} & \text { Coil, Power Line } \\ & \text { Filter } \end{aligned}$													
L208B	Part of L208A	Coil, Power Line Filter													
L209A	Same as L207A	Coil, Power Line Filter													-
L209B	Part of L209A	$\begin{aligned} & \text { Coil, Power Line } \\ & \text { Filter } \end{aligned}$													U
L210A	Same as L207A	Coil, Power Line Filter													$\stackrel{5}{4}$

PARTS: COUPLING KIT									SPARE PARTS					
	Name of Part and Description	Function							Equi		Ten	der		ock
Symbol Design			Aws.Jan.or Navy Type Desig.	$\begin{gathered} \text { Mfr. } \\ \text { and } \\ \text { Mfr's Desig. } \end{gathered}$	Contractor's Dwg. and Part No.	```All```			$\left\lvert\, \begin{gathered} \dot{8} \\ \dot{z} \\ \underset{o}{\mathrm{o}} \end{gathered}\right.$	$\left\|\begin{array}{c} \dot{\Xi} \\ \underset{y}{2} \end{array}\right\|$				宮
R502	Resistor: fixed, composition, 10000 ohms $\pm 20 \%$, $1 / 4$ watt, insulated, .40̄6" max.length, -170" max.diam., two axial leads 1-1/2" long.	Resistor, Decoupling	RCIOBE103M	RClOBE103M	722302-19	R502	1	98	1	1	1	6	1	10
R503	Resistor: fixed, composition, $1.0 \mathrm{MEGOHM},+10 \%, 1 / 2$ watt, insulated, $.655^{\prime \prime}$ max.length, .249" max.diam., two axial leads 1-1/2" long.	Resistor, Grid	RC21BE105K	RC21BEIOBK	722322-98	R503	1	99	1	1	1	3	1	5
V501	Tube: electron JaN 6aB7	Tube, Cathode Follower		CRC		V501	1	100	1	2	1	3		0
W501	Cable Assembly: R.F. consists of 4 feet Army-Navy Type RG-58/U cable and two ArmyNavy Type UG-85/U connectors.	Cable Assembly, R.F. Input Connector		CPH Cable RG58/U Plug UG85/U	122215-501	W501	1	101	1	1	1	1	1	2
X501	Socket Assembly: tube, consists of socket-octal(steatite) retaining spring, and adapter plate, as per US Navy drawing RE49AA 313A, spacer washer not furnished, contacts heavily silver plated, terminal ends hot tin dipped for soldering, retaining spring to be steel, copper and nickel plated, mounting holes spaced 1-5/8".	Socket Assembly, for V501	49373	${ }_{421395-505}$	421395-505	X501	1	102	1	1	1	1	1	1
2501	Coil Assembly: consists of two coils L5O1 and L502, inductance 22 micrahenries $\pm 10 \%$ at 1000 cycles; also incIudes capacitors, C-505,6=504, C-506 and thpeo termitad boards, assembly is unshielded and has mounting bracket at bottom, four tapped mounting holes centres spaced 3/4" in bracket, overall dimensions $3-1 / 8^{n} x 1-3 / 8^{n} x 1-3 / 8^{\prime \prime}$ shielded lead comnects to term. inals A and B at top, shield goes to B.	Coil Assembly, Low Pass Filter, R.F.		$\begin{aligned} & \text { CRV } \\ & 122220-501 \end{aligned}$	122220-501	2501	1	103	1	1	1	2	3	3
H501	Spacer	$\mathrm{N}_{\mathrm{Nounting}}^{5501}$ receptacle		$\begin{aligned} & \text { CRV- } \\ & 121783-1 \end{aligned}$	121783-1	H501	1							
H502	Screws, 3-56 thread, 1/4" lang	Mounting $J 501$ to E501				H502	4							
H503	Lockwasher, 基, split typo	1eed under H 502			121722-1	H503	4							

TABLE 8-4

APPLICABLE COLOR CODES

TABLE 8-5
LIST OF MANUFACTURERS
FREQUENCY SHIFT RECEIVER CONVERTING EQUIPMENT NAVY MODEL FRA

$\begin{aligned} & \text { Mfr. } \\ & \text { Prefix } \end{aligned}$	N A M E	A D DRESS
CRV CAE CPH CFA CLF CG CRA CBDR CDJ $C I R$ $C O C$	Radio Corporation of America Cutler Hammer Inc. American Phenolic Corp. L.N. Barry Co. Bussman Mfg. Co. Dial Light Co. Littlefuse Laboratories, Inc. Allen Mfg. Co. General Electric Co. Utah Radio Products Co. Ucinite Co. Russel \& Stoll Co. Hammond Manufacturing Co. Dejur Amsco Corp. International Resistance Corp. Oak Mfg. Co.	Camden, N.J. 1333 W. St. Paul Ave. Milwaukee, Wis. 1250 W. Van Buren St. Chicago, Ill. 489 Main St. Cambridge, Mass. 2538 W. University St. St. Louis, Mo. 900 Broadway, New York, N.Y. 4765 Ravenswood Ave. Chicago, Ill. Hartford, Conn. Schenectady, N.Y. 812 Orleans St. Chicago, Ill. Newtonville, Mass. 125 Barclay St., New York, N.Y. Guelph, Ont., Canada. Shelton, Conn. 401 N. Broad St. Philadelphia, Pa. 1200 N. Clybourne Ave., Chicago, Ill.

